首页范文大全生物燃料和生物质燃料的区别十篇生物燃料和生物质燃料的区别十篇

生物燃料和生物质燃料的区别十篇

发布时间:2024-04-26 01:43:01

生物燃料和生物质燃料的区别篇1

一、生物质能炉具的燃烧技术必须过关

生物质能炉具的燃烧技术核心是燃烧器,而燃烧器的主要功能就是首先要解决燃烧农作物秸秆燃料的结渣和结焦问题,这样才能实现高效燃烧和低排放。

目前。在国外,如加拿大、瑞典、芬兰等欧美国家,生物质能专用炉具使用的生物质燃料,仍停留在木质颗粒燃料上。原因是像农作物秸秆及野草质之类的成型燃料,由于含氯和钾成分大,容易结渣,不仅无法实现自动燃烧,更主要是无法实现高效燃烧和低排放,所以许多国外专家正在研究用基因技术改良秸秆、野草类植物的成份含量。

我国是一个树木少、农作物秸秆多的农业大国,要大力推广生物质能专用炉具,只能大量使用农作物废弃物做燃料,而秸秆里吸收土壤里的氯和钾的成分相对很高。同时,如果压制密度低的话。在燃烧过程中挥发分也很多,显然,与国外的木质原料有着天壤之别,导致生物质能专用炉具在燃烧过程中容易出现结渣的问题。这不仅影响产品的正常运行,而且过多的烟焦油还会导致锅炉的热效率降低,更会引起对燃烧器周围各个部件以及烟囱等产生严重的腐蚀现象。

像这种技术未过关的产品,燃料在燃烧过程的各种排放包括颗粒物排放等也会高于北京市一类地区的空气标准和各地环保部门的规定,很难突出新能源的优势。因此,要大力推广生物质成型燃料和专用炉具,生产企业首先必须研发过关的燃烧技术。老万公司从我国的国情出发,一直以秸秆、树木类等生物质燃料为应用目标,公司技术人员与国外专家合作,研究新型转换技术,开发新型装备。经过上千次的试验,发明出的辊子燃烧器,基本解决了生物质燃烧时容易结渣的世界性难题,经过国家有关权威单位测试,燃料燃烬率达99%,做到了锅炉“上不冒烟,下不结渣”的效果,产品实现了“环保高效、节能减排、经济实惠、使用便利”等优点,为生物质炉具和成型燃料规模生产应用奠定了基础。

老万生物质系列产品,所使用燃料纯粹是颗粒燃料或压块燃料,极大地提高了燃料的燃烬率和锅炉热利用率,降低了挥发份,无论是取暖、炊事、洗浴,其热能利用远远高于燃煤的利用率。在运行使用成本上,颗粒燃料我们出售900元/t,如果按100m2的房间计算,一个采暖期大约需要4~6t燃料;压块燃料500元/t,如果按100m2的房间计算,一个采暖期大约需要5~7t燃料,因此,运行费用跟燃煤几乎一样,并且是燃油炉的20%,燃气炉的33%,电空调的28%,对北京城乡结合地区的一般家庭和农村家庭的取暖,在费用上是最经济的。

老万生物质能锅炉采用先进的自动控制清洁燃烧技术,产品的燃烧器是负压半气化燃烧方式配合分层三区燃烬技术,热效率达80%以上,拥有主、副两个燃室。由于是温控设置,所以自动点火、自动进料、自动泄灰,数显温度设置便于控制,同时,在运行当中,基本是日加一次料和倒一次灰。方便操作,在使用过程中具有很大的便利性。同时,锅炉使用过程中,强制排烟与自然抽风混合,常压运行并配备泄压阀,拥有超温保护、炉体保温、回火防护功能,确保安全使用。

二、生物质燃料的质量、数量和供应必须保障

为落实和享受国家对生物质能事业的政策,目前国内众多的厂家都在纷纷研发生产生物质能锅炉的同时,也在研究生产生物质燃料。因为国内生物质燃料市场还没有形成,多数用户使用的锅炉还是依靠炉具厂家提供的燃料,所以,炉具厂家不仅要使锅炉的技术过关,而且必须解决好燃料的质量控制、数量保证和配送工作,这是生物能产品能否大力推广的关键问题。

同行人都明白,燃料的种类、质量和容积密度不同,在锅炉燃烧的效果、效率就不同。比如,玉米秸秆、棉花秆和锯末等压制成的燃料,其热值、效果就不一样。

所以,厂家选择什么样的燃料种类、质量如何控制以及供应是否及时,是决定能否达到锅炉运行标准和满足用户需求的关键因素。这就要求炉具厂家,在自己生产燃料或是与其他燃料厂家合作过程中,一定要有诚信的合作态度,坚持质量稳定,互利互惠,服务用户,同步发展;即:一是双方要签订具有法律效力的合同,确定燃料品种、质量、数量、价格和配送标准等,同时,双方合作过程的一切活动,都要严格按照合同办事。二是炉具厂家要派懂技术、懂质量的专人,深入燃料生产单位加强监督管理,既要对燃料厂进行技术方面的指导,更要严把燃料质量关;同时对燃料的生产数量和供应给予保证。

例如:老万公司在生物质燃料的质量、数量和供应上具有很大的保障性。近年来,公司在北京地区累计推广生物质颗粒燃料锅炉1000多台,供应用户燃料8000多t。为了解决燃料供应问题,公司从2007年就开始利用社会资源。采取信用合作的方式,与北京地区周边的延庆、廊坊、大厂、承德、赤峰、东光等地的十多家工厂进行玉米秆颗粒、棉秆颗粒和锯末颗粒燃料的配套加工。协作单位主要负责加工生产,老万公司主要负责燃料质量管理和配送。2008年。这些合作厂的燃料年产能力已达10万t,能够满足1万家以上用户的燃料供应。为了保证满足目前北京市城乡结合地区居民家庭使用10万吨燃料的供给,公司首先挑选信誉度高的厂家签订《燃料质量、供应合同》,其次,公司在北京远郊的昌平、顺义、通州、大兴这四个郊区交通方便又远离人口稠密区的地方,租赁燃料存储库8个,并设配送服务中心,及时为用户配送燃料和服务。今年年初,河北、山东、山西和东北等地具有加工成型燃料能力的厂家,纷纷与公司联系,寻求合作机会。据初步估计,生物质成型燃料的潜在供应量应在100万t以上,完全能够满足10万家以上用户的燃料供应。

在这里特别提出的是,由于燃料的国标没有出台,社会上一些不法厂家,为了谋取私利或短期利益,干些伪劣投机活动,燃料市场出现了鱼目混杂、参差不齐的现象,甚至误导一些不懂技术和质量的消费者进行购买。使其产品不能正常运行而抱怨炉具厂家锅炉不好。因此,我们呼吁政府要加强整合和监管力度。采取多种措施支持一些有实力、有技术、愿意奉献生物质能事业的企业正常经营,以落实国家政策,促进新农村建设步伐。

三、售后服务必须到位

服务是令消费者满意的重要因素,它跟产品一样甚至比产品更重要,相信很多的企业在这方面认识程度很深。随着国内生物质能炉具行业“百家争鸣”局面的出现,服务的重要性日益凸现出来,在这种情况下,企业不仅需要单纯的产品优势来吸引消费者的眼球,而能在服务上真诚、及时、规范,将无疑得到用户最广泛的青睐和认可,所以,服务已成为一个公司有别于其竞争者的原因之一,是一个注重发展潜力的公司一定要做好的重要事情之一。这就要求我们必须进行优质的服务,用良好的声誉赢得市场。

生物质能专用炉具不仅锅炉本身容易出现故障或由于用户不按规定来操作、保养等,在运行上出现这样那样的问题,而且循环系统由于安装不当依然会使锅炉运行受到影响,导致居室采暖效果差。这就要求我们生产企业必须有专门的服务人员,及时到位,现场诊断,解决锅炉或循环系统上的问题,以推进生物质能产品大面积的推广使用。否则,如果我们的服务不到位,顾客得不到他所期望的或更好的服务,用户就会把所有的问题和抱怨都转嫁到锅炉和燃料上,导致他们不仅怨声载道,而且由于信息的传递,致使影响市场上大批顾客对公司的看法,进而对生物质能产品推广产生抵触情绪和消极影响。

怎样搞好服务?首先公司要有真诚服务的理念,在服务过程中区分不同类型的客户,了解他们不同的心理、不同的需求,从而采取不同的服务方法。同时,公司服务人员必须具备良好的产品知识,掌握产品结构和循环系统原理等。

老万公司一直把服务称作“也是生产力”,把尊重、关心用户当作是自己应尽的义务,因此,公司售后服务宗旨是“用户第一”。为了以百倍的努力为用户服务,公司专门抽调技术能力强的人员,组建了几十支专业服务队伍对用户进行售后服务,并且贯穿于交货、验收、安装、调试、维护、保养等服务全过程。

生物燃料和生物质燃料的区别篇2

厂址选择

直燃生物质发电项目的选择重点应考虑项目厂(场)址的交通条件、原料供应条件、并网条件、水源供应条件及与规划的符合性。环评单位依据的选择基本原则要求主要有:

《关于加强生物质发电项目环境影响评价管理工作的通知》(环发[2006]82号)及《关于进一步加强生物质发电项目环境影响评价管理工作的通知》(环发[2008]82号)要求“地方政府应根据当地生物质资源分布情况和合理运输半径,进行综合规划、合理布局,制定农林生物质直接燃烧和气化发电类项目发展规划;在采暖地区县级城镇周围建设的农林生物质发电项目,应尽量结合城镇集中供热,建设生物质热电联产工程;大中城市建成区和城市规划区、城市建成区、环境质量不能达到要求且无有效削减措施的或者可能造成敏感区环境保护目标不能达到相应标准要求的区域,不得新建农林生物质直接燃烧和气化发电项目”。

在实际工作中,直燃生物质发电厂选址的可行性分析中还会遇到下列几个问题。

一是由于部分生物质发电厂的选择缺乏长远规划,往往与当地的一些单项规划存在一定的不符合性,主要表现在城市总体规划、土地利用总体规划、供热规划、各类专项规划、乡镇规划、电网规划、生态功能区规划等存在一定的不符合性。如果存在不符合之处,应与当地政府进行项目厂址比选,重新调整相关规划或调整项目位置、规模等,使项目厂址与相关规划协调、可行,并附相关支撑性材料。

二是燃料分散、供应距离远,有些区域由于地形、地质、农作物种类等原因,农作物秸秆产量较少或较分散,增加了电厂收购成本或不能满足电厂额定负荷要求。因此,应对生物质电厂区域秸秆剩余量及运输距离进行详细调查统计。同时,当地政府应承诺在该电厂燃料供应范围内不再引入大规模损耗生物质资源的工业企业,以免导致燃料供应不足。

三是项目所在地环境质量不能满足相关环境质量标准要求,不具备项目建设所需的环境容量。如果项目所在区域尚无剩余环境容量,应重新选址或采取有效削减、替代措施,所实施的削减和替代措施需要具有可操作性和有效性。

在环境影响评价中,还需对厂区供水、交通等条件进行分析,需要对多个厂址进行比选,从各方面对照分析选址的合理性,确定最为合理的厂(场)址。

工程分析

工程分析是建设项目环评的重要组成部分,是环评报告的基础数据。直燃生物质发电项目工程分析主要包括项目组成、项目依托情况、燃料供应及贮储、成分、热值分析、厂区平面布置、工程拟采用的工艺技术、主要装置和设备、污染物种类、污染物产生量和排放源强的确定、所采取的各项环境污染防治措施以及非正常工况污染物排放情况。

目前我国现有直燃生物质发电厂主要使用丹麦Bwe公司水冷振动炉排技术,由国内生产制造的振动炉排高温高压锅炉。生物质燃料被送入炉内后,燃料在炉排上由于振动而被抛起,边燃烧边跳跃前进,炉渣由炉排末端排出。锅炉一般采用低氮燃烧方式,预留烟气脱除氮氧化物装置空间,除尘一般采用旋风分离器+布袋除尘器除尘,设计除尘效率一般不小于99.90%。由于秸秆含硫量低,一般仅预留脱硫空间。由于秸秆燃烧产生的灰分中含有丰富的钾、镁、磷和钙等营养成分,可用作高效农业肥料,一般生物质电厂可不设大型灰渣厂。直燃生物质发电项目废水主要分为一般性废水及浓盐水,由于电厂锅炉用水对水质要求较高,并且电厂多采用中水作为生产水源,因此,一般直燃生物质电厂都配有中水处理系统、锅炉水除盐系统及厂区综合污水处理站,除盐系统多采用反渗透处理工艺。处理后的污水多回用于循环冷却水及绿化等用水,浓盐水可用于锅炉除灰除渣。对于降雨较多的地区还应考虑燃料堆场雨水。

燃料供应充足是保证生物质电厂正常运行首要条件,在区域燃料供应中应详细调查燃料来源保证性、燃料种类、燃料量、燃料热值、燃料收购方式、燃料的运输,并附燃料热值分析报告,必要时可编制《生物质资源专题收集报告》。

燃料贮存点的分布、交通条件、与周围环境关系、贮存量、防腐、防洪、消防措施、燃料贮存点的扬尘及恶臭防治。为避免燃料长期存放造成自燃或腐烂、发酵降低发热值,燃料贮藏时间最长应不超过一年。燃料储运过程可参照《秸秆燃料储运技术规范》执行。

环境风险评价

由于直燃生物质项目具有火灾风险,因此直燃生物质项目环境影响报告书应设置环境风险影响评价专章,重点分析火灾带来的环境影响。环境风险评价专章应为建设项目的风险管理决策提供科学依据,以便在事故情况下及时采取有效、迅速的防控措施和应急措施,降低风险事故带来的影响。直然生物质项目的环境风险评价,一般应包括环境风险识别、风险事故频率确定、风险事故环境影响预测、风险事故防范措施及应急预案等主要内容。直然生物质项目主要有以下几种事故源项:

(1)燃料堆场发生火灾风险对周围环境的影响;

(2)轻柴油储油罐发生泄漏、火灾、爆炸风险对储油罐周围环境的影响;

(3)火灾事故处理过程中产生的消防废水、燃烧烟气等伴/次生污染影响;

(4)废水事故排放对周围环境的影响。

根据风险事故环境影响预测结果给出可能受影响的范围,并制定切实可行的环境风险防范措施及应急预案,减少因风险事故带来的环境影响。

以“宁夏安能生物质热电有限公司2×15mw生物质热电联产工程”为例,其风险防范措施主要为:对燃料堆场周围设置防火距离,配备相应消防设施;厂区高建筑应采用防雷击设计;燃料堆场四周应设置一定宽度的水沟,炎热、干燥条件下可降低燃料场温度、增加燃料场湿度,在降雨及消防时也可用于燃料堆场排水等。

结语

生物燃料和生物质燃料的区别篇3

关键词:生物质;生物质能;产业;沼气;生物质发电;生物质燃料;能源作物

1 概 述

近年来,在能源危机、保护环境和可持续发展的呼声中,可再生的清洁能源以及能源的多元化倍受关注,生物质能成为其中的一个新亮点。

为了促进可再生能源的开发利用,增加能源供应,改善能源结构,保障能源安全,保护环境,实现经济社会的可持续发展,中国已经制定并实施了《可再生能源法》。可再生能源是清洁能源,是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。根据《可再生能源法》的定义,目前主要包括太阳能、风能、水能、生物质能、地热能和海洋能等非化石能源[1]。中国可再生能源资源非常丰富,开发利用的潜力很大,其中生物质能的开发潜力更大。

生物质能一直是人类赖以生存的重要能源,它目前是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位[2]。据有关专家估计,生物质能极有可能成为未来可持续能源系统的重要组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。

生物质能是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。煤、石油和天然气等化石能源也是由生物质能转变而来的。生物质能是可再生能源,通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能,直接燃烧生物质的热效率仅为10%~30%[3]。生物质能的优点是燃烧容易,污染少,灰分较低;缺点是热值及热效率低,体积大而不易运输。

目前世界各国正逐步采用如下方法利用生物质能:1)热化学转换法,获得木炭、焦油和可燃气体等高品位的能源产品,该方法又按其热加工的工艺不同,分为高温干馏、热解、生物质液化等方法;2)生物化学转换法,主要指生物质在微生物的发酵作用下,生成沼气、酒精等能源产品;3)利用油料植物所产生的生物油;4)把生物质压制成成型状燃料(如块型、棒型燃料),以便集中利用和提高热效率。

“为了缓解中国能源短缺问题,保证能源安全,治理有机废弃污染物,保护生态环境,建议国家应大力开发生物质能,实施能源农业的重大工程。”中国作物学会理事长路明研究员在接受记者采访时说[4],“生物能源开发工程应主要包括:沼气计划、酒精计划、秸秆能源利用计划和能源作物培育计划等。”

在2006年8月召开的全国生物质能源开发利用工作会议上,国家发展与改革委员会副主任陈德铭提出,今后15年,中国在生物质能源方面将重点发展农林生物质发电、生物液体燃料、沼气及沼气发电、生物固体成型燃料技术四大领域,开拓农村发展新型产业,为农村提供高效清洁的生活燃料,并为替代石油开辟新的渠道。

综上所述,目前,中国生物质能源的产业化利用途径主要包括以下方面:沼气利用工程、农林生物质发电、生物固体成型燃料、生物质液体燃料、能源作物培育利用等。

2 中国生物质能产业发展目标

中国农村生物质能是一座待开发的宝藏。根据《可再生能源中长期发展规划》确定的主要发展目标,到2010年,生物质发电达到550万千瓦(5.5Gw),生物液体燃料达到200万吨,沼气年利用量达到190亿立方米,生物固体成型燃料达到100万吨,生物质能源年利用量占到一次能源消费量的1%;到2020年,生物质发电装机达到3000万千瓦,生物液体燃料达到1000万吨,沼气年利用量达到400亿立方米,生物固体成型燃料达到5000万吨,生物质年利用量占到一次能源消费量的4%[5]。

开发利用生物质能是当前国内外广泛关注的重大课题,既涉及农业和农村经济发展,又关系到国家的能源安全。今后5~10年,中国农村生物质能发展的重点是沼气、固体成型燃料和能源作物。《农业生物质能产业发展规划》确定的主要发展目标是[6,7]:到2010年,全国农村户用沼气总数达到4000万户,新建大中型养殖场沼气工程4000处,生物质能固体成型燃料年利用量达到

