首页范文大全气候变化对地下水的影响十篇气候变化对地下水的影响十篇

气候变化对地下水的影响十篇

发布时间:2024-04-26 01:18:11

气候变化对地下水的影响篇1

关键词:长江中下游地区;水稻产量;气候变化;小波变换

中图分类号:S162.5+3文献标识码:a文章编号:0439-8114(2014)01-0043-09

effectsofClimateChangeonRiceYieldofthemiddleandLowerReachesRegionoftheYangtzeRiver

wanGBao1,HUanGSi-xian2,SUnwei-guo3

(1.XianningBureauofmeterology,Xianning437100,Hubei,China;2.ezhouBureauofmeterology,ezhou436000,Hubei,China;

3.nanjingUniversityofinformationScience&technology,naning210044,China)

abstract:torevealtheimpactoftheregionalclimatechangeonriceyieldofthemiddleandlowerreachesoftheYangtzeRiver,andtounderstandthereasonsforricerelativemeteorologicalyieldfluctuations,statisticalanalysisandwavelettransformwereusedtoanalyzetimeandthefrequencyvariationfeaturesofriceproduction,theaveragetemperature,precipitation,diurnaltemperature,and≥10℃activeaccumulatedtemperatureoftheYangtzeRiverregioninthepast60years,andthetime-frequencystructuralfeaturesbetweenriceproductionandregionalclimatechange.theresultsshowedthatriceyieldofthemiddleandlowerreachesoftheYangtzeRiverregioninthepast60yearshadfluctuationsinthegrowthtrend.theaveragetemperatureandtheactiveaccumulatedtemperatureincreasedduringthegrowingseason.thereductionofprecipitationwasnotobvious.Diurnaltemperatureappearedtodecreasesignificantly.Betweenriceproductionandclimatechange,therewereperiodiccharacteristicsofinterannualanddecadalchanges.thetime-frequencycharacteristicswascertainlysimilarbetweenthetwo.Cross-wavelettransformresultsshowedthatbetweenriceproductionandclimatechange,thereweretheresonancefrequencyofthedifferentscales,like2-4a,6a,8a,12aand14a.thereweremorepositivecorrelationbetweenthemain,butinthelocaltimedomaintherewasanegativecorrelationofdifferentfrequencyscale.thetworelationshipandrelevanceweredifferent,varyingfromoscillationperiodsscale.itwasbelievedthatriceyieldfluctuationsofmiddleandlowerreachesoftheYangtzeRiverwascloselyrelatedwiththeclimatechange.theperiodicfeaturewasobvious,andtheeffectoftheimprovementofheatconditiononincreasingproductionwasmuchmorethantheimpactofreducingprecipitation.

Keywords:themiddleandlowerreachesoftheYangtzeRiver;riceyield;climatechange;wavelettransform

收稿日期:2013-07-16

作者简介:王保(1989-),女,湖北黄冈人,助理工程师,主要从事短期天气预报及气候变化和小波变换等方面的研究,(电话)

15272681090(电子信箱);通讯作者,黄思先,助理工程师,主要从事短期天气预报及重要天气过程诊断分析

和气候变化等方面的研究,(电话)15926018229(电子信箱)。

气候变化已成为不争的事实。政府间气候变化专业委员会(ipCC)的气候变化评估报告[1-4]指出,全球气候正发生着以气候变暖为主要特征的显著性变化,全球平均地表温度从1861年以来一直在升高。关于气候变化对作物产量的影响,我国学者已经进行了多方面的探究[5,6],尤其是气候变暖背景下作物产量的变化规律以及农业应对气候变化的措施等已成为目前研究的热点问题。20世纪以来,全球气候变暖越来越快,气候变化对作物生产的影响也越来越大,特别是气候变暖背景下,极端气候事件发生频率、持续时间和分布规律的变化对农田生态系统的影响往往超过了气候平均变率所带来的影响[7]。

研究作物产量与气候因子之间的关系,以往大多采用常规统计学方法[8-11],但气候变化具有不同时间尺度,区域平均气温和降水量的周期性变化以及极端气候事件的发生,必然引起作物产量的变化和波动,因此,有必要采用新的时频分析方法对气候变化及作物产量的周期性进行研究。孙卫国等[12]、张明等[13]和苏占胜等[14]用功率谱和交叉小波变换方法分析了作物产量与区域气候变化之间的关系,发现两者关系密切,周期性变化特征显著。

长江中下游地区是我国水稻的主要种植区,气候变化将会带来水稻产量的变化,但目前气候变化对该区水稻产量影响的研究较少[15-19],对该区产量周期性的研究更不多见,所以,研究该区水稻产量与区域气候变化的关系具有重要现实意义。水稻生长发育要求的最低温度在10℃以上,南方三季稻要求≥10℃的活动积温达到7000℃,双季稻要求达到5300℃,且气温日较差对作物产量形成影响较大,因此,需要分析水稻生长季内平均气温、降水量、气温日较差和≥10℃的活动积温的影响。研究根据1951~2010年长江中下游6省(安徽、湖北、湖南、江苏、江西和浙江)实际水稻产量和同期107个气象站的水稻生长季内平均气温、降水量、气温日较差和≥10℃的活动积温资料,采用交叉小波变换方法,以相对气象产量为研究对象,分析长江中下游地区60年水稻产量与生育期内这些气候变量的时频变化特征及耦合振荡的关系,讨论水稻产量波动与气候因子变化周期的相关性,通过区域气候变化对水稻产量的影响以及水稻产量波动的原因分析,为区域性作物产量评估和预测提供参考。

1材料与方法

1.1材料的处理

水稻产量资料来源于国家统计局,根据1951~2010年长江中下游地区6省水稻产量(t/hm2),经一致性检验,建立区域平均水稻产量序列,样本数n=60。同期的气候资料来源于中国气象局逐日气候资料,包括平均气温(℃)、降水量(mm)、最高气温(℃)和最低气温(℃)记录,根据这6省107个气象站的资料,算得区域水稻生长季(4~10月)内平均气温、总降水量、平均气温日较差以及≥10℃的活动积温。计算时,为了保证资料序列的平稳随机过程,对资料进行了标准化处理。

1.2研究方法

1.2.1趋势产量估算影响作物产量的因素比较多,且各影响因素的变化特征及其时间尺度不同,主要的影响因素有人为因素、气象因素和随机“噪音”三方面,分别构成3个产量分量[20],作物产量=趋势产量+气象产量+随机“噪音”。随机“噪音”所占比例很小,一般可忽略不计;趋势产量是实际产量的平稳变化项,表示产量的演变趋势,其大小决定于历年的生产技术水平,其模拟方法很多,本研究采用直线滑动平均法[12],采用15年滑动步长来消除短周期波动的影响,算出趋势产量。气象产量为作物产量扣除趋势产量得到,反映了气象条件对产量的影响。气象产量与趋势产量的比值可以表示为相对气象产量。为了消除生产力水平对水稻产量的影响,真实地反映气象因子对其影响规律,本研究在进行产量分析时以相对气象产量作为研究对象。

1.2.2小波变换方法小波变换方法[21]起源于Fourier分析方法,Fourier级数主要用来表征信号的周期性,但在大多数情况下信号都是非周期性的,于是引入Fourier变换,将非周期性信号分解为多个周期性信号的叠加来处理,但是Fourier分析方法只是将信号在频率域内展开,没有包含时域的信息,丢弃的这些时域信息可能对某些应用非常重要,所以需要引进小波变换方法,将信号在时频两域的信息提取出来,充分利用信号信息[12]。

交叉小波变换[22]是一种新型信号分析技术,与传统的交叉谱方法相比更具优越性,特别是用于两个时间序列耦合振荡行为的相关分析上,除了可以弥补传统交叉谱分析方法不可避免的缺陷外,还能够将小波变换在时频两域都具有表征信号局部化特征的能力发挥到极致;交叉小波变换方法具有比较强的耦合信号分辨的能力,具有便于描述耦合信号在时频域中分布状况等优点[23],经过多次实践应用验证表明[24-26],该方法确实能够充分反映两时间序列相关振荡的周期显著性和两时间序列的相互依赖关系,还可以分析出两时间序列信号精细的时频变化特征,效果很显著。

2结果与分析

2.1水稻产量与气候变化特征的关系

2.1.1产量波动水稻产量的波动与气候条件密不可分,图1为1951~2010年长江中下游地区水稻的实际产量(实线)、气象产量(虚线)以及趋势产量(点划线)的时间变化图,实际产量和趋势产量均为左侧纵坐标轴,气象产量为右侧纵坐标轴。从图1可以看出,长江中下游地区水稻的实际产量随时间呈波动增长的趋势,年代际变化主要在1985年之前气象产量波动比较大,1985年之后波动较平稳,且1950年代和1980年代的波动相对于1960和1970年代的波动要大得多,这与长江中下游地区水稻生长季内平均气温、平均气温日较差以及≥10℃活动积温的波动特点相对应。

长江中下游地区水稻生长季内的气象灾害主要有高温热害、低温冷害、雨涝、干旱、春季低温阴雨、寒露风、台风以及风雹等。1959年长江中下游地区水稻减产主要受严重的伏秋连旱影响,1960年水稻低产主要与该区春季冷暖空气交替频繁,早稻育秧期出现低温阴雨天气造成大量烂秧,秧苗质量差等有关;1961年的低产主要由干旱造成,长江中下游出现了大范围、程度较重的干旱,秧田龟裂,稻禾枯黄,最终导致大幅减产;1962年该区降水偏多,出现了雨涝,但对水稻产量影响显著的还是春季的低温连阴雨天气;1975年的产量主要因“寒露风”的影响而降低;1977年的减产主要受部分地区(江西等地)高温干旱的影响;1980年长江中下游地区遇到了雨涝、春季低温阴雨以及“寒露风”等灾害,影响了水稻的生长,造成大幅减产;2003年主要是高温热害造成的减产。

2.1.2气候变化图2为长江中下游地区1951~2010年水稻生长季内平均气温(a)、降水量(b)、平均气温日较差(c)和≥10℃活动积温(d)的时间变化图,图中直线(或曲线)为其变化趋势线。由图2可以看出水稻生长季内的气候变化特征主要表现为平均气温和≥10℃活动积温的变化呈现二次曲线形式,且平均气温转折点在1975年左右,≥10℃活动积温转折点在1980年左右。水稻生长季内平均气温、降水量、平均气温日较差以及≥10℃活动积温与时间的相关系数分别为0.354、0.000、-0.548和0.360,其中,水稻生长季内平均气温、≥10℃活动积温以及平均气温日较差与时间相关关系通过了0.01水平的显著性检验,降水量与时间的相关性没有通过0.05水平的检验。

