纳米技术的特性十篇

发布时间:2024-04-25 20:38:23

纳米技术的特性篇1

【关键词】纳米金;生物医学技术;应用现状

1前言

如今纳米技术随着时代的发展已经得到了很大的发展,成为了科学研究的热点,纳米金是指直径0.8~250mm的缔合金溶胶,它属于纳米金属材料中研究最早的种类,纳米金具有良好的纳米表面效应、量子效应以及宏观量子隧道效应,它具有很多良好的化学特性,比如抗氧性和生物相容性。

2纳米金在病原体检测技术中的应用现状

近些年来生物医学界对于流行病学的研究和对病原微生物的诊断已有了不小的进展,传统的分离、培养及生化反应逐渐被时代所淘汰,运用纳米金的免疫标记技术作为新的高通量的、操作简单的检测技术被广泛应用于临床病原体的检测,这种检测技术快速且准确,十分适合在临床上使用。1939年,两位科学家Kausche和Ruska做了一个小小的纳米金实验,他们将烟草花病毒吸附在金颗粒上,并在电子显微镜下观察,发现金离子呈高电子密度,就此打下了纳米金在免疫电镜中的应用基础。从1939年后生物医学技术不断发展,纳米金标记技术也广受世人关注,成为了现代社会四大免疫标记技术之一。作为一种特殊标记技术,纳米金在免疫检测领域受到了广泛的应用,使用纳米金粒子做探针,观察抗原抗体的特异性反应,放大检测信号,由此检测抗原的灵敏性。纳米金技术具有良好的检测灵敏性,在早期还支持诊断并监控了急性传染性病毒,根据这一特性,秦红设计了快速检测黄热病病毒的技术,在纳米金颗粒上标记上金Spa-复合物的标志,通过免疫反应实验我们发现病毒抗体与纳米金颗粒结合,并形成了人眼可见的红线。这种检测方法的优点有:不需要器材、简单、迅速、廉价、高效,极大地推动了黄热病病毒检测技术的更新,在黄热病的防控事业上有着深远意义。利用纳米金作为免疫标记物来检测的除了黄热病病毒,还有致病寄生虫。我国的民族种类多样,一些少数民族人民由于自身的文化特点,喜食生食或半生食物,这就形成了寄生虫病的传播,我国经济大发展后,人民的生活水平得到了提高,但还是喜食半生动物肉或者内脏,造成了食源性寄生虫病发病率的上升,严重影响人民身体健康。目前我国的临床诊断寄生虫病技术包括三方面:病原学检查、免疫学检查以及影像学检查。运用纳米金检测技术,不仅缩短了取材时间、缩小了取材范围,而且检出率高、创伤性小,受到了患者的广泛欢迎。

3纳米金在核酸、蛋白质检测中的应用现状

纳米金粒子具有特殊的表面等离子体共振现象,被应用在核酸构建和分析检测蛋白质领域中,可以把生物识别反映转换为光学或电学信号,因此人们将其与Dna、Rna和氨基酸相结合,在检测核酸和蛋白质方面收效颇丰,并且这种检测方法制备简单,同时还具有很多优点,比如良好的抗氧化性和生物相容性,下面具体讲一下纳米金检测技术在核酸和蛋白质检测中的应用。首先是在核酸检测中的应用。美国首先利用纳米金连接寡核苷酸制成探针检测核酸,将纳米金做标记与靶核酸结合形成超分子结构,由此来检测核酸。利用纳米金技术检测特定病原体和遗传疾病首先要做的就是检测核酸的特定序列,在芯片点阵上整齐排列纳米金颗粒,利用taqDna连接酶识别单碱基突变,等待连接后,就可以经过一系列步骤得出单碱基突变结果,得到所需信息。在临床应用中使用纳米金技术的表现有高灵敏检测谷胱甘肽和半胱氨酸的新型电化学生物传感器,这种机器对于谷胱甘肽和半胱氨酸的检出限值更低,在检测及预防糖尿病、艾滋病等疾病方面具有很大的临床优势。其次是在蛋白质检测中的应用。纳米金与蛋白质的作用方式非常多样,有物理吸附方式、化学共价结合方式以及非共价特异性吸附等等方式,在此背景下,我们可以利用纳米金检测并治疗疾病和检测环境污染。

4纳米金在生物传感器制备中的应用现状

目前纳米金在生物传感器检测中的应用受到了人们的普遍关注,如上文所说,纳米金具有特殊的表面等离子体共振现象,这是制备生物传感器的基础。利用这种特性,科学家们做了许多实验,比如拉曼光谱试验,使用Uv-Vis光谱和拉曼光谱仪测试金纳米颗粒的表征,得出结论是可以根据纳米金颗粒的不同形貌制作不同浓度分子的探针,受外周环境介电特性和颗粒尺寸大小的影响,纳米金颗粒会表现出不同的形貌特征,比如吸收光谱、发生蓝移。纳米金是属于一种非常微小的贵金属,作为贵金属,它具有很好的导电性能,利用纳米金进行免疫检测时会大量聚集纳米金,从而增强反应体系的电导,顺利通过电导检测免疫反应。利用纳米金的高检测灵敏性可以进行电化学免疫传感器的制备。

5其他领域的应用现状

目前纳米技术的研究中,纳米金在生物医学技术中的应用研究是重要研究课题,除了上文中说到的病原体检测、核酸以及蛋白质检测还有生物传感器制备中的应用,纳米金技术同时也被广泛应用于肿瘤的诊断与治疗、药物载体以及Ct成像。纳米金具有特殊的组成结构,它可以轻易被修饰并负载化合物,可以用于检测并治疗肿瘤,还可以被用于肺癌的检测及治疗,目前的大量数据都表明纳米金技术在诊断并治疗肺癌上有极大的优势。

6结语

21世纪生物医学技术领域最关键的技术之一就是纳米金标记技术,作为一种十分精细的技术,它几乎不影响生物分子的活性,就这一点而言,它是非常好的标记物。我们可以想见,纳米金技术因其自身的诸多优点,必会获得更大的生物医学发展空间。

参考文献:

[1]艾桃桃.纳米金在生物医学领域中的应用[J].陕西理工学院学报(自然科学版),2010,04:63~68,95.

[2]王英泽,黄奔,吕娟,梁兴杰.纳米技术在生物医学领域的研究现状[J].生物物理学报,2009(03):168~174.

[3]李家萌,曹颖,赵媛,杨毅梅.纳米金在生物医学技术应用的研究现状[J].中国寄生虫学与寄生虫病杂志,2016(02):1~5.

纳米技术的特性篇2

关键词:纳米材料应用

一、纳米的发展历史

纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

二、纳米技术在防腐中的应用

纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米sio2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米tio2、sio2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。

纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是sio2、tio2、caco3、zno、fe2o3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。

纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的halox、sherwin-williams、mineralpigments、德国的hrubach、法国的sncz、英国的britishpetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。

我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。

三、纳米材料在涂料中应用展前景预测据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领

域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。

由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。

在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。

纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。

纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。

四、结语

由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。

参考文献:

[1]桥本和仁等[j].现代化工.1996(8):25~28.

[2]曾汉民[j].现代涂料与涂装.2001(4,5,6):40~42,39~42,42~44.

