首页范文大全数字化设计与制造技术十篇数字化设计与制造技术十篇

数字化设计与制造技术十篇

发布时间:2024-04-29 18:47:08

数字化设计与制造技术篇1

关键词:陶瓷机械;数字化技术;应用研究

我国陶瓷机械装备虽然近几年来有了一定的进步,但在整个陶瓷行业的发展中仍没有发挥很好的同步发展效应,更没有起到引领行业发展的作用。当前科技迅猛发展,数字化设计技术作为一支重要的生力军,在各行各业都发挥着巨大的作用。现代陶瓷机械装备应加速向“数字”和“精确”陶瓷行业发展。推行CaD/Cae/Can、miS和加工柔性化系统、建立FmS示范工程、加快我国陶瓷机械装备数字化设计与制造技术的应用研究等。已成为历史赋予我国陶瓷机械装备技术人员的责任。

一、数字化设计制造技术概述

数字化(Digital)是指信息(计算机)领域的数字(二进制)技术向人类生活各个领域全面推进的过程,是基于产品描述的数字化平台,建立基于计算机的数字化产品模型,并在产品开发全程采用,达到减少或避免使用实物的一种产品开发技术。这种设计全面模拟产品的设计、分析、装配、制造等过程。数字化设计与制造技术的应用可以大大提高机械产品开发能力,缩短产品研制周期,降低开发成本,实现最佳设计目标和企业间的协作,使企业能在最短时间内组织全球范围的设计制造资源共同开发出新产品,大大提高企业的竞争能力。数字化设计与制造技术集成了现代设计制造过程中的多项先进技术,包括三维建模、装配分析、优化设计、系统集成、产品信息管理、虚拟设计与制造、多媒体和网络通讯等,是一项多学科的综合技术,其目的是通过建立数字化产品模型,利用数字模拟、仿真、干涉检查、Cae等分析技术,改进和完善设计方案。数字化设计含盖了现代设计的最新技术,同时也是现代设计的前提。涉及的主要内容有:

1.Cae/Capp/Cam/pDmCaD/Cae/Capp/Cam分别是计算机辅助设计计算机辅助工程、计算机辅助工艺过程设计和计算机辅助制造的英文缩写,它们是制造业信息化中数字化设计与制造技术的核心,是实现计算机辅助产品开发的主要工具。pDm技术集成是管理与产品有关的信息、过程及人与组织,实现分布环境中的数据共享,为异构计算机环境提供了集成应用平台,从而支持CaD/Capp/Cam/Cae系统过程的实现。

2.异地、协同设计在因特网/企业内部网的环境中,进行产品定义与建模、产品分析与设计、产品数据管理及产品数据交换等,异地、协同设计系统在网络设计环境下为多人、异地实施产品协同开发提供支持工具。

3.基于知识的设计将产品设计过程中需要用到的各类知识、资源和工具融入基于知识的设计(或CaD)系统之中,支持产品的设计过程,是实现产品创新开发的重要工具。设计知识包括产品设计原理、设计经验、既有设计示例和设计手册“设计标准”设计规范等,设计资源包括材料、标准件、既有零部件和工艺装备等资源。

4.虚拟设计、虚拟制造综合利用建模、分析、仿真以及虚拟现实等技术和工具,在网络支持下,采用群组协同工作,通过模型来模拟和预估产品功能、性能、可装配性、可加工性等各方面可能存在的问题,实现产品设计、制造的本质过程,包括产品的设计、工艺规划、加工制造、性能分析、质量检验,并进行过程管理与控制等。

二、陶瓷机械设计领域的特点

1.当前行业发展中存在的主要问题

1.1技术、装备水平低。大多数陶机专业厂技术力量不足,产品设计多用传统的设计方法,CaD等现代化设计方法应用还不普遍,工厂装备落后,数控机床和加工中心为数不多,计量、检测、控制手段较差,生产机械化程度低;

1.2产品质量差、档次低。陶机产品外观质量落后,有的性能不稳定,机电一体化产品很少,尚有许多空白,成套性差,产品附加值低,在国际市场上缺乏竞争力;