2.1.3水稻产量与气候变化相关分析由相关分析可知,水稻产量与水稻生长季内平均气温、平均气温日较差以及≥10℃活动积温的相关系数都通过了0.01水平的显著性检验,与降水量的相关系数没有通过0.05水平的显著性检验。水稻产量与生长季内的平均气温日较差呈负相关,因为长江中下游地区容易出现高温天气,虽然气温日较差大有利于水稻有机物的积累,但是高温会影响水稻的生长,已有研究表明,水稻在孕穗至抽穗扬花期对温度极其敏感[27],如果日均温度高于32℃,日最高温度高于35℃,水稻抽穗扬花就受到影响,从而造成产量损失和品质下降;水稻在灌浆期也最易受高温危害[28],造成结实率和千粒重的降低,从而导致减产。水稻产量与降水量的相关性不强,因为在长江中下游地区,水源较充足,农业用水一般不受自然降水量的影响,但当降水量过大或持续时间较长,仍然会影响水稻的开花和授粉,特别是在开花期,连阴雨天气将会使水稻花粉的传播受精受阻,从而导致减产。水稻产量与平均气温和≥10℃活动积温呈正相关关系,主要反映的是水稻生长对热量条件的需求,水稻是喜热作物,热量条件对其产量有重要影响,有效热量越多,水稻产量越高。

2.2水稻产量与气候变化的时频结构

相关分析只能初步分析气候变化与水稻产量的简单相关关系,不能充分反映区域气候变化对水稻产量的影响,而小波变换则能从时间域和频率域上充分利用时间序列信号,分析出水稻产量和气候变化的局部时频变化规律,通过交叉小波分析出两者之间在时频结构上的相关关系。

小波变换系数的实数部分包含给定时间和尺度下相对于其他时间和尺度信号的强度和位相两方面的信息[26]。小波系数实数部分为正时,表示水稻相对气象产量距平、降水量距平、平均气温距平、气温日较差距平和≥10℃活动积温距平相对偏多,图3中用实线表示;小波系数实数部分为负时,表示相对偏少,图3中用虚线表示;小波系数为0的地方则为突变点。图3中的符号反映了振荡的位相,等值线中心反映了不同尺度振荡的振幅最大值。采用小波功率谱检验显著性,小波功率谱图为小波功率谱与置信水平为95%的红噪声总体谱的比值,比值大于1.0表示通过95%置信水平红噪声检验的显著周期振荡(实线),比值小于1.0表示未通过95%置信水平的红噪声检验(虚线)。

2.2.1水稻产量波动的时频变化特征图3为长江中下游地区水稻相对气象产量距平的小波变换系数实数部分等值线图和小波功率谱图。由图3a可以看出,水稻相对气象产量波动的年际尺度主要表现在2~4年和6年尺度的周期振荡,且时域分布不均匀,局部化特征明显;年代际尺度主要表现在10年和14~16年尺度的周期振荡。

年际尺度特征为2~4年左右的尺度周期信号主要表现在1954、1955年以及1976~1982年,同时也反映了在此周期尺度上,水稻相对气象产量距平在1954、1976年及1980年处于偏少期,但1955、1979年和1982年是偏多的;6年左右的周期信号主要表现在1976~1981年,且呈现偏少—偏多—偏少的振荡规律,具体为1976年水稻相对气象产量距平偏少,1977~1980年偏多,1981年又呈偏少特征。

年代际尺度特征,10年左右的振荡信号主要表现在1970~1985年,水稻相对气象产量距平呈现偏少—偏多的两次周期振荡;14~16年左右的振荡信号比较强,等值线比较密集,在全域都有表现,但是1985年之前的振荡比1985年之后的强,1985年之后的振荡呈逐渐增强趋势,水稻相对气象产量存在偏多—偏少的4次振荡,具体表现为1950~1957年偏多,1958~1965年偏少,1966~1973年偏多,1974~1981年偏少,1982~1988年偏多,1989~1996年偏少,1997~2002年偏多,2003~2010年偏少,且等值线闭合,预计2010年之后会出现水稻相对气象产量偏多的情况。

由图3b可以看出,2~4年的周期振荡在1957年之前以及1975~1983年比较强,结合图3a中的结果分析,2~4年左右的周期信号在1954年、1955年和1979年的周期比较明显,周期特征显著;6年尺度的周期振荡在1957~1963年以及1976~1982年比较明显,结合图3a可以得出,1976~1982年的周期振荡是通过检验的,周期性显著;10年左右的周期振荡在1970年之前比较强,结合图3a可知,10年左右的周期振荡信号没有通过显著性检验;14~16年左右的周期振荡在1980年之前比较明显,通过了95%置信水平的红噪声检验。

综上所述,长江中下游地区水稻相对气象产量的周期性特征主要表现出2~4年、6年、14~16年的周期振荡,时域分布不均匀。

2.2.2气候变化波动的时频变化特征图4为长江中下游地区水稻生长季内月平均气温距平的小波变换系数实数部分等值线图和小波功率谱图。由图4a可以看出,水稻生长季内月平均气温距平波动的年际尺度主要表现在3~4年、6年和8年尺度的周期振荡,且时域分布不均匀;年代际尺度主要表现在10和14~16年尺度的周期振荡。

由图4b可以看出,3~4年尺度的周期信号在1962~1970年、1989~1997年振荡比较强,结合图4a可知,3~4年尺度的周期信号在1962~1970年和1989~1997年周期性显著;6年尺度的周期振荡不强,在整个时间域上都没有通过显著性检验;8年尺度周期振荡信号在1954~1960年比较强,结合图3a可知,8年尺度的周期振荡在1954~1960年通过了显著性检验;10年左右的周期振荡在2000~2008年比较强,结合图3a可知,10年左右的周期振荡在2000~2008年周期性比较明显,通过了显著性检验;14~16年尺度的周期振荡比较弱,在整个时间域上都没有通过显著性检验(等值线的值均

对长江中下游地区水稻生长季内月降水量距平的小波变换系数实数部分等值线图和小波功率谱图分析可以看出,水稻生长季内月降水量距平波动的年际尺度主要表现在1~2年、3~4年、6年和8年尺度的周期振荡,时域分布不均匀;年代际尺度主要表现在10年、14年和18年尺度的周期振荡。1~2年尺度的周期振荡在1952~1957年、1966~1967年、1972年、1979~1982年以及1995~2002年比较强,其中1~2年尺度的周期信号在1952~1957年、1979~1982年以及1995~2002年的周期性比较明显,周期特征显著;3~4年尺度的周期信号在1951~1957年、1971~1986年以及2000~2005年的周期性比较明显,通过了显著性检验;6年尺度的周期振荡在1966~1982年比较强,结合小波系数实数部分分析,此周期尺度上在时间的全域范围内都没有通过显著性检验;8年尺度周期振荡在1958~1961年比较强,8年尺度周期信号在1958~1961年显著;10年左右的周期信号在1958~1978年的振荡比较强,总结得出10年左右的周期信号只在1958~1978年显著;14年以上尺度的周期振荡比较弱,均未通过95%置信水平的红噪声检验。说明长江中下游地区水稻生长季内的降水量距平主要表现在1~2年、3~4年、8年和10年尺度的周期振荡,时域分布不均匀。

对长江中下游地区水稻生长季内气温日较差距平的小波变换系数实数部分和小波功率谱分析可知,水稻生长季内气温日较差距平波动的年际尺度主要表现在1~2年、3~4年、6年和8年尺度的周期振荡,时域分布不均匀;年代际尺度主要表现在14~16年尺度的周期振荡。1~2年的周期振荡在1955年之前、1957~1961年、1966~1967年、1972~1973年、1976~1982以及1984~1994年比较强,其中1~2年尺度的周期信号在1955年之前、1976~1982以及1984~1994年的周期特征显著;3~4年尺度的周期信号只在1959年之前以及1971~1975年通过了检验,3~4年尺度的周期振荡在1959年之前周期效果明显;6年尺度的周期振荡在1961~1985年间比较强,通过了95%置信水平的红噪声检验;8年尺度的周期振荡在1989年之前都比较强,结合小波系数实数部分分析结果可知,8年尺度周期信号主要在1963年之前以及1985~1989年显著,周期特征明显;14~16年尺度的周期振荡在1956~1981年间比较强,14~16年尺度的周期信号只在1956~1981年通过了显著性检验,周期性强。说明长江中下游地区水稻生长季内气温日较差距平主要存在1~2年、3~4年、6年、8年以及14~16年尺度的周期振荡,高频部分比较明显。

对长江中下游地区水稻生长季内≥10℃活动积温距平的小波变换系数实数部分和小波功率谱分析可知,水稻生长季内≥10℃活动积温距平波动的年际尺度主要表现在1~2年、3~4年、6年和8年尺度的周期振荡,时域分布不均匀;年代际尺度主要表现在10年和14年左右尺度的周期振荡。生长季内≥10℃活动积温在高频部分周期性比低频明显,具体表现为1~2年尺度的周期振荡在1951~1954年、1958~1962年、1969~1972年、1974~1976年、1979~1982年以及1993~2004年比较强,其中1~2年尺度的周期信号在1951~1954年、1969~1972年及1993~1998年比较明显,周期特征显著;3~4年尺度的周期信号在1962~1970年、1975~1979年、1988~1995年通过了检验,周期性显著;6年尺度的周期振荡比较弱,均未通过95%置信水平的红噪声检验;8年尺度的周期振荡在1954~1960年比较强,结合小波系数实数部分分析可知,8年尺度的周期信号在1954~1960年通过了显著性检验;10年尺度的周期信号在2000~2008年振荡比较强,10年尺度的周期信号在整个时域上没有通过显著性检验;14年尺度的周期信号在全时域的振荡都不强,说明该周期尺度在整个时域中都不显著。

长江中下游地区水稻生长季内≥10℃活动积温距平的周期特征主要反映在高频部分的1~2年、3~4年以及8年尺度上,低频部分均未通过显著性检验,同时将≥10℃活动积温距平的小波变换与平均气温距平小波变换对比发现,它们的变换特征非常相似。

水稻相对气象产量距平小波变换的周期特征与同期生长季内的平均气温、降水量、气温日较差以及≥10℃活动积温距平的小波变换有某种相似性,有共同的3~4年和8年的周期振荡,说明水稻产量变化与气象变化可能存在某种周期频率上的联系,因此作水稻相对气象产量与各气候变量序列之间的交叉小波协谱图和功率谱密度图来进行进一步的分析。

2.3水稻产量与区域气候变化的相关性

2.3.1水稻产量与水稻生长季内平均气温的时频变化相关性图5为长江中下游地区水稻相对气象产量距平与水稻生长季内平均气温距平的交叉小波协谱图和功率谱密度图,反映了长江中下游地区水稻产量与水稻生长季内平均气温之间的时频相关分布特征。两者的正相关关系表明水稻生长季内平均气温对水稻产量是促进作用,负相关则表示水稻生长季内平均气温出现不适宜水稻生产的情况。