100万吨,能源作物的种植面积达到2400万亩左右。

据统计,全世界每年通过光合作用生成的生物质能约50亿吨,相当于世界主要燃料消耗的10倍,而作为能源的利用量还不到其总量的1%,中国的利用量更是远远低于世界平均水平[8]。2005年,中国可再生能源开发利用总量约1.5亿吨标准煤(tce),为当年全国一次能源消费总量的7%(其中非水电可再生能源利用占1%),根据政府的规划目标,到2010和2020年可再生能源利用总量将达到2.7亿tce和5亿tce,分别占届时能源消费总量的11%和16%(其中非水电可再生能源利用占2%和5%)[9]。因此,中国生物质能的发展利用空间很大。

3 中国生物质能产业化的发展前景

3.1沼气利用工程的发展空间

沼气的利用主要包括沼气燃气和沼气发电。目前,中国农村生物质能开发利用已经进入了加快发展的重要时期。统计显示,截至2005年底,中国农村中使用沼气的农户达到1807万多户,建成养殖场沼气工程3556处,产沼气约70亿立方米,折合524万吨标准煤,5000多万能源短缺的农村居民通过使用了清洁的气体燃料,生活条件得到根本改善[5]。中国已经建成大中型沼气池3万多个,总容积超过137万立方米,年产沼气5500万立方米,仅100立方米以上规模的沼气工程就达到630多处[10]。距离2010年预定目标的发展空间还很大。

中国经过二十多年的研发应用,在全国兴建了大中型沼气工程和户用农村沼气池的数量已位居世界第一。不论是厌氧消化工艺技术,还是建造、运行管理等都积累了丰富的实践经验,整体技术水平已进入国际先进行列。

沼气发电发展前景广阔,但目前还存在一些障碍,如技术障碍、市场障碍、政策障碍等,通过制定发展规划、加强技术保障体系建设、引入竞争机制,创新投资体系,研究制定促进沼气发展利用的部级配套政策,等等。当技术、市场、政策等壁垒被克服后,沼气发展前景广阔,产业空间巨大。

3.2生物质能发电的发展前景

目前,生物质发电主要包括沼气发电、生物质直燃发电、生物质混燃发电、农林秸秆生物质气化发电、生物质炭化发电、林木生物质发电等。

生物质能源转化为电能,正面临着前所未有的发展良机:一方面,石油、煤炭等不可再生的化石能源价格飞涨;另一方面,各地政府顶着“节能降耗20%”的军令状,对落实和扶持生物质能源发电有了相当大的默契和热情。国家电网公司担任大股东的国能生物质发电公司目前已有19个秸秆发电项目得到了主管部门批准,大唐、华电、国电、中电等集团也纷纷加入,河北、山东、江苏、安徽、河南、黑龙江等省的100多个县、市开始投建或是签订秸秆发电项目[8]。

煤炭作为一次性能源,用一吨少一吨。而中国小麦、玉米、棉花等农作物种植面积很大,产量很高,而且农作物是可再生资源,相对于现在电厂频频“断煤”、不堪煤价攀升的尴尬局面,推广秸秆发电具有取之不尽的资源优势和低廉的成本优势。

生物质直接燃烧发电(简称生物质发电)是目前世界上仅次于风力发电的可再生能源发电技术。据初步估算,在中国,仅农作物秸秆技术可开发量就有6亿吨,其中除部分用于农村炊事取暖等生活用能、满足养殖业、秸秆还田和造纸需要之外,中国每年废弃的农作物秸秆约有1亿吨,折合标准煤5000万吨。照此计算,预计到2020年,全国每年秸秆废弃量将达2亿吨以上,折合标准煤1亿吨,相当于煤炭大省河南一年的产煤量。

为保障生物质发电原料供应,在强化传统农业生产的基础上,应大力开发森林、草地、山地、丘陵、荒地和沙漠等国土资源,充分挖掘生态系统的生物质生产潜力。重点加强高效光合转化作物、速生林木与特种能源植物的培育推广,大幅度扩大生物质资源的生产规模,逐步建立多样化的生物质资源生产基地。

大力发展生物质发电正当其时。中国“十一五”规划要求:建设资源节约型、环境友好型社会,大力发展可再生能源,加快开发生物质能源,支持发展秸秆发电,建设一批秸秆和林木质电站,生物质发电装机达550万千瓦。中国可再生能源发电价格实行政府定价和政府指导价两种形式。其中生物质发电项目上网电价实行政府定价,电价标准由各省(自治区、直辖市)2005年脱硫燃煤机组标杆上网电价加每千瓦时0.25元补贴电价组成[11]。作为《中华人民共和国可再生能源法》配套法规之一的《可再生能源发电价格和费用分摊管理试行办法》规定,生物质发电项目补贴电价,在项目运行满15年后取消。自2010年起,每年新批准和核准建设的发电项目补贴电价比上年批准项目递减2%。发电消耗热量中常规能源超过20%的混燃发电项目,不享受补贴电价[11]。通过招标确定投资人的生物质发电项目,上网电价按中标确定的价格执行,但不得高于所在地区的标杆电价。

2010年,中国生物质能产量将达到22twh,生物质发电装机容量5.5Gw,占全国总发电量的0.78%;2020年,中国生物质能产量达到120twh,生物质发电装机容量30Gw,占全国总发电量的2.6%;2010年和2020年可再生能源发电占发电总量的比例仍然较小,分别为8.63%和11.86%[12]。国家发展与改革委员会计划到2020年底将可再生能源发电的比例提升到15%~16%。

据农业部提供的数据[13],中国拥有充足的可发展能源作物,如农作物秸秆年产6亿吨、畜禽粪便年产21.5亿吨、农产品加工业如稻壳、玉米芯、花生壳、甘蔗渣等副产品的年产量超过1亿吨、边际土地4.2亿公顷,同时还包括各种荒地、荒草地、盐碱地、沼泽地等。据中国科学院石元春院士估计,如果能利用现有农作物秸秆资源的一半,生物质产业的产值就可达近万亿元人民币。截止到2005年底,中国生物质发电量2Gw,距离2010年的5.5Gw和2020年的30Gw还有很大的发展空间。作为唯一可运输并储存的可再生能源,凭其优越的先天条件,中国生物质能发电产业具备广阔的发展空间,拥有巨大的投资价值。

3.3生物质固体燃料的发展模式

生物质固体成型燃料也是农业部今后的重点发展领域之一。农业部将重点示范推广农作物秸秆固体成型燃料,重点在东北、黄淮海和长江中下游粮食主产区进行试点示范建设和推广,发展颗粒、棒状和块状固体成型燃料,并同步开发推广配套炉具,为农户提供炊事燃料和取暖用能。

丰富、清洁、环保又可再生的生物质能源过去却没有得到重视,而被白白浪费掉。河南农业大学张百良教授分析指出,除去饲养牲畜、工业用和秸秆还田,中国每年还具有4亿吨制作成型燃料的资源可以生产1.5亿吨成型燃料,可替代1亿吨原煤,相当于4个平顶山煤矿的年产量[8]。以农作物秸秆为原料的生物质固体燃料产业规模虽然不是很大,但因目前开发程度低,发展空间仍巨大。

3.4生物质液体燃料的发展模式

3.4.1生物液体燃料生产大国的典型模式

生物液体燃料具有替代石油产品的巨大潜力,得到了各国的重视,主要包括燃料乙醇和生物柴油。国际油价的持续攀升,提高了生物液体燃料的经济性,在一些国家和地区已经具有了商业竞争力。目前,巴西燃料乙醇折合成油价约25美元/桶,低于原油价格。2005年,巴西和美国仍然是燃料乙醇的生产大国,分别以甘蔗和玉米为原料,掺混汽油,占其国内车用交通燃料的50%和3%,比2004年分别提高6%和1%。美国在2001~2005年,燃料乙醇产量已经翻了一番,2005年最新的能源法案中又提出,到2010年燃料乙醇产量再增加一倍的目标。欧盟确定了到2010年生物液体燃料在总燃料消耗的比例达到6%的目标[14]。

目前,生产生物液体燃料比较成功的典型模式有巴西模式和美国模式。

1)巴西甘蔗-乙醇模式

巴西是推动世界生物燃料业发展的先锋。它利用从甘蔗中提炼出的蔗糖生产乙醇,代替汽油作为机动车行驶的燃料。如今巴西乙醇和其他竞争燃料相比,价格上已具有竞争性。这也是当前生物燃料业发展最为成功的典范。巴西热带地区的光照使得那里非常适合种植甘蔗。现在,巴西已经是世界上最大的甘蔗种植国,每年甘蔗产量的一半用来生产白糖,另一半用来生产乙醇。

最近几年,由于过高的汽油价格和混合燃料轿车的推广,巴西燃料乙醇工业更是得到了长足的发展。混合燃料轿车能够以汽油和乙醇的混合物为燃料,自从2003年在巴西大众市场销售后,销量节节攀升,目前已经占据了巴西轿车市场的半壁江山。在混合燃料轿车需求的拉动下,巴西燃料乙醇的日产量从2001年的3000万升增加到2005年的4500万升,已能满足国内约40%的汽车能源需求[14]。

用蔗糖生产乙醇是目前世界上制造乙醇最便宜的方法。在未来4年中,巴西计划将新建40~50家大型乙醇加工厂。为了保证原料供应,甘蔗的种植面积也将不断扩大。

当前巴西生物燃料发展战略的成功,并不意味着巴西的蔗糖乙醇会成为世界生物燃料业未来的选择。因为即使只替代目前全球汽油产量的10%,也需要将巴西现有的甘蔗种植面积扩大40倍。巴西不可能“腾”出这么多土地用于种植甘蔗。另外,由于甘蔗的品种有强烈的地域性,巴西的技术路线在别的国家很难走得通。就连非洲、印度、印度尼西亚都无法照搬,更别说主要地处温带的中国了。

因此,巴西模式尽管取得了迄今最大的成功,但却不是未来世界生物燃料业发展的方向,更不适合地处温带、缺少耕地的中国。探索适合中国国情的生物液体燃料发展模式成为当务之急。

2)美国玉米-乙醇模式

美国是主要的燃料乙醇生产国之一,但与巴西不同,它用的不是甘蔗而是玉米。尽管有不少反对的声音,但美国燃料乙醇的日产量仍从1980年的100万升增加到现在的4000万升。目前,美国已投入生产的乙醇生产厂有97家,另外还有35家正在建设当中。这些工厂几乎都集中在玉米种植带。

玉米中用于生产乙醇的主要成分是淀粉,通过发酵它可以很容易地分解为乙醇。这正是用玉米生产乙醇的优势,但这也是人们反对的原因,因为淀粉是一种重要的粮食。2007年美国计划投入4200万吨玉米用于乙醇生产,按照全球平均食品消费水平,同等数量的玉米可以满足1.35亿人口一年的食品消耗[14]。

中国现在80%的乙醇的原料是谷类,由于原本过剩的谷物在2000年后产量快速减少,使得燃料乙醇的发展再次面临挑战[15]。玉米加工燃料乙醇业过快发展,一些地区甚至玉米主产区已在考虑进口玉米了。国家已经制定相关政策,对玉米加工燃料乙醇项目加以限制,强调发展燃料乙醇要以非粮原料为主,因为谷类供给安全问题对于拥有巨大人口的中国来说,始终应该放在首位。粮食安全始终是国家重大战略问题。中国粮食不能承受“能源化”之重。中国国情和美国、巴西不一样,其成功经验虽有可资借鉴之处,但不能照搬他们的模式。

生物液体燃料方面新技术的研发,在很大程度上取决于解决生物燃料生产的原料供应问题。目前生产液体燃料大多使用的是粮食类作物,如玉米、大豆、油菜籽、甘蔗等。但是从能源的投入、产出分析,利用粮食类作物生产液体燃料是不经济的。因此,利用木质纤维素制取燃料乙醇将是解决生物液体燃料的原料来源和降低成本的主要途径之一。

3.4.2中国生物质液体燃料的产业化发展途径

中国生物液体燃料的发展已初具规模。当前,中国以陈化粮为原料生产燃料乙醇的示范工程,年生产能力已达102万吨,生产成本也达到了消费群体初步接受的水平。在非粮食能源作物种植方面,中国已培育出“醇甜系列”杂交甜高粱品种,并建成了产业化示范基地,培育并引进多个亩产超过3吨的优良木薯品种,育成了一批能源甘蔗新品系和能糖兼用甘蔗品种。具备了利用菜籽油、棉籽油、木油、茶油和地沟油等原料年产10万吨生物柴油的生产能力[16]。

1)油菜籽-生物柴油模式

中国农科院油料作物研究所所长王汉中研究员呼吁:国家应大力推广“油菜生物柴油”。生物柴油相对于矿物柴油而言,是通过植物油脂脱甘油后再经过甲脂化而获得。发展油菜生物柴油具备三大优点:一是可再生;二是优良的环保特性:生物柴油中不含硫和芳香族烷烃,使得二氧化硫、硫化物等废气的排放量显著降低,可降解性还明显高于矿物柴油;三是可被现有的柴油机和柴油配送系统直接利用。因此,生物柴油在石油能源的替代战略中具有核心地位。

目前,发展生物柴油的瓶颈是原料。木本油料的规模有限,大豆、花生等草本油料作物与水稻、玉米等主要粮食作物争地,扩大面积的潜力不大。而作为生物柴油的理想原料,油菜具有其独特的优势。首先适应范围广,发展潜力大:长江、黄淮流域、西北、东北等广大地区都适宜于油菜生长;其次油菜的化学组成与柴油很相近:低芥酸菜油的脂肪酸碳链组成与柴油很相近,是生物柴油的理想原料;第三,可较好地协调中国粮食安全与能源安全的矛盾:长江流域和黄淮地区的油菜为冬油菜,充分利用了耕地的冬闲季节,不与主要粮食作物争地。

根据欧洲油菜发展的经验和油料科技进步的情况,王汉中预计,只要政策、科技、投入均能到位,经过15年的努力,到2020年,中国油菜种植面积可达到4亿亩,平均亩产达到200千克,含油量达到50%左右。届时,中国每年可依靠“能源油菜”生产6000万吨的生物柴油(其中4000万吨来源于菜油,2000万吨来源于油菜秸秆的加工转化),相当于建造3个永不枯竭的“绿色大庆油田”[17]。

2)纤维素-乙醇模式

在整个生物燃料领域,当前最吸引投资者的并不是用蔗糖、玉米生产乙醇,或是从油菜籽中提炼生物柴油,而是用纤维素制造乙醇。所有植物的木质部分--通俗地说,就是“骨架”--都是由纤维素构成的,它们不像淀粉那样容易被分解,但大部分植物“捕获”的太阳能大多储存在纤维素中。如果能把自然界丰富且不能食用的“废物”纤维素转化为乙醇,那么将为世界生物燃料业的发展找到一条可行的道路。

虽然因技术上的限制,目前还没有一家纤维素乙醇制造厂的产量达到商业规模,但很多大的能源公司都在竞相改进将纤维素转化为乙醇的技术。最大的技术障碍是预处理环节(将纤维素转化为通过发酵能够分解的成分)的费用过于昂贵。但是,要想用纤维素生产乙醇,预处理环节无法回避。技术上的不确定性,迫使制造乙醇的大部分投资仍集中在传统的工艺--通过玉米、蔗糖生产乙醇,但这些办法无法从根本上解决当前的能源危机。为了保证能源安全,美国总统布什说,美国政府计划在6年内把纤维素乙醇发展成一种有竞争力的生物燃料。

因为发展能源不可能走牺牲粮食的道路。尽管现在技术上还存在障碍,但大部分人仍相信,利用纤维素生产燃料乙醇代表了未来生物燃料发展的方向。中国生物质液体燃料的未来也同样寄希望于用纤维素生产燃料乙醇。一旦技术取得突破,纤维素乙醇产业化发展空间巨大,产值难以估量。但是,各国的国情与能源结构不同,不能寄希望于某个方面来解决,因为任何国家都不可能单靠技术引进发展本国的生物燃料产业。因此,需要因地制宜,多能互补。

3)能源作物-生物液体燃料模式

石元春院士表示,在能源结构的历史转型中,中国发展生物质能源有很强的现实性和可行性。目前,中国对石油的进口依存度为近40%;So2和Co2的排放量也分居世界第一和第二位。中国发展生物质能源不仅原料丰富,而且还有自行培养的甜高粱、麻疯树等优良能源植物;燃料乙醇、生物柴油等主产品工业转化技术基本成熟且有较大的改进空间,成本降幅一般在25%~45%,且目前在新疆、山东、四川等地已取得进展[4]。

发展能源作物不会威胁粮食安全与环保。曾有专家提出能源安全和粮食安全存在矛盾。解决这个问题需要充分认识到粮食安全和能源安全有统一性,发展能源农业将是促进农民增收、调动农民种粮积极性的有效措施。粮食作物和能源作物有很好的互补性。首先,能源作物大都是高产作物,既能满足粮食安全的需求,又是很好的能源作物。其次,能源农业开发的领域很广,可以做到不与或少与粮食争地。能源农业开发的领域,大多是利用农业生产中的废弃物,如利用畜禽场粪便、农产品加工企业的废水与废物开发能源,既能增加农民收入,又能为粮食生产提供优质肥料,是生产清洁能源、促进粮食生产、保证粮食安全和能源安全的双赢举措。

除粮食外,中国其他可用于生物质能生产的植物和原料还有很多,如甘蔗、甜菜、薯类等。广西科学院院长黄日波说,仅广西的甘蔗资源和木薯资源分别具备年产830万吨和1300万吨生物乙醇的生产潜力,加起来超过2000万吨[15]。

科技部中国生物技术发展中心有关专家指出,根据能源作物生产条件以及不同作物的用途和社会需求,估计中国未来可以种植甜高粱的宜农荒地资源约有1300万公顷,种植木薯的土地资源约有500万公顷,种植甘蔗的土地资源约有1500万公顷[15]。如果其中20%~30%的宜农荒地可以用来种植上述能源作物,充分利用中国现有土地与技术,生产的生物质可转化5000万吨乙醇,前景十分可观。

据农业部科教司透露,为稳步推动中国生物质能源的发展,并为决策和进一步开发利用土地资源提供可靠的数据,该司决定按照“不与人争粮,不与粮争地”的原则,开展对适宜种植生物质液体燃料专用能源作物的边际土地资源进行调查与评价工作,以摸清适宜种植能源作物边际土地资源总量及分布情况[18]。