纳米技术的特性篇3

1人工纳米材料对环境的潜在风险

1.1人工纳米材料为生物大分子结合人工纳米材料是基于纳米技术而言之上成功的,其在组成上以高分子和胶体构成,在尺度上界定在lnm~100nm范围内。人工纳米材料是人工制造的化学用品,种类很多,在环境中所表现的特征是建立在其组合形式基础上的。人工纳米材料生物成分居多,具有许多生态特征。由于其具有生物大分子的强烈结合性,会与生命物质强烈结合,并以其显著的亲脂特性、配位特性和体现出来的极性效应而渗入到体内。从人工纳米材料的化学组成来看,其比表面积大,众多的原子吸附在粒子表面的周围,使得相邻原子缺少而导致许多空键存在。这就意味着人工纳米材料化学活性极强,特别是吸附能力非常强。人造纳米材料的这些物化性质对于人体和环境都会产生不良影响。这部分对人体和生态环境产生负面影响的人工纳米材料被称为“纳米污染物”。随着纳米时代的到来,这些人工制造的纳米污染物必然会对生态环境产生严重的危害,因此要做好防护工作。

1.2人工纳米材料可以产生高级生物的毒性效应人工纳米材料的污染物以纳米级存在,主要在于其强大的吸附性而导致其吸附被大量的污染物而被掩盖,因此具有潜伏性。经过长期的化学结合而在合适的环境条件下就会产生化学反应,所释放出来的化学物质就会污染到环境。纳米污染物在特定的环境狭隘,会渗入到器官内且浓度不断增大,使得毒性效应显性化。如果纳米污染物进入到生物链中,特别是进入到食物链环境,经过高位富集后,就会使纳米的生物性发生毒性效应。纳米污染物不仅具有组合复合性,而且还具有迁移性和扩散性。在任何的环境中,都会存在着多种化合物,它们以各种形体存在,相互之间协同,对环境不断地改变,以使环境成为符合化合物生存的环境,由此而成为复合污染体系而难以控制。纳米级的物质尺度小而吸附力极强,具有较强的迁移性,特别是小分子化合物,具有极大的扩散力。从物理性质上来看,这种扩散的形成是基于布朗运动和介质涡流而促成的。如果在纳米分子的表面所吸附的颗粒物携带有生命体,就可以进行远距离传输,发生扩散性的污染效应。

1.3人造纳米材料具有广泛的应用性而导致污染范围扩大随着科学技术进步,人类掌握了纳米技术而将其在生活中普及。基于经济理念而运用纳米技术所生产的各种消费品,使得越来越多的人有机会接触纳米材料,纳米污染物也开始接近人体,威胁到人体健康。纳米污染物融入到生态环境中,很容易与人类的皮肤接触。皮肤对于宏观的颗粒物具有阻挡性,但是纳米级的材料粒径仅为头发丝直径的1‰,已经纳米碳的直径仅为0.5nm,这么小的颗粒通过简单的扩散,就会穿过皮肤屏障和肺血屏障而渗透到人体中。纳米颗粒之小,对于人类的呼吸系统具有强大的侵袭力。当纳米污染物进入到人体的肺部,就会在肺泡上逐渐沉积下来,透过细胞而扩散到人体的全身,对人体的各项机能具有极大的威胁力。纳米污染物具有较高的毒性,美国著名的毒物学家欧博德瑞斯特(0berdorster)经过研究提出,在一些聚四氟乙烯材料中,直径低于20nm的颗粒性物质会在空气中漂浮,严重污染环境,并直接或者及间接性地渗入到生物体中。欧博德瑞斯特通过实验证明纳米污染物的危害,将实验用的小白鼠放置在悬浮着纳米颗粒物的环境中,大约15min后,小白鼠就会死亡。但是如果环境中的纳米颗粒物直径超过120nm,实验小白鼠就没有产生发病效应,依然存活。

2解决纳米环境安全问题的途径

目前运用纳米技术制作的人造纳米材料还没有在社会中普及,但是其对环境安全的威胁已经引起关注。纳米技术的运用是为了能够使人类更好地生活,对于其对人体健康和环境的影响,则需要从学术角度以技术性评估,并做出安全评价,这就需要对纳米技术以及人造纳米材料在应用领域所产生的负面影响以认识。纳米材料研究的学科覆盖面广泛,除了物理学、化学、生物学外,包括电子学以及交叉学科也会有所涉及,在对人造纳米材料进行安全性评估中,就要材料的纳米负面效用进行综合性评价,以具有针对性地提出安全措施。在纳米材料生产中,处于工业环节就要把好环境风险关,以防止纳米污染物泄露于环境中。建立纳米风险监控系统,并制定出泄露风险标准、安全操作条例,在纳米材料的运输上也要按照规定执行。此外,还要注重纳米材料的回收,在生产人造纳米材料的同时,要发展纳米材料绿色处理技术,以避免人造纳米材料在环境中造成二次污染。对于纳米材料的使用要予以控制,强化纳米废弃材料的处理,大力开展纳米材料的防护研究,以提升纳米材料在应用领域中的安全性。

3结论

纳米技术的特性篇4

纳米技术可能引起的主要伦理问题

1.健康和安全问题。纳米技术对健康和安全的影响,是纳米伦理面对的首要问题。由于纳米粒子极其微小,可以说无孔不入,所以也很容易进入人体,有可能成为许多重大疾病如肺部疾病和心血管疾病的诱因,给人类健康和安全带来严重的损害。研究表明,吸入的纳米颗粒可能避开免疫系统的吞噬作用,蓄积在某些靶器官,也可跨越不同生物屏障,重新转运分布到身体的其他组织器官,产生系统的健康效应[10]。而且,环境中的纳米颗粒由于具有较大的表面积而极易吸附大气中的有毒污染物,如多环芳烃等,被纳米颗粒吸附的有毒污染物可进一步对人和其他生物体产生毒性效应,还可能波及整个生物圈。纳米粒子对健康和环境的潜在风险涉及安全伦理和环境伦理的问题。安全不仅是一个科学的概念,安全更是伦理学必须考量的最基本的要素,因为安全既是人的基本需求也是人的基本权利。离开了安全,人的其他权利和自由、尊严等也将无从谈起;而且,保障研究人员和工人在工作场所的生命和健康安全,也是国家和企业的基本责任。