图5a表明,相对气象产量与水稻生长季内平均气温之间的关系以正相关为主,在局部时域中个别频率尺度上两者之间也存在负相关关系。两者正相关振荡主要表现在2~3年、4年和12年尺度的共振频率上:2~3年尺度的正相关出现在1952~1955年和1962~1964年;4年尺度的正相关出现在1973~1983年;12年尺度正相关出现在1967~1974年和1990~1995年。两者负相关振荡主要表现在2~3年和8年尺度上:2~3年尺度的负相关表现在1956~1957年以及1982~1986年;8年尺度的负相关表现在1950~1974年。从图5b可以看出,水稻相对气象产量与水稻生长季内平均气温在频率域中年际尺度周期上的相关程度明显高于年代际尺度周期上的相关程度,2~3年、4年以及12年尺度是呈正相关的,其中以12年时间尺度上的正相关程度最大,4年时间尺度上的次之,在8年时间尺度上的负相关程度最大,两者之间的相关关系也随振荡周期尺度的不同而不同。结合图5a可以得出,水稻相对气象产量与水稻生长季内平均气温之间存在2~3年、4年、8年和12年尺度的共振频率,且相关程度最好的是8年尺度的负相关和12年尺度的正相关,4年尺度的正相关程度也比较明显,2~3年尺度的相关程度不高。

2.3.2水稻产量与水稻生长季内降水量的时频变化相关性长江中下游地区水稻相对气象产量距平与水稻生长季内降水量距平的交叉小波协谱和功率谱密度反映了长江中下游地区水稻产量与水稻生长季内降水量之间的时频相关分布特征。由分析可知,长江中下游地区水稻生长季内的降水量对水稻的产量影响不大,但是过量和持续的降水则会造成产量的降低,表现为两者的负相关关系,而正常降水则会对产量产生正面影响,表现为两者的正相关关系。

通过水稻相对气象产量距平与水稻生长季内降水量距平的交叉小波协谱和功率谱密度分析可知,水稻相对气象产量与水稻生长季内降水量之间的关系既有正相关关系,又有负相关关系。两者正相关主要表现在2~4年、6年、8年和14~16年尺度的共振频率上:2~4年尺度的正相关出现在1966~1975;6年尺度的正相关出现在1960~1968年;8年尺度的正相关出现在1966~1981年;14~16年尺度正相关出现在1974~2010年。两者负相关主要表现在2~4年、6年和14年尺度上:2~4年尺度的负相关表现在1958年以前以及1975~1984年;6年尺度的负相关表现在1960~1983年;14年尺度的负相关主要表现在1957~1975年。通过交叉小波功率谱密度分析可知,水稻相对气象产量与水稻生长季内降水量在频率域中年际尺度周期上的相关程度明显高于年代际尺度周期上的相关,2~4年、6年尺度是呈负相关的,8年、14~16年尺度是呈正相关的,其中以14~16年尺度上的正相关程度最大,2~4年尺度上的负相关程度最大,两者之间的相关关系也随振荡周期尺度的不同而不同。综合分析可知,水稻相对气象产量与水稻生长季内降水量之间存在2~4年、6年、8年和14~16年尺度的共振频率。

2.3.3水稻产量与水稻生长季内气温日较差的时频变化相关性长江中下游地区水稻相对气象产量距平与水稻生长季内气温日较差距平的交叉小波协谱和交叉小波功率谱密度反映了长江中下游地区水稻产量与水稻生长季内气温日较差之间的时频相关分布特征。由分析结果可知,长江中下游地区水稻生长季内气温日较差与水稻产量整体是呈负相关的,因此,两者的正相关表示水稻生长季内气温日较差偏小,没有出现极端气温对水稻的伤害,有利于水稻产量的积累,而负相关则表示水稻生长季内气温日较差偏大,日最高气温或最低气温超过了水稻的适宜生长温度,不利于水稻的生长发育,导致水稻产量偏低。

通过水稻相对气象产量距平与水稻生长季内气温日较差距平的交叉小波协谱和功率谱密度分析可知,水稻相对气象产量与水稻气温日较差之间的关系主要表现为正相关关系,局部也存在有负相关关系。两者正相关振荡主要表现在2~4年、6年和14~16年尺度的共振频率上:2~4年尺度的正相关出现在除1969~1974年之外的全域范围内,且1976~1982年表现比较明显;6年尺度的正相关出现在1968~2010年,且在1978~1980年表现比较明显;14~16年尺度正相关在全域都有表现,在1980年之前表现得比较强烈,且在1973~1979年表现比较明显,等值线很密集,波幅中心出现在1962年左右。两者负相关振荡主要表现在2~4年、6年、8年和14年尺度上:2~4年尺度的负相关表现在1969~1974年,表现比较弱;6年尺度的负相关表现在1956~1967年;8年尺度的负相关主要表现在1986年之前,且1977年之前表现比较明显,波幅中心在1955~1960年;14年尺度的负相关出现在1983年之后,表现不强。交叉小波功率谱密度分析表明,两者在频率域中年际尺度周期上的相关程度明显低于年代际尺度周期上的相关,6年、8年尺度是呈负相关的,8年左右尺度的负相关最强,2~4年、14~16年尺度是呈正相关的,其中以14~16年尺度上的正相关程度最大,25年以后,周期尺度越大,相关性越不强,而且两者之间的相关关系也随振荡周期尺度的不同而不同。综合分析可知,两者之间存在2~4年、6年、8年和14~16年尺度的共振频率,总体的相关程度是最高的,其中14~16年尺度的正相关程度最高,8年左右尺度的负相关最大,2~4年和6年的相关程度不高。

2.3.4水稻产量与水稻生长季内≥10℃活动积温的时频变化相关性长江中下游地区水稻相对气象产量距平与水稻生长季内≥10℃活动积温距平的交叉小波协谱和功率谱密度反映了长江中下游地区水稻产量与水稻生长季内≥10℃活动积温之间的时频相关分布特征。水稻生长要求最低气温在10℃以上,整个生长季要求≥10℃的活动积温达到一定的值,当水稻产量与水稻生长季内≥10℃活动积温成正相关关系时表明水稻生长季内≥10℃活动积温达到水稻生长的要求,负相关则表示水稻生长季内≥10℃活动积温没有满足水稻生长的要求。

通过水稻相对气象产量距平与水稻生长季内≥10℃活动积温距平的交叉小波协谱和功率谱密度分析可知,两者之间的关系以正相关为主,局部时域存在不同频率尺度的负相关。两者正相关振荡主要表现在2~3年、4年、6年和12年尺度的共振频率上:2~3年尺度的正相关出现在1955年之前、1962~1964年、1966~1975以及1990年之后,表现不强;4年尺度的正相关在全域都有表现,但在1975~1982年表现比较强,波幅中心在1978年左右;6年尺度的正相关出现在1995年之后,表现很不明显;12年尺度正相关在全域都有弱表现。两者负相关振荡主要表现在2~3年和8年尺度上:2~3年尺度的负相关表现在1957年以及1983~1986年,表现很弱;8年尺度的负相关表现在1974年之前,表现比较明显,且波幅中心出现在1960年左右。由交叉小波功率谱密度分析可知,在频率域中年际尺度周期上的相关高于年代际尺度周期上的相关,2~3年、4年、6年、12年尺度是正相关,2~3年、8年尺度是呈负相关的,其中以12年时间尺度上的正相关程度最大,8年时间尺度上的负相关程度最大,两者之间的相关关系也随振荡周期尺度的不同而不同。综合分析可知,两者之间存在2~3年、4年、6年、8年和12年尺度的共振频率,12年尺度的正相关程度最大,8年尺度的负相关程度最大。

3结论与讨论

近60年来长江中下游地区的气候变化趋势与全国气候变化一致,其中水稻生长季内平均气温和≥10℃活动积温随时间呈二次曲线变化;气温日较差呈减小趋势;降水量与时间的相关性较差。水稻产量呈波动增长趋势,波动特点明显,出现了大量的丰歉年。

1)气候变化对长江中下游地区水稻产量有一定的影响,水稻生长季内平均气温的升高和≥10℃活动积温的增加对水稻产量是正面影响,气温日较差的增大则会导致产量下降,而降水量变化则与产量变化关系不大。

2)长江中下游地区水稻相对气象产量与水稻生长季内的平均气温、降水量、气温日较差以及≥10℃活动积温的时频结构有一定的相似性,存在某些频率尺度的显著性变化周期,主要表现在高频部分。

3)长江中下游地区水稻产量与水稻生长季内平均气温和≥10℃活动积温之间存在多尺度的共振频率,且在低频部分的相关程度比高频部分稍好,相关程度最好的是8年的反位相的振荡和12年尺度的正位相振荡。

4)长江中下游地区水稻相对气象产量与水稻生长季内降水量之间存在2~4年、6年、8年和14~16年尺度的共振频率,相关程度随振荡周期尺度的不同而不同,且总体相关程度较低。

5)长江中下游地区水稻相对气象产量与水稻生长季内气温日较差之间存在2~4年、6年、8年和14~16年尺度的共振频率,总体相关程度在所有与水稻产量进行交叉小波变换的变量中最高。

长江中下游地区水热资源丰富,气候变化对其影响比较明显,影响机理比较复杂,长江下游地区靠近海岸的区域,受海陆气候的影响比较大,特别是夏季太平洋西岸的热带高压对其直接影响更导致了气候变化的复杂性,同时城市化发展较快,城市“热岛效应”明显,它们对水稻产量的影响还有待进一步研究,这对于估算水稻产量和提高水稻种植管理技术从而提高产量有重要意义。

参考文献:

[1]HoUGHtonJt,JenKinSGJ,epHRaUmSJJ.ClimateChange:theipCCScientificassessment(1990).ReportpreparedforintergovernmentalpanelonClimateChangebyworkingGroupi[m].Cambridge,UnitedKingdom:CambridgeUniversitypress,1990.