以能源作物为原料的生物液体燃料模式发展潜力巨大,将是未来生物质能源发展的方向之一。

4)林木生物质-生物柴油发展模式

利用中国丰富的林木生物质资源生产生物柴油,将薪炭林转变为能源林,实现以林木生物质能源对油汽的替代或部分替代,探索兼顾能源建设和生态环境建设的新模式,实现可再生能源与环境的可持续发展。开发林业生物质能产业是林业的一个很有潜力的新产业链,既是机会,也是创新,不仅具有巨大潜力和发展空间,更是林业发展新的战略增长点。

“森林具有可再生资源的属性。林业是天然的循环经济。生物质能技术是林业发展的新契机。”专家研究指出,中国生物质资源比较丰富,据初步估计,中国仅现有的农林废弃物实物量为15亿吨,约合7.4亿吨标准煤,可开发量约为4.6亿吨标准煤[19]。专家预测2020年实物量和可开发量将分别达到11.65亿吨和8.3亿吨标准煤。中国现有木本油料林总面积超过600多万公顷,主要油料树种果实年产量在200多万吨以上,其中,不少是转化生物柴油的原料,像麻疯树、黄连木等树种果实是开发生物柴油的上等原料。

中国现有300多万公顷薪炭林,每年约可获得近1亿吨高燃烧值的生物量;中国北方有大面积的灌木林亟待利用,估计每年可采集木质燃料资源1亿吨左右;全国用材林已形成大约5700多万公顷的中幼龄林,如正常抚育间伐,可提供1亿多吨的生物质能源原料;同时,林区木材采伐、加工剩余物、城市街道绿化修枝还能提供可观的生物质能源原料[19]。

中国发展林业生物质能源前景十分广阔。中国林业可用来发展生物质能源的树种多样,可作为能源利用的现有资源数量可观。在已查明的油料植物中,种子含油量40%以上的植物有150多种,能够规模化培育利用的乔灌木树种有10多种。目前,作为生物柴油开发利用较为成熟的有小桐子、黄连木、光皮树、文冠果、油桐和乌桕等树种。初步统计,这些油料树种现有相对成片分布面积超过135万公顷,年果实产量在100万吨以上,如能全部加工利用,可获得40余万吨生物柴油[19]。

目前全国尚有5400多万公顷宜林荒山荒地,如果利用其中的20%的土地来种植能源植物,每年产生的生物质量可达2亿吨,相当于1亿吨标准煤;中国还有近1亿公顷的盐碱地、沙地、矿山、油田复垦地,这些不适宜农业生产的土地,经过开发和改良,大都可以变成发展林木生物质能源的绿色“大油田”、“大煤矿”,补充中国未来经济发展对能源的需要[18]。国家林业局副局长祝列克介绍,“十一五”期间,中国主要开展林业生物质能源示范建设,到2010年,实现提供年产20万吨~30万吨生物柴油原料和装机容量为100万千瓦发电的年耗木质原料。到2020年,可发展专用能源林1300多万公顷,专用能源林可提供年产近600万吨生物柴油原料和装机容量为1200万千瓦发电年耗木质原料,两项产能量可占国家生物质能源发展目标30%以上,加上利用林业生产剩余物,林业生物质能源占到国家生物质能源发展目标的50%以上[19]。

可见,林木生物质能源的发展将逐步成为中国生物质能源的主导产业,发展空间巨大,前景广阔。

4 结 语

国家已出台的《生物燃料乙醇及车用乙醇汽油“十一五”发展专项规划》及相关产业政策,明确提出“因地制宜,非粮为主”的发展原则,发展替代能源坚持“不与人争粮,不与粮争地”,要更加依靠非粮食原料。从大方向来看,用非粮原料能源替代化石能源是长远方向,例如薯类和纤维质以及一些植物果实来替代。为避免粮食“能源化”问题[20],必须开发替代粮食的能源原料资源。开发替代粮食资源,如以农作物秸秆和林木为代表的各类木质纤维类生物质,及其相应的生物柴油和燃料乙醇生产技术,被专家们认为是未来解决生物质液体燃料原料成本高、原料有限的根本出路。

生物质能源将成为未来能源重要组成部分,到2015年,全球总能耗将有40%来自生物质能源,主要通过生物质能发电和生物质液体燃料的产业化发展实现。

有关专家也对生物质能源的发展寄予了厚望,认为中国完全有条件进行生物能源和生物材料规模工业化、产业化,可以在2020年形成产值规模达万亿元。

虽然生物质能源发展潜力巨大、前景广阔,并正在逐步打破中国传统的能源格局,但是生物质能的产业化发展过程也并非一帆风顺,因为生物质原料极其分散,采集成本、运输成本和生产成本很高,成为生物质燃料乙醇业的致命伤,若不能妥善解决将可能成为生物质能产业发展的瓶颈。

生物质能的资源量丰富并且是环境友好型能源,从资源潜力、生产成本以及可能发挥的作用分析,包括生物燃油产业化在内的生物质能产业化开发技术将成为中国能源可持续发展的新动力,成为维护中国能源安全的重要发展方向。在集约化养殖场和养殖小区建设大中型沼气工程也将成为中国利用生物能源发电的新趋势。从环保、能源安全和资源潜力综合考虑,在中国推进包括以沼气、秸秆、林产业剩余物、海洋生物、工业废弃物为原料的生物质能产业化的前景将十分广阔。

[参考文献]:

[1]中华人民共和国可再生能源法.china.org.cn/chinese/law/798072.htm.

[2]生物质能发展重点确定沼气固体成型燃料能源作物[eB/oL].(2007-01-26)[2007-03-18].(来源:人民日报)。

[3]生物质能的概况.(2006-11-22)[2007-04-02].

[4]潘希.生物质能欲开辟中国农业“第三战场”。科学时报,2005-04-30.

[5]佚名。我国确定农村生物质能发展战略目标[eB/oL].(2006-10-13)[2007-03-18].来源:新华网.

[6]生物质能发展重点确定沼气固体成型燃料能源作物[eB/oL].(2007-01-26)[2007-03-18].(来源:人民日报)。

[7]师晓京.农业部正制定《农业生物质能产业发展规划》,今后重点发展沼气、固体成型燃料和能源作物[n].农民日报,2007-01-26.

[8]王琼杰.日生物质能源能挑起我国未来能源的“大梁”吗?中国矿业报,2007-03-06.

[9]世界可再生能源发展现状及未来发展趋势分析.[eB/oL]

[10]谭利伟,简保权.生物质能源的开发利用[J].农业工程技术.新能源产业,2007,总291期,第3期:18-27.

[11]《可再生能源发电价格和费用分摊管理试行办法》[S].[2007-04-03].

[12]HuXuehao.theDevelopmentprospectsofRenewableenergyandDistributedGenerationinpowerSystemandtheRequirementforenergyStoragetechnology[R/oL].2006internationalConferencesonpowerSystemtechnology,Chongqing,China,october22-24,2006.

[13]中国科学技术信息研究所.农业生物质资源-待开发的金矿。2006[2007-04-2].

[14]蔡如鹏.生物燃料走在路上[J]中国新闻周刊,2006,第48期,第66页.

[15]王一娟徐时芬.专家为中国生物能源发展献策--开发替代粮食原料,破解燃料乙醇困局[J].经济参考报,2005-09-30.

[16]农村生物质能利用大有可为[eB/oL].(2007-02-25)[2007-04-04].

[17]胡其峰.专家呼吁大力推广“油菜生物柴油”[n/oL].光明日报,2005-08-02.

[18]师晓京.农业部开展适宜种植能源作物边际土地资源调查[n/oL].农民日报,2007-03-21.

生物燃料和生物质燃料的区别篇4

研讨会上,中方项目负责人、中国农业大学谢光辉教授和瑞方项目负责人、瑞典农业大学熊韶峻副教授分别介绍了生物质燃料的历史和现状以及该项目的实施进展情况。科技部和农业部官员也参加了讨论。发言者都十分看好中国发展生物质能源产业的巨大潜力,希望中瑞双方的合作将有利于加快中国生物质燃料研究,实现生物质能源产业化。

据了解,瑞典政府十分重视发展生物质能源产业,多年来一直采取有效政策和措施推动实现“绿色增长”。正因为如此,瑞典也是世界上最早开展生物质能源研究和应用的国家之一,拥有丰富的经验和成熟的技术设备。

自2006年以来,中国农业大学和瑞典农业大学在生物质燃料研究领域开展合作。6年来,由熊韶峻带领的中瑞专家团队在西南华北地区分别成功种植了木薯杆和柳枝稷,瑞典农业大学利用其先进的技术和设备,成功将来自中国的原料加工出合格的固体成型燃料,为将来进一步开展生物质燃料应用试验打下了良好的基础。

熊韶峻告诉记者:“中国拥有大片荒漠地带或不宜耕种地区,种植生物质原料植物不仅有利于发展绿色能源产业,减少排放和环境污染,也利于解决土地荒漠化、防沙固沙,帮助贫困地区发展经济。”

记者在会上了解到,目前国内已有一些国有企业和民营企业进入生物质能源产业。据国能生物发电集团有限公司科技部总经理庄会永介绍,这家国家电网旗下的生物质发电专业企业已在全国建立了40多家生物质发电厂。庄会永认为,中国生物质原料丰富,生物质发电符合国家节能减排政策和世界潮流,在中国具有广阔的前景。

生物燃料和生物质燃料的区别篇5

(一)化石能源储量及开采情况

化石能源(石油、天然气和煤炭)是经济社会发展和提高人民生活水平的物质基础。世界化石能源的剩余探明可采储量为9000亿吨油当量(toe)。其中,石油和天然气均为1600亿toe左右;煤炭储量最为丰富,为6000多亿toe。

石油资源分布极不均衡。中东、俄罗斯和非洲的石油探明可采储量占世界总量的77%,是世界商品石油的主要来源。亚太地区的石油探明可采储量和消费量分别占世界总量的3.3%和30%。中国相应的份额分别为1.3%和9.3%,是石油资源相对短缺的国家。

石油是重要的化石能源资源,在全世界一次能源消费结构中,石油所占的份额中约为40%左右,是形成现代工业和促进经济增长的动力。

煤炭是古老的燃料,从19世纪60年代开始大规模开采、使用。至今,在中国、美国等一些国家中,煤炭仍用作主要的发电燃料。中国是煤炭资源丰富的国家,煤炭仍然是主力一次能源,份额保持在70%左右。

为提高使用效率、减少排碳和对环境的污染,煤炭应用的创新方向是发展洁净的煤炭技术和煤炭液化、转化技术,生产运输用液体燃料和化工产品。

(二)石油消费情况

世界石油年消费总量近40亿吨,工业化国家(经合组织和俄罗斯)的消费量占62%;占人口大多数的非工业化国家(新兴市场经济体),石油消费量仅为38%。

美国是石油消费量最多的国家,年消费量为9.4亿吨,相当于其他5个消费大国(中国、日本、德国、俄罗斯和印度)消费量的总和;人均石油消费量3吨多。中国的石油消费量为3.6亿吨,人均消费量较低,仅为0.28吨左右。

不同国家的民用、商业和工业的能源消费量和消费品种均各不相同。交通运输部门的能源消费以石油产品为主,石油总消费量中约有70%用作运输燃料油,此份额的多少各国均不同。在氢燃料和燃料电池汽车大规模进入市场之前,这种消费形势将不会有太大的变化。

中国是经济快速增长、尤其是以制造业为主的发展中国家,为了给生产厂增加原材料和能源供应,运输服务功能就需要加强。人均收入提高之后就会促进道路和航空运输服务的发展。近年来,中国运输、邮电和仓储的石油消费量约占石油总消费量的25%左右;中国仍然是人均燃料油消费量较低的国家。随着汽车数量的增长,运输部门的燃料消费量就会相应上升。

美国的年人均运输燃料油消费量2.3吨。欧盟各国平均1.0吨,中国仅为0.08吨。

(三)能源的转型

在人类发展历史中,在能源使用上已经历了好几次能源转型。从使用木材、薪炭为燃料到19世纪中叶大量使用煤炭,20世纪30年代开始向使用石油过渡,目前正在向以天然气为主的方向转变。随着石油资源的逐渐减少,未来三四十年后产量即将达到峰值,此后进入“后石油时代”。在石油资源将逐步被替代的前夕,科学技术界提出了林林总总的替代方案和工艺路线,替代能源课题涵盖了众多的科学领域、技术专业和产业行业。替代能源项目的实施会受到资源、技术、经济和实施条件等因素的约束,需要根据一定的时空条件做出技术经济评估,规划出发展路线。

氢燃料时代:构建以氢燃料为基础的能源系统是一项需要较长时间才能完成的系统工程,包括许多工程技术课题的研发,如原料开发、制氢方法、氢气储存运输技术、氢能燃料电池系统和车辆、氢能安全和氢能系统设施等技术。

发展氢燃料的三大课题是:开发高功率、长寿命、廉价的燃料电池;实现高能量密度的车载与地面氢燃料储存设施;使用可再生能源的廉价制氢工艺技术有待突破。

从使用化石能源为主的时代过渡到氢燃料时代也许需要几十年甚至一个世纪。

对于发展氢燃料仍存在着不同观点。

支持者认为应该接受氢能,因为没有其他有竞争力的运输燃料替代方案。电力、生物质和化石基的合成油替代方案都不可行。

由于燃料电池汽车简化了汽车的机械、液压转动系统和生产工艺;汽车制造商就会接受燃料电池汽车技术。汽车主了解燃料电池汽车具有加速快、行车安静、维修量小等特点之后也会接受这种新型汽车。

反对氢燃料人士认为“氢能是黑色的”,因为它目前主要来自煤炭等能源。发展氢能不能迅速解决能源、温室气体问题。发展汽车用燃料电池和氢气的系统设施还面临许多技术、经济的障碍。

总之,氢燃料作为替代石油产品在节约燃料、减少温室气体排放和改善汽车性能等方面均有优点。尽管对发展氢燃料仍有争议、又难确定推广日程,及早做出发展规划和经济论证是有意义的。

(四)石油替代

世界石油资源量终将逐渐减少以致最终枯竭,石油资源匮乏是人们关注的热点问题。对于石油产量到达峰值时间,不同学者提出了各种不同论点。一些学者曾预测世界常规原油生产的峰值将在2010年到达,有的则认为常规石油产量可持续增长20--30年或更长时间。按照目前石油年产量和年增长速率预测,当石油年产量达到峰值(60亿吨)后,产量就将逐步下降。

总体形势是:(1)勘探、钻采技术进步可将更多的石油资源开发成为探明可采储量;(2)非常规石油(包括油砂沥青、特重原油和油页岩等)储量丰富,开采、炼制技术不断进步,将补充常规石油的不足;(3)替代燃料生产技术(包括风能、太阳能、生物质能等可再生能源及核能的推广应用)、非常规石油资源开采及其加工技术、天然气制油(GtL)技术、煤炼油技术(ctL)、生物质制油技术(BtL)等的发展和应用将可逐步替代部分石油资源;(4)燃料使用技术和节能技术的进步将减缓石油消费的增长。

从目前石油生产形势看,约有63个产油国的产量处在峰值后期,35个国家尚未达到峰值。世界石油产量达到峰值的时间取决于石油消费的年均增长率和科学技术的进步等条件。较高的石油资源基数会推迟峰值产量到来的时间。近几十年来,石油资源基数不断攀升,已从上世纪40年代的820亿吨,升至2000年美国地质勘探局(USGS)估算的最高值5310亿吨。

尽管石油产量的峰值有可能于本世纪中期出现(可能会推迟),但如不未雨绸缪,届时必定会m现全球性的能源危机。人们应该认识到:至本世纪中期(2050年),尽管石油资源将逐渐减少,如果及时、积极地采取应对措施,在石油产量达到峰值之前解决石油替代问题,那么石油资源匮乏问题将得到一定程度的化解。

中国油、气资源相对短缺,发展替代能源尤其具有重要意义,也是解决能源问题的根本途径。除了具体项目的实施需经反复地技术经济论证之外,具体发展方针、工艺路线更需要高层决策者根据国家资源条件、技术发展状况,高屋建瓴地从国家的长远规划角度和可持续发展理念出发,预测到替代能源方案三五十年的发展前景,进行统筹安排、制定替代能源发展

战略和路线,实现能源转型。

本文试图以我国资源、技术条件为基础,就发展运输燃料的宏观经济评估问题做一探讨。根据国内石油用途及使用情况,论述内容以运输燃料的替代为重点。结合我国的国情和资源状况,着重介绍煤基和生物质基的替代燃料生产技术和交通运输工具及其节能问题。抛砖引玉,供有关领导和决策者参考,其中涉及到的具体技术课题,请参阅笔者编著、即将由中国石化出版社出版的《石油替代综论》一书。

二、宏观评估的基准

(一)原料资源及其可得性

生产替代燃料的原料种类繁多,性质各异、可得性也不同。必须衡量资源量及可供应量等做出评估。

煤炭资源:中国是煤炭资源较为丰富的国家,国土资源部公布的煤炭探明可采储量为2040亿吨。全国煤炭预测资源量约为4.55万亿吨。但我国又是人均煤炭拥有量偏低的国家(中国和美国的人均煤炭拥有量分别为160吨/人和800吨/人)。

中国的煤炭消费以发电、供热(占50%)和工业用煤(包括炼焦、建材等占40%)为主;民用、农业、商业和交通运输用煤占10%。

国民经济高速发展,使煤炭消费量迅速增长,煤炭年产量已增至26亿吨。

发展煤制油(CtL)产业,需耗用大量的优质煤炭原料(每生产1吨运输燃料油,约需耗煤4吨),应根据发电、工业和服务业发展的用煤量来综合规划替代燃料生产的煤炭可供应量。

天然气资源:是生产替代燃料、氢燃料的重要原料,我国的天然气资源相对较少。

生物质资源:包括谷物和油料植物、木质纤维素秸秆和能源作物。数据显示:中国乃至亚洲均为可再生能源(包括生物质、太阳能、风能、地热和水力)短缺地区,人均拥有量仅为100公斤(世界人均值为300公斤)。中国农业、林业生物质废料资源不足、也未建成生物能源产业。有合适水资源的荒漠地区可发展生物质能源的种植。

生产燃料乙醇和生物柴油的玉米和植物油均为农作物,不仅占用良好耕地、光合效率也低。我国的人均粮食、油料占有率均较低(人均粮食占有率仅0.38吨/人・年),所以玉米生产乙醇和食用植物油生产生物柴油均不应是替代燃料发展方向。