2.平等与公正问题。首先,纳米技术的潜在利益和风险使得其风险与利益的分配,也面临着社会公平与公正的伦理问题。纳米技术可能为技术发明家、企业家带来丰厚的利益,但也可能为研究者、受试者、生产者甚至消费者带来直接的和间接的健康风险,为公众带来环境风险。面对个体利益与公众利益、企业利益与社会利益、眼前利益与长远利益的冲突,应该优先考虑谁的利益?承担高风险的人是否应得到较高的回报?“如何分配科学技术的发展带来的好处、风险和代价,就成为了我们时代所必须面对的一个重要问题”[11]。其次,纳米技术的应用也可能加剧原有的社会不平等、不公正现象。众所周知,“信息高速公路”的出现导致了迅速扩大的信息资源和知识资源分布严重不均的“数字鸿沟”问题,并且加剧了原有的经济不平等、机会不平等和社会不平等问题,成为当今社会问题的一个重要根源。纳米技术的发展也可能产生类似数字鸿沟的“纳米鸿沟”问题。比如,纳米技术在医学上的应用,使得疾病的预防、早期诊断和治疗成为可能。研究表明,在不久的将来,用基因芯片、蛋白质芯片组装成的纳米机器人,有可能通过血管进入人体以诊断疾病、携带Dna去更换或修复有缺陷的基因片段,也可以将携带纳米药物的芯片送入人体内,在外部加以导向,使药物集中到患处,更理想地提高药物疗效[12]。但是,这些技术在其发展的初期阶段,往往比较昂贵,大部分人可能只好望而却步,仅能被少数人使用。如何使社会中的大多数成员公正地享受到纳米技术的成果并避免可能受到的损害,是纳米技术发展过程中必须面对的重要伦理问题。第三,纳米技术还有可能带来代内与代际、穷国与富国之间的平等与公正问题,尤其是可能使发达国家与发展中国家之间的差距加大。能够支付纳米技术研究与发展巨额费用的国家,可能优先发现和利用纳米技术的研究成果,在国际舞台上便优先掌握了“话语权”。当然,也不能排除发达国家将有污染的、甚至有毒的纳米研究项目转移到发展中国家的可能。诸如此类的问题会使国际间的不平等恶化。此外,还存在为了当代利益发展纳米技术而提前利用了过多的自然资源或给后代造成众多污染等代际不公正现象。

3.自主与尊严问题。人是有理性的存在物。理性之人的尊严来自于它的自主性,能够按照自己的意志作出决定。“大自然中的无理性者,它们不依靠人的意志而独立存在,所以它们至多具有作为工具或手段的价值,因此我们称之为‘物’。反之,有理性者,被称为‘人’,这是因为人在本性上就是目的自身而存在,不能把他只当做‘物’看待。人是一个可尊敬的对象,这就表明我们不能随便对待他。”[13]联合国教科文组织在《世界生物伦理与人权宣言》中强调,科学技术的研究和发展需要遵循本宣言所阐述的伦理原则,要尊重人的尊严。这包括自尊、享受别人尊重和尊重他人三个方面。在纳米技术的研究与应用中,许多方面涉及人的自主与尊严问题。例如,纳米技术与认知科学相互渗透与融合,可以揭示人脑的工作机制,利用纳米药物可以增强人的认知能力或治疗某些脑神经与认知方面的缺陷。但是,如果利用这些研究成果控制人的思维、干扰人的决定,则侵犯了人的自、漠视人的尊严。再者,如果将能够随时获取他人信息的纳米电子芯片等极微小的纳米器件,毫不被人察觉地嵌入他人衣服或皮肤里,则不仅窃取了他人的隐私,更贬损了他人的尊严。又如,纳米基因工程不仅能够治疗遗传病,而且能够改变生殖细胞基因以达到治疗或增强后代的目的。但是,不论父母的主观意愿是否善良,这种行为确实忽视了子女的自主与尊严。而诸如赛博格(Cyborg)、生命产品(Biofact)等技术的进一步发展将模糊人与机器、生命体与人工产品之间的界限,使得我们关于人与自然的基本概念发生动摇,什么是人、什么是自然等问题将变得不再是不言而喻的了。

纳米伦理的特征与评估

纳米技术的中介性和不确定性特征不仅使纳米技术可能引起一系列的伦理问题,而且也使得这些伦理问题展现出共同的伦理特征:可能性、整合性和前瞻性。这使得即时性、跨学科性、预警性评估成为应对纳米伦理的关键。

1.可能性特征与即时评估。纳米技术可能引起的伦理问题包括两个部分,其中有些是现实的,比如纳米粒子对安全和健康造成的影响;有些还是潜在的、未来的甚至含有推测性特征,比如有关纳米机器人的自我复制问题,但这绝不等于说这种推测完全是无中生有。纳米伦理不仅关注现实的纳米伦理问题,也关注未来的和潜在的伦理问题,目的是在纳米技术研究和开发的初期就参与到纳米技术的构建中。事实上,技术的发展并不是由技术本身或者技术专家们所能决定的。如果有怎样的技术就会有怎样的未来,那么,我们就有权利选择技术、选择和构建未来。因此,纳米伦理必须关注可能性。在这个意义上,可能性成为纳米伦理的一个重要特征。鉴于纳米技术发展的可能性、阶段性和动态性特征,对纳米技术应该采取即时评估的研究方法,以适时地、动态地评估纳米技术研究发展与应用各个阶段可能出现的伦理问题。在目前纳米技术的开发时期,首先应该关注的是实验室和工作场所的安全伦理问题,包括工人对所从事的纳米技术风险的知情权问题,建立健全工人的健康保险制度的问题,以及工作场所的通风、检测和预警机制等制度问题。其次,在纳米药物和利用纳米技术进行的检测中,即时评估纳米粒子在人体的生物学效应和对人体整体的影响,以确保纳米用药和检测的安全。

纳米技术的特性篇5

1.1原药纳米化后呈现新的药效或增强原有疗效中药被制成粒径0.1~100nm大小,其物理、化学、生物学特性可能发生深刻的变化,使活性增强和/或产生新的药效。如灵芝通过纳米级处理,可将孢子破壁,并采用超临界流体萃取技术萃取出灵芝孢子的脂质活性物质,从而增强抗肿瘤的功效。

1.2改善难溶性药物的口服吸收

在表面活性剂、水等存在下,直接将药物粉碎成纳米混悬剂,增加了药物溶解度,适于口服、注射等途径给药,以提高生物利用度。

1.3增加药物对血脑屏障或生物膜的穿透性

纳米粒能够穿透大粒子难以进入的器官组织、血脑屏障及生物膜。如阿霉素α聚氰基丙烯酸正丁酯纳米粒(naDm)可以改变阿霉素的体内分布特征,对肝、脾表现出明显的靶向性,而血、心、肺、肾中的药物分布则减少。

1.4靶向作用

徐碧辉教授等在研究中发现,一味普通的中药牛黄,加工到纳米级水平后,其理化性质和疗效会发生惊人的变化,甚至可以治疗某些疑难杂症,并具有极强的靶向作用。

1.5使药物达到缓释、控释

借助高分子纳米粒作载体等技术手段,可实现药物的缓释、控释。如雷公藤乙酸乙酯提取物固体纳米脂质粒有良好的缓释、控释功能。

2纳米中药的制备技术及其进展[3]

纳米中药的制备是研究纳米中药最基础的,也是最重要的问题。将纳米技术引入中药的研究,必须考虑中药组方的多样性、成分的复杂性,例如中药单味药可分为矿物质、植类药、动物药和菌物药等,中药的有效部位和有效成分又包括无机化合物和有机化合物、水溶性成分和脂溶性成分等,因此,针对不同的药物,在进行纳米化时必须采用不同的技术路线。此外,还必需考虑中药的剂型。纳米中药与中药新制剂关系十分密切,如何在中医理论的指导下进行纳米中药新制剂的研究,将中药制成高效、速效、长效、剂量小、低毒、服用方便的现代化制剂,也是进行中药纳米化所必须考虑的问题。纳米中药是针对中药的有效成分或有效部位进行纳米技术加工处理,开发中药的新功效。聚合物纳米粒可作为药物纳米粒子和药物纳米载体。药物纳米载体系指溶解或分散有药物的各种纳米粒,药物纳米载体包括纳米脂质体、固体脂质纳米粒以及纳米囊和纳米球。而对于不同类型的纳米中药,有不同的制备方法。