1.3产业组织结构不合理,生产专业化水平和企业管理水平低。我国陶机工业虽然己经形成一定体系,但专业化分工、集约化程度很低,标准化程度也不高,产品零件互换性差,难以满足高档瓷生产的要求。这种生产方式极大地限制了现代化科技的应用,日用陶瓷和建筑陶瓷机械始终没有赶上国际先进水平。

2.陶瓷机械设计领域的特点

2.1结构类型多、型号多。例如在真空练泥机设计中,有单轴、双轴和三轴真空练泥机等;泥浆泵设计有单、双缸,立式、卧式等;

2.2常用设备功能结构比较稳定,结构复杂程度较小。例如球蘑机、练泥机、滚压成型机等一般由机架、传动系统、执行机构等组成,不同型号的设备采用的部件类型和结构参数有区别,但产品功能基本相同。这种结构稳定性非常便于采用模块化变型设计技术和参数设计技术;

2.3常用陶瓷机械产品受企业投产规模、陶瓷原料性能的影响,研究开发周期长,采用iCaD技术能缩短产品研究开发周期,节约成本。

数字化设计与制造技术篇2

近年来,随着国民经济的快速发展,我国机械制造业发展迅猛,我国的冲压模具企业逐渐实现数字化、智能化,且随着数字化技术的应用,我国机械冲压模具设计水平不断提高,但其与发到国家仍旧存在一定的差异,文章研究冲压模具设计和制造中的数字化技术应用,以此来改善传统的模具,促使我国冲压模具的高速发展。

关键词:

冲压模具;数字化技术;设计应用

0前言

目前我国以航空制造业和汽车工业为主的机械类制造业发展迅速,促使我国冲压模具以年20%的速度持续增长。冲压模具本质上属于技术密集型产品,冲压生产中的冲压产品的智联、生产效率等与模具设计具有较大的关联,大力发展模具的数字化设计与制造技术的分析与研究,将数字化技术广泛应用在模具工业中,促使现代机械制造业得到快速发展。

1冲压模具设计和制造中的数字化关键技术

在冲压模具的使用上,要将数字化技术应用在模具制造的全过程,实现自动化制造和精确化制造,促使冲压模具的高效开发。模具制造的数字化技术主要是将计算机技术应用在模具制造的过程中,实现每一制造环节的精确控制,从而满足冲压生产的要求。数字化关键技术具体包括以下几种:(1)冲压成形Cae技术。冲压成形Cae技术本质上是利用计算机技术制造计算机软件,并将计算机通用软件应用在模具自动化质量控制过程中,促使该技术能够满足模具制造的精确度要求,也显著提高冲压模具的使用周期。如autoForm/pam-Stamp软件应用在模具制造过程中,通过计算机分析、模拟机械用材的流动、厚度的变化以及材料的破坏、起皱等,以此来对模具产品零件的成形、工艺设计进行准确的预见和建议,实现模具的形变。(2)模块化的快速设计系统。对于冲压模具的制造与设计,要重视结果设计,能够将技术系统应用于模具制造上,提高模具设计的质量。如随着现代计算机技术的发展,冲压CaD/Cam的一体化技术应用在模具设计上,可以有效避免单一软件使用的弊端。CaD通用软件主要是应用在交互绘图和造型层次的设计上,一般是以模具设计人员的设计经验为主来进行模具绘图和造型设计,这种软件设计方法不能够及时发现模具设计中的不足之处,一定情况下会延误模具设计周期,影响模具的设计质量。因此在数字化关键技术的使用上,可以将模具设计的技术结合起来,弥补单一技术应用中的不足之处。

2冲压模具设计和制造中的数字化技术的优点

(1)数字化装配技术的优点。冲压模具的装配方法一般分为4种,包括互换装配法、分组装配法、修配装配法以及调整装配发等具体内容,在模具设计上,可以将这四种装配法按照先后顺序应用在设计环节中,有利于进行精加工,减少装配过程中模具标准件的损毁。(2)计算机仿真技术的优点。在传统的冲压模具设计上,高度钢材在循环加载条件的作用下,会产生较强的包辛格效应,而计算机仿真技术的应用极大程度上改变了冲压设计现状,通过计算机仿真模拟将设计参数设计在固定范围内,进行冲压设计,提高了模具设计的精确度。(3)数字化参数的程编优点。参数化程编应用在冲压模具的加工制造上,在数字化技术的作用下,逐渐从单纯的型面加工扩展到结构面加工,由中低速加工变化为高速加工,从小切深变为高进给,有效改善工件加工质量,减少加工打磨面;减少试模的工作量,提高模具制造的精度;刀具使用上以小型加工模具为主,注重细节制造,以此既满足模具的设计精确度要求,也有效降低使用费用。