中国农作物秸杆资源量约为6亿吨。扣除饲料、还田用肥料等,可供作能源资源量约折合标准煤1.7亿吨,林业废料约折合标准煤3.7亿吨。

甜高粱制乙醇是开发中的技术。茎杆中的糖分可发酵生产乙醇,榨汁后的纤维素和半纤维素也可用作生产乙醇原料。

生产薯类作物地区可以发展薯类制乙醇技术,用木薯制乙醇每亩地可产乙醇0.2吨。除了薯类的前期预处理过程与玉米原料不同外,其他工序均相近。薯类发酵的残渣营养价值较低,通常用作沼气或肥料。加工薯类淀粉的水耗量较大,污水处理难度较大。

(二)能耗与能效率

替代石油生产过程的能耗是重要的经济指标。

煤直接液化为高压高温操作、生产流程长。水电等公用工程和氢耗量均较高,生产过程综合能效率为50%左右,即使用2吨一次能源(煤)最终转化为1吨油品。

煤间接液化采用一次通过式合成流程、与联合循环发电技术相结合的联产流程是生产运输燃料油的优化路线。联产合成油的iGCC电站系统可以提高能效率(达到52%--55%,常规合成仅为42%左右),并可降低建设投资和生产费用。

目前玉米生产燃料乙醇的能效率已达1.34。每生产1公斤高热值的燃料乙醇需消费化石能源0.34公斤(包括玉米耕种、玉米收获、乙醇生产和燃料乙醇分配)。

生物柴油的能效率为1.313。即每生产1公斤能量的生物柴油需消费化石能源0.313公斤。

所以严格说,目前的生物燃料并非完全的“绿色燃料”。

(三)环境影响与温室气体(GHG)排放

用碳基化石能源生产替代燃料造成的温室气体排放量超过原油炼制过程。以煤炭生产合成油为例,煤炭中约70%含碳在合成过程转化为Co2排入大气中,造成温室气体效应。即使采取Co2回收或填埋技术后,也仍有约10%含碳未能回收而排入大气中。

在CtL生产流程中应考虑Co2回收、利用,以解决温室气体排放问题。CtL生产过程中增加碳回收将导致过程的能效率降低2%--3%,生产成本约增长25%。建设投资也将相应增加。

以CitL为例:每吨合成油的碳排放量2--2.4吨(联产电力的合成油厂,碳排放量约相当于进料含碳量的72%--77%。Co2回收系统的碳扑集量约相当于原料煤含碳量的70%)。

替代燃料生产过程还可能造成大气污染物的排放,对局部的环境和居民健康构成危害。例如:硫氧化合物(SoX)扩散范围可达几百公里。形成“酸雨”危害土壤和农作物生产。澳大利亚曾计划发展大型油页岩工业项目,由于未能解决二恶英毒害防治问题而被迫搁置、停建。

(四)建设投资

煤炭直接液化或间接液化工厂的单位油品(吨/年)的建设投资约1.2万元,炼油能力为500---1000万吨/年的燃料型炼油厂,单位生产能力(吨/年)的建设投资约在1500--2000元。据此估算,与投资有关的折旧费、维修费用和保险费等项均相应增大,煤制油项目的固定成本约为炼油项目的6倍。

煤直接液化过程包括高苛刻度的加氢过程和大量的固体物料破碎、研磨过程;水电等公用工程能耗为20公斤/吨产品,使生产成本增高。

宏观而言,CtL项目应包括相应的采煤、铁路运输、供电及供水等公用工程设施,综合投资费用就更高了。

(五)生产成本与价格

替代燃料的生产成本与原料价格、公用工程消耗量和建设投资密切相关。由于CtL是投资密集的工业,不仅固定成本会相应增加,税率和资金回报率也应相应增加,才能促进资金积累和鼓励投资信心。考虑这些因素,CtL的投资利润率应不低于12%。

上述增加成本因素必然导致替代燃料价格上升,对石油燃料的竞争力降低。

(六)占用土地

多数生物质能源是靠光合作用、摄取太阳能获得的。发展生物质原料生产需占用大量耕地或开垦荒漠土地。就土地的“能量收获密度”而言,不同产品差别很大。粮食生产乙醇的转化效率低:单位耕地面积的乙醇产量差别很大:甜高粱:4.0;甘蔗;3.1;玉米:1.3吨/公顷。

每生产1吨生物柴油占用耕地面积(公顷):大豆:2.7;菜籽油:1.0;蓖麻油:0.84;棕榈油:0.2。

黄连木每亩地可产生物柴油60公斤(产1吨油需占地17亩),麻风树果可产生物柴油180公斤(产1吨油需占地5.6亩)。

微藻生物柴油每公顷可达到40--60吨产量,不需占用耕地,可利用荒漠土地,但对日照强度和二氧化

碳供应有特定要求。

(七)水资源

替代燃料生产过程需耗用一定量的水资源。直接液化CDtL的耗水指标为7--8吨/吨生成油;间接液化CitL的耗水量指标为8--10吨/吨生成油。若包括原料煤的水洗,则总耗水量可达10--12吨/吨生成油。水资源也是发展CtL工业的制约因素。中国北方是水资源短缺地区。

微藻生产生物柴油,在微藻培育过程需要补充水,可使用盐碱水或海水等非饮用水源,取决于藻类的品种。在荒漠地区发展微藻生物柴油尤其需要考虑水源问题。

三、石油替代方案

运输车辆的能耗与客货运输量、车辆的效率、使用燃料种类有关、提高运输车辆的效率对于节约燃料、减少温室气体排放均具有重要意义。

替代燃料的发展路线应与汽车发动机和汽车发展趋势相适应。从使用内燃机汽车、推广混合动力汽车(HeV)到未来的燃料电池汽车是必然的发展趋势。这一发展时程要经历较长时间和逐渐的过渡。因此,不同时期需要有不同的替代燃料发展路线。最先是解决汽、柴油和航空燃料的替代;然后是为推广插电式混合动力汽车(pHeV)或电动汽车提供电力;最终则是为燃料电池汽车提供氢燃料。

改进、提高运输车辆效率的节能效应是显著的。例如:常规内燃机汽车通过改进发动机系统、传动系统、机泵负荷、驱动系统和减低车身重量等就可提高汽车的行车效率。汽车内燃机的均匀充气压燃技术可大大节约油耗。推广HeV汽车和发展燃料电池汽车的节油效应更为显著。1公斤氢燃料就约相当于8升汽油。

按照油箱到车轮(ttw)表示的运输过程能量效率计算:常规火花塞式的汽油内燃机汽车的ttw效率为16.7%;混合动力汽油内燃机汽车为20.7%;可使燃料经济性提高24%。未来的氢气燃料电池汽车可按40%计算;燃料经济性约可提高150%。

生产替代燃料的原料包括煤炭、天然气、生物质、太阳能、风能、核能等。不同发展时期的使用的替代燃料有:液体替代燃料(替代汽油和替代柴油,燃料乙醇、生物柴油等),然后是电力,最终是使用氢燃料。

以下按不同的原料(煤炭、天然气和生物质等)生产各类替代燃料工艺方案的宏观经济性论述如下:

(一)煤炭

在内燃机汽车时代,用煤制油技术生产液体替代燃料的两种工艺均有在进行产业化示范的项目。国内具备了煤制油技术的工程设计和建设能力

在油价较高、煤炭价格相对较低的条件下,在煤资源丰富地区适合建设煤制油工厂。

煤制油是投资密集的产业,还需要配套建设相应规模的煤矿、交通运输和公用工程系统设施。全系统的综合投资可能高于深海天然石油、非常规石油的开发,做好CtL建设项目的综合宏观技术经济论证是必要的。

煤制油过程造成了温室气体排放效应,需要采用Co2回收和埋存技术以减少排碳。建设减排设施将降低过程的能效率,还将导致每吨油品增加上千元的减排费用。

1、煤直接液化(CDtL)技术

国内建设的CDtL项目,在工艺流程、工艺设备和控制技术等方面均有改进和创新;已进展到大型工业示范阶段。

CDtL为高压加氢技术,工艺特点是使用高压、高温工艺设备,操作条件苛刻;耗用大量氢气。汽油质量好、柴油十六烷值低,需经过调合才能出厂

2、煤间接液化(CitL)技术

国内正积极推动CitL技术的产业化,已建设了3个示范厂。

主要优点:生产洁净的成品油、柴油质量好;生产费用低于CDtL,适合于在生产过程中回收C2。

主要缺点:工流程较长;能效率较低(常规流程42%,联产电力较高、约50%--55%),石脑油不适合制造汽油,而适合用作裂解(生产乙烯)的原料。

由整体燃气化联合循环(iGCC)发电与合成工艺组成的油一电联产系统可扩大生产规模、提高系统能效率(55%),相应降低建设投资。

发展合成油工厂的几个技术问题:

①由大型煤气化炉、先进合成技术和iGCC发电系统组成的联合工厂在工程建设和生产运行上均缺乏经验。

②联合工厂耗水量大,(用水指标约为8--12吨/吨合成油),污水处理和对地下水源污染问题也值得关注。

③煤矿规模应与合成油工厂配套,生产规模为年产合成油300万吨合成油厂,年耗煤量为1500---1600万吨(包括发电和燃料用),需要配置大型煤矿基地。国家应根据资源条件配合电厂扩建考虑建设油电联产企业。

④温室气体排放问题:每吨合成油的碳排放量2--2.4。

3、煤电为电动车提供能源需要采用洁净的煤燃烧技术提高发电的效率。iGCC煤发电技术的能效率达40%。建设投资较高(约8000元/kw)

4、煤制氢:在氢燃料推广初期将以煤制氢为主要方式。采用先进技术的大型煤制氢工厂,氢燃料成本就可降到燃料电池汽车可接受的水平

(二)天然气

近年来我国天然气资源量有了较快增长。但是,目前国产天然气量和进口液化天然气数量仍不能满足城市民用燃料和调峰发电的需要。考虑到资源可得性和原料价格等因素,应慎重评估建设天然气制油(GtL)项目的技术经济可行性。

(三)生物质

在内燃机汽车时代,生物质替代燃料的主要发展路线为燃料乙醇、生物柴油、微藻柴油和生物质制油等项。

1、燃料乙醇

(1)纤维素生物质生产燃料乙醇。纤维素(如秸秆)制燃料乙醇技术:用农业秸秆或能源作物生产燃料乙醇可望于5--10年内实现工业化。纤维素制乙醇的技术课题是提高纤维素水解效率、降低纤维素酶的成本、开发木糖发酵用的微生物菌种和优化生产过程,如果这些关键技术能在今后10年内取得突破性进展,2020年将有可能达到替代率达到20%的水平。开发中的技术包括:

①开发水解用的纤维素酶:纤维素酶是由具有不同功能多种酶的重组体。美国研发目标是降低酶的生产成本(把酶的有效成本从170美元/吨乙醇降低lo倍,达到17美元/吨乙醇)、提高酶的比活性。近期把纤维素酶的比活性提高3倍(相对于trichodermareesei系统),最终目标是把酶的‘比活性’即生成效率提高10倍,我国也应制定相应的目标。

②糖类发酵用的微生物:为了实现秸秆生产乙醇技术的工业化,需采用Dna重组技术开发出一种新的微生物重组体,以便可以同时将葡萄糖、木糖和阿拉伯糖发酵为乙醇。研究发现:植入几种Dna基因体的发酵单胞菌可以同时进行葡萄糖、木糖和阿拉伯糖的发酵。已经开发出了具有乙醇产率高、可在低pH值条件下发酵、副产物产率低的菌种;适合于工业生产使用。

③联合流程:为了将纤维素生物质完全转化为乙醇需要采用联合发酵流程。使用可以同时将葡萄糖、

木糖和阿拉伯糖发酵为乙醇的微生物,在生产上可降低耗电量;减少冷却水用量;将发酵罐生产能力从2.5克/升小时提高至5克/升小时,从而可以大大降低发酵罐的容量,降低建设投资。

(2)粮食生产乙醇不是发展方向,这是因为:粮食作物的光合作用的效率低;粮食生产乙醇的转化效率低:单位耕地面积的乙醇产量(吨/公顷):甜高粱为4.0;甘蔗为3.1;玉米为1.3;中国的可耕地面积少,人均粮食水平偏低(仅约为0.38吨/人・年)。

(3)其他原料:非粮乙醇生产技术研发现状。甜高粱:具有不占用耕地和光合效率高、抗旱、耐涝耐盐碱等特性。每亩地可收获鲜茎杆4--5吨。茎杆的榨汁作为发酵制乙醇的原料。目前,茎秆的储存、防止霉化变质和木质纤维素利用等技术问题尚未解决。薯类:在盛产薯类地区可适当发展燃料乙醇的生产。

2、生物柴油

2006年世界生物柴油总产量约为750万吨,相当于680万吨(油当量)。

生物柴油的原料种类繁多。除了食用植物油外、发展木本油料作物、回收餐饮废油等非食用油资源是发展生物柴油的方向。发展生物柴油工业,需要为副产甘油开发新的用途。生产环氧氯丙烷、1,3-丙二醇可供选择。

植物油经过加氢处理生产绿色柴油是第二代生物柴油工艺。产品具有高十六烷值(80)、超低硫含量和不含芳烃等特点。国外已建成了工业生产装置。此类装置适合于建在炼油厂内部以充分利用已有的供氢和水电供应设施。

10万吨/年生物柴油工厂的建设投资约3亿元左右,折合单位能力的建设投资指标为3000元/吨/年。

以大豆油为原料生产生物柴油工厂的生产成本与植物油原料价格密切相关。大豆价格为3000元/吨和4000元/吨时,生物柴油生产成本分别约为4700元/吨柴油当量和5100元/吨柴油当量。

3、微藻柴油

美国等国家已经对微藻生产生物柴油课题进行了近30年的开发研究,经过实验室和户外研究,已经在优选藻类品种、光合作用机理、培育方法和条件、培育水池构造等方面取得成果。一些公司正在积极从事“露天微藻培育水池”和“微藻光生物反应器”的开发,推动微藻柴油的工业化生产。

微藻生产生物柴油的工业化取决于地区拥有的资源条件、微藻生产技术和工艺设备的开况。

资源条件主要包括:气候和日照条件、C2和营养物的来源;微藻柴油工厂应靠近炼油厂、发电站、油田天然气田以便就近取得Co2;可用的水源,微藻培育过程需要补充水,可使用盐碱水或海水,取决于藻类的品种。

微藻培育:培育微藻设施已经研制了光生物反应器和露天培育水池两种方案。在建设投资和运行上各有优缺点,均处于研究、开发阶段。尚未进入工业示范阶段。

微藻生产技术包括微藻收获、生物质干燥、提取生物油等过程,均为开发中的技术。

微藻柴油的主要优点是单位土地面积产率比用植物油生产柴油高出几十倍,且不占用耕地。但在土地上布置大面积的开放式培养池或密闭式光生物反应器,需要巨额投资。

4、生物质制油(BtL)

国外已开发成功了木质纤维素两段气化生产合成气技术,并已建成了合成气生产运输燃料的示范装置。

生物质制油包括生物质气化和合成2个工序,系统热效率较高(50%--55%)。但生物质原料的集运困难,考虑适宜的原料收集半径,BtL生产规模以年产生物油≤10万吨为宜。BtL单位投资约为1.5--1.8万元/吨/年,高于CtL。

5、生物质发电厂

规模为25--50mwe热效率(28%),远低于大型iGCC燃煤电厂。建设投资也高于后者。

生物质发电改为煤一生物质混烧具有减少排碳效应,是更适宜的组合。

四、对比方案

石油替代的宏观规划存在诸多的不确定因素,除了应反复论证、及时修订外,尤其需要根据资源、工艺路线和目的产品等条件做出不同方案的横向比较,才能得出较为切合实际的发展方针、路线。

许多一次能源(如煤、天然气、生物质和微生物)都能通过CtL、GtL、BtL和aGL(微藻制油)等技术路线转化为烃燃料,但它们同时也可是发电(Cte、Gte、Bte)的原料。从而可组成不同的横向对比方案。例如:既可引出诸如煤发电一生物质制油与煤制油一生物质发电的两组宏观对比方案。又可引出(用太阳能的)微藻制油一煤发电与煤制油一太阳能发电两组宏观对比方案。另外,电力汽车的能耗低于内燃机汽车,于是,从原料煤开始,可以有煤制油、煤发电两组对比方案,从中可以看出发展电动汽车对社会和消费者的节约效应。实例说明如下:

(一)煤或生物质交叉生产电力或运输燃料

设定煤制油―生物质发电和生物质制油―煤发电两组方案。煤制油和生物质制油规模均为年产运输燃料油100万吨;或是用煤、生物质为发电燃料,进行两组方案的对比。原料年消耗量分别为:煤炭330万吨,生物质原料600万吨。综合比较主要结果如下:

能效率:BtL的能效率(48%)略高于CtL(42%)。生物质发电能效率(28%)低于iGCC燃煤发电(40%):

建设投资:BtL规模较小,单位建设投资比CtL高(约20%)。原料煤量同等的CtL31)--投资(140亿元)高于煤iGCC发电厂投资(110亿元);

生产规模:生物质大规模集中运输困难,BtL只能到年产10万t级规模,生物质发电厂规模在25--50mwe之内;

环境效应:CtL的温室气体排放率为石油炼厂的1.8倍,煤―生物质联合制油(CBtL)的GHG排放率仅相当于原油炼制过程的20%,故环境效益好于CtL;

生物质发电改为煤―生物质混烧也是合理的组合。

(二)电动汽车和汽油汽车的能效率对比

实质上是CtL-煤发电的能效率对比。

HeV汽车可将回收的动力转化为电力再利用,插电式混合动力汽车(pHeV)可直接用电力替代汽油。若常规内燃机汽车每百公里耗油量按7.2升计、电动汽车耗电量按18kwh计,则相应的油-电当量为:2.5kwh电力可替代1升汽油。

若汽油和电力均为来自煤炭,上述事例既说明先进交通运输工具的节能意义,又表明不同煤炭利用路线的经济性。说明如下:

暂按4.0kwh电力替代1升汽油计算,即5.4mwh电力(即1kw装机容量)相当于1吨汽油。可以就CtL和煤发电两条工艺路线,从原料消耗和能效率、投资和社会效益等方面对比,生产同等数量燃料的效果作出如下比较:

煤耗和能效率:CtL生产1吨燃料需耗用标准煤3.5吨,综合能效率为45%;iGCC煤发电生产5,4mwh电力耗用标准煤1.8吨,能效率为40%;生产等量运输

燃料的耗煤比率为制油:发电=1:0.51。建设投资:CtL工艺,1吨生产能力的建设投资约为1.4万元;1Kw发电能力的iGCC电厂建设投资约为0.8万元;燃煤电厂投资大大低于CtL技术。