2.1药物纳米粒子的制备

药物纳米粒子的制备是针对组成中药方剂的单味药的有效部位或有效成分进行纳米技术加工处理。在进行纳米中药粒子的加工时,必须考虑中药处方的多样性、中药成份的复杂性。

纳米超微化技术[4],是改进某些药物的难溶性或保护某些药物的特殊活性,适用于不宜工业化提取的某些中药。如矿物药、贵重药、有毒中药、有效成分易受湿热破坏的药物、有效成分不明的药物。目前比较常用的是超微粉碎技术。所谓超微粉碎是指利用机械或流体动力的途径将物质颗粒粉碎至粒径小于10μm的过程。根据破坏物质分子间内聚力的方式不同,目前的超微粉碎设备可分为机械粉碎机、气流粉碎机、超声波粉碎机。

机械粉碎法[5]是利用机械力的作用来实现粉碎目的。边可君等采用自主开发的温度可控(-30~-50℃)的惰性气氛高能球磨装置系统制备纳米石决明。将石决明置于配有深冷外套的惰性气氛球磨罐中,同时装入磨球,磨球与石决明粉比保持在15:1~5:1范围,控制高能球磨机的转速(200~400r/min)和时间(2~60h),获得了平均粒度不大于100nm的石决明粉末。

气流粉碎法[6]是以压缩空气或过热蒸汽通过喷嘴产生的超音速高湍流气流作用为颗粒的载体。颗粒与颗粒之间或颗粒与固定板之间发生冲击性挤压、摩擦和剪切等作用,从而达到粉碎的目的。与普通机械冲击式超微粉碎机相比,气流粉碎产品粉碎更细,粒度分布范围更窄。同时气体在喷嘴处膨胀降温,粉碎过程中不会产生很大的热量。所以粉碎温升很低。这一特性对于低融点和热敏性物料的超微粉碎特别重要。世界上首项将纳米技术应用于中药加工领域的纳米级中药微胶囊生产技术,是通过对植物生理活性成分和有效部位进行提取。并用超音速干燥技术制成纳米级包囊。利用这项技术生产出的甘草粉体和绞股蓝粉体。经西安交通大学材料科学工程学院金属材料强度国家重点实验室和第四军医大学基础部药物化学研究室鉴定,均达到了纳米级。其中甘草微胶囊微粒平均粒径为19nm。这样的纳米粒可跨越血脑障碍,实现脑位靶向[6]。

中药纳米超微化技术既丰富了传统的炮制方法,又能为中药的生产和应用带来新的活力。纳米产品目前已成为中药行业新的经济增长点。将这项技术应用于中药行业可以开发具有更好疗效、更优品种的纳米中药新产品。这将对中药行业的发展带来深远的理论和现实意义。

2.2药物纳米载体的制备

药物纳米载体的制备主要是选择特殊的材料,它们应具备以下特征:性质稳定,不与药物产生化学反应,无毒,无刺激,生物相容性好,不影响人的正常生理活动,有适宜的药物释放速率,能与药物配伍,不影响药物的物理作用和含量测定;有一定的力学强度和可塑性(即易于形成具有一定强度的纳米粒,并能够完全包封药物或使药物较完全的进入到微球的骨架内);具有符合要求的黏度、亲水性、渗透性、溶解性等性质。这与所用药物的性质、给药方式有关[7]。近年来,可生物降解的高分子载体材料被认为是很有潜力的药物传递体系,因为它们性能多样,适应性广,且具有良好的药物控制性质,达到靶向部位的能力及经口服给药方式能够传递蛋白质、肽链、基因等药物的性能。常见的高分子材料有淀粉及其衍生物、明胶、海藻酸盐、蛋白类、聚酯类等。

对于纳米中药载体,目前常用的是纳米包复技术[8]。纳米包复化学药品和生物制品的技术在世界药学领域是最受关注的前沿技术之一。根据待包复的中药的性质不同,可选取不同的纳米包复技术,得到纳米中药。毛声俊等[9]采用3琥珀酸3o硬脂醇甘草次酸酯作为导向分子,采用乙醇注入法制备了甘草酸表面修饰脂质体,作为肝细胞主动靶向给药的载体。杨时成等[10]采用热分散技术将喜树碱制成poloxamer188包衣的固体脂质纳米粒混悬液。陈大兵等[11]用“乳化蒸发—低温固化”法制备紫杉醇长循环固体脂质纳米粒,延长了药物在体内的滞留时间。

此外,还有乳化聚合法[12]、高压乳匀法[13]、聚合物分散法等。制备成纳米微粒载体系统的中药多为单一有效成分,如抗肝癌或肝炎药物:蓖麻毒蛋白、猪苓多糖、斑蝥素、羟喜树碱、黄芪多糖等;抗感染药:小檗碱等;消化道疾病药:硫酸氢黄连素等;抗肿瘤药:秋水仙碱、高三尖杉酯碱、泰素等;心血管疾病药:银杏叶有效成分等;其它还有鹤草酚、苦杏仁苷等。也有将多种中药成分复合后制备纳米微粒载体系统的,如口服结肠靶向给药系统——通便通胶囊,其主药成分为3种极性相似的火麻仁油、郁李仁油和莱菔子油的混合油。还有将中药复合西药后制备纳米微粒载体系统的,如多相脂质体1393,其主要成分为氟脲嘧啶、人参多糖和油酸等;中药复方“散结化瘀冲剂”浸膏和5氟脲嘧啶(5FU)相结合后制备的磁性微球制剂也属此列。总之,不同的制备技术和工艺适合不同种类纳米中药的制备。

3问题与展望

尽管目前纳米技术的研究进展一日千里,纳米技术的飞速发展将有可能使中药的现代化迈上一个台阶,但是,目前纳米中药的研究尚处于基础阶段,纳米中药的制备技术也很不成熟,有许多问题仍需进一步研究。纳米粒制备时,载体材料多为生物降解性的合成高分子,在体内降解较慢,连续给药会产生蓄积,且降解产物有一定的毒性。另外有毒有机溶剂、表面活性剂的应用都给纳米控释系统的产业化带来了较大的困难。美国Rice大学生物和环境纳米技术中心(CBen)主任VickiColvin认为至少有两点需要引起重视:“一是纳米材料微小,它们有可能进入人体中那些大颗粒所不能到达的区域,如健康细胞。二是对比普通材料纳米量级性质会有所改变”。也就是很有可能在粒径减小到一定程度时,原本可视为无毒或毒性不强的纳米材料开始出现毒性或毒性明显加强,例如改变纳米材料表面的电荷性质,改变纳米材料所处的物理化学环境,相同的纳米材料可能会出现不同的毒性,纳米材料在生物体内可能会出现特殊的代谢情况,并且可能会与某些特定部位的器官或者组织细胞进行作用进而使其带来某些特而且纳米化后中药有效成分和药效学的不确定性,将给药物质量的稳定可控留下隐患。另外纳米中药的范围应有所限制,当一种中药粉碎到了纳米级时,药效可能会发生改变,不能为获得纳米微粒而损坏了药物的有效成分。目前对中药的微观研究尚不深入,对其有效成分与非有效成分还认识不清,仓促对其纳米化处理有可能得不偿失。在目前这个时期,进行商品化的纳米中药生产为时尚早。而应该进行开发纳米中药的制备技术研究并建立一整套纳米药理、药效和毒理学的理论与系统评价方法。

【参考文献】

[1]Kreuker.nanoparticlesandmicroparticlesforDrugandVaccine[J].Jaant,1996,189(pt3):503.