气候变化对地下水的影响篇2

关键词:气候变化水文学模型

近些年来,随着极端气候出现的频率越来越高,气候变化问题已经成为世界各国及社会公众最普遍关注的环境问题之一。由于自然循环和地球气候系统的扰动,引起水分循环的变化,从而引起水资源在时空上的重新分布以及水资源数量的改变,最终对社会经济与世界各国的发展产生深刻的影响。研究气候变化问题不但对气候对水文系统的影响和建立大气环流模型与水文模型的耦合有帮助,而且对未来水资源系统的运行管理、开发利用及规划设计具有重要意义。

1气候变化对水文学的影响分析

通过降水变化和温度两个要素对各主要水文要素产生影响,气候变化主要是依靠这两个方面来影响至区域水文系统。

1.1降水。降水是一切水资源的总来源。由此便会引发部分地区发生暴雨和干旱,从而导致蒸发和降水的增加,气温的升高会导致水文循环愈加激烈。

1.2蒸发。实际情况下,蒸发还受其它因素的影响。通常情况下,当其它条件没有太大变化,气温升高将导致区域潜在蒸发增加。

1.3径流。径流是气候变化中水文水资源系统响应研究的重点。

1.4土壤水分。在气候变化下,含量受到影响而改变现有的时空分布规律,土壤水分影响着区域蒸发和径流的形成,在温带地区,降水变化对土壤水分的影响相对较小。气候变化下,土壤水分的响应程度低于径流的响应程度。土壤水分的变化百分率比降水的变化百分率更大,但大多是集中于干旱流域。

气候变化对水文系统有非常大的影响,而在传统研究水文学时,仅仅是从降水开始以后加入研究,到流域出口断面;同样气象学家的研究对象也是到降水时止。这样便割裂了水的循环,忽视了气候-水文之间的相互作用。决定气候变化因子不仅仅是大气内部的过程,还有各种物理化学过程,包括下边界(陆地水文-生态、海洋系统)和大气上边界(太阳行星系统)等等。

正确认识气候-水文的相互作用,对我们进行水文设计、开发利用和运行管理有重大意义。以往在陆地水文循环与气候系统间存在一个误区,这就是气候学者较少研究流域水文循环动力机制与反馈作用,气候/天气过程研究仅仅到降水为止,把陆地水文过程看作是静态的,水利(水资源)工程设计:要求的水文计算,未来被看作是过去的重复或外延。这种假定值得商榷。都是以几十年-几百年时间尺度的水文过程稳定不变为前提。

下面以长江中下游地区为例,简要说明流域洪水频率的变化。

南京下关水文站自1912年到1991年70年水位资料中(缺失1938-1946年资料),其中9.0m以上水位在1940年以前只有一次,1941年到1960年二十年间有2次,而1960-1991年三十年来已发生7次。

如果根据1912年至1991年70年最高水位资料分成一段及三段分别推算各段水位出现频率,结果见下表。

由此可见,近年最高水位的统计特性有显著的变化,最高水位的出现也越来越频繁。尽管流域的下垫面条件发生很大改变是呈现这一现象的原因之一,但是近年来温度的升高无疑也是影响水位变化的重要因素,而且这种影响会越来越显著。

据有专家分析,长江中下游地区在21世纪中后期由于受到温室效应影响,气温在各种排放情景下都将持续增加,其中21世纪中期的年平均温度将增加1.8-2.8℃,到21世纪末,增加值会达到3.1℃-4.3℃。气温的升高使得降水量也显著增加。陈玲飞,王红亚在《中国小流域径流对气候变化的敏感性分析》中根据模型计算得到,长江中下游地区气温每升高1℃、2℃,降水量增加4.1%、8.4%。

2建立基于GCms的流域水文模型

在全球气候变暖的大背景条件下,全球的降水量分布必然发生改变,有些地区降水量增加,有些地区降水量减少,因此建立研究可靠稳定的气象/水文模型将是未来水文学发展的前沿。

在水文设计中,一般根据水文资料来建立适合本流域的水文模型,然后根据设计情况的降水来推求洪水过程,继而对本流域提出相应的对策措施。同样,水文气象模型的建立也可以遵循这样几个步骤:其中水文模型的建立与未来气候变化情景的生成是关键。

2.1设计或选定未来气候变化情景。

2.2计算分析区域水文循环过程及水文变量,以选定的未来气候变化情景作为模型输入。

2.3选择、建立及验证流域水文模型。

2.4根据水文水资源的变化规律和影响程度,评价气候变化对水文水资源的影响,提出相适应的对策和措施。

目前,生成未来气候变化情景的方法有任意情景设置、长系列水文气象资料的统计相关法和基于GCms输出等3种基本方法。选择和使用区域水文模型来评价气候变化对水文水资源的影响时,应考虑下列几个因素:模型的内在精度;模型率定和参数变化;现有的资料及其精度;模型的通用性和适用性;以及与GCms的兼容性。目前,用于估算区域水文水资源对气候变化响应的水文模型主要有以下三大类:经验统计模型、概念性水文模型、分布式水文模型。

3存在问题

基于GCms的水文模型,存在以下不足:①研究内容主要集中在气候变化对流域径流平均变化的影响上,而有关气候变化对水文极端事件的影响研究相对薄弱。②GCms的输出结果和水文模型耦合的研究法存在不足。主要存在由陆面水温的降水与径流过程都存在很强的次网格不均匀性产生的精度问题,已经缺乏对水文物理过程和大气系统内部变化等的深刻认识,气候情景的生成、水文模型的结构以及GCms与水文模型在不同时空尺度的转化等方面的不确定性因素而引发的不确定性问题。③模型的单向性问题,此气候模型输出的产品驱动流域水文模型,水文模型给出水文要素变化,而模型输入仅仅只有生成的气候情境,是一种被动式接受的反响型模型,此法并未体现水文过程-大气相互作用互为反馈的功能,缺乏真正的水文模型与气候模型的耦合研究。

4结语

随着计算机和观测技术的快速发展,人们对全球气候和区域气候的研究更深入,通过新模型的建立和预测,气候变化对水文学的影响研究更加完善。

参考文献:

[1]陈涛.中国网民关于气候变化的认知状况调查[J].价值工程,2011(32)

[2]郭庆春.全球气候变化机理和预测研究[J].价值工程,2012(15)

气候变化对地下水的影响篇3

随着经济的快速发展,一些弊端也在不断显露,随之带来的就是过度的开发,使然环境受到了极大的污染,21世纪以来,由于经济的过度膨胀开发,使得全球变暖现象严重,人为的破坏严重影响了气候变化,从而在国际上产生一系列的问题,尤其是因为气候变化给水文水资源带来的巨大影响,威胁着人类的生存和活动,破坏了整个生态系统的稳定,水资源对人类的发展不可或缺,本文就气候变化与水文水资源之间的联系,以及气候变化对水文水资源的影响分析,提供出解决水资源污染缺乏方案。

【关键词】

气候变化,水文水资源,影响分析

近年来温室效应严重,人为排放二氧化碳使其不断增加的温室气体引起了全球范围内的气候变化,气候变化变化严重又可能给各个地区带来强烈的自然灾害,例如干旱,洪涝等,这就对我们的水文水资源产生了极大的影响作用,所以研究气候变化与水文水资源之间的联系,找出气候变化对水文水资源的具体影响,就可以在一定程度上缓解水资源的缺乏污染问题。

1.气候变化与水文水资源的作用关系

就我国来说,经济的快速发展已经加剧了气候的变化,对水文水资源的影响已经相当严重,极大的破坏来了生态环境的稳定跟可持续发展,纵观全球来说,生态环境的破坏已经到到达了一个临界点,近几年以来,越来越多的地区发生干旱洪涝等自然灾害,追究其原因,就是由于一系列的气候变化所带来的对水资源的破坏。气候的主要变化就是全球变暖现象,平均气候升高,就会带来一系列的生态环境的变化,例如气候上升将会引起海平面上升,当海平面上升到一定范围后,就会破坏生态环境的稳定,全球变暖趋势不断加深,这就在一定程度上促进了那些冰川海洋的融化,一些积雪开始消融,导致海平面不断地上升,再加上温度上升对水的一个扩张作用,这样循环往复不断地恶化,就在一定的情况下影响了降水的正常稳定情况,加剧了洪涝以及干旱的发生几率,长此久往,只会形成一个恶性循环,全球继续变暖,气候变化更加莫测,对水资源的影响也是更加严重,生态环境持续破坏。经济的发展,人口的增加,对水资源的需求也就更大,用水增加,污水排放也就更多,水文水资源污染更加严重。气候变化会对水循环造成极大的影响,可利用的水资源数量将会减少,水资源在空间跟时间上的利用也会重新分配,这就加剧了生态环境的恶化,对人类的生存跟发展造成了阻碍。

2.气候变化对水文水资源的影响分析

目前,在全球范围上都产生了明显的气候变化,它的显著特征就是气温的逐渐上升趋势,全球变暖就会引起水文循环的变化,在一定程度上影响着降水的功能,使得不同地区的洪涝干旱灾害严重。为了生态环境的稳定,也为了我们人类的生存和发展,我们就要去研究气候变化对水文水资源的具体影响分析。研究气候对水文水资源的影响,有利于我们保护整个生态平衡,对于环境保护,以后的可持续发展,运行规划管理都有着重要的作用。我国很早就开展了气候变化对水文水资源影响的研究,通过大量的研究以及现存的实际情况,我们可以大致清楚的知道目前气候变化对水文水资源的影响。气候变化对冰川积雪的影响。随着全球气温的不断升高,温室效应严重,这就造成了一部分的冰川积血融化,冰雪的提前不正常消退必定影响着河流量以及流向,这就造成了那些高纬度地区依靠积雪冰川的正常消融的水资源减少,在持续的升温作用下冰川积雪甚至能够完全消融,到时候高纬度地区的水源将消失,威胁着人们的生活。气候变化对河流的影响。气候变化对那些河川径流起着很大的影响力,气温变化,不仅会使河水的流向发生变化,还会使河水缩减,部分地区将大面积出现河流干枯现象,再加上人们的污水排放,对河流的污染就更加严重,严重影响了水文水资源。

气候变化对降水量的影响。全球变暖现象,不仅在气候上影响着人们的生活,还会通过各种因素的相互作用而彻底的威胁着人们的生活。气温升高,就会使海洋冰川融化,使海平面上升,另外温度的升高也会使海水扩张,从而蒸发量增大,这就形成一个恶性循环,长期作用下,必定会使降水量发生严重的变化,使得一些地区发生洪涝灾害,特别是对干旱地区的危害更大,会加剧干旱的程度。降水量发生变化,也在一定程度上污染了江流湖泊的水质,在持续恶化的基础上,加速了水资源的污染匮乏,也加剧了生态环境的破坏。气候变化导致的缺水问题。经济的快速发展,人口的急剧增加,本身就对水资源的需求量不断地加大,用水量的增加也造成了排水量的增加,一些废水污水的不合理排放不仅会污染水源,还会加剧环境的破坏,这就使得水资源更加的紧张。目前干旱跟缺水情况严峻,甚至在非洲一些干旱地区加剧缺水现象更加严重。水资源有限,如果再这样继续的不合理利用,只顾经济的发展,忽略经济发展的同时所带来的生态环境问题,就会使水资源的可利用率大大降低,这就导致在不久的未来缺水问题严峻。气候变化对水文水资源的影响非常巨大,水资源的储备减少,又会影响自然生态以及社会经济,人文发展的各个方面。