消费者收益:驾驶pHeV汽车按每年节约汽油0.5万元、支付电费0.24万元,净节约燃料费0.26万元;购车差价按2万元计算。则增加购车费的静态回收期达8年。为推动“以电代油”,国家应实施购买pHeV汽车的优惠政策。

环境效应:pHeV汽车可实现零碳排放。GHG效应优于汽油车。

(三)2种原料―2种产品交叉方案

太阳能是地球一次能源的唯一来源,可采用塔式集热技术发电、也可为微藻生物柴油的生产提供光合作用的光源。煤炭可用作CtL技术生产燃料油的原料、也可用作iGCC技术的发电燃料。这就可组成煤制油―太阳能发电(方案甲)和微藻柴油―煤发电(方案乙)两组对比方案。

以年产替代燃料100万吨为基准,CtL制油和发电用煤量相等。设定太阳能集热发电规模与煤发电相等。进行此两组方案的技术经济比较。主要结果如下:

a)相同煤加工量的煤制油投资(140亿元)高于iGCC煤发电(110亿元)。

b)煤制油能量转化效率(45%)高于iGCC煤发电(40%);但如上所述,电代油具有节能效应。

c)太阳能塔式集热发电按峰值计算达70Gwp,折合年均20Gw,投资高(280亿元)(应还有降低空间);微藻柴油尚未建成工业装置(全部按高效的光生物反应器估算投资约为300亿元)。两者的投资均为数量级估算,投资额接近。

d)同等规模的微藻柴油工厂建设投资大大高于CtL。

e)微藻柴油―煤发电组合方案有利于电厂烟气的C02利用。

f)太阳能集热发电、微藻柴油均需占用大量土地。适合于建在光照条件好、地势平坦的荒漠(微藻需有水源)地区。

g)根据数据粗略估算;方案甲的经济性好于方案乙。

五、小结

1、煤制油技术基本成熟,是正在进行产业化示范的技术。煤制油的发展规模受到煤炭的可供应量(煤炭是发电和工业的重要燃料;我国煤矿产能已位居世界第一)和石油价格趋势等因素的约束,只能适度发展。在地区规划的基础上宜通过论证及早确定全国发展规模,不宜各行其是。预期中远期的石油替代规模约可相当于“一个大庆”。

2、油砂沥青和特重质原油约占世界原油资源总量的一半,油页岩也是重要的非常规石油资源。预计今后20--30年期间,非常规石油生产将有较大的发展以补充常规石油的短缺。预测表明:2030年非常规原油的产量将可增长至占世界石油总产量的10%左右。我国拥有油页岩炼油工业基础,发展油页岩工业需要改进加工、炼制技术,提高生产规模,解决环保技术问题。

3、生物质制油发展规模受资源可得性、资源综合利用等因素的约束。发展生物质能源作物的种植、充分利用生物质废料(秸秆、林业废料、生物垃圾),在发电、制油和其他用途优化利用、综合平衡的基础上,可考虑用3亿吨原料生产替代燃料0.5亿吨(石油当量)作为中远期的发展目标。

生物燃料和生物质燃料的区别篇6

关键词:循环流化床锅炉 风量调整控制 结焦 给煤系统 出力调整

cfb锅炉燃烧技术作为一种低污染的清洁燃烧技术,不仅可以大幅度减少nox的排放、还具有炉内加入脱硫剂后易于实现脱除so2的技术优势,同时具有优越的调峰经济性、良好的煤种适应性和劣质煤燃烧的可靠性,加之国家环保产业政策的因素,使cfb在国内外发电行业中受到重视,得到了广泛的应用。

1 cfb运行的基本原理

cfb锅炉以携带大量高温固体颗粒物料的循环燃烧为重要特征,固体颗粒充满整个炉膛,处于悬浮并强烈掺混的燃烧方式,炉膛出口的分离器将炉膛出口的绝大部分高温的固体颗粒收集,由其下部的回料阀将他们再次送入炉内参与燃烧,原理简图见图1。循环的燃烧方式,延长了燃料在炉膛内的燃烧时间。与常规的煤粉炉悬浮燃烧过程比较,cfb炉膛内的颗粒浓度远大于煤粉炉,颗粒与烟气间的相对速度大,明显区别于煤粉炉的气力输送式的煤粉悬浮燃烧。在这种燃烧方式下,炉膛内的温度水平受到煤燃烧过程中灰熔点的限制,料层温度过高,使灰渣熔化形成高温结焦,温度过低容易发生煤的低温结焦,不利于煤的稳定燃烧,因此cfb炉膛温度一般控制为850~900℃左右,这一温度范围和石灰石脱硫剂的脱硫反应最佳温度范围相一致。

2 cfb运行的基本特点

(1)蓄热量大,对煤种的适应性好。cfb炉内有大量高温固体颗粒物料(95%高温床料,5%的新燃料),为有效利用劣质煤等燃料提供了基础。但是根据某一特定燃料设计的cfb炉,并不能适应于差别特性较大的燃料。cfb锅炉在煤种变化时,会对调节带来影响,各种煤的燃尽率差别极大,在更换煤种时,必须调节分段送风和床温,适应煤种的变化。

(2)高的颗粒浓度和固体物料循环过程、高强度的热量传递过程。通过操作,改变物料循环量,适应不同的燃烧工况,使整个炉膛高度的温度分布均匀。

(3)低温燃烧,低污染物排放。由于cfb炉内燃烧的温度水平相对煤粉炉较低,使得nox生成量大大减少;在炉内添加脱硫剂,可以在相对较低的钙硫摩尔比下,得到较高的脱硫效率,但是根据有关资料介绍当ca/s摩尔比超过3时,nox生成量迅速增加,另外脱硫剂过多的加入不仅增加底灰份额,物理热损失增加,而且炉内分解石灰石吸热量增加,锅炉热效率降低。

cfb由于燃烧温度低,会产生n2o(笑气),尤其在燃烧烟煤时最高。随炉膛温度的升高和ca/s摩尔比增加,生成的nox增加,n2o减少,so2减少;过量空气系数的增加,nox和n2o都将增加,增加的程度与燃料特性有关,就n2o排放而言,cfb的炉膛温度不宜低于900℃,提高燃烧温度,可减少n2o的排放,且能提高燃料的燃烧效率。

(4)良好的负荷调节特性。cfb炉内燃烧不存在火焰中心,温度和热负荷沿炉膛高度分布较煤粉炉均匀得多,无论锅炉负荷如何变化,炉内温度始终保持均匀且变化不大,对锅炉的炉膛水循环和金属安全有利,由于床温在很大负荷范围内总保持一定,采用改变燃煤量、送风量、循环灰量和床层厚度等手段,实现负荷的调节。适应较大的负荷调节范围和调节速率,一般为100~25%。

(5)比较高的厂用电率。cfb锅炉风机的数量多于煤粉炉,风机压头较高,电耗大,但cfb的优势在于实现炉内脱硫,脱硫时的厂用电率和煤粉炉+fgd大致相当,但目前的运行情况是,大部分cfb燃用的煤含硫量不高,0.5%左右,不添加脱硫剂运行,so2的排放量也符合当前的环保排放标准要求,在这种情况下,cfb比煤粉炉的厂用电率高。

3 cfb运行中的问题分析

3.1风量的调整控制

cfb锅炉的风量由一次风、二次风和其它流化风量组成。一次风经炉膛底部的布风板送入炉膛,首先是流化床料,其次提供燃烧初期的氧量供应,将密相区产生的热量带到稀相区,维持一定的床层温度,保证炉膛的热量传递。二次风在布风板之上0.5~3米(下层二次风位置较低)左右的位置送入炉膛,风速较高、穿透力较强,和密相区未燃尽的碳粒、一氧化碳气体等混合,提供燃烧所需要的空气。如图2所示,循环流化床锅炉的一、二次风量随锅炉负荷的变化而变化,其它风量基本保持稳定,不随锅炉负荷变化而变化。

循环流化床锅炉的风量控制要求较高,调整原则:在一次风满足流化的前提下,相应地调整二次风。循环流化床锅炉在运行前均要进行冷态试验,并得到不同料层厚度的临界流化风量曲线,通过温度的修正得到热态不同料层厚度的临界流化风量曲线,在热态运行时以此作为调整一次风风量的下限。二次风量调整主要依据炉膛出口烟气中的氧量调整,在低负荷范围内运行,一般无须投入二次风。通过调节一、二次风量及配比,使煤在炉膛内充分燃烧。贫煤挥发份含量在10~20%,不易点燃,燃烧时火焰短,运行中可使床料厚度比正常时高一些,并增加一次风量,使煤能尽快着火燃烧;烟煤挥发份含量在20~40%,易点燃,燃烧火焰长,且焦碳有焦结性,因此一次风可适当大些,运行中可使二次风量小些,避免主蒸汽超温。

一次风量是保证床料正常流化和调节炉温的最主要非常有效的手段之一。一次风量偏少时,一是床料流化不好;二是达不到密相区燃烧需要的氧量,燃料放热量少,过低时床温下降;三是从密相区携带出的热量少,也可使床温升高而发生结焦;当一次风量过大时,从密相区携带出的热量大于燃料燃烧产生的热量,床温也要下降,同时,烟气流速也较大,对受热面磨损加剧。增加燃料之前先增加风量有时不利于控制床温,但减少燃料后须减风。二次风量一般为总风量的40~50%左右,但这不是固定不变的,运行中要根据煤种的不同以及煤的干湿程度及粒度大小进行调节,使锅炉安全、高效运行。在雨季当入炉煤很湿时,可使一、二次风量比正常时适当的大一些,使煤能尽快着火燃烧。对于煤的颗粒度小、煤粉相对较多的煤,运行中可使一次风相应的小些,以免煤粉在旋风分离器聚集燃烧,分离器出口烟温过高,造成主蒸汽超温。反之对于颗粒较大的煤,运行中相应增加一次风量,以保证良好的流化工况,并增加二次风量,以降低床温,避免高温结焦。

我省开封火电厂135mwcfb为hg-440/13.7-l.pm4锅炉,设计燃烧贫煤,在2003年1月13日,由于给煤机来煤时断时续,断煤时间长时,负荷下滑,运行人员没有随负荷变化及时减少一次风量,机组负荷为70mw时的一次风量116knm3/h,负荷到26mw时112knm3/h,一次风量几乎未变化,床温下降,给煤机来煤又未能及时发现,炉膛进煤后,在炉膛内未能完全燃烧,煤粉在旋风分离器内发生燃烧,造成甲侧过热器主汽温快速超温,达到614℃。同样,8月26日,机组负荷111mw时,下床压13.6kpa呈上涨趋势、一次风量158knm3/h,开始减负荷加强排渣降低床压,运行人员没有随负荷降低减小一次风量,床温下降较快,负荷55mw时上、中床温度分别为646℃、668℃,提高给煤量后,由于床温低、一次风量大,未在炉膛燃尽的煤到分离器内燃烧,主汽温达到574/569℃。这两次超温情况基本类似,随负荷降低,一次风量没有及时调整减小,造成床温下降,炉内未燃尽的煤粉到旋风分离器内燃烧,造成锅炉主汽超温事故。也有锅炉给煤机断煤后,一次风量调整不及时,机组负荷降速较慢,床温下降较快,投油助燃不及时造成的汽温低而停机的现象。

3.2 cfb的结焦问题

cfb无论是在点火启动或正常运行过程中,都有可能发生结焦现象,原因是局部或整体温度超过烧结温度或灰熔点温度,将结焦分为低温结焦和高温结焦两种。

当床层整体温度低于灰渣变形温度,局部超温或低温烧结而引起的结焦叫低温结焦。当灰渣中碱金属钾、钠含量较高时较易发生,结焦的直接原因是床料局部或整体温度超过灰熔点或烧结温度。低温结焦常在启动和压火时的床层中出现,也可能出现在高温旋风分离器的灰斗内,以及外置换热器和返料机构内。避免低温结焦,最好的办法是保证床料良好的流化状态和移动状态,温度均匀,防止局部超温。高温结焦是指床层整体温度水平较高而流化正常时所形成的结焦现象。当床料中含碳量过高,如不及时调整风量或返料量来控制床温,床温将急剧上升,超过灰熔点,便会产生高温结焦。

在低负荷或点火过程中容易发生低温结焦,结的焦块越来越大,此时需增大一次风量,充分流化床料,控制焦块增长,及时排渣,及时退油增加负荷加强床料的置换,随着床料的置换该种结焦可以被逐渐磨损至消失,但结焦量大时则需按事故停炉处理。cfb锅炉在点火初期,床温较低,应采用较小的一次风量(不低于临界流化风量),即使床料没有完全流化,也不会结焦,随床层温度升高,升温速度减慢,必须加大一次风量,使床层进入良好的流化状态。停炉前低负荷运行一段时间,充分燃烧床料中累积的燃料,床温明显下降(小于800℃),可快速停炉。cfb的低负荷稳燃能力就是决定于床料在此负荷下是否能充分均匀流化。

高温结焦发生在运行中,投煤量过大,床内存煤量过多,煤燃烧后引起床温急剧升高,温度往往超过灰熔点而结焦。当床温超过正常值时,要立即停止给煤,加大一次风量,待床温恢复正常时,再调节风量和煤量。

新乡火电厂135mwcfb为hg-440/13.7-l.pm4锅炉,设计燃烧贫煤,在2004年3月31日发生低温结焦。#1机组大修后经历了31小时的启动过程,启动的床料用临炉停炉前的排渣,其中含有大量的可燃成分,机组负荷19mw,床上油枪四只,床温450℃,炉内流化不良,长期的烧油造成床层表面局部温度过高逐渐结块,部分高温的渣块堵塞风帽,恶化了流化状况。

开封火电厂#2炉在2003年5月15日运行中曾经发生炉膛和返料系统严重结焦而停炉。该炉的设计煤种:全水8.0%、收到基灰分26.54%、收到基挥发分17.48%、低位发热量21.375mj/kg;当时的实际煤种:全水8.0%、固水0.76%、收到基灰分17.62%、收到基挥发分10.31%、低位发热量25.22mj/kg,属于高发热量、低灰分的煤种。锅炉启动后运行正常,连续给煤后,逐渐退出床上燃烧器,炉膛负压在+420pa和-305pa之间摆动,氧量12%和3%之间摆动,中、上部床温部分测点突升,最大至1066℃,减煤后床温逐渐恢复正常,回料腿低料位信号消失,高料位信号出现,高压风母管压力低、风量大,回料管结焦,炉膛下部床压由4.28kpa降至1.63kpa,调整不见好转,停炉处理,17日打开人孔后发现床上结焦。燃煤的灰分少,发热量高,加之床压低、床料少,煤燃烧放出的热量不能被床料很好的传递,床温迅速上升;另外煤进入炉膛后开始没有燃尽进入旋风分离器内燃烧,发生了结焦现象,回料阀高压风压力下降,风量上升,是回料阀内结焦后导致物料间隙大造成,后来运行两台高压风机也无济于事,只能对回料管内的物料燃烧提供氧气,加剧结焦。运行中可通过添加床料提高床压,也可以采用断续投煤的方式来攒床压,提高床压在7kpa以上运行比较安全,特别是煤种变好时尤为重要。

3.3 给煤系统问题

cfb锅炉由于给煤系统运行不稳定,往往造成机组负荷频繁变化,特别是象哈锅厂生产的cfb锅炉,设计两条给煤线,后墙给煤,当其中一个发生问题时,机组负荷迅速降低,制约了机组的出力。

开封火电厂的#2机组自投产以来给煤系统运行状况很不稳定,出现的问题比较多。由于原煤的外水分较大,给煤机经常出现漂链现象,造成给煤机电流过大而频繁跳闸;原煤仓壁粘煤、煤仓下部经常出现搭桥堵煤现象,造成给煤线来煤不均或频繁断煤;旋转给料阀经常出现堵煤、断链、卡链等现象;二级给煤机电机及减速机振动较大造成台板振裂;回料斜管上的非金属膨胀节多次漏灰烧穿等等。这些问题给锅炉的燃烧和负荷调整造成了很大的困难,有时被迫停炉检修。

3.3.1 原煤仓下煤不畅的原因分析处理

开封火电厂#2炉有两个原煤仓,煤仓为长方锥形,下部分为两个给煤口,为防止煤在仓内粘结煤仓下部内衬为不锈钢材质。但在运行中仍粘结严重。其主要原因是煤仓设计不很合理,成品煤堆积在煤仓内受到挤压,使煤粒之间、煤粒与煤仓壁之间产生摩擦力,越接近下煤口,其摩擦力与挤压力就越大,在靠近下煤口约1.5米处易搭桥。

分析煤仓下煤不畅的原因后,将煤仓下部的两个小煤仓进行合并,拆除中间的隔断,为保证其坡度,增加了其下口的宽度。改造后的煤仓内壁四周自标高24米至标高31米的锥斗部分加装厚20毫米的超高分子聚乙烯板,防止煤仓内壁沾结煤粉。拆除电动插板门,在下部距给煤机高200mm的部位加装针形阀控制其下煤量。在煤仓内增加疏松机一套,标高24米上部位置,东西两个面各加装两台的振动器,南北面各加装一台振动器,给煤机的进煤管上插板门前后也各加装一台振动器,并将全部的振动器引入dcs进行控制。实行煤仓定期降煤位制度,减少煤仓长期高煤位运行造成贴壁。经过改造后煤仓粘煤现象彻底消除,即使出现不下煤现象只要振动器投入可立即解决,一般不超过一分钟。

3.3.2 给煤机故障的原因分析处理

开封火电厂#2锅炉共安装有两条给煤线,每条给煤线有两级给煤机,给煤机全部是埋刮板给煤机。每个二级给煤机有两个落煤口,#1给煤线对应#1.3回料腿,#2给煤线对应#2.4回料腿。运行中经常出现一级给煤机被动链轮侧断部积煤而引起给煤机跳闸;煤粘结在给煤机箱体的底部,造成给煤机链条和刮板的上浮(即漂链);传动链条在转动过程中连接部位铆接部分磨损,造成传动链条断裂;给煤机电机和变速箱安装在给煤机箱体的上部,和箱体焊接在一起,由于箱体的刚性不够,造成振动过大使变速箱立筋拉裂。