[2]张志琨,崔作林.纳米技术和纳米材料[m].北京:国防工业出版社,2004:44.

[3]魏红,李永国.纳米技术在生物医学工程领域的应用研究现状和发展趋势[J].国外医学生物工程分册,1999,22(6):340344.

[4]朱振峰,杨菁.药物纳米控释系统的最新研究进展[J].国外医学生物医学工程分册,2007,21(6):327327.

[5]SchofieldJp,CaskeyCt.nonviralapproachestoGenetherapy[J].BrmerdBul,2005,51(10):56.

[6]YangS,ZhuJ,LuY,etal.BodyDistributionofCamptochecin,Solidiipidnanopartoclesafteroraladministration[J].pharmRes,2005,16(5):751751.

[7]YangSC,LuLF,CaiY,etal.BodyDistributioninmiceofintravenouslyinJectedCamptothecinSolidLipidnanoparticlesandtargetingeffect011brain[J].JControllledRelease,2006,59(2):299299.

[8]SuhH,JeongB,RathiR,etal.RegulationofSmoothmuscleCellproliferationUsingpaclitaxelLoadedpoly(ethyleneoxide)poly(1actide/glycol1de)nanospheres[J].JBiomedmaterRes,2007,42(2):331331.

[9]allemanne,LerouxJC,GurnyR,etal.iilVitroextentedreleasepropertiesofDrugloadpoly(DLlacticacid)nanoparticlesproducedbyaSaltingoUtprocedure[J].pharmRes,2007,10(12):1732.

[10]SchroderU,SabelBa.nanoparticles.aDrugCarrierSystemtopasstheBloodBrainBarrier.permitCentralanalgesiceffectsofi.v.Dalargininjections[J].BrainRes,2007,710(1):121121.

[11]孔令仪.中药创新研究与高新技术应用[m].北京:中国医药科技出版社,2006:780780.

[12]杨时成,朱家壁.喜树碱固体脂质纳米粒的研究[J].药学学报,1999,34(2):146150.

[13]丁寅,袁红宇,郭立玮,等.负载士的宁纳米微粒研究[J].南京中医药大学学报(自然科学版),2006,18(3):156157.

纳米技术的特性篇6

论文摘要:纳米技术作为一种新兴的科学技术,随着技术的发展,纳米技术已经被日趋应用于生活领域的各个方面。本文回顾了纳米技术和纳米材料的发展过程并对纳米材料在食品安全的应用进行了介绍和论述。

纳米技术是20世纪末兴起并迅速发展的一项高科技技术,随着研究的深入和科学的发展,纳米技术已经日趋成熟并广泛的应用于各种领域,近年来纳米技术在医药上的许多研究成果正逐步地应用于食品行业,在此技术上开发、生产了许多新型的食品以及具有更好的功效和特殊功能的保健食品,纳米材料在食品安全上也发挥着越来越重要的作用。

纳米是一种几何尺寸的度量单位,l纳米为百万分之一毫米,即十亿分之一米的长度。以纳米为基础的纳米技术在20世纪90年代初起得到迅速发展并先后兴起了一系列的像纳米材料学、纳米电子学、纳米化学、纳米生物学、纳米生物技术和纳米药物学,纳米技术就是一种多学科的交叉技术,最终实现利用纳米机构所具有的功能制造出有特殊功能的产品和材料。因此,利用纳米技术制造出来的材料就具有微观性和一些普通材料所不具有的功能。

随着纳米技术的发展,纳米食品生产也取得了很大的成就。目前,纳米食品产品超过300种,一些带有纳米级别添加剂的食品和维生素已经实现商业化。据预测纳米食品市场在2010年将达到204亿美元,因此纳米技术在食品上的研究有着很大的发展潜力。纳米技术在食品上的研究和应用主要包括纳米食品加工、纳米包装材料和纳米检测技术等方面。

所谓纳米食品是指在生产、加工或包装过程中采用了纳米技术手段或工具的食品。纳米食品不仅仅是指利用了纳米技术的食品,更大程度上指里哟个纳米技术对食品进行了改造从而改变食品性能的食品。尤其是利用纳米技术改造过结构的食品在营养方面会有一个很大的提高,在这方面应用最广泛主要有钙、硒等矿物质制剂、维生素制剂、添加营养素的钙奶与豆奶、纳米茶等。

然而纳米食品也存在一些问题,首先由于对于纳米食品的加工主要是球磨法这就使得在纳米食品生产的过程中容易产生粉料污染,同时现有的纳米技术也会产生成材料的功能性无法预测,纳米结构的稳定性不高等问题。纳米食品还存在另外问题那就关于纳米食品的安全检测并没有个一个同一的标准。目前,国际上尚未形成统一的针对纳米食品的生物安全性评价标准,大多数是短期评价方法,短期的模型很难对纳米食品的生物效应有彻底的认识。而部分纳米食品存存在一些有害成分,并且经过纳米化后,这些物质更加很容易进入细胞甚至细胞核内,因此副作用也就越大,而这些由于安全检测的标准不统一可能在检测的时候检测不出来,因此纳米食品的安全标准有待进一步统一。虽然纳米食品存在一系列的问题但是纳米技术在食品包装和保险技术中却得到了很好的应用。

首先,在已有的包装材料中加入一定的纳米微粒可以增加包装材料的抗菌性从而产生杀菌功能。目前一些冰箱的生产技术中已经应用了这种技术生产出了一些抗菌性的冰箱。

其次,由于纳米材料的特殊性质,加入一定的纳米微粒还可以改变现有的包装材料的性能,从而进一步保证食品的安全。目前,部分学者已经成功的将纳米技术应用玉改进玻璃和陶瓷容器的性能,增加了其韧性。同时,由于纳米微粒对紫外线有吸收能力,因此在塑料包装材料中加入一些纳米微粒还可以防止塑料包装的老化,增加使用寿命。从而为食品生产提供了性能更加优越的包装容器。

第三,由于纳米材料的力磁电热的性质,使得纳米材料有着优越的敏感性。一些学者已经在研究将纳米材料的敏感性应用到防伪包装上面并取得了一定的成就。新的防伪包装的产生,无疑能够进一步加强普通食品和纳米食品的安全。

第四,经过研究发现纳米技术和纳米材料的一些性能能够很好的解决食品的保鲜问题。

经过研究发现传统的食品保鲜包转,在起到保鲜功能的同时还能够产生乙烯,而乙烯又反过来加剧了食品的腐蚀,因此可以说传统的食品保鲜包转并没有能够很好的起到保鲜功能。在纳米技术在研究过程中,发现纳米ag粉具有对乙烯进行催化其氧化的作用。所以只要在现有的保鲜包转材料中加入一些纳米ag粉,就可以加速传统保鲜包转材料产生的乙烯的氧化从而抑制乙烯的产生,进而产生更好的保鲜效果。

综上所述纳米技术虽然还有一些不足和缺陷,但是经过多年的研究和发展纳米技术已经取得了很大的进步和发展,并且已经开始应用于生产和生活领域。纳米技术和纳米材料以其特殊的性能不紧能够生产出性质更加优越的纳米食品同时通过改善包装材料还可以进一步提高食品的安全。

参考文献

[1]杨安树,陈红兵.纳米技术在食品加工中的应用[j].食品科技,2007(9).