3冲压模具设计和制造中的数字化技术的应用

3.1软件技术在模具产品设计同步工程中的应用

在模具产品的同步开发中,要想满足冲压模具的建设要求,就要将冲压工艺贯穿于冲压模具的同步开发过程中。在冲压模具的开发设计上,要求设计人员全员参与,从冲压模具的生产工艺、产品的冲压技术再到模具的具体开发,都要依据冲压成形的物理规律进行模具设计,借助计算机数字化技术真实的反映模具与板料的的关系,并将计算机软件应用在模具变形设计的全过程中。在冲压模具的设计上,可以应用非线性理论、有限元方法以及各项计算机软硬件,以此来对产品零件的成行进行精确的预算,全面提高冲压模具的技术机控制质量与效率。

3.2模块结构化的快速设计应用

在数字化技术使用上,要预先消化模具的任务要求(冲压要求),结合现场模具生产经验,应用模具结构库,进行模具的初设计;其次再要进行模面设计,这一阶段调用标准机械件库,组装成一套完整的模具。在参数化模块设计上,要实现典型结构模板化和重复工作智能化,以此来提高冲压模具的制造水平。典型结构模块化,主要是基于模块化的思想,对冲压模具的典型结构进行分类总结,应用数字化技术进行模具设计参数的控制,生成智能化模板,以此在模具设计过程中完成建模;重复工作智能化应用上,主要是将模具设计过程的重复工作利用智能化模板和二次开发工具来实现缩短设计周期的目的,以此来实现冲压模具的智能化、自动控制化进程。

3.3信息系统的应用

在冲压模具设计上,要将数字化技术应用在制造业的每一环节中,如可以将数字化技术应用在机械自动化管理、绘图设计、参数分析、模具制造以及模具检测中,在这一过程中应用信息化系统,可以实现产品信息的共享,并将模具制造信息以计算机信息化的形式固定下来,从而为冲压模具的制造设计提供借鉴意见,降低模具设计人员的工作量。

4结语

随着信息技术以及科学技术的发展,我国的冲压模具已经由传统的机械模具形式转变为机械自动化体系,将先进的数字化技术应用在模具制造上,极大提高了我国冲压模具的发展速度,也提高了冲压模具的精确度和使用周期,推进了我国冲压模具的行业的发展进程。

参考文献:

[1]潘宇祥.探讨数字化技术在冲压模具设计与制造中的应用[J].工程技术:全文版,2016(07):00258.

[2]肖乐.数字化技术在冲压模具设计与制造中的应用[J].工业c,2016(06):00201.

数字化设计与制造技术篇3

[关键词]数字制造;离散化;数字化;建模

中图分类号:p231.5文献标识码:a文章编号:1009-914X(2014)40-0359-02

1数字制造的概念

1.1数字制造的内涵与定义

数字制造被认为是一种可以减少生产时间、成本,而且可以照顾用户的个性化需求、提高产品质量、加快对市场的反应速度的技术。大的汽车和飞机生产商在探索利用先进的三维虚拟软件、虚拟现实技术以及产品生命周期管理系统(pLm)的数字制造,它不仅帮助制造过程的实施,也有利于在产品开发阶段了解产品是否能在可承受的成本内制造。数字制造是在计算机和网络技术与制造技术的不断融合、发展和广泛应用的基础上诞生的,其内涵是:(1)以CaD/Cam/Cae为主体的技术;(2)以mRpⅡ(manufacturingResourcesplanning,制造资源计划)、miS(managementinformationSystem,管理信息系统)、pDm(productDatamanagement,产品数据管理)为主体的制造信息支持系统;(3)数字控制制造技术。数字制造技术是数字化技术和制造技术融合形成的,且以制造工程科学为理论基础的制造技术的重大革新,是先进制造技术的核心。数字制造的定义,指的是在虚拟现实、计算机网络、快速原型、数据库和多媒体等支撑技术的支持下,根据用户的需求,迅速收集资源信息,对产品信息、工艺信息和资源信息进行分析、规划和重组,实现对产品设计和功能的仿真以及原型制造,进而快速生产出达到用户要求性能的产品的整个制造过程。也就是说,数字制造实际上就是在对制造过程进行数字化的描述而建立起的数字空间中完成产品的制造过程。