改造将一级刮板给煤机拆除更换为胶带式皮带给煤机,并加装防止皮带跑偏装置,在出煤口加装堵煤报警装置;为防止给煤机内部箱体沾煤影响清扫链的正常运行,运行人员每班用木槌敲击给煤机箱体一次以消除箱体沾煤。将原来的二级给煤机拆除,在其原位置安装有四个给煤口的新的二级刮板给煤机,再制作四个环形密封风风箱安装在下料管上,上部安装八台气动插板门,每个气动插板门上部各安装一个测温热电偶,以防断煤时超温损坏皮带给煤机;改造后每条给煤线均可同时供四个料口,为防止因调整不当引起锅炉两侧烟温偏差大,将手动插板门调整到适当的位置后进行固定;为解决给煤机电机机变速箱振动大的问题,将给煤机电机、变速箱脱离箱体单独制作台板和基础。

3.3.3 旋转给料阀故障的原因分析处理

开封火电厂#2锅炉的每个给煤管均安装有一台旋转给料阀,在煤水分较大时,易粘结在旋转给料阀叶片上降低其出力,严重时则造成叶片之间积满煤粉,致使旋转给料阀成为一个实心的滚筒而堵塞。煤中的较大颗粒及杂物卡在叶片与箱体之间,造成旋转给料阀卡跳,甚至传动链条断裂,如将其间隙调大则在下煤量小时又会造成返风,致使潮湿的煤粉迅速板结在给煤管内。旋转给料阀的转轴轴套内易进入煤灰,造成轴套损坏。

由于旋转给料阀的主要作用不是调整下煤量,主要是锁气功能。为解决上述问题,拆除旋转给料阀。为了解决高温烟气的返窜,在原旋转给料阀的位置加装了环形冷风密封装置,风源取自一次风机出口的冷一次风。在来煤正常的情况下,冷风密封风风门只需要很小的开度,就可以防止热烟气的返窜,但是在断煤的情况下仍存在返风的问题,为此将原来的电动插板门拆除,在环形密封箱的上部更换了新型号的气动插板门,并在气动插板门的上部加装温度测点,然后把气动插板门的开关和温度测点均引入到dcs中进行控制,这样就彻底解决了热烟气返窜的问题。

3.3.4 回料斜管膨胀节故障的原因分析处理

回料斜管的非金属膨胀节损坏的主要是内套筒的耐火耐磨料脱落,造成内套筒过热变形,物料漏进膨胀节内,堆积在膨胀节中,膨胀节失去应有的伸缩能力,造成膨胀节损坏。

保证伸缩节内套筒的内衬完好;安装检修时按图纸要求施工,预留足够的膨胀量,保证金属件、耐火耐磨材料相对尺寸;同时定期检查伸缩节内密封板损坏情况,发现问题及时处理。

3.4 锅炉出力调整控制问题

根据某一煤种设计的循环流化床锅炉,并不能有效燃用差别较大的煤种。运行中煤质的变化时常发生,在煤质变差时,因灰分水分增加使床料吸热增加,若要维持炉膛温度,则要增加煤量,但灰分的增加使料层阻力上升很快,排渣量增加,排渣的热损失很大,床温难以维持,锅炉出力降低。当煤质好时,燃料在密相区放热增大,为维持床温,则要增大一次风。

3.4.1 锅炉循环物料的平衡

进入炉内的灰量等灰量与排渣量之和,就能保持循环物料的平衡,运行中控制排渣量的原则是循环物料平衡,和锅炉负荷密切相关。循环流化床锅炉负荷与风量、风速、循环物料量变化方向一致,具有良好的自适应性。当分离器的效率足够高,容易使循环物料平衡;分离器的效率不太高时,飞灰量较大,就不容易保持物料的平衡,但燃料煤中的灰分高时,即使分离器的效率不太高,物料的平衡仍能维持。为了保持物料平衡,防止排渣时把参加循环的颗粒物料排掉;燃煤灰分过低时,必须加入合适粒度的外来物料,才能保持物料的平衡,使锅炉运行正常。循环物料的平衡失调,参与循环的颗粒严重不足时,炉膛上部的蒸发受热面吸热减少,而对流过热器受热面吸热偏大,出现过热汽温超温,锅炉负荷(汽量、汽压)偏低。参与循环的细颗粒过多时,则消耗较多的能量,引起设备的过度磨损,应从回灰系统中放掉。

3.4.2 料层差压控制

料层压差是反映燃烧室料层厚度的参数,在运行中是通过监视料层压差来得到料层的厚度,料层的厚度直接影响锅炉的流化质量和阻力消耗。料层厚度(即料层压差)可以通过炉底放渣管进行排渣调节,它与锅炉的安全经济运行密切相关。在锅炉运行中,料层厚度大小会直接影响锅炉的流化质量,如料层厚度过大,可能使床料达不到正常的流化,增加风机压头,风机电耗增加,流化质量下降,底部大颗粒床料沉积,锅炉效率下降,造成炉膛结焦或灭火。料层厚度小,热容量低,不能使锅炉快速增加负荷,抗干扰能力较低,一次风容易穿投床层而发生灭火;难以形成稳定的密相区,同时还会造成放渣含碳量高,燃烧不完全,增加了灰渣热损失。一般来说,在增加负荷时,可减少或不排渣来攒床料,快速加负荷必须迅速增加炉内的细床料,高负荷时,床层厚一些;低负荷时,床层薄一些。床温较低时,减少排渣;床温较高时,增加排渣。料层差压应控制在7000-9000pa之间。正常运行负荷不变的情况下,风门开度是不变的,如床压增加,说明料层增厚,可以采取打开锥形阀排渣来降低床压。排渣后床温升高,说明床压过高床层过厚,排渣后床温下降,说明床压过低床层过薄。

3.4.3 床温控制

一般意义上的床温是指燃烧密相区内流化物料的温度,是一个关系到锅炉安全稳定运行的参数。而广义的床温是指循环物料在循环通道内各段的温度,任何一段温度控制不当,均可造成燃烧不稳,甚至停炉,运行过程中要加强对床温的监视,一般控制在850℃-900℃左右,温度过高会造成床料结焦,过低易发生低温结焦及灭火;也可改变不同区域的吸热份额,引起锅炉出力的改变。在运行中当床温发生变化时,可通过调节给煤量、料层厚度、一次风量及返料量,调整床温在控制范围之内。一次风风量对床温有明显的影响,是一个独立调节床温特别是密相区温度的变量。如料层温度过高时,应减少给煤量、相应增加一次风量并加大返料量(降低返料温度),使料层温度降低。反之亦然。

135mwcfb锅炉床温测点一般布置在距布风板500mm左右的燃烧室密相区,漏出浇筑料50mm,前后墙各3个。必须严格控制床温最高不能超过1000℃,最低不应低于700℃。如床温超过1000℃时,应适当减少给煤量、相应增加二次风量、增加一次风量和排渣的方法使床温降低;如床温低于700℃时,应首先检查是否有断煤现象,如果未断煤则适当增加给煤量,减少一次风量,使床温升高。

3.4.4 给煤粒度

燃煤粒径直接影响到炉内物料的粒径大小和分布,对循环流化床锅炉的控制有较大的影响。粒径过大,流化风速增加,造成一、二次风量的比例偏离设计工况,使床温控制出现困难;局部流化不良、床温升高,易发生床内结焦,使上部炉膛温度偏低,不能满负荷运行;增加受热面的磨损面积和加快磨损速度。粒径过小,在床内的停留时间少,大量未燃尽的小颗粒被迅速携带出炉膛,增加炉膛上部燃烧份额,改变炉内的吸热分配,同时也增加可燃物的含量。一般原煤粒度为0~8mm或0~10mm。

南阳新光电厂#3炉为120t/h的循环流化床锅炉,设计只有一台冷渣器,2005年3月经常发生锅炉出力不足现象。煤质变差,煤中掺有大量矸石和石块,灰分增加,发热量降低,并且入炉煤的粒度较大,在高负荷下运行,煤中的矸石和石块大量进入炉膛后,冷渣器的出力不足,导致床温上升,限制了高负荷运行。

开封火电厂2005年8月20日,#2机负荷70mw,锅炉床层流化情况不好,#1、2冷渣器均不排渣,经运行多方努力,流化状况仍无好转,停炉检修。开启炉6米人孔门,检查炉内床面极不平整,炉内南侧床料堆积较高,表面均为较细的床料,炉膛中间床面有一大坑,北侧有部分床料堆积。打开4米人孔门检查,北侧水冷风室内有大量床料堆积,南侧水冷风室内则基本没有床料。清理床料时发现炉内床料除表面为较少的细床料外,下部均为大颗粒的石块。从清理床料的情况看,炉内仅在前墙#1、2排渣口中间靠炉墙有一小块低温粘结形成的焦块,北#1油枪下部有一小块结焦,其余部位并未发现结焦。床面检查情况见图3。

经查记录,未发现一次风量值大幅度变动,但从8月3日甲、乙侧一次风量开始有所偏差,但偏差仅2~3knm3/h,而后两侧风量偏差缓慢增大,至停炉前甲乙侧一次风量偏差已达30knm3/h。结合停炉后检查的情况,认为甲乙侧一次风量的偏差是由于炉内风帽脱落造成。乙侧有一个风帽脱落,造成床料进入水冷风室逐渐堆积,使进风受阻,两侧一次风量偏差越来越大,造成炉内流化不良。检查发现炉内床料有大量石块,石块粒径基本在50~70mm之间,查近几日入炉煤质粒度化验结果,粒径普遍较大,最大粒径基本在25mm以上,粒径≤7.0mm的仅有70%左右,已远远低于粒径≤7.0mm数量为100%的入炉煤粒度要求。碎煤系统中粗细碎煤机工作不正常,入炉煤中存在大量石块,由于煤质粒径过大,加之一次风量偏差,两者共同造成了炉内流化不良的原因。加强入炉煤的管理,对脱落的风帽进行焊接加固,并采取有效措施防止其它风帽脱落。

3.5 飞灰可燃物高问题

燃烧无烟煤、贫煤的循环流化床锅炉飞灰可燃物普遍较高,这是采用循环流化床燃烧技术目前乃至今后亟需解决的问题。煤粒进入流化床后,受到床料加热,水分蒸发,挥发分析出,受热固化的颗粒表层崩裂而破碎。挥发分高的煤,挥发分的析出着火,增加煤粒的反映面积,提高煤粒温度,易于燃尽,反之,挥发分低的煤不易燃尽。灰分高的煤,灰分在煤粒外形成的灰壳层较厚,阻隔了氧量和热量的传递,加热灰壳层消耗部分热量,降低燃烧速率,不易燃尽。

在煤粉炉燃烧研究中上采用煤的着火稳燃特性的判别指标研究煤种的适应性,对我们研究流化床的优化燃烧,或许能提供些帮助。煤的燃尽性能与其着火性能有着必然联系,但因处于燃烧过程的不同阶段而又有所区别。判别煤的燃尽特性有很多种方法,如常规的根据vdaf、fc/v等。

表1

有关几个电厂锅炉设计煤种及燃烧实际煤种时,锅炉运行床温、炉膛出口氧量、飞灰可燃物等参数状况见表2~7。

各电厂的情况如下:华能济宁电厂#5炉是上海锅炉厂有限公司采用美国alstom公司技术设计制造,型号sg-440/13.7-m563;义马锦江能源综合利用有限公司2×135mw机组锅炉为东方锅炉(集团)股份有限公司生产的dg440/13.7-ⅱ型循环流化床锅炉;河南蓝光环保发电有限公司135mw凝汽式机组,锅炉为哈尔滨锅炉厂生产的hg-440/13.7-l.mg8型。燃烧煤种为烟煤,基本属于易着火和燃尽的煤种,见表2;运行情况见表4~5。

华能白杨河电厂4号锅炉是哈尔滨锅炉厂有限责任公司引进德国alston公司技术生产的465t/h循环流化床锅炉,配135mw汽轮发电机组;新乡豫新发电有限责任公司和开封火电厂的循环流化床锅炉,均为哈尔滨锅炉厂有限责任公司生产,型号为hg-440/13.7-l.p4型,燃烧煤种为贫煤,基本属于难着火和燃尽的煤种,见表3;运行情况见表6~7。

表2 cfb锅炉设计煤质特性(烟煤)

表3 cfb锅炉设计煤质特性(贫煤)

表4 华能济宁电厂、河南蓝光环保发电有限公司锅炉运行飞灰、大渣可燃物情况

表5 义马锦江能源综合利用有限公司锅炉运行飞灰、大渣可燃物情况

表6 华能白杨河电厂#4、5炉锅炉运行飞灰、大渣可燃物情况

表7 新乡豫新发电有限责任公司和开封火电厂锅炉运行飞灰、大渣可燃物情况

对于燃烧烟煤的循环流化床锅炉,床温在830~850℃,河南蓝光公司锅炉燃烧掺烧煤矸石的劣质烟煤床温高些,在900℃左右,炉膛出口氧量3%左右,飞灰可燃物在3~7%,如果锅炉配风合适时,飞灰可燃物会达到1%以下,譬如河南的义马锦江能源综合利用有限公司2×135mw机组锅炉,飞灰可燃物低至0.7%左右。但是当氧量偏低时,飞灰可燃物迅速上升,河南蓝光环保发电有限公司锅炉在炉膛出口氧量2.8%,飞灰可燃物3.43/3.58%,当炉膛出口氧量1.7%,飞灰可燃物达到14.69/14.65%。

对于燃烧贫煤的循环流化床锅炉,床温在900℃左右,炉膛出口氧量3~4%左右,飞灰可燃物在10~15%,如果炉膛出口氧量低至2%左右,则飞灰可燃物会达到20%左右,新乡豫新发电有限责任公司#2炉试验时就发生了这种现象,原因是表盘氧量表计不准,显示值偏大,运行中按此控制造成,后进行处理。

鉴于燃烧烟煤锅炉的飞灰可燃物含量较低,从煤性上改变煤在炉内的燃烧状况,我省的开封火电厂正在进行烟煤和贫煤在循环流化床锅炉上的掺烧试验,掺烧后可能会引起炉膛出口烟温的降低,导致锅炉整个热平衡分配比例的变化。需要说明的是该炉设计时过热器、再热器受热面面积较大,后虽经改造,但减温水应有足够的裕量,应该能适应。通过按不同的比例掺烧进行试验,总结得到合适的掺烧比例。

3.6 锅炉爆管问题

循环流化床锅炉的磨损问题是一个历来都受到重视的问题,尤其是以炉内浇注料上沿区域水冷壁和尾部烟道顶棚过热器最为严重。运行中煤的颗粒度普遍偏大、一次风量过大,不仅引起厂用电率的增加,而且加重水冷壁部分的磨损,另一方面炉内耐火浇注料的施工及质量问题,造成部分脱落,也造成烟气对管材的直接冲刷磨损,这种现象主要发生在后墙回料口、二次风口处,安装管子焊接中应力因素考虑不周也是锅炉爆管的原因之一。表8中列出新乡火电厂和开封火电厂循环流化床锅炉2004年典型爆管事件,锅炉爆管问题也是导致机组非停的主要原因之一,磨损爆管和应力爆管占主导。

表8新乡火电厂和开封火电厂2004年典型爆管事件

4 结论

循环流化床锅炉和煤粉炉相比,在汽水系统、风烟系统上基本相同,区别重点在燃烧、回料和排渣三个方面。通过调整给煤量、风量及返料量,严格保持循环物料的平衡,控制好床压、料层床温,使锅炉达到最佳的运行效果。搞好电厂用煤的管理工作,提供符合粒度的原煤;加强检修管理,搞好设备的治理,提高设备的可用率;加强运行调整,合理配风,不仅能降低厂用电率,而且提高锅炉的安全经济运行水平;尝试不同煤种的燃煤掺烧,提高运行经济性。

参考文献:

[1] 阎维平洁净煤发电技术中国电力出版社2002

[2] 党黎军循环流化床锅炉的启动调试与安全运行中国电力出版社2002

[3] 朱国桢等循环流化床锅炉设计与计算清华大学出版社2004

[4] 刘德昌等流化床燃烧技术水利电力出版社1995

[5] 河南蓝光环保发电有限公司#1炉性能试验报告河南电力试验研究院2004.11

[6] 开封光明发电有限责任公司#1炉性能试验报告河南电力试验研究院2005.04

[7] 义马锦江能源综合利用有限公司#1炉性能试验报告河南电力试验研究院2004.10

[8] 义马锦江能源综合利用有限公司#2炉性能试验报告河南电力试验研究院2004.11

生物燃料和生物质燃料的区别篇7

【关键词】氮氧化物;低nox燃烧技术;机理

氮氧化物是造成大气污染的主要污染源之一。通常所说的氮氧化物nox有多种不同形式:n2o、no、no2、n2o3、n2o4和n2o5,其中no和no2是主要的大气污染物。我国氮氧化物的排放量中70%来自于煤炭的直接燃烧。

研究表明,氮氧化物的生成途径[2]有三种:(1)热力型nox,指空气中的氮气在高温下氧化而生成nox;(2)快速型nox,指燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成nox;(3)燃料型nox,指燃料中含氮化合物在燃烧过程中进行热分解,继而进一步氧化而生成nox;在这三种形式中,快速型nox所占比例不到5%;在温度低于1300℃时,几乎没有热力型nox。对常规燃煤锅炉而言,nox主要通过燃料型生成途径而产生。控制nox排放的技术指标可分为一次措施和二次措施两类,一次措施是通过各种技术手段降低燃烧过程中的nox生成量;二次措施是将已经生成的nox通过技术手段从烟气中脱除。

1.热力型

热力nox的生成和温度关系很大,在温度足够高时,热力型nox的生成量可占到nox总量的30%,随着反应温度t的升高,其反应速率按指数规律增加。当t1300℃时t每增加100℃,反应速率增大6~7倍。

热力型nox的生成是一种缓慢的反应过程,是由燃烧空气中的n2与反应物如o和oH以及分子o2反应而成的。所以,降低热力型nox的生成主要措施如下:

①降低燃烧温度,避免局部高温。

②降低氧气浓度。

③缩短在高温区内的停留时间。

2.快速型

快速型nox是在碳氢化合物燃料在燃料过浓时燃烧,燃料挥发物中碳氢化合物高温分解生成的CH自由基和空气中氮气反应生成HCn和n,再进一步与氧气作用以极快的速度生成。快速nox在燃烧过程中的生成量很小,影响快速nox生成的主要因素有空气过量条件和燃烧温度。

3.燃料型

燃料型nox是由燃料中氮化合物在燃烧中氧化而成,由于燃料中氮的热分解温度低于煤粉燃烧温度,在600~800℃时就会生成燃料型nox,它在煤粉燃烧nox产物中占60~80%。由于煤的燃烧过程由挥发分燃烧和焦炭燃烧两个阶段组成,故燃料型nox的形成也由气相氮的氧化(挥发分)和焦炭中剩余氮的氧化(焦炭)两部分组成,其中挥发分nox占燃料型nox大部分。