3.国内外有关气候变化对水文水资源的研究进展

国际上很早就出现了关于气候变化对水文水资源的研究,早在20世纪80年代世界气象组织就概述了气候变化水文水资源影响,国际上多次进行气候变化评估,以及探索气候变化对水文水资源的影响分析,国际上成立有专门的气候变化组织,并且举办有多场科技大会,探讨研究气候变化对水文水资源的问题,探索研究在人类活影响下,全球气候变化与水文水资源的影响规律。我国也开展了气候变化对水文水资源资源的研究分析,分析在不同地区,气候变化对水文水资源的具体影响,通过降水,气温,水蒸发等的变化来具体研究影响规律,预测未来气候变化趋势,进行提前控制。

4.研究如何应对气候变化对水文水资源的影响

为了生态环境的稳定,在保证经济发展的同时也要保证水文水资源的合理运用,这就要求我们在全球气候变化的情况下,研究对水文水资源的优化管理,水资源是人们赖以生存的必要环境因素,气候变化如此急速,就要求我们要保障水文水资源的正常运行。目前的情况不容乐观,气候变化已经开始通过降水等变化使得海平面上升,导致一系列的干旱洪涝灾害,尤其是对干旱地区来说,旱灾更为严重,气候变化与水文水资源的变化紧密联系,这就需要一些相关人员加快对水文水资源的分析进展。经济建设是很重要,但是,决不能以牺牲环境为代价获取短暂的经济进步,目前不止各个地区发生不同程度的干旱洪涝,还有一部分地区出现水资源短缺问题,我们要对这些水资源问题进行有效的分析。实现经济的可持续发展,注重环境保护,一些工厂的废水污水排放要经过净化处理,不能污染水资源,减少温室气体的排放,缓解气候变化情况,并且要有相关专业人员,健全水资源管理制度,研究气候变化跟水资源的关系,掌握气候变化对水文水资源的具体影响。在现存的环境下,也要加大对干旱缺水地区的供水,对于洪涝多发地,也要采取一定的措施,减少气候变化对水文水资源的影响。

5.结束语

正确认识到经济发展与环境保护的关系,了解气候变化对水文水资源的影响,在发展的同时要保证生态环境的稳定,要学会关注气候的变化,减少对大自然的伤害,合理的开发利用水资源,保护我们的生态环境,实现可持续发展。

参考文献

[1]林而达,气候变化与人类,2011,01(1),50-86

气候变化对地下水的影响篇4

【关键词】气候变化;大型水利工程;南水北调工程

1气候变化和大型水利工程的联系

1.1气候变化对于大型水利工程设计所造成的影响

在气候变化的情况下,设计水利工程应考虑以下问题:

(1)气候变化可使的发生干旱的程度、范围、频率等加剧,从而影响其供水的保证率

(2)气候变化导致流域降雨与径流等发生改变,使得流域设计洪水与设计暴雨等受到影响,换而言之就是使得水利工程的防洪设计标准受到影响。

(3)暴雨强度与次数的加剧,均可致使地质灾害的发生与加大泥沙冲淤所对于水利工程的安全与寿命的影响。

(4)气候变化与变异都会使得发生极端水文气候事件的强度与频次大大增加,从而引发计划外的洪水,导致设计与编制水利工程运行质量的计划受到影响。

1.2气候变化对于大型水利工程的运行管理所造成的影响

对于大型水利工程运行管理过程中,应考虑一下问题:

(1)在“温室效应”的背景下,因为发生极端灾害气象的频率与强度有所增强,因此在运行管理的过程中,要注重监测、预报水情信息,加强编制、执行防洪抗旱的应急预案。

(2)因为受到气候变暖与人类活动的影响,流域的来、用水条件和原本设计会有明显的变动,所以已建工程运行的规模、规则要做出相应的调整,从而保障水利工程的安全性与洪水的资源化。

(3)气候变化明显影响水生态环境,在运行调度水利工程中,要充分考虑到生态环境用水,可治理与保护逐渐恶化的水生态环境,可持续利用水资源。

2气候变化对于南水北调工程所造成的影响

南水北调由三条调水线路和海河、淮河、黄河与长江四大江河联系,构成了“四横三纵”的布局,从而实现我国水资源的南北调配、东西互补的合理配置。

2.1气候变化对于华北地区水资源的影响

根据气候模型显示,华北地区2050~2100年的降水量会增加,但是气温升高的幅度大,蒸发量也随之加大,让径流增加不明显。径流量的增加可否抵消经济社会发展与人口增长对于水的需求,预测未来需水量起着决定性的作用。研究表明,生活水平、人口增长的提高与生态、工业用水量的加大,使得需水量不断增加,未来的径流量远远不能满足需水量,因此北方缺水的局面还不能有根本性的解决。按照水利部水利信息中心所模拟的结果:在2061至2090年中,北方地区山西、陕西、甘肃与宁夏等省区的径流量会有减少的趋势,减幅为2%、3%、6%与10%。结合生态需水量的加大、科技发展对于节水的影响与人类活动对于径流的削减等,气候变化不能有效缓解我国华北地区的缺水情况。

2.2气候变化对于调水区所造成的影响

气候变化致使在空间、时间上河流径流的变化,所以会直接影响到华北地区能调水量的多少,与此同时,也影响到调入去需水量的大小。

(1)对于东线能调出水量的影响。据研究显示,气候变化会加大汛期长江下游的径流量,不过其年内的分配也会随之发生改变,当南水北调与三峡水库蓄水一同进行时,要预防枯水年对于下游航运、入海径流的锐减和生态环境的约束都会加剧风暴潮灾、海水入侵。除此之外,气温变化对于调水水质也有所影响,特别是在枯水年,是不容忽略的。

(2)影响中线的可调水量。陈剑池等相关学者用月水量的平衡模型和7种GCms模型所给出温室气体加倍情况下气候情景的输出值,并综合汉江流域未来需水的预测,模拟算出丹江口的径流量对于不同气候情景的情况和丹江口能调水量的影响。模拟得出初期能调水量会减少了3.5%,后期的能调水量减少了2.2%,平均年调水量减少了4.8~5.0亿立方米。气候变化对于能调水量的影响不大,基本能忽略。

陈德亮等采取了两参数分布式的水文模型,使用HadCm2与eCHam4这两个GCms模型,探讨了汉江径流受气候变化的影响程度,从研究中可见,在HadCm2的情境下,2051至2080增量15%,比2021至2050年增多10%;在eCHam4的情境下,则相反,2021至2050年平均年径流量增加10%,比2051至2080年增量2%。

现在所得的结果均为在特定的气候背景中所假设的可能性,但气候变化是不可预测的,因此也会产生异于结果的气候响应,结果也因此而具有局限性。所以,有必要深入地认识气候变化对于南水北调工程调水区域受水区的可能性影响。

3结语

气候变化导致了全球水文循环的改变,从而引起了在时空上水资源的再分配,汛期洪涝、暴雨与干旱等水文极端事件发生的频率呈上升的趋势,从而使得大型水利工程设计、运行等受到不同程度的影响。

参考文献:

[1]常军,顾万龙,竹磊磊,李素萍.河南5座大型水库上游流域气候变化及对水库运行影响分析[a];第26届中国气象学会年会气候变化分会场论文集[C],2009.

[2]秦天玲,严登华,宋新山,张诚,翁白莎.我国水资源管理及其关键问题初探[J].中国水利,2011(03).

气候变化对地下水的影响篇5

[关键词]热带高压、异常变化、气候影响

中图分类号:p433;p461文献标识码:a文章编号:1009-914X(2015)33-0141-01

多年观测事实表明,热带高压是一个暖性深厚系统。不同的气候产生的影响不同,当前咋热带高压异常变化,会对中国的气候产生影响,而所谓的热带高压气候则是以下沉气流、少云、晴朗以及炎热的气候为主。热带高压会导致东风气流,低层湿度大,但当有台风、东风波等热带天气系统活动时,也就是当热带高压异常变化时,则会造成大范围的暴雨、雷阵雨、大风等天气。本文针对热带高压异常变化对国内气候的影响,以及相关的内容进行分析研究。

1、(副)热带高压异常变化的机理

副热带高压,它是一种不连续的高压带,它具有明显的规律。副热带高压的存在对全球环流乃至气候的影响都有一定的作用。由于南亚高压与长江上游的盆地具有联系,而中高层高度相关场的分析表明我国中高纬高度场形式呈“两高一低”,故夏季副高具有东西震荡的特点,具有多雨水的特点。而对副高有影响的因素有很多,例如外部强迫和内部动力等,但是研究表明,影响副热的异常变化一个非常重要的饿原因是由复杂的动力和热力性质决定的。此外异常的下边界强迫与热带高压异常变化也是密不可分的。

2、热带高压异常变化对国内气候的影响范围

第一,副高对西太平洋地区的影响。针对热带高压异常变化对中国气候产生的影响进行分析,其主要是影响着西太平洋的副热带高压气候,并且其强度、位置随季节变化而变化。当夏季时,副高指数与脊椎指数变化异常明显,而雨水指数相对逐步增高,而年际周期相对稳定,即夏季盆西和盆东降水大概维持在10周左右。东亚北部地区大气环流呈现斜垂直特征,南亚高压和中层太平洋平行而行,逆行而去。

第二,副高对长江中上游的影响。在副高异常偏东时,盛夏副高东西位置与长江流域以及以南地区都存在着负相关关系,而此外,与北地区降水也有关系。随着副热带高压气候的发展,其将在与北上的暖湿空气、中纬南下的冷空气相交地带,造成阴雨天气,且是大范围的阴雨天气候,该地带也是我国大陆地区的重要降水地带。当前我国降水带在南北方向上的移动,与西太平洋副高压气候的移动相同,在每年的2~4月,华南地区会出现连续的低温、阴雨天气,在6月份则在长江下游和日本一带,形成梅雨季节气候。

3、热带高压异常变化对国内气候的影响分类

第一,对于降水的影响。副热带高压的异常变化,对我国的降水气候产生的影响,主要体现在部分低于干旱、部分低于水涝。显然,长江中下游地区夏季降水偏多。此外,副热带高压的西侧的暖湿气候、冷空气交叉地带发生异常的向西偏移,将会造成我国四川盆地、陕南、甘肃等地区出现连续的降雨天气,而我国的东部地区,在副热带高压的影响下,则会出现连续的干旱。

第二,对温度的影响。副热带高压的异常变化,对我国的温度气候产生的影响较大,通常它是造成我国气候干燥、地区干旱的一个原因。上面说过,在长江中下游到黄河和淮海地区夏季温度偏低,很明显,它是由于降水量造成的。而与此相反的,在华南地区,夏季温度则偏高温现象,华南温度的变化与副高的变化特征是非常协调的,这是由于华南地区上空的下沉气流突然上升加强造成的。