[2]张汝冰,刘宏英,李凤生.纳米材料在催化领域的应用及研究进展[j].化工新型材料,1999(5).

[3]何碧烟,欧光南.食品添加剂对番茄红素稳定性的影响[j].集美大学学报:自然科学版,2000(1).

[4]郭景坤,冯楚德.纳米陶瓷的最近进展[j].材料研究学报,1995(5).

[5]黄占杰.无机抗菌剂的发展与应用[j].材料导报,1999(2).

[6]张倩倩.纳米粒子增强蛋白质直接电子传递及其传感应用[d].南京师范大学,2007.

[7]张涛,江波,沐万孟.纳米技术及其在食品中的应用研究进展[j].安徽农业科学.

[8]郭卫红,李盾,唐颂超,苏诚伟,徐种德.纳米材料及其在聚合物改性中的应用[j].工程塑料应用,1998(4).

[9]袁飞,徐宝梁,黄文胜,唐英章.纳米技术在世界范围内食品工业中的应用[j].食品科技.

纳米技术的特性篇7

关键词:纳米科技;纳米材料;应用现状

一、纳米的相关定义

纳米是长度计量单位,1纳米等于10-9米,形象地讲,1纳米的物体放到1个乒乓球上,相当于1个乒乓球放在地球上。20世纪80年代末纳米科技迅速发展。1982年,宾尼希等人发明了扫描隧道显微镜。该显微镜为人类进入纳米世界打开了一扇更宽广的门。

二、纳米科技的应用现状

纳米科技指在纳米尺度(1~100纳米)上研究物质(包括原子、分子的操纵)的特性和相互作用,以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。纳米科技用途广泛,涉及领域多,体现多学科交叉性质的前沿领域,包含纳米物理学、纳米电子学等学科领域。

1

纳米电子学

量子元器件是纳米电子器件中最有应用前景的。这种利用量子效应制作的器件具有体积小、高速、低耗、电路简化等优点。

2

纳米材料学

由于纳米材料具有较大的界面,界面的原子排列很混乱的,在外力变形的条件下原子易迁移,因此纳米材料表现出优越的韧性与延展性。陶瓷材料通常呈脆性,而由纳米粒子压制成的纳米陶瓷材料却有很好的韧性。

当前材料研究领域中最热门的纳米材料是具有未来超级纤维之称的碳纳米管,可做成纳米开关或极细的针头用于给细胞“打针”等。纳米材料现已用于研究太空升降机、纳米壁挂电视、纳米固体燃料、纳米隐身飞机等。

3纳米机械学

用原子、分子操纵技术、纳米加工技术、分子自组装技术等新科技,科学家们已经制造了纳米齿轮、纳米电池、纳米探针、分子泵、分子开关和分子马达等。美国康纳尔大学的科学家利用atp酶作为分子马达,研制出了一种可以进入人体细胞的纳米机电设备――“纳米直升机”。

美国朗讯科技公司和英国牛津大学的科学家用Dna(脱氧核糖核酸)制造出了一种纳米级的镊子,每条臂长只有7纳米。

还可用极微小部件组装一辆比米粒还小,能够运转的汽车、微型车床,可望钻进核电站管道系统检查裂缝;组装提供化工使用的火柴盒大小的反应器;组装驰骋未来战场上的纳米武器,如蚂蚁士兵、蚊子导弹、苍蝇飞机、间谍草等。

21世纪,纳米技术将广泛应用于信息、医学和新材料领域。

三、纳米材料的应用现状

纳米材料是纳米科技的基础。纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。纳米材料大都是人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体,如陨石碎片、牙齿皆由纳米微粒构成的。纳米材料是一种新型的材料,具有以下优点:

1

特殊的光学性能

1991年海湾战争中,美国F-117a型隐身战斗机外表所包覆的材料中就包含有多种纳米超微颗粒,强烈吸收不同波段的电磁波来欺骗雷达,实现隐形,成功地打击了伊拉克的重要军事目标。

2

特殊的热学性能

固态物质在其形态为大尺寸时,熔点固定,超细微化后将显著降低熔点,当颗粒小于10纳米量级时尤为显著。

3

特殊的磁学性能

研究发现,鸽子、海豚、蝴蝶、蜜蜂以及生活在水中的趋磁细菌等生物体中存在超微的磁性颗粒,使这类生物在地磁场导航下能辨别方向,具有回归的本领。

4

特殊的力学性能

陶瓷材料通常呈脆性,陶瓷水杯一摔就碎,而由纳米超微颗粒压制成的纳米陶瓷材料,可像弹簧一样具有良好的韧性。研究表明,人的牙齿具有很高的强度是由于它是由磷酸钙等纳米材料构成的。纳米晶粒的金属要比传统的粗晶粒金属硬3~5倍。金属-陶瓷复合纳米材料的应用前景很广。

钱学森曾说:“纳米和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将是21世纪又一次产业革命。”

在不久的将来,纳米科技和纳米材料的发展和应用必将促进人类文明的进步!

参考文献:

纳米技术的特性篇8

关键词:纳米复合包装材料;应用优势;安全性;研究;应用进展

前言

纳米包装材料通常是指利用纳米技术对材料进行纳米级的合成、改性、添加,使材料具备某一功能或特性的一种包装材料。经过合成、改性、添加后的材料分别称为复合、改性、纯纳米包装材料。文章所提的复合包装材料是采用纳米颗粒和其他材料进行复合制作出来的新型材料。目前国内外主要的研究是聚合物的纳米复合材料,也就是将纳米材料通过超微粒子或10nm级的分子水平融入到高柔性的聚合物内形成的材料。目前常用聚合物有pp、pe、pVC、pet、pa、LCp等,常用纳米颗粒有金属氧化物、金属以及无机聚合物等。目前多种复合材料在食品包装上得到了广泛应用,得到了很好的应用效果。

1纳米复合包装材料的特点

随着科学技术的不断发展,包装材料的制造技术与实际应用也取得了巨大的突破,目前通过在传统制造工艺中添加纳米颗粒,可以得到纳米复合包装材料,不仅使传统的包装材料在质量及功能上有了显著的提升,同时也促进了制造工艺的发展。纳米技术作为一种先进的技术手段,通过与传统的包装材料制造技术相结合,通过将纳米技术的优越性能在材料包装制造中予以体现,尤其是纳米颗粒的属性特征,不仅结构稳定,同时可塑性较强,使得新型包装材料韧性较强,增加了新型包装材料的可靠性,扩大了包装材料的使用范围,促进了制造业的发展。另外,纳米技术具有较强的清洁功能,不仅生产工艺不会对环境产生危害,同时纳米技术还可以实现重复利用的功能。因此,将纳米技术与传统包装制造技术相结合,使得新型包装材料具有可降解的功能,不仅减少了对环境的破坏,同时也增加了资源的利用率,符合我国生态发展的要求。另外,纳米复合包装材料密度较强,能够有效的阻挡细菌的侵入,避免细菌的滋生,同时还具有保鲜的特点[1]。