影响燃料型nox生成的因素有燃料的含氮量、燃料的挥发分含量、燃烧过程温度、着火阶段氧浓度等。燃料的挥发分增加nox转换量就增大,挥发分nox转化率随氧浓度的平方增加。火焰温度越高nox转换量就越大。

根据其影响因素,控制燃料nox生成的途径主要是:

①含n量低的燃料。

②过浓燃料。

③燃料与空气的混合。

通过以上的机理可知,在日常生活中燃料(煤)燃烧是氮氧化物产生的主要方式,因此要降低nox排放就要从控制燃烧型nox方面入手。目前,氮氧化物控制技术可分为两大类,一类是燃烧中控制技术;另一类是燃烧后控制技术。其中燃烧中控制技术是根据氮氧化物的形成机理而开发的,主要有低氧燃烧法,分级燃烧法,烟气再循环法,低nox燃烧器法等;燃烧后控制技术可分为干法,湿法和干一湿结合法三大类。下面分别简要介绍燃烧中低nox燃烧技术。

低nox燃烧技术主要有:分级燃烧、燃料再燃、低过剩空气燃烧和烟气再循环等几种方式。

3.1空气分级燃烧

空气分级燃烧的基本原理为[3]:将燃烧所需的空气量分成两级送入,使第一级燃烧区内过量空气系数在0.8左右,燃料先在缺氧的富燃料条件下燃烧,使得燃烧速度和温度降低,因而抑制了热力型nox的生成。同时,燃烧生成的Co与no进行还原反应,以及燃料n分解成中间产物(如nH、Cn、HCn和nH3等)相互作用或与no还原分解,抑制了燃料型nox的生成。

在二级燃烧区内,将燃烧用的空气的剩余部分以二次空气输入,成为富氧燃烧区。此时空气量虽多,一些中间产物被氧化生成no,但因火焰温度低,生成量不大,因而总的nox生成量是降低的,最终空气分级燃烧可使nox生成量降低30%~40%。当采用空气分级燃烧后,火焰温度峰值明显比不采用空气分级燃烧时降低,故热力型nox降低。

分级燃烧可以分成两类:一类是燃烧室(炉内)中的分级燃烧;另一类是单个燃烧器的分级燃烧。燃烧室中的分级燃烧方法是,通常在主燃烧器上部装设空气喷口,形成所谓的火上风(overfireair,也称为燃尽风)。[4.5]

3.2燃料分级燃烧

在主燃烧器形成的初始燃烧区的上方喷入二次燃料,形成富燃料燃烧的再燃区,nox进入本区将被还原成n2。为了保证再燃区不完全燃烧产物的燃尽,在再燃区的上面还需布置燃尽风喷口。改变再燃烧区的燃料与空气之比是控制nox排放量的关键因素。存在问题是为了减少不完全燃烧损失,需加空气对再燃区烟气进行三级燃烧,配风系统比较复杂。

3.3烟气再循环

生物燃料和生物质燃料的区别篇8

【关键词】生物燃料全球变化多边治理框架

各国政府均认同生物燃料是一种有潜力的化石燃料替代选择,其产业发展与减缓气候变化、繁荣农村经济、缓解全球和国家能源安全的联系已促动了主要国家在领域纷纷展开行动。但是,产量和贸易的迅速膨胀引起了许多环境和社会经济问题的争论。因此,检讨生物燃料产业发展的本质,探寻治理途径时不待我。

1.生物燃料产业扩张:一种新的全球性变化

全球生物燃料生产从2000年到2009年已经翻了20倍,生产国从巴西一枝独秀扩展至美国、欧盟、中国等主要农业国,俨然成为了新能源产业中最具潜力、最重要的化石能源替代产品。尽管这番蓬勃景象一方面归功于生产效率的提高,原料作物种植扩张也“功不可没”,有越来越多的作物用于该产业生产。产业扩张带来了以下巨大影响:

1.1由生物燃料产业扩张引起的生态变化

对环境的影响是复杂的:生物燃料替代化石燃料、减少温室气体排放是快速扩张的根本动力。但是,仍要对生物燃料整个生命周期排放做出全面评估。比如,原料作物的生产使用化肥、杀虫剂,最后就在减少温室气体排放的同时消耗化石燃料。机器化大生产带来更多甲烷气体,而甲烷对全球变暖的作用远远大于二氧化碳。另外,土地使用目的的转变可能导致大量的温室气体排放。因此,关于排放平衡必须考虑整个生命周期。

单一种植原料作物带来生物多样性丧失、土壤质量下降、给水资源质量带来冲击,即使大多数作物可依靠降雨生长,但是当提高生产率成为优先选择的话,灌溉则会成为首选。最后,生物燃料生产有外来物种侵害原有生态的风险。

1.2由生物燃料产业扩张引起的社会经济变化

对农村经济的影响体现在包括国家、区域和全球的各个层面:

国家对该产业利润的保证使大量投资涌入种植业,尤其是以农业为主要支撑的发展中国家。这就促使农民成为农业工人,丧失对土地的传统控制权。虽然产业扩张确实增加了农村人口就业机会,但是劳动条件却不尽人意,劳动安全难以保证。

除了对农村本地的影响,生物燃料生产也打乱了粮食生产和供应。因为主要粮食作物既可以供人食用也可成为生产原料,因此全球粮食价格随需求大增而屡创新高。生产者虽可从中获利,但那些农村和城市的低收入者无法负担充足食物费用,恶化了全球粮食安全状态。

1.3由生物燃料产业扩张引起的南北关系变化

发展中国家相对发达国家可获土地数量较高、原料价格较低、劳动力成本低廉,被认为是最有潜力生产生物燃料。主要消费者却是发达国家,即便全球产量不断提高也无法满足发达国家的消费目标,进口需求便产生了。于是发达国家和发展中国家签订了许多相关贸易协定。这种供求关系的发生本应带来全球双赢局面,但是发展中国家生产大规模扩张却给自身带来了巨大挑战,包括森林退化、土地冲突、传统耕种方式的遗失等等。

发展中国家是该产业发展负面影响的主要承受者,但却没有充分机会参与全球治理议程。即使参与,也只是该国的大企业,而不是那些受实际影响的大多数人,这无疑增加了北方对南方国家的控制力。

2.生物燃料治理框架现状与评价

2.1生物燃料治理现状

国家、区域、国际已出现了应对生物燃料影响并促进其可持续发展的政策和治理结构。

2.1.1国家生物燃料治理议程:以主要生产国为例

随着气候变化成为全球议程中的重大问题,许多国家构建了可再生能源战略,其中就包括生物燃料。使用生物燃料不仅能替代化石燃料和提高能源安全,更重要的是还可以扩大农产品的出路和收益。在此促动下,各国普遍采用的政策是颁布燃料混合国家命令、税收豁免、对农民或生产者直接支付、对进口产品适用关税壁垒。除此之外,主要生产国美国和巴西面对负面影响,也采取了有限的政策调整。

美国玉米业已饱受诟病,尤其是玉米乙醇生产:减排水平低;超大型农业公司的控制使小生产经营者无利可图;由于美国是世界玉米的主要供应者,对生物燃料的加大投入引起全球大宗食品的价格动荡。即便是这样,美国仍然一再提高燃料使用比例,要求到2017年生物燃料替代汽油消费达到20%,对加工商提供每加仑0.51美元的补贴,对进口燃料乙醇适用每加仑0.54美元的进口关税。虽然,新能源计划提倡木质纤维素乙醇技术的发展,但是美国近期对生物燃料的需求增长仍不可避免从传统生产中获得。

巴西是世界第二大生物燃料生产国。甘蔗乙醇转化率比玉米乙醇高。但种植园的迅猛扩张对亚马逊森林造成了负面影响;甘蔗乙醇的生产对水需求量较大;单一种植扩张也带来了严重的土地冲突。但巴西政府仍决定每年新建25个甘蔗乙醇生产厂。尽管计划逐年有所微调,但传统大型甘蔗生产仍然占据主要地位。

由此可见,可持续关注在美巴两国并不是最优先考虑事项。但是生物燃料净进口国和地区却对生产的可持续性进行了更为积极的应对,主要体现在欧盟及成员国。

2.1.2区域生物燃料治理议程

欧盟生物燃料治理分为成员国个别要求和欧盟共同要求。就成员国而言,英国和荷兰生物燃料标准最为典型,因此将从英、荷、欧三个方面分析区域治理工具。

生物燃料可持续性争议包括减缓气候变化,生物多样性保护,水、土壤、空气保护,土地所有权保护,劳工标准,社会经济发展和粮食安全7个方面。

关于减缓气候变化,三者要求类似:首先都禁止将高碳封存土地用于原料作物的种植。英国要求温室气体减排至少为40%,每年增加5%,但性质是建议式的;荷兰规定了最低30%的强制减排,到2017年逐步增加到80%-90%;欧盟强制性要求将最低减排量提高到35%。

关于生物多样性,荷兰和欧盟都禁止将具有高生物多样性区域用于生物燃料生产;英国禁止生产毁损以上区域即允许合法生产。荷兰要求要远离高生物多样性区域5公里以上。

关于水、土壤和空气保护,三者具有区别。英国要求没有土壤退化、污染或水资源耗尽或空气污染。荷兰要求实行最佳保护实践;遵守《斯德哥尔摩农药使用公约》或国内法;禁止生产焚烧。欧盟除了就国家保护措施进行年度报告外,无具体要求。

关于土地所有权,英国要求对土地权和当地社会关系没有负面影响。荷兰要求在土地原始使用者同意下谨慎使用土地;尊重原主人传统制度。欧盟仅要求进行年度报告。

关于劳工标准,英国要求对劳工权利和工作关系没有负面影响。荷兰要求遵守《普遍人权宣言》和关于跨国公司及社会政策的国际劳工原则。欧盟除了就《国际劳工公约》的国家授权和执行进行年度报告外,没有具体的要求。

关于社会经济发展,英国和欧盟仅要求就此履行年度报告义务。荷兰要求生物燃料生产必须利于当地繁荣;要求就生产影响当地人口和利于当地经济发展进行报告。

关于粮食安全,英国仅要求检测对粮食价格的间接影响。荷兰和欧盟除了就土地使用改变形式、土地和粮食价格影响进行报告外没有具体要求。

只有满足上述标准的产品才能计入欧盟2020年运输领域可再生能源10%的强制性目标,进而才会获得市场准入好处和税收豁免、直接支付等利益。欧盟在证明产品是否符合标准的问题上采取灵活做法,即权力下放到欧委会认可的自愿性生物燃料认证制度,认可时效为五年。可见,就世界最大的生物燃料进口市场的准入而言,得到具有资格的认证制度的认证是关键。截止2011年7月,有2BSvs、Bonsucro、Greenergy、iSCC、RBSa、RSB、RtRS七个生物燃料认证制度得到了欧委会的认可,此外还有18个认证机会等待欧委会的批准。

2.1.3国际生物燃料治理议程

和生物燃料多少相关的国际协定在各个领域早已出现,例如气候、能源领域。目前虽没有针对全球生物燃料挑战专门国际协定,但国际社会已开始以以下形式展开努力:

首先,联合国开发计划署(UnDp)、联合国环境规划署(Unep)、联合国粮农组织(Fao)、联合国能源机制(Un-energyinteragency),在其报告和研究中均已提出生物燃料问题。但是,他们的行动大多仅局限于分析和建议,并没有就其各自的领域达成国际协定。国际能源署(iea)以及经合组织(oeCD)发挥了更为积极的作用,通过iea生物能源部的第40工作组为生物燃料贸易认证构建了可持续性标准。

其次,新近建立的论坛和伙伴关系开始在生物燃料全球可持续发展崭露头角。最为典型的就是2005年发起的全球可再生能源伙伴关系。该制度目的是促进可再生能源的继续发展和商业化,支持更广泛的、符合成本效益的生物质和生物能源发展尤其是发展中国家。生物燃料国际贸易大幅增加,2007年巴西、美国、中国、欧委会等建立了国际生物燃料论坛。

最后就是专门针对生物燃料可持续性问题成立的、新的国际倡议,采取的形式是多利益攸关方组成的圆桌会议,讨论和构建可持续性环境和社会经济标准。但覆盖产品范围各有不同,例如责任大豆圆桌会议以及意图进行普遍适用的可持续生物燃料圆桌会议(RSB)。

2.2对目前治理框架的评价

随着全球生物燃料贸易的提高,作为主要进口者的欧盟国家生物燃料治理议程对市场准入和不同可持续性产品的竞争力影响在逐步提高,甚至成为了全球治理生物燃料的风向标。但是,从欧盟和成员的可持续性标准来看,主要局限于对生态环境的要求;像是当地经济发展、公平正义以及粮食安全等与发展中国家紧密相关的社会经济问题关注不够。而间接土地使用转化问题也被忽略掉,甚至都不存在报告制度。值得注意的是这些标准既适用于外国生产者也适用于欧盟国家,但制定决策时却没有主要供应国——发展中国家的参与,也就是发展中国家的观点和他们的关注没有得到体现。

似乎国际治理议程给参与性带来了一些新的变化,但也有自身弱点:

首先,不同国际生物燃料治理议程仍局限在自己业务范围内处理环境和社会经济影响。国家合作多集中于研究和技术发展,而不是应对扩张带来的更为严重的粮食安全影响。

其次,通过给当地提供能源生产和供给的方式来促进当地发展,这种生物燃料发展的替代模式几乎被这些治理议程所忽略,即他们主要以生物燃料贸易为预设前提而展开谈判。

第三,有些国际议程如iea、oeCD具有明显的发达国家倾向,当然会以它们的能源需求为优先考虑,因而主要关注发展中国家的出口为导向的生产,而不是发展中国家的当地需求。而全球生物能源伙伴关系也代表主要国家团体利益。甚至像RSB由多利益有关方组成的圆桌会议也不对称地给来自工业部门和发达国家的参与者更多的关注和投票权。21位RSB发起委员中仅有5位来自发展中国家,而这5位代表中有3位代表了像巴西的甘蔗联盟这样的工业团体利益。很明显利益受到主要影响的大多数人并没有能充分表达意见。

最后,现有的国际行动没有形成多层次、协调统一、相互支持、相互影响的治理方式。许多国际倡议或国际行动虽然博兴,但十分分散,关注自己覆盖的争议领域,并在其框架下的国家行动仍被符合本国利益的议程所主导。这种情形实际导致生物燃料问题仍然是“无治理领域”,试想有各自利益的国家和企业一旦发生纷争,将如何公正、合理的解决争议?

3.新多边生物燃料治理框架愿景

3.1建立新多边生物燃料治理框架的原因

目前生物燃料治理制度无论从国内还是从国际层面都无法满足治理需求,建立新多边治理框架的迫切需求和原因有以下几点:

第一,该产业发展的主要推动力均具有重要的全球要素和关联。可再生能源替代化石燃料就是由《联合国气候变化框架公约》促动的。化石燃料的可用竭性是一个全球难题,而动荡的国际关系又是国家追求能源安全的巨大障碍。生物燃料农业尤其在发展中国家又是由发达国家的消费目标促发的出口繁荣所驱动的。以上每个环节都具有“全球烙印”。

第二,生物燃料生产带来的环境影响是无法依靠个别国家得以解决的。该产业对气候变化、对水等自然资源的需求以及对土地使用改变的累积作用都具有明显的全球关联。

第三,个别国家解决生物燃料扩张带来的社会经济影响能力有限,比如对农产品市场和全球粮食安全的影响。

第四,生物燃料的争论从一开始出现就具有南北关系的特性,是以一方的主要社会、政治和环境利益为代价而使另一方获利的问题。

第五,关于生物燃料生产存在许多相互冲突的观点和看法,因此不仅需要有效的治理框架,更需要体现公平、合法性、责任性、代表性的统一治理制度。

以上各个方面均体现了建立全球生物燃料治理框架的必要性,但这里的全球性并不意味着所有国家都就此进行谈判,但至少是一个与现有治理框架不同且能够反映生物燃料产业核问题的不同视角,能通过多边平台包括国家和非国家参与者构建的负责而合法的方式进行治理和调控。那么,这种新多边治理框架究竟应该具备怎样的条件和内核呢?

3.2新多边生物燃料治理框架的建构

3.2.1多边生物燃料治理框架应具备的基本特征:多部门、多层次和多参与者治理

生物燃料产业发展并不仅是一种能源战略,它和粮食、农业、贸易、气候和生态保护等多方面都具有重大关联,而这些领域都有各自的政策制度。因此气候谈判、可再生能源议程、全球贸易和农业发展、保护生物多样性和生态系统战略均涉及到了生物燃料问题。以上不同领域的各自政策必须避免冲突、寻求协调,这就需要多部门协调来应对生物燃料治理。

其次,生物燃料治理需要多层次协调。如果没有国家、当地政府以及当地生产者的协助多边框架很难成功,这也是目前国际相关治理制度的欠缺。这种协调既要体现在国际政策的成功执行上,比如认证计划的实施,也要体现在不同层面的规制活动上。

第三,不同参与者和平行决策体系间的协调也是必要的。这会减少重复劳动、避免政策冲突,比如生物燃料治理政策和wto规则之间的冲突,多参与者治理意味着允许各种主体使用有效参与资源。

3.2.2新多边生物燃料治理框架的制度设计:趋利避害

虽然需要进一步协调不同产业部门、参与者和治理层次,但是何种制度设计才能最好发挥功能却是一个大问题。从实现的可能性出发,有两种路径可以选择:

第一种,在某一类宽泛的领域建设治理制度,能源和农业领域可供选择。

在能源领域探讨生物燃料治理制度的优势是能够很容易地将该问题并入可再生能源政策;能够让业界对照其他生物能源对液态生物燃料做出评估。弱点是由于目前与能源相关的、行之有效的政策制度本身就十分分散,加之联合国相关机制治理权力也十分有限,新建立的国际可再生能源机构(iRena)固然令人欣慰,但是像巴西、中国等这些主要生产国尚未加入,因此治理很难从全球能源制度中获得有益的制度支持;加之,如果国家将生物燃料单纯看作是国家能源安全问题,由于敏感性,将会使多边谈判变得异常艰难;最后由于生物燃料是由许多作物提炼而来,因此对农业部门的影响也举足轻重,将其作为能源问题处理自然会导致对粮食安全、农村地区和土地政策的影响关注不够。

在农业领域处理生物燃料问题最大的优势是可以借助Fao现有的各种制度;可使业界更加关注粮食和农村发展问题;也会从国际农业协定中最终获利。但是国际农业贸易谈判频频陷入僵局,这必将阻碍该产业的可持续发展;也会割裂生物燃料与可再生能源政策的联系。

第二种不同的制度设计路径就是将生物燃料作为独立的焦点问题进行制度设计,而此种方式根据所设计的制度框架以生物燃料问题的一个方面还是多个方面为治理对象分为单一框架和复合并行框架。不论是单一政策框架还是符合政策框架同样各具优、缺点:

在有效性方面,复合型平行框架更有利于不同政策工具的创新、彼此竞争和实践检验;在公平性和权力分配方面,复合平行框架更易于禁止权力集中,并且在一定程度上会增加发展中国家在决策中的影响力。缺点就是遵守和执行成本较高。

而单一框架由于设定的制度具有很强的针对性和局限性,因此遵守和执行成本较低;所设定的单一规则更容易和像wto这样的现有国际规则协调一致;也更易于吸收多参与者的集中关注并利用他们可提供的资源。缺点是过分支持某类参与者的风险过高;灵活性和调节性较差;由于会吸引更多的参与者,因此达成一致意见就更为困难。

综上,新多边生物燃料治理框架是一个开放性议题,只有把握住合理合法内核,比较各种选择路径的优缺点,在实践中逐步探索。

参考文献:

[1]patrickLamers.internationalBioenergy

trade-aReviewofpastDevelopmentsintheLiquidBiofuelmarket[J].RenewableandSustainableenergyReviews,2011(11):2655-2676.