第三,副热对气流的影响,在流层较低气流较强的盆地,由于西太平洋对副热的影响频率气流也会随之发生变化。

4、热带高压异常变化对国内气候季节性影响

在6月份以前,我国的气候受副热带高压的影响,使得华南地区进入雨季。该地区的地理位置正好处于副热带高压北上的暖湿空气、中纬南下的冷空气相交地带,所以副热带高压的气旋活动较为频繁发生,对该地区的气候产生较大的影响。进入6月份以后,我国的雨带将会向北部地区移动,使得我国的长江中下游地区进入雨季。而进入7月份之后,副热带高压将再次的北移,使得黄河中下游地区进入雨季,而长江中下雨地区将会进入盛夏,出现干旱气候。随着季节的变化,在10月以后,副热带高压将会移动到北纬20°以南的位置,而中国大部分地区的降雨季节结束。

从副热带高压异常变化对我国气候产生的影响进行分析,我们可以知道副热带高压的变化规律,夏季时期副热带高的季节性活动时间较长,但是其移动速度较慢,在秋季之后,持续的时间较短,而且移动的速度较快。副热带高压活动的年际变化较大,一旦出现副热带高压异常变化,将对我国的气候产生较大的应先,经常造成我国大部分地区出现干旱、洪涝等灾害。

总结

副热带高压是北半球夏季最强的一种气候,随着副热带高压的发展和移动,其对中国的气候会产生较大的影响。目前副热带高压异常变化主要发生在夏季波动,这也是影响我国降雨量的一个重要因素,所以加强对副热带高压异常变化的分析研究,对我国气候的预测有着至关重要的作用。

参考文献

气候变化对地下水的影响篇6

1.气候变化的特点

1.1平均温度明显上升由于大气中二氧化碳、甲烷、氧化亚氮等温室气体浓度明显增加,造成地球表面温度上升,全球气候变暖,进而引起全球的气候变化。中国近100年来年平均气温明显增加,比同期全球增温平均值略高,这对农作物生产具有重大影响。

1.2降水出现区域性与季节性不均衡温度的提高会加快地表水的蒸发,导致水循环加剧,暴雨出现的概率增加,虽然降水量很大,却不能得到有效利用。各地降水量和蒸发量的时空分布也会显著改变。降水既会出现区域性不均衡,也会出现季节性不均衡,即在农作物最需要水的时候出现季节性干旱,从而给农业生产带来严重影响。过去的概念是中国西北部缺水,今后在中国南方也可能出现季节性干旱,水资源短缺将成为一个严峻的问题。

1.3极端气候现象有增多趋势极端气候现象指一些发生在特定地区和时间的罕见天气事件,极端气候现象的罕见程度一般相当于观察到的概率密度函数小于10%,这些极端气候现象包括干旱、洪涝、低温暴雪、飓风、致命热浪等。极端天气气候事件的发生和全球变暖有关,也是气候变化的表现之一。在全球气候变暖的总趋势下,大气的环流特征和要素发生了改变,引发复杂的大气――海洋――陆面相互作用,大气水分循环加剧,气候变化幅度加大,不稳定因素增加,导致这些小概率、高影响天气气候事件的发生机率增加。极端气候事件对农业系统的影响往往大于气候平均变率所带来的影响。

1.4冰川消融导致海平面上升在内陆地区增温造成冰川退缩,雪线上升,在南极冰川逐步融化、冰架面临坍塌,而北极冰帽正在持续消融中,漂浮在北冰洋上的成年厚冰块不断融化,这些因素再加上海水受热膨胀将会使海平面上升。海平面上升会给农业生产带来一系列问题。

2.气候变化对农业生产的影响

2.1气候变化对农作物生产的影响农作物对降水存在类似倒U型曲线的敏感性关系。当降水严重不足时,农作物对水分的需求得不到满足,会出现干旱症状,从而影响作物的正常生长;当降水量增加到一定范围内,加上温度及光照的配合,作物得以茁壮成长;当出现连续大雨、降水量超过一定范围时,又会对作物产生不利的影响。在开花期出现阴雨会影响作物授粉,造成落花落果;长期阴雨还会诱发病害;降水量过多会造成农田渍害,严重时作物会被淹死。

2.2气候变化对种植制度的影响Co2倍增时温度升高,增加了各地的热量资源,使各地的潜在生长季有所延长,无疑对多熟种植有利,从而使当前多熟种植的北界向北推移。当前我国的一年一熟制大约可向北推移200~300公里,一年二熟制和一年三熟制的北界也将向北推移500公里左右。麦、稻两熟区、双季稻种植区和一年三熟制的水稻产区,只要水分条件能满足生育期的需要,种植北界均可向北推移。这种变化有可能使一年二熟、一年三熟种植的面积扩大。

2.3气候变化对病虫害的影响由于温度升高,害虫发育的起点时间有可能提前,一年中害虫繁殖代数也因此而增加,在新的有利环境条件下,某些害虫的虫口指数将增加,造成农田多次受害的几率提高。病虫越冬状况受温度影响将更加明显,冬季变暖,容易越冬,虫源和病源增大;害虫的休眠越冬期缩短,世代增多。

气候变化对地下水的影响篇7

关键词:气候变化;能源系统;能源供给侧;能源需求侧

中图分类号:F206文献标识码:a文章编号:1671-0169(2014)01-0041-06

气候变化是当前国际社会普遍关注的全球化重大问题。许多观测资料表明,地球正在经历以全球气候变暖和极端气候事件频率/强度增加为主要特征的气候变化问题。气候变化正成为~种缓慢发生的灾害,给人类社会带来严重影响,其潜在损失给世界各国提出了适应气候变化的要求。

有关气候变化影响的研究,主要集中在由气候变化带来的一般性物理影响,包括作物生长和虫害、径流量及水资源短缺、疾病与健康、生态系统、动物迁移等。对能源系统与气候变化之间的关系,更多的研究关注“能源消费对GHG排放及气候变化问题”,而对能源部门的气候变化易损性研究并不多,且大多仅着眼于能源系统一个方面。从能源供应链不同层次的视角,Schaeffer等对目前能源系统的气候变化易损性问题进行了总结和归纳;mideksa等综述了气候变化对电力市场的影响;从区域的视角,wil-banks研究了气候变化对美国能源生产和使用的影响;ebinger归纳了能源部门适应气候变化影响的若干关键问题;Yau等则综述了气候变化对热带地区商业建筑和技术服务的影响。

本文以气候变化对能源系统的影响为主题,对近十几年来的最新国际文献进行全面的综述及展望。在阐述主流研究问题的同时,归纳比较了其中的关键研究方法及各自优缺点。最后根据目前研究的特点,提出了可能的发展方向。

一、气候变化对能源需求侧的影响研究

气候变化对能源需求端影响的研究广泛关注气温变化对建筑/居民部门能源需求,尤其是电力需求。这是因为,气温升高趋势导致冬季更为舒适而夏季更为不适,进而使取暖需求降低,制冷需求增加,取暖制冷又大多由电力支撑。mcGilligan等指出建筑部门是容易受到气候变化尤其是全球变暖挑战的部门。ipCC第三次评估报告将气候变化对建筑部门的影响总结为“电力需求增加,而能源供给可靠性降低”。

许多学者针对不同国家、地区,探讨了气候变化/Co2浓度增加对能源需求/消费的影响,其中大多数研究针对取暖制冷能源需求。如Bhartendu等用回归方法估算了在大气中Co2浓度增加一倍情景下,美国安大略省的冬季取暖和夏季制冷带来的能源需求变化。Baxter等采用能源终端利用模型估计了到2010年全球变暖的两种情景下,美国加利福尼亚州的能源消费和用能峰值变动情况。Ruth等综合气候因素和社会经济因素,研究了气候变化对美国马里兰州能源需求的影响,并依据HadCm2提供的温度情景进行预测,指出经济因素的影响要大于气候因素。mirasgedis等利用pReCiS(providingRegionalClimatesforimpactsStudies)模型得到气候参数情景,进一步建立了希腊气候变化对电力需求的影响模型,并用模型预测未来气候情景下电力需求的变化口妇(如表1所示)。

从表1中可以看出,气候变化对能源需求影响的研究结果差异较大,主要是因为:(1)研究对象的不同;(2)研究方法的区别;(3)预测情景的选取不同。这说明,为了解气候变化对一个国家或地区能源需求的影响,不能直接挪用其他国家或地区的研究结论,而应该采用合适的研究方法并根据预设的气候变化情景开展特定国家或地区的研究。

二、气候变化对能源供给侧的影响研究

气候变化对能源供给端的影响研究中,大多是围绕可再生能源的开发利用,主要研究由气候因子变化所造成的能源资源禀赋以及生产能力的改变。可再生能源生产受气候条件影响比化石能源更大,因为这种“能源”与全球能量守恒及所导致的大气流动柏关心。因此,未来全球气候变化将对可再生能源供给产生较大影响。

pasicko等研究了气候变化对克罗地亚太阳能、风能和水能的影响,其气候情景数据来自全球气候模型eCHam5-mpiom和区域动态降尺度气候模型RegCm,在ipCC未来气候情景a2(2011-2040和2041-2070)基础上得比结论:气候变化对克罗地亚沿海及濒临区域可再生能源的影响最大,其巾第一阶段风速预计增加20%,将使风力发电增产一倍,对光伏发电的影响为中性,2050年以后水电生产预计将减产10%。pryor等综述了气候变化对风能的影响,并得出结论:有时气候变迁可能会使风能产业受益,有时则对风能发展有负面影响,具体地,(1)对风力资源(风力强度和风力资源变化)的影响;(2)对风力农场运营维护及涡轮设计的影响,包括极端风速/狂风、冰冻、海面结冰/永动等因素的影响。

巴西的能源供给很大程度上依赖于可再生能源资源,2007年可再生能源占总能源生产的47%,所以巴西可再生能源的气候变化易损性问题引起较多关注。DeLucena等分析了在一系列长期气候预测排放情景下(ipCC的a2和H2),巴西水电生产和液态生物燃料生产的易损性,结果表明最贫穷地区的能源易损性逐渐增大,生物燃料(尤其是生物柴油)和电力生产(尤其是水电)将受到负面影响。他们还通过模拟ipCC的a2和B2情景下的风力条件,分析了全球气候变化对巴西风力发电潜力的可能影响。其中,巴西的降尺度风力预测数据源自由Hadley中心开发的pReCiS模型。

三、现有研究方法

很大比例的研究均涉及以不同气候情景来分析能源供需的变化。因此,下面分别就气候情景预测方法和供需影响评估研究方法来论述现有的关键研究方法。

(一)气候情景预测方法

目前ipCC气候情景是应用最为广泛也较为权威的温室气体排放及气候变化情景。ipCC致力于开发大气海洋一般循环模型(GeneralCirculationmodel,GCm),可以预测较高精度的5*5经纬度格点气候模式,主要包括英国的HadCm3、美国的pCm、加拿大的CGCm2。ipCC根据不同的社会、人口、环境、技术和经济发展轨迹,开发了四组全球范围内的排放预测情景(如表2所示)。