2纳米复合包装材料的应用优势

2.1食品保鲜包装上的应用

第一,纳米银材料,果蔬食品在成熟后会释放乙烯,在对其包装时,会造成乙烯浓度增加,这会加速果蔬食品的腐烂,导致产品品质降低,造成经济损失,而当前时期所利用乙烯吸收剂对食品进行保鲜,不能取得较好的效果。在运用纳米银包装材料能够提升果蔬的保鲜效果,在包装材料中添加纳米级的银粉,可以催化乙烯进行氧化,来对乙烯含量进行降低,从而达到保鲜目的。经过实验研究表明,pe/ag2o材料制成的包转材料对水果的保鲜效果很好,而且其纳米银存在稳定,可以安全的用于果蔬保鲜[2]。第二,纳米分子筛材料,由于其具有较高的比表面积以及多孔结构,拥有选择透过性,使其成为很好的气调包装材料,可用于食品保鲜。应用纳米分子筛材料对水果保鲜进行实验,可以很好的抑制果树的呼吸作用,从而达到对果树的保鲜,延长了果蔬的保鲜时间。第三,纳米tio2材料,纳米二氧化钛具有杀菌、自清洁、阻隔性好、吸收紫外线等特性,纳米二氧化钛可将果蔬中的乙烯氧化为水和二氧化碳,从而延长保鲜时间[3]。目前国内外大量公司的包装材料均添加有ag或Zno的纳米颗粒,使包装材料拥有杀菌能力,从而提高食品的保鲜时间。

2.2食品阻隔包装上的应用

包装阻隔性是指对于二氧化碳、氧气等气体的阻隔性以及对水蒸气的阻隔性。纳米聚合物/蒙脱土复合材料拥有极强的阻隔性,这是因为蒙脱土剥离后与薄膜方向平行,使黏土片层对液体或气体的阻碍能力得到了提升,使气体或液体通过膜的路径被大大的演唱,使其渗透率被很好的降低。经过大量的实验研究表明,含有纳米材料的复合包装材料与不含纳米材料的包转材料进行对比,复合包装材料的气体阻隔性得到了明显的提高,对水蒸汽的透过率降低约为50%。目前国际上对于如何改进聚对pet内的纳米材料组分,使其更加适合于啤酒或其他食品包装对气体阻隔的需求,是当前时期聚对pet包装材料的一个研究方向。有的技术对于耐受紫外线的能力有着很大的提高,有的技术可以实现涂层水分离,材料回收便利,成为了良好的绿色包装[4]。美国和韩国均有公司将mmt-多层聚合物包装薄膜运用到对啤酒以及碳酸饮料的包装中,以此来对啤酒或饮料中的Co2阻碍扩散和防止o2的进入,从而保证食品的风味以及延长保质期。

2.3食品抗菌包装上的应用

纳米复合材料是一类有着极强抑菌能力的新型包装材料,由于其自身具有抗菌性能,可以保证包括真菌、细菌、酵母菌、藻类甚至病毒等的繁殖与生长水平处于相对较低的状态。利用纳米复合材料制作的各类制品,拥有自洁卫生功能,可以很好地放置微生物的传播。当前时期使用较广的抑菌薄膜便是以聚烯烃薄膜为基础,对其添加纳米级无机抑菌剂以及增效剂。借助重金属离子以及光催化作用来使微生物蛋白质发生变形和沉淀。同时在实际生产过程中不需要对工艺、设备进行改变,只需在原工艺的基础上向其添加规定量的无机纳米抗菌剂便可生产。经过大量研究性试验表明,在聚合物中添加银系抗菌剂或Zno纳米粒子可以有效地提高抗菌性能,虽然添加银系抗菌剂的材料的机械强度以及透气性有所减低,但是可以满足生产标准以及性能要求[5]。

3安全性分析

由于纳米颗粒具有较强的清洁功能,且无毒无害,结构稳定,密度较强,能够有效的隔绝细菌,延长食物的保质期,因此,纳米复合包装材料在食品包装方面有着广泛的应用,主要起到了食品保鲜、食品密封以及食品抗菌的作用。以纳米涂炭技术为核心的新型包装材料能够在食品包装的表面形成一层聚合物积层,能够有效的加强对事物气体的密封,同时也有效的阻挡了外界气体对食物的影响,由于纳米技术具有可降解的性能,因此,以纳米涂炭技术为核心的新型包装材料能够实现绿色包装。无机纳米抗菌技术具有较强的稳定性,使得以无机纳米抗菌技术为核心的新型包装材料具有较强的杀菌、抑菌的效果,如抗菌薄膜等,不仅能够有效的抑制细菌的滋生,还可以隔绝紫外线,在食品抗菌方面有着重要的应用。

4结束语

随着科技的不断进步的,使得纳米材料所具有的高强度、高稳定性以及诸多新特性,在食品包装领域上得到了很好的应用。在今后的发展将会有更多的纳米级的材料被应用于更多的领域,来对人们的生活方式以及环境加以改变。所以,纳米包装材料有着非常广阔的发展与应用前景。

参考文献

[1]陈志昌,陈思浩,王继虎,等.石墨烯纳米复合材料在光催化应用中的研究进展[J].材料导报,2015,10(19):146-151.

[2]丁琪,李明熹,杨芳,等.含银微纳米复合材料在生物医学应用的研究进展[J].中国材料进展,2016,1(1):10-16+48.

[3]杨阳,张琳琳,赵聪.食品包装中纳米复合材料的应用[J].中国包装工业,2016,2(2):21.

纳米技术的特性篇9

【关键词】纳米材料;纳米技术;应用

有人曾经预测在21世纪纳米技术将成为超过网络技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。世界各国相继投入巨资进行研究,美国从2000年启动了国家纳米计划,国际纳米结构材料会议自1992年以来每两年召开一次,与纳米技术有关的国际期刊也很多。

一、纳米材料的特殊性质

纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、剂等领域。

(一)力学性质

高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

(二)磁学性质

当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBo3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。

(三)电学性质

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(Simit)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研制出由碳纳米管组成的逻辑电路。

(四)热学性质

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2o3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。

(五)光学性质

纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中应用广泛。由于量子尺寸效应,纳米半导体微粒的吸收光谱一般存在蓝移现象,其光吸收率很大,所以可应用于红外线感测器材料。

(六)生物医药材料应用

纳米粒子比红血细胞(6~9nm)小得多,可以在血液中自由运动,如果利用纳米粒子研制成机器人,注入人体血管内,就可以对人体进行全身健康检查和治疗,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物等,还可吞噬病毒,杀死癌细胞。在医药方面,可在纳米材料的尺寸上直接利用原子、分子的排布制造具有特定功能的药品纳米材料粒子将使药物在人体内的输运更加方便。