1.2几种数字制造观

1.2.1以控制为中心的数字制造观

数字制造的概念,首先来源于数字控制技术(nC或CnC)与数控机床,这是数字制造的重要的基础。随着数控技术的发展,先后出现了对多台机床用一台(或几台)计算机数控装置进行集中控制的直接数字控制(DnC),可以加工一组或几组结构形状和工艺特征相似的零件的柔性制造单元(FmC),以及将若干柔性制造单元或工作站连接起来实现更大规模的加工自动化就构成了柔性制造系统。以数字量实现加工过程的物料流、加工流和控制流的表征、存储与控制,这就形成了以控制为中心的数字制造观。

1.2.2基于产品设计的数字制造观

正如数控技术与数控机床一样,CaD的产生和发展,为制造业产品的设计过程数字化和自动化打下了基础。将CaD的产品设计信息转换为产品的制造、工艺规则等信息,使加工机械按照预定的工序和工步的组合和排序,选择刀具、夹具、量具,确定切削用量,并计算每个工序的机动时间和辅助时间,这就是计算机辅助工艺规划(Capp)。指出数字制造近年来还融入了Cape(Computeraidedproductionengineering),这是一种新的计算机辅助工程环境,制造过程的环境信息可以被工程师应用到今后的制造系统及其子系统的设计和实施。

1.2.3基于管理的数字制造观

从数字制造的概念出发,可以清楚地看到,数字制造是计算机数字技术、网络信息技术与制造技术不断融合、发展和应用的结果,也是制造企业、制造系统和生产系统不断实现数字化的必然。在数字制造环境下,用户和企业在广域内形成了一个由数字织成的网,个人、企业、车间、设备、经销商和市场成为网上的一个个结点,由产品在设计、制造、销售过程中所赋予的数字信息成为主宰制造业的最活跃的驱动因素。

另一方面,数字制造包含了以控制为中心的数字制造、以设计为中心的数字制造和以管理为中心的数字制造。当前,网络制造是数字制造的全球化实现,虚拟制造是数字工厂和数字产品的一种具体体现,而电子商务制造是数字制造的一种动态联盟。

2数字制造的本质和核心问题

数字制造的本质是制造信息的数字化,而数字化的核心则是离散化。其本质是如何将制造的连续物理现象、模糊的不确定现象、制造过程的物理量和伴随制造过程而出现和产生的几何量、企业环境、个人的知识、经验和能力离散化,进而实现数字化,即是将它们表示为计算机可以识别的模式。

离散化和数字化的过程,将涉及一系列理论基础问题,计算制造学是最核心的理论基础。这里,计算制造学就是建立各种制造计算模型,对产品进行数字化表征与传递、建模与仿真,这是计算制造学的关键技术,也是数字制造的基础和核心科学问题。

3数字制造的建模方法

数字制造系统的建模对象涉及到广义的制造过程,包括制造环境、制造行为和制造信息。数字制造系统的目标,就是要在数字化的环境中完成产品的设计、仿真和加工。即接到定单后,首先进行概念设计和总体设计,然后是计算机模拟或快速原型过程,直至工艺规划过程、Cam(computeraidedmanufacturing,计算机辅助制造)和CaQ(ComputeraidedQuality,计算机辅助质量管理)过程,最终形成产品。