[2]thomasVogelpohl.theinstitutionalsus-

tainabilityofpublic-privateGovernancearrangements-theCaseofeUBiofuelsSustainabilityRegulation[C].theLundConferenceonearthSystemGovernance,Berlin2012.

生物燃料和生物质燃料的区别篇9

一、经验:通过立法、规划和鼓励补贴等政策,持续推动生物质资源的研究、开发和利用

(一)美国通过立法和补贴政策促进生物质乙醇产业发展

美国是世界上最大的乙醇生产国,乙醇商业化生产始于上个世纪90年代,玉米一直是其主要的生产原料。20世纪90年代开始,美国以法律形式确定了生物质能源的主导地位和具体发展指标。2002年11月,《美国生物质能与生物基产品展望》报告对美国生物质资源研究做出了远景规划,提出到2030年,美国生物质能和生物基产品将发展成为完善、成熟并可持续发展的产业,为美国农业经济增长创造新的机遇,并向消费者提供性能优良、绿色环保的生物基产品。

1999年,美国了《开发和推进生物基产品和生物能源》总统令,制定了到2030年以生物质燃料替代目前石油消费总量30%的发展目标,占国家电力的5%、交通运输燃料的20%和化工产品的25%。2005年,美国能源部提交的报告显示:生物质能已经开始对美国的能源做出贡献,2003年提供了1亿吨标煤能量,占美国能源消费总量的3%,超过水电而成为可再生能源的最大来源。

为了实现上述目标,美国在生物质资源研发领域的资金投入逐年递增,其中,包括2008年12月能源部投资2亿美元支持利用生物质原料生产先进生物燃料的商业化研究与实践、2009年1月其能源部与农业部联合支持有关生物燃料、生物质能及生物基产品生产技术与过程的研发项目等。即使在金融危机发生之后,生物质资源研究仍成为美国经济复兴和再投资计划的重要组成部分。2009年5月,美国能源部宣布,复兴计划中将有7.865亿美元用于加快先进生物燃料的研究和开发、以及商业规模的生物精炼示范项目等。

发展生物燃料对美国经济发挥了极大的推动力量。据统计,仅2007年发展乙醇使美国减少进口2.28亿桶原油,原油进口减少量约占美国原油进口总量的5%,相当于为美国经济节省了165亿美元;乙醇生产经营、乙醇运输以及新建乙醇生产企业投资,共为其国内生产总值增加476亿美元,为美国各经济领域创造了近24万个工作岗位;使美国消费者增加了123亿美元收入,为联邦政府创税约46亿美元,同时为各州和当地政府创税36亿美元。

奥巴马上台后,提出了7000多亿美元的巨额经济刺激计划,同时,确保实现国会设定的2022年美国生物燃料年产量达到360亿加仑的目标。为减轻粮食负担,美国已经做好了向非粮的二代生物燃料过渡的部署,到2030年,生物燃料替代30%化石运输燃料中,玉米原料只占6.7%,九成以上将是非粮原料。其最新举措是加快纤维素燃料乙醇的研发和产业化。(详见表1)为尽快实现第二代生物燃料技术的产业化和商业化,美国政府采取了一系列刺激和鼓励政策。

2007年10月,美国生物质研发技术咨询委员会了新的生物燃料与生物基产品路线图,确定了生物质技术发展的主要障碍和解决途径。

(二)欧洲各国对替代燃料的立法支持、差别税收以及油料植物生产的补贴,共同促进了生物柴油产业的快速发展

欧盟委员会提出,2010年运输燃料的5.75%用燃料乙醇和生物柴油替代,到2020年这一比例将提高到20%。法国计划到2015年生物柴油的产能将从现在的每年600万吨增长到1000万吨。目前,意大利是欧洲生物柴油使用最多的国家之一。在2001年制定的金融法中,意大利计划在3年内将生物柴油的生产配额从12.5万吨增加到30万吨。德国政府鼓励使用生物柴油,对生物柴油生产企业全额免除税收,使其价格低于普通柴油。德国在2003年颁布法规,准许自2004年起,无需标明即可在石化柴油中最多加入5%的生物柴油。同时,德国还规定了机动车使用生物燃料的最低份额,从2004年起的2%提高到2010年的5.75%。新规定的出台将使生物柴油营业额从2000年的5.035亿美元猛增至24亿美元,平均年增25%。西班牙2002年12月30日颁布法令,对生物燃料全部免征特别税,该税是浮动的,根据石油产品和生物燃料生产成本的变化进行调整。

2009年4月23日,欧盟的生物燃料政策也拍板定案,其生物燃料也有了一个明确的目标和发展方向。《可再生能源指令》和《燃料质量指令》这两道与生物燃料政策相关指令的产生,将对欧洲生物燃料行业的未来发展起着决定性的作用,并影响全球生物燃料市场。

(三)巴西通过规划推动生物柴油发展

巴西是世界上最大的可再生能源生产国。2002年,联邦政府推出生产和使用生物柴油计划(pnpB),计划目标为:2008年1月开始,将在全国燃料消费中,添加2%的生物柴油,到2013年1月该比例将上升到5%。为了推进该计划,联邦政府分步骤、分阶段实施。

第一阶段:可行性分析阶段。结论是:在经济上,可以扩大就业,增加收入,缩小区际之间的收入差距。在社会发展上,可以扶持社会弱势阶层,提高低收入者收入水平。在环境上,通过使用生物柴油,减少废气和空气污染,可以降低社会的医疗成本。在发展战略上,可以减少对进口能源的依赖,降低国家能源安全风险。

第二阶段:完善法律和政策阶段。首先,定义和规范生物质能源,同时在法律、政策、税收上给予支持。在税收上针对发展程度不同的地区采取不同的优惠税率,给予贫穷地区更多的税收减免。按照该种差别税率的逻辑,政府政策有义务保护两个薄弱环节:(1)农民的种植环节。联邦政府为了鼓励小农户种植油料作物,保障全部收购,创造了一个“社会燃料”凭证,以此来决定企业税收减免的多少。(2)市场环节。政府公布生物柴油的质量标准,以保障提供到市场上的都是高质量的产品。

第三阶段:计划的实施阶段。在各项法律、政策和税收标准确立以后,2004年12月6日,联邦总统宣布推出pnpB。2005年,第一个加入2%生物柴油的加油站开业,联邦政府以拍卖的方式收购生物柴油,只有拥有“社会燃料”凭证的企业才能参加拍卖。政府的介入和收购,主要目的是形成实在的市场需求。

目前,世界可再生能源消费仅占总能源消费的14%,而巴西占45%。巴西还是世界上最大的乙醇出口国,30年来,乙醇生产导致巴西原油消耗下降,累计节省520亿美元,还提供了100万个工作岗位。

二、各国开发生物质能源带来的启示

(一)利用自身资源禀赋的比较优势,寻找新的替代原料来源,力求保持能源安全、环境安全与粮食安全协调发展

从中国的情况看,上海财经大学财经研究所张锦华与吴方卫研究认为,我国农产品中资源禀赋最高的是甘薯,玉米也有一定优势,小麦不具有优势。但由于当时国家急于解决陈化粮问题,采用玉米和小麦作为生物质能源原料。以玉米为主的生物质能源发展路径并不完全基于资源禀赋优势的策略。同时,与美国地多人少相反,中国的人口众多,即使采用一定优势的玉米为原料的生物质能源发展路径也受到粮食安全问题的制约。虽然我国有大量的盐碱地、荒地等劣质土地可种植甜高粱,也有大量荒山、荒坡可以种植麻风树和黄连木等油料植物,但目前缺乏对这些土地利用的合理评价和科学规划。我国虽然在西南地区种植了一定规模的麻风树等油料植物,但不足以支撑生物柴油的规模化生产。生物质燃料资源不落实是制约生物质燃料规模化发展的重要因素。生物质资源的发展是生物质能源的根本问题,优良的作物品种是发展生物质能的重中之重。

(二)政府积极参与,为生物质能源的产业化发展创造良好的市场环境

生物质能源产业是具有环境效益的弱势产业。2000年以来,我国建立了包括燃料乙醇的技术标准、生产基地、销售渠道、财政补贴和税收优惠等在内的政策体系,但为避免对粮食安全造成负面影响,国家开始对以粮为原料的燃料乙醇的生产和销售采取严格管制。对于生物柴油的生产,国家还没有制定相关的产业政策,也没有完善的销售渠道。此外,生物质资源的其它利用项目,如燃烧发电、气化发电、规模化畜禽养殖场大中型沼气工程项目等,初始投资高,需要稳定的投融资渠道给予支持,以降低成本。同时,需建立行之有效的投融资机制做保障,促进生物质资源的开发利用。

(三)将扶持生物质能源的产业化发展纳入到国家的可持续发展战略中

我国非粮作物的燃料乙醇尚处于试验阶段,要实现大规模生产,还需在生产工艺和产业组织等方面做大量工作。以废动植物油生产生物柴油的技术较为成熟,但发展潜力有限。后备资源潜力大的纤维素生物质燃料乙醇和生物合成柴油的技术尚处研究阶段,一些相对成熟的技术缺乏标准体系和服务体系的保障,产业化程度低,大规模生物质能源生产产业化的格局尚未形成。

(四)加强生物质资源研究对于国家可持续发展具有很强的战略意义

生物燃料和生物质燃料的区别篇10

关键词:高低差速;循环流化床锅炉;节能

中图分类号:tK229.6文献标识码:a文章编号:1006-8937(2012)11-0168-03

我国现阶段相当长一段时间内,仍然以煤炭作为主要的能源结构,所以对节煤技术的研究占有重要的地位。循环流行化床(CFB)锅炉技术是20世纪80年代来迅速发展的一项低污染、高效率和良好综合利用清洁燃烧枝术。循环流化床锅炉采用流态化的燃烧方式,这是一种介于煤粉炉悬浮燃烧和链条炉固定燃烧之间的燃烧方式。由于CFB具有高可靠性,高稳定性,高可利用率,最佳的环保特性以及广泛的燃料适应性,特别是对劣质燃料的适应性和变负荷能力以及污染物排放上具有的独特优势,因此,这项技术在工业锅炉、电站锅炉等领域已得到广泛的应用,国内这方面的应用与研究虽起步较晚,但已有上百台循环流化床锅炉投入运行中,越来越受到业界广泛关注。

1循环流化技术原理

循环流化床燃烧(CFBC)过程中,高速气流与所携带的稠密悬浮煤颗粒充分接触燃烧,小颗粒的煤与空气在炉膛内处于沸腾状态,因此具有较高的燃烧利用效率。流化床锅炉分为两大类:鼓泡流化床锅炉(BFBB)和循环流化床锅炉(CF-BB)。

高低差速循环流化技术是在常规流化床(FBC)技术上加以改进,采用密相区内设置不同高度的床面,相应的床面有不同流化速度,将流化床面分成高速床和低速床,在低速床内均布置埋管受热面,在高速床内不布置受热面。其床面的不同的流化速度及高低差异,使物料在炉内形成有序的循环。

密相区内的物料在高速床和低速床内产生内循环,延长了颗粒在密相区内的停留时间,同时由于密相区浸泡管避开了高速流化区,因此大大提高了其使用寿命。它具有煤种适应性广,热效率好,负荷调节性能好,磨损量小等优点。无烟煤、烟煤、褐煤、矸石等生物性燃料都可以用作其燃料。

高低差速循环流化床锅炉燃烧技术技术采用了独特的内循环流化燃烧方式,是一种新型的清洁燃烧技术。它继承了流化床锅炉的原理,燃烧技术独特,燃烧室分成主燃室和副燃室。通过炉下送风的配合,在炉内,物料在主燃室与副燃室之间形成循环流。锅炉的埋管受热面一般布置在副燃室内,不仅减小了磨损问题,而且能很方便地通过调节副燃室的送风量来调节锅炉的运行。

2高低差速床锅炉的主要特点

高低差速循环流化床锅炉技术是江西锅炉厂引进的德国专利,该技术的关键是改变了现有FBC(常规流化床)单一流化床面,而采用不同流化风速和多层床的“差速流化床”结构。虽然在运行过程中也存在一些问题,如炉膛结焦、锅炉磨损严重、排渣困难、返料器返料不正常以及运行几年后漏风率高和效率低等,但其优点是明显的。现将其与常用循环流化床锅炉、鼓泡流化床锅炉对比,在燃烧技术方面,与一般流化床(FBC)锅炉相比,具有以下几方面优点:燃料适应性广;低氮氧化合物(noX)排放;高效率脱硫;长燃料停留时间;高碳燃尽率;均匀的床温;强烈的颗粒返混,具体如下所述,在表1中对CFBC(高倍率循环流化床)、FBC(常规流化床)、和iFBC(差速流化床)综合特性参数进行了比较。

①高低差速床锅炉使物料按粒径大小自动分离,细粒分布于上层副床内,粗粒集中在低层主床上,所以副床的流化风速可比主床流化风速小1~1.6倍,低的流化风速和细的床料使埋管受热面磨损程度极大减轻,较好解决了低倍率的CFB锅炉的可靠性和安全性问题。

②低、高床之间的具有不同的流化风速,形成了床料的内循环,不仅强化了床化物料横向混合程度,而且延长了脱硫剂和给料在床内的停留时间,锅炉的脱硫效率和燃烧效率得到了提高。特别对于燃烧混煤具有较好的适应性。

③高低差速床锅炉改变以了普通单一流化床低负荷时过剩空气较高和结焦的不足,具有多床面的结构,和较好的负荷调节性能,在40%负荷发下能可靠经济运行。

④nox排放低。经验显示,循环流化床锅炉的noX排放范围为50~150ppm。主要原因有以下三个:一是风量分别由主、副床送入;二是低温燃烧,空气中的氮不会生成nox;三是分段燃烧,抑制了氮转化为nox,同时能使已生成的nox部分地得到还原。

⑤节能优势明显,高低差速循环流化床锅炉较一般循环流化床锅炉更节能。普通流化床锅炉一次风风压需14000~15000pa,二次风风压9000pa~10000pa,而高低差速循环流化床低速风风压7000~8000pa,高速风风压达12000~13000pa。

⑥采用低温燃烧,由于炉内优良的燃尽条件,使得锅炉的最后灰渣成分含炭量低,随着干灰渣收集、输送与利用技术的成熟,锅炉灰渣已被广泛用作水泥原料,实现了灰渣的综合利用与节能。

⑦易于实现灰渣的综合利用,炉内优良的燃烧条件使锅炉的灰渣含炭量低,锅炉灰渣成为了重要的水泥原料,得到了广泛应用。

3锅炉节能技术改造

①加装冷凝型锅炉节能器。水蒸气中含有大量的汽化潜热,锅炉排烟中有约18%的水蒸气,可以对锅炉加以改进再利用汽化潜热。水蒸气含量较多导致热损失量大和排烟温度高。可直接在锅炉烟道中安装冷凝型燃气锅炉节能,回收烟气中的多余能量,提高经济效益和减少消耗的燃料。在利用水蒸气汽化潜热的过程中,也可以吸收烟气中的氮氧化物和二氧化硫等污染物,具有较好的环保意义。

②燃油节能器安装。燃烧室内燃料在缺氧条件下导致不充分燃烧,排出污染物过多。如果在锅炉燃烧过程中,喷入适量燃油使燃料充分燃烧,就可以使燃烧设备鼓风量减少约15%~20%,烟道温度有5℃~10℃的下降。燃油经节能器处理后,可节油5%~6%,显著提高了燃烧效率,黑烟明显减少甚至消失,炉膛清晰透明。避免了炉膛壁积残渣现象,环保节能效果较好。较多的减少了废气对空气的污染,排气中一氧化碳、氮氧化物和碳氢化合物等下降较多,同时,废气中含尘量也可降低30%左右。

③加装冷凝式余热回收装置锅炉。当水蒸汽的温度高于100℃时不会凝结成液态水,而传统锅炉的排烟温度大约在160~250℃,所以水蒸汽过热,不能释放出汽化潜热。传统锅炉热效率一般达到87%~91%,加装冷凝式余热回收装置的锅炉,能降低排烟温度50~70℃,能提高热效率,较好地利用水蒸汽汽化潜热。

④使用热管余热回收技术。余热包括高温废气、冷却介质、炉渣、废水、废料、可燃废气等的余热。是在能源利用设备中没有被利用的热能,也就是多余的能源。据相关统计资料,工业企业余热总资源约占其燃料消耗总量的15%~65%,可回收利用的能量约占总余热能量的60%,所以余热的回收利用前景广泛。

4结语

随着我国经济的高速发展,能源需求形式日益严峻,能源供需矛盾突出,燃煤价格不断上涨,采用高低差速循环流化床燃烧技术来生产和改造的锅炉,不仅原料广泛,可以以无烟煤、煤矸石、煤泥、糠醛渣等工业副产品及生活垃圾为燃料,而且能实现清洁高效燃烧,可极大降低企业发电成本,减少污染和节约能源。

参考文献:

[1]冯俊凯.循环流化床燃烧锅炉正常运行的规律[J].能源信息与研究,2000,(1).