二、纳米技术现状

目前在欧美日上已有多家厂商相继将纳米粉末和纳米元件产业化,我国也在国际环境影响下创立了一(下转第37页)(上接第26页)些影响不大的纳米材料开发公司。美国2001年通过了“国家纳米技术启动计划(nationaltechnologyinitiative)”,年度拨款已达到5亿美圆以上。美国科技战略的重点已由过去的国家通信基础构想转向国家纳米技术计划。布什总统上台后,制定了新的发展纳米技术的战略规划目标:到2010年在全国培养80万名纳米技术人才,纳米技术创造的GDp要达到万亿美圆以上,并由此提供200万个就业岗位。2003年,在美国政府支持下,英特尔、蕙普、iBm及康柏4家公司正式成立研究中心,在硅谷建立了世界上第一条纳米芯生产线。许多大学也相继建立了一系列纳米技术研究中心。在商业上,纳米技术已经被用于陶瓷、金属、聚合物的纳米粒子、纳米结构合金、着色剂与化妆品、电子元件等的制备。

目前美国在纳米合成、纳米装置精密加工、纳米生物技术、纳米基础理论等多方面处于世界领先地位。欧洲在涂层和新仪器应用方面处于世界领先地位。早在“尤里卡计划”中就将纳米技术研究纳入其中,现在又将纳米技术列入欧盟2002——2006科研框架计划。日本在纳米设备和强化纳米结构领域处于世界先进地位。日本政府把纳米技术列入国家科技发展战略4大重点领域,加大预算投入,制定了宏伟而严密的“纳米技术发展计划”。日本的各个大学、研究机构和企业界也纷纷以各种方式投入到纳米技术开发大潮中来。

中国在上世纪80年代,将纳米材料科学列入国家“863计划”、和国家自然基金项目,投资上亿元用于有关纳米材料和技术的研究项目。但我国的纳米技术水平与欧美等国的差距很大。目前我国有50多个大学20多家研究机构和300多所企业从事纳米研究,已经建立了10多条纳米技术生产线,以纳米技术注册的公司100多个,主要生产超细纳米粉末、生物化学纳米粉末等初级产品。

三、前景展望

经过几十年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。

纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从历史的角度看:上世纪70年代重视微米科技的国家如今都已成为发达国家。当今重视发展纳米技术的国家很可能在21世纪成为先进国家。纳米技术对我们既是严峻的挑战,又是难得的机遇。必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现经济腾飞奠定坚实的基础。整个人类社会将因纳米技术的发展和商业化而产生根本性的变革。

纳米技术的特性篇10

纳米技术是在0.1~100nm尺寸空间内研究电子、原子和分子运动规律和特性的科学技术。纳米微粒是指尺寸介于1~100nm之间的金属或半导体的细小微粒。纳米微粒所具有的特殊结构层次赋予了它许多特殊的性质和功能,如表面效应,小尺寸效应、量子尺寸效应、宏观量子隧道效应等。这一系列新颖的物理化学特性使它在众多领域,特别是光、电、磁、催化等方面有着重大的应用价值。

纳米材料是纳米科技的一个分支,它是纳米科技的一个分支,它是纳米技术发展的基础。科学家们正致力于研究对纳米材料的组成、结构、形态、尺寸、排列等的控制,以制备符合各种预期功能的纳米材料。纳米材料的制备方法有很多,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集形成微粒,并控制微粒的生长,使其维持在纳米尺寸。

二、纳米材料制备方法简述

(一)传统的物理方法

1.粉碎法

粉碎法制备纳米材料属于物理方法,主要包括低温粉碎法,超声粉碎法,爆炸法,机械球磨法等,这些方法操作简单成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。

2.凝聚法

凝聚法制备纳米材料也是属于一种物理方法,主要包括真空蒸发凝聚和等离子体蒸发凝聚

(二)传统的化学法

1.气相沉积法

该法是利用挥发性金属化合物蒸气的化学反应来合成所需物质的方法,它的优点主要在于:①金属化合物原料具有挥发性,容易提纯,而且生成粉料不需进行粉碎,因而生成物纯度高;②生成颗粒的分散性好;③控制反应条件可以得到颗粒直径分布范围较窄的超微细粉;④容易控制气氛;⑤特别适合制备具有某些特别用途的碳、氮、硼化合物超细微粉。

2.化学沉淀法

沉淀法主要包括共沉淀法、均匀沉淀法、直接沉淀法等,这些方法都是利用生成沉淀的液相反应来制取。

3.胶体化学法

该法首先采用离子交换法、化学絮凝法、溶胶法制得透明的阳性金属氧化物的水溶胶,以阴离子表面活性剂进行处理,然后用有机溶剂冲洗制得有机溶胶,经脱水和减压蒸馏在低于所有表面活性剂热分解温度的条件下制得无定型球形纳米颗粒。

(三)纳米材料制备的新进展

目前,纳米材料制备新方法、新工艺不断涌现,发展方向是能使产物颗粒粒径更小,且大小均匀、形貌均匀、粒径和形貌均匀可调控、性质稳定且成本降低,并可推向产业化。

1.模板法

模板法所选用的模板可以是固体基质,单层或多层膜,有机分子或生物分子等。根据模板限域能力的不同,可以把各种模板分为硬模板和软模板。硬模板主要包括以碳纳米管、多孔al2o3等为模板制备纳米线的技术,可以有效的控制直径、长度和长径比,软模板法是近几年发展起来的技术,主要包括高分子模板,液相反应体系中的表面活性剂为模板以及其他液相控制合成技术。与硬模板技术相比,它有时尚不能严格控制产物几何形貌,但操作简单,成本较低。

2.水热/溶剂热合成技术

水热合成技术是指在密封反应釜(高压釜)中,以水作为溶媒,通过对反应体系加热至临界温度(或接近临界温度),以高压的环境下进行无机合成与材料制备的一种有效的方法,但是一些对水敏感的化合物如氮化物、磷化物等则不能用水热合成的方法制备,因此以有机溶剂代替水的溶剂热合成技术发展起来,大大的扩大了水热法的应用范围,是水热法的发展。

3.溶胶-凝胶法

该法作为低温或温和条件下合成化合物已广泛应用于制备纳米微粒,其过程是首先将原料分散在溶剂中,形成溶液,然后经水解反应成为溶胶,进而生成具有一定结构的凝胶而固化,最后干燥或低温处理制得纳米微粒。

(四)纳米材料性能表征

随着科学技术的发展,大型精密仪器的不断涌现,纳米材料的性能的表征手段越来越多。

1.纳米材料的粒度分析

纳米材料的粒度主要可以采用电镜观察粒度分析和激光粒度分析法(激光衍射光谱粒度分析法、激光光散射粒度分析法、激光相关光谱粒度分析法等)。

2.纳米材料的形貌分析

纳米材料的形貌可以用扫描电子显微镜、透射电子显微镜、原子力显微镜、扫描探针显微镜(扫描隧道显微镜等)等方法进行表征。

3.纳米材料的成分分析

纳米材料的成分分析可以用体相成分分析法(原子吸收光谱、电感耦合等离子体发射光谱、X射线荧光光谱)、表面与微区成分分析方法(电子能谱分析方法、电镜能谱分析方法、电子探针分析方法)等。

4.纳米材料的结构分析

纳米材料的结构可以用X射线衍射物相结构分析、激光拉曼物相分析等常量结构分析法,也可用电子衍射微区结构分析法进行分析。

5.纳米材料的表面与界面分析

纳米材料的表面与界面可用X射线光电子能谱、俄歇电子能谱等手段进行分析。