下面重点介绍这一过程中的基于物理的建模与仿真这一环节。

建模与仿真可广泛用于产品开发过程,包括方案论证、设计、分析等各个阶段[9]。在这个过程中,常常需要把现有的对象融入虚拟环境中。例如,机器人是一种综合了机、电、液的复杂动态系统,通过计算机仿真可以模拟系统的整体状态、性能和行为。揭示机构的合理运动方案及有效的控制算法,从而避免或减少机器人设计划造以及运行过程中的问题。目前新产品的设计和制造规划越来越多地借助于计算机仿真来实现。

近年来,数字样机(Digitalmock-up)技术成为产品开发中的一个研究热点。数字样机就是把CaD基于物理的建模、仿真和产品全生命周期管理系统综合起来,形成一个虚拟产品开发环境,使产品开发人员能够在这种环境下策划产品、设计产品、预测产品的运行性能特征以及真实工况下可能具有的响应,从而减少设计迭代的次数,减少甚至取消制作物理原型样机,以改善设计,有效地缩短产品的开发周期。支持产品开发的建模与仿真是一个十分复杂的系统,需要许多单项技术的支持。但同时也存在许多共性问题如三维建模、约束运动学相动力学分析、计算算法相求解等。在建模仿真系统研究与开发中,可以采用基于商品化软件平台二次开发的策略,把研究集中在可制造性分析和产品物理性能建模等方面。在产品的设计过程中,数字样机可根据需要随时改变,以满足测试与评估的需要。数字样机为面向技术要求、制造性能、可维护性的设计提供了集成可视化、虚拟环境和虚拟原型技术的计算平台。

4数字制造应用实例

4.1需求分析

平面二次包络环面蜗杆副(简称平面二包蜗杆副)有着优良的传动性能,但这些优良性能必须以较高的制造精度、安装精度来保证。长期以来,平面二包蜗杆副都采用对偶范成法加工,这种加工方法由于工艺复杂,难以解决精度差的痼疾,且制造成本高、使用寿命短,这限制了平面二包蜗杆副的推广普及。在数字化时代,必须应用全新的数字制造模式来解决平面二包蜗杆副制造的瓶颈。在此模式下,只有在保证最优设计指标的基础上,采用先进的制造技术才有可能完成最优的实体型面加工。

4.2数字制造方案

制造信息是贯穿制造全过程的精髓,制造信息的产生、处理、传递和应用是决定产品制造敏捷性、精确性、经济性的关键因素。在信息驱动型制造业中,制造信息的数字化是数字制造的前提条件。平面二包蜗杆副的制造信息数字化应包括两方面内容:①蜗杆副实体的三维数字化建模;②数字化制造工艺规划。数控加工是数字制造的最终目标。在传统生产模式下,平面二包蜗杆副必须使用专用机床加工,这是制造成本高的根本原因。在数字制造模式下,只要获得蜗杆副型面的精确数学模型,就可使用通用数控机床对不同模数、不同中心距的蜗杆副进行统一加工。具体的实施方案如下。

4.2.1平面二包蜗杆副的数字化造型

平面二包蜗杆副蜗轮齿面形状复杂,用虚拟加工的造型方法虽然可以获得蜗轮齿面,但往往精度不高。nURBS方法具有表示与设计自由型曲线曲面的强大功能,是形状数学描述的主流方法之一。由于蜗杆副啮合型面理论接触线方程已获得严格数学推导,因而啮合型面的造型可以认为是已知数学模型的自由曲面造型。在进行蜗轮真实齿面的造型时,可基于经典的齿面啮合理论,针对真实齿面啮合分析的特点,由nURBS齿面上的拓扑离散数据点构造齿面曲线,再由齿面曲线构造插值曲面,实现参数化nURBS自由曲线曲面理论与经典啮合理论的有机结合,在此基础上建立面向几何又有严格数学支持的蜗轮齿面数学模型。

在完成啮合型面造型之后,整个型面可以用统一的参数方程加以描述。利用这个参数方程可以计算齿面上任意点处的型值,并以此构成啮合型面关系数据库,这就为数控加工提供了数据基础。

4.2.2平面二包蜗杆副数字化工艺规划

平面二包蜗杆副在数控加工环境下的工艺过程包括毛坯的选择、各表面最终加工方法的确定、制订工艺路线、工序设计等步骤。针对平面二包蜗杆副这种目标明确的产品,使用基于成组技术(Gt)的派生式工艺生成系统。