由于气候变化对能源的影响研究基本上集中于局部区域或城市尺度,非全球尺度,而ipCC提供的预测情景难以直接应用手微观区域范围,因此,需要得到降尺度的气候情景。从现在文献来看,降尺度气候变化情景预测方法大致可以分为两类;动态降尺度方法和统计降尺度方法。其中,动态降尺度方法主要指的是应用区域气候模型(RegionalClimatemodel,RCm)来分解气候情景,如美国的naRCCap项目,欧洲的pRUDenCe和enSemBLeS模型。统计降尺度方法则主要是通过运用大尺度气候资料和局部区域气候变量间的实证关系函数,推测区域未来气候情景。动态降尺度在理论上优于统计降尺度,并且即使无法获取区域地表观测变量,也可以应用于任何区域地点,但缺点是计算量大且对计算机的要求很高。统计(实证)降尺度方法不需要诸如地标山川、粗略地图等额外数据,但需要气候原地数据,相对RCm来讲,计算成本小。

(二)供需影响评估研究方法

从目前文献来看,评估气候变化对能源供需影响的研究方法大致包括三类:热平衡模拟法、度日回归的计量方法和能源生产仿真模型。

1.热平衡模拟法。热平衡模拟法以能量平衡和热传导为基础,建筑物参数(窗体材料等)、住户参数以及气候参数为主要指标,用仿真软件来模拟天气变化对建筑物热量收支及能耗的影响。如Roetzel等用建筑模拟软件energyplus,模拟了希腊雅典不同的建筑设计方案和居住人数情景下,ipCC气候变化a2情景(2020,2050,2080)对单元办公室舒适度和能源消费的影响。Xu等利用降尺度的GCm气候数据预测了2040、2070、2100年加利福尼亚建筑能源消费,研究发现:制冷技术条件若保持不变,在ipCC最差的碳排放情景(a1F1)下,加利福尼亚一些地区未来100年制冷用电将增加50%;在ipCC最可能情景(a2)下,制冷电耗将增加25%。仿真软件是energyplus和Doe-2.1e,模拟方案包括16种不同的商业建筑原型。热平衡模拟法的优点在于不需要详尽的能源消费或能源需求的实地数据,减轻了数据收集负担。但其缺点是软件内部参数较多,模拟较为复杂,系统性差,仿真结果与实际建筑能效结果可能出现不一致。

2.度日回归的计量方法。基于度日(冷度日和暖度日)指标的计量经济学回归方法是气候对能源需求侧的影响评价研究中最常采用的研究方法类型,这方面的研究始于1980年代后期。度日是研究气温与能源消费之间关系时最常用到的一种时间温度指标,是指日平均温度与规定的基准温度间的实际离差。为了研究方便,度日又分为:采暖供热度日(HeatingDegreeDay,HDD,简称热度日)和制冷降温度日(CoolingDegreeDay,CDD,简称冷度日)。凡是平均温度低于基础温度的均计入热度日数,而高于基准温度的均计入冷度日数。基准温度由人为设定,一般取18℃作为人体最舒适温度。将冷度日和暖度日作为回归元引入能源供需回归模型中,即为最常见的度日回归的计量方法。度日计量回归模型由于方法简单、适用性强、结果稳健等得到广泛应用,但其缺点在于需要收集大量的时间序列数据作为变量条件。

3.能源生产仿真模型。能源生产仿真模型主要用于气候变化对可再生能源生产影响的研究中,一般将气候因子变量作为原始输入变量,进而利用降尺度方法得到对机组运行起作用的有效气候因子,最后由产量仿真模型进行模拟。如DeLucena等胡在分析巴西水电生产和液态生物燃料生产的气候变化易损性时运用了能源生产仿真模型。首先,由大尺度GCm模型预测得到目标年的天然降雨量,然后用统计降尺度方法aRmal2季节调整模型预测得到局部盆地详细的水流量信息,两者结合预测水电机组注入水流量,最后以此作为输入变量输入到能源生产仿真模型来预测水电产量。

四、当前研究特点及未来发展方向

(一)供需预测研究中存在较多的不确定性问题

由于气候变化是较长期的影响和反应过程,考虑气候变化影响的能源供需预测研究的预测范围大多是几十年甚至上百年。不同的气候情景直接影响预测结果,而未来温室气体排放总量、大气温室气体浓度和全球气候变化均存在较高的不确定性,这直接导致能源供需的长期预测结果同样存在不确定性。例如,水电生产取决于水流量和全年不同时间的变化,长期趋势预测不会捕捉到这样详细的信息。此外,能源生产与使用除受气候变化的影响外,还会受众多其他因素的影响,如经济增长模式、土地利用、人口增长、技术水平、社会和文化差异等。因此,目前气候变化对能源系统影响的预测研究还仅仅是方向性和趋势性的情景分析,而非准确的预测结果,更加确定性的预测是未来研究中的重要问题。

(二)气候变化影响研究较多,适应性研究较少

在已有文献中,有关气候变化对能源系统影响的研究探讨较多,而专门针对能源系统适应气候变化的研究较少。如果包括气温升高和极端气候事件增多的气候变化事实无法避免或快速减少,而通过适应措施能够有效降低其潜在的负面成本,那么,提高能源系统的气候变化适应性问题就显得尤为重要和紧迫。例如,改进建筑防护标准以适应可能出现的暴雨现象,提高风机的耐狂风、耐永冻性能,开发设计智能电网以适应气温变化带来的用电峰谷等重要措施均可提高能源系统的适应性。因此,为有效适应气候变化,实现可持续发展,在脆弱性研究基础上的适应性研究尤为重要。有关能源系统对气候变化的适应性是未来的重要研究方向。

气候变化对地下水的影响篇8

关键词:林业经济;气候关系;木本油料

森林资源作为林业经济发展的主体,受到气候变化的影响。气候变化会对森林的结构、组成、功能以及生产力产生重要影响,尤其是全球气候变换这类极端气候事件的发生,会加大森林火灾、害虫等灾害发生频度和强度,直接威胁到林业的安全。

1林业发展的主要气候影响因素

适宜的气候因素是森林生长繁殖的基础条件,也是林业经济发展的必然条件。林业发展受复杂多样的气候因素影响:①气温,是指表示大气冷热程度的量。一般情况下温度升高,植物的生理生化反映加速,生长发育加速;反之亦然。不同温度条件下生长不同的植物,比如香蕉生长的地区,主要是因为该地区温度较高,能够为植物提供充足的温度。②湿度,是指空气中水汽含量或潮湿的程度。植物在适宜空气湿度和土壤湿度条件下才能保持正常的生长。③光照,是指太阳辐射,植物所能够接收到的太阳辐射能量。光照对植物生长的影响主要体现在光照强度、光照时间以及光的组成三个方面,适宜的光照有助于调节植物的品质。④降水量,是指从云中降落的液态水和固态水,降水充足的地区植物生长越茂盛。

2气候变化对林业的影响

(1)对森林物候的影响。温度作为气候因素中最主要的组成部分之一,会对森林物候产生重要影响。温度普遍升高后,木本植物春季物候期提前,但存在明显的空间差异性。北方、长江中下游等地区的物候期会提前,而西南、长江中游地区物候会有所延迟。温度的变化会影响春季数目和花卉的生长,尤其是年代间春季温度波动较大的话,温度对森林的物候产生影响越大。

(2)对森林分布和组成结构的影响。在气候变化的作用下,森林的分布和组织结构产生较大变化。根据有关调查显示,在气候变化作用下,我国部分森林分布和组成形式发生了空间转移。比如我国黑龙江省在1961年至2003年由于温度升高,使得大兴安岭落叶松和小兴安岭的云山、冷杉、红杉分布位置出现了北移现象。长期的气候变化会使得某些地区的林线海拔升高。气候变化还对高山草甸以及林线过度带上的某些植物物种产生影响。气候变化除了对森林分布产生影响外,还会对植物群落组成产生影响,干扰群落的恢复过程,增加次生林演替的树木死亡率,还有可能促进区域物种的入侵,影响森林生态结构。

(3)气候变化对森林生产力的影响。在气候变化作用下,二氧化碳浓度迅速增加,理论上中国的森林生产力将有所增加,但是不同地区森林生产力提升的幅度存在巨大差异性,越湿润的地区增加幅度越大,而极端气候条件的发生会导致森林神态系统生产力降低。

(4)对林火和森林有害生物的影响。气候变化会大大增加干旱天气的强度与频率,森林的可燃物积累越多,在干旱期引发火灾的可能性越大,而早春季节和夏季是森林火灾的多发季节,且火灾发生的地理分布面积逐渐扩大。我国黑龙江省大兴安岭的落叶松林对气候最为敏感,春夏季防火期最长,火灾对该地区形成的损害非常明显。

3林业经济发展对于气候的影响

气候影响森林的生产,进而影响到林业经济的可持续发展。气候因素中的气温、湿度、降水、光照等对森林生长产生起决定性影响,林业生产总值深受气候影响。同时,林业经济的发展也可能对气候产生正反两个方面的影响。

(1)合理利用的积极影响。合理利用森林资源,经营林业经济,会对气候产生良好的保护、调节以及改善作用。此外林业资源能够有效减轻气候变暖对环境造成的影响,缓解温室效应。合理的林业经济发展,还能能够帮助林业工程建设,起到涵养水源、防风固沙、净化空气等作用。此外通过开发森林旅游资源,扩大林业资源发展项目,既可以保存原有的生态系统,又可以促进林业经济增长。

(2)过度利用的消极影响。过度采伐森林资源,就会影响森林生态系统,进而影响森林对气候的调节作用。现阶段林业经济主要以木材加工为主,木材加工产业就要涉及到对森林资源的采伐,导致人们对森林资源大面积的砍伐。很些地方肆意砍伐,不重视新林的培育,降低了树木的光合作用,减少了森林的二氧化碳吸收能力。随着森林资源的过度砍伐,土地流失日益严重,土地沙漠化趋势增强,诱发山体滑坡、泥石流等自然灾害。

4相应气候条件下林业经济的发展方向

(1)中温带气候以木材加工为主导。中温带地区,温度适中,光照充足,降水量丰富,非常适合森林的培育和生长。因此在我国中温带地区适合发展木材加工产业。由于我国木材产品属于初级产品,木材的利用率和产品附加值较低,因此在未来的木材产业发展中应该改革生产加工工艺,引进新设备,转向精细化作业,丰富产品类型,提升产品档次,提高我国木材加工产业的经济效益。

(2)大力发展森林旅游绿色产业。针对森林资源的绿色开发,发展森林生态旅游业不失为一条捷径。我国的森林资源大多分布在山川丘陵处,植物种类丰富多彩,各种山泉沟壑、奇山怪石、松林美景等美不胜收,是发展森林生态旅游的自然景观基础。

(3)积极开发林地经济资源。除了木材加工产业外,还可以大力发展种植、养殖等产业。林业经济中林地产业是补充,实现林地充分再利用,地方政府和林业部门可以引导农民开展天麻、木耳等林下种植业以及林地野猪、梅花鹿、冷水鱼等养殖业,提高林业经济效益。

(4)重点发展木本油料能源产业。森林除蕴含丰富的林木资源外,还蕴藏着丰富的生物质能源,如油茶、文冠果、山杏、油桐、乌柏等木本油料植物。发展木本油料植物,能够大大提升森林资源的利用效率,促进生物质能源的高效转化。

作者:陈慧斌单位:浙江省金华市磐安县黄檀林场

参考文献:

[1]向中华,曾胜.林业经济发展与气候因素的因果关系[J].东北林业大学学报,2012,(4):110-112.

气候变化对地下水的影响篇9

关键词:气候变化;农业发展;影响因素;应对措施

1引言

宜城市位于湖北省西北部,是主要的农业生产城市。属亚热带季风性湿润气候,四季分明。春秋季短,冬夏季长。年降水量在800~1000mm,年平均气温15~16℃。主要生产棉花,花生,油菜,水稻,西瓜,小麦等农作物。气候是自然环境的重要部分,气候有变化一定会回农业的发展和社会的经济造成影响。当前全球变暖,极端气候现象增多,襄阳市宜城市的气候也受到了一定程度的影响,本地的农作物品种变异,生长缓慢,产量降低,严重阻碍了农业的发展,造成了非常严重的经济损失。

2气候改变对农业发展的影响

2.1气候变化影响土壤等要素的理化特征和农作物生长特性

阳光、水分、土壤、热量是农业生产的前提要素。由于气候变化都会导致这些条件发生变化,进而影响四要素的理化特征。阳光、水分和热量影响着土壤有机质含量,温度或高或低和降水量减少都会影响土壤中有机碳的含量,制约土壤资源的生产力。某一区域内适合生产哪种农作物与本地的气候因素紧密联系着。由于气候变化带来的影响,在很大程度上影响着农作物的生长特性、种类等。气温逐渐上升则会影响农作物的生产季节,如,本市中属于热敏感的农作物小麦、玉米和水稻,由于气温升高,直接导致了产量的减少。

2.2气候变化影响农业病虫害、干旱水涝等自然灾害

气候发生变化在很大程度上会引发大范围的农业病虫害。特别是暖冬季节,全球温度变暖,非常有助于农作物病虫害过冬繁殖,使得病虫害能安全过冬的数量增多,死亡率减少,从而农作物被病虫害危害的区域范围增大,严重影响了农作物的收成。气温变暖,引发了众多生物物种之间的竞争关系变化,同时也扰乱了往常的自然环境下食物链的竞争关系和种群之间的关系,病虫害没有了天地的捕捉,使得病虫大量繁殖和生长,出现了病虫害流行。

2.3气候变化影响农作物产量,减少农民收入、阻碍农业经济发展

气候变化将降低农作物的产量,处于低纬度区域的作物产量减少更加明显,中高纬区域的作物产量不受影响反而增多,宜城市大部分都是岗地,属于低纬度区域,受灾现象更加明显。由于农作物产量减少,农民的收入也跟着减少,导致了农民从事农业生产的积极性就会降低,阻碍了我国农业经济的发展。

3改善农业技术积极应对气候变化的措施

3.1增强自然灾害的防御措施,减少农业损失

宜城市人民政府应统计近几年气候变化的数据,从中分析气候变化的特点,合理的制作应对自然灾害的应急方案。另外,还要加强关于农业方面的自然灾害管理工作,要经常与气象部门联系,及时掌握最新的气象报告,并将气象信息及时告知相关单位和个体,使农民和工作人员能提前做好应对措施。

3.2选择优良农作物品种,增强农作物抵御不利环境的能力

由于气候的不断变化,有些地区的农作物已经不适合生长在这样的环境中,为了最大限度的减少农作物减产的现象,可以适当的选择优良、适应气候变化生长的农作物品种进行繁殖生产,从而增强农作物抵御不利环境的能力。通过从别的地方引进新品种是一个不错的有效途径。

3.3加大农田水利技术设施建设,改善给水排水功能

由于宜城市的农田水利基础设施部分工程是因地制宜、就地取材建立起来的,工程起点相对低,很多水利设施已经无法正常使用,特别是水涝时期排水的功能不足。因此要强化农田水利设施,改善积水排水的功能。特别是要加强设施的防渗功能,优化灌渠的给水功能,降低灌渠漏水和渗水,提高水资源的综合利用率,从而使提高农业对气候灾害的抵御水平和农业生产的稳定性。建设农田水利设施结合实际,重视科学、给水排水灵活,节水灌溉,积极开发自动化、智能化的新型农业生产技术,并能研发出更多能与气候变化相适应的农业生产新型工艺设施,从而不断的强化抵御气候灾害的工程设施。

4结束语

气候变化和农业生产两者的关系既是相互影响也是相互制约的。掌握气候的变化情况,可以有效控制农业生产的质量。我们在应对气候给农业生产带来的不利影响下,要积极的采取措施降低气候变化带来的风险和灾害。通过增强自然灾害的防御措施、选择优良农作物品种、加大农田水利技术设施建设,将气候变化和农业生产视为一个有机的统一体。未来气候变化还有很多不确定因素,正确面对气候变化,及时研究应对方法,让农业生产在适应气候的变化中持续稳定发展。

参考文献

[1]赵建军,蒋远胜.气候变化对我国农业受灾面积的影响分析-基于1951-2009年的数据分析[J].农业技术经济,2011,11(03):56-59.

[2]吴小玲,廖艳阳.气候变化对农业生产的影响综述[J].现代农业科技,2011,13(11):89-92.

气候变化对地下水的影响篇10

(一)大气中二氧化碳浓度增加

陆地生物圈通过光合与呼吸作用与大气不断交换二氧化碳气体。经过漫长的时间推移,大气中二氧化碳浓度达到了相对稳定的时期。但是自工业革命以来,人类对石化燃料的大量使用、森林破坏、人口与饲养家畜数量的急剧增加等人为因素的作用,引起全球大气二氧化碳浓度增加的速度比过去任何时期都快。

(二)全球气温升高

有报告指出,近100年来全球温度升高了0.74℃。这是近1000年来温度增加最大的一个世纪,尽管气候变暖问题仍然存在科学上的不确定性,但有90%的可能性是人类活动造成的。如果人类继续按照目前速度排放温室气体,那么二氧化碳有效倍增将在几十年内到来,届时全球平均气温将增加1.4~5.8℃。全球温度增高将改变各地的温度场,影响大气环流的运行规律,各地的降水量和蒸发量的时空分布也会改变;增温造成的海冰、冰川融化和海水受热膨胀还会使海平面上升,将给地球水资源、能源、土地、森林、海洋以及人类健康、物种资源、自然生态系统和农业生产带来巨大冲击,造成许多目前仍无法估计的重要影响。

(三)区域间降雨的不均衡

国家评估报告指出,近100年来,我国的年降水量有微弱的减少,虽然近50年来降水量呈现小幅度增加趋势,但区域间变化明显。未来降水频率和分布将发生变化,旱涝等极端天气事件发生频率会增加,强度会加大,对经济社会发展和农业生产等产生很大影响。气候变化将加剧水资源的不稳定性与供需矛盾,气温每上升1℃,农业灌溉用水量将增加6%~10%。

二、气候变化对农作物生长的影响

气候变化对农作物生长的影响是多尺度、全方位、多层次的,农业对气候因素变化非常敏感脆弱,是受气候因素变化影响最大的行业。光、热、水、二氧化碳是农作物生长发育所需能量和物质的提供者,它们的不同组合对农业生产的影响不同。温度增高将促进作物的生长发育,提早成熟,从而影响作物籽粒灌浆和饱满,降低作物营养物质含量和品质。

(一)二氧化碳浓度增加对农作物生长的影响

大气中二氧化碳浓度增加可以提高光合作用速率和水分利用率,有助于作物生长,小麦、水稻、大麦、豆类等C3作物产量显著增加,但对玉米、高梁、小米和甘蔗等C4作物助长效果不明显。现有研究指出,在二氧化碳浓度倍增,可使C3作物生长且产量增长10%~50%,C4作物生长且产量的增长在10%以下。然而,二氧化碳浓度增加对植物生长的助长作用(也称”施肥效应”),受植物呼吸作用、土壤养分和水分供应、固氮作用、植物生长阶段、作物质量等因素变化的制约,这些因素的变化很可能抵消二氧化碳增加的助长作用。

(二)降水对农作物生长的影响

农作物对降水存在类似倒U型曲线的敏感性关系。当降水严重不足时,农作物对水分的需求得不到满足,会出现干旱症状,从而影响作物的正常生长;当降水量增加到一定范围内,加上温度及光照的配合,作物得以茁壮成长;当出现连续大雨、降水量超过一定范围时,又会对作物产生不利的影响。在开花期出现阴雨会影响作物授粉,造成落花落果;长期阴雨还会诱发病害;降水量过多会造成农田渍害,严重时作物会被淹死。农作物各生育阶段对水分的需求是不同的,对水分的敏感性也不一样,也就是说敏感临界点和敏感性曲线的峰度都会发生变动。作物对水分最敏感时期,即水分过多或缺乏对产量影响最显著的时期,称为作物水分临界期。

(三)气候变化对农作物光合作用的影响

二氧化碳是植物光合作用的底物,其浓度升高必然会对植物的光合作用产生重要影响。当二氧化碳浓度增加时,植物光合作用增强、光合时间延长、光能利用率提高、光补偿点明显下降,而此时气孔阻力增加、气孔导度减小、蒸腾速率减少、呼吸速率降低,使单位叶面积土壤水分耗损率降低,提高了植物水分利用效率,从而提高了植物避旱能力。

(四)气候变化对农作物生育期的影响

温度和二氧化碳浓度的升高,可使大多数植物开花提前几天不等,一些主要农作物如小麦、水稻、大豆等在高浓度二氧化碳条件下,均提前数天开花。

(五)气候变化对农作物生长的区域水热要素分布和土壤肥力变化的影响

气候变化,无论变暖还是变冷以及温室气体浓度变化,都将导致光照、热量、水分和风速等气候要素的量值和时空格局发生变化,势必对农作物的生长产生全方位、多层次的影响。光照、水分、热量等条件决定着区域生物量,气候因素变化通过光、热、水等要素变化影响土壤有机质、土壤微生物的活动和繁殖而影响土壤肥力,温度升高或降水量减少会减少土壤有机碳含量,降低土地资源的生产力;温度降低或降水量增加有利于土壤有机碳的增多,其中以温度变化对土壤有机碳的影响起主导作用。

三、气候变化影响的对策