接下来是对平面二包蜗杆副的数控加工,采用数控车床、磨床加工蜗杆,蜗轮齿面直接采用多坐标联动数控机床直接控制球头铣刀加工出近似蜗轮齿面。在平面二包蜗杆副的误差检测阶段可采用全数字检测:用三坐标测量仪扫描蜗杆副实际齿面,将测量数据输入计算机;然后,基于测量数据进行蜗杆副实体的计算机重构;最后,将重构型面与计算机仿真理论型面进行比较,可获得实际加工误差。

5结语

制造信息的数字化是数字制造的本质和前提。本文以在传统模式下设计、加工复杂,难以适应市场快速多变要求的平面二包蜗杆副为例,将平面二包蜗杆副的制造信息数字化――包括建立其实体啮合型面关系数据库和基于成组技术(Gt)派生数字化工艺规划。采用数字制造技术可以提高对市场反应的速度,满足个性化的需求。

参考文献

数字化设计与制造技术篇4

关键词:数字化设计与制造;压力容器;发展及应用

引言

近年来,我国科学技术得到了快速的发展,现代化制造技术也在发生重大变革,其中典型的有压力容器设计、制造与应用。压力容器的质量影响着使用者的安全,在设计与制造中稍一疏忽将会导致产品不能正常安装,甚至造成整个设备报废,严重者还将导致安全事故的发生。

1.概论

压力容器是我国现代化工业的重要组成部分,主要用于高温、高压、易燃易爆等物质的盛装,压力容器质量的好坏关系着使用单位的安全性,为保证压力容器的质量,应严格控制制造的各个环节。当前我国许多企业依然还在使用传统的制造工艺,主要以手工机床为主导,数字化技术的应用将现代工业带入了一个新的局面。其主要技术有计算机辅助设计(CaD/Cam)、计算机辅助工艺设计(Capp)、计算机辅助工程分析(Cae)以及产品数据管理(pDm)等。在设计环节,包含了产品的规划、设计、生产准备等。数字化制造主要是实现Cam与CaD等技术的应用,并在制造过程中解决相关性问题。同时将制造过程用数字化反映出来,并对制造质量、定量等信息进行综合评价。

此外,在数字化设计与制造中,会根据不同需要对其进行调整,例如,在测绘行业中,数字化技术将会以测绘生产的形式存在,通过对数字化生产及技术进行管理,从而使其向信息化转变。在汽车模具制造行业,数字化将会以模具制造为主导实现汽车模具的设计及制造。

2.压力容器制造业的现状及发展

当前,国外的压力容器主要执行压力容器国际标准一体化,但随着全球经济一体化的快速发展,压力容器标准国际化将更加明显。压力容器在设计及制造中,会受到多重因素的影响,尤其是整个制造系统没有统一的管理及控制方案,将会直接影响到产品质量。在设计方面,采用autoCaD、anSYS、Sw6以及pVCaD等设计软件降低了设计劳动强度,提高了设计效率,同国外数控技术管理部门相比较,我国压力容器在零部件的制作、焊接等自动化工序上、以及产品的精度和生产质量等方面还有着不小的差距。在设计理论研究方面,专家系统以及Capp系统均已达到成熟阶段,但受到我国当前经济水平和企业经营规模的限制,对压力容器的设计和制造有着很大的束缚。

此外,我国压力容器在制造生产中也存在很多问题,其中主要表现在:①生产工艺的重复性以及多余的工艺,影响了产品生产周期和产品质量。②生产时没有严格按照国家规范及标准进行,导致产品存在严重的质量隐患等;③不同工艺在生产中脱节,导致产品生产周期过长,严重者将直接影响产品质量的优劣。

3.数字化在压力容器设计中的具体实施

压力容器在设计中,受到的影响因素有很多,例如,受到压力容器的强度,荷载的测试水平、几何尺寸等,其随机变量比较多,在设计时,引进先进的设计方法进行设计可以有效地提高相关变量的准确数据,使其结构更加接近实际情况。

压力容器在近年来的发展中,向着精密化、智能化、柔软化、网络化、集成化等方向发展。在设计发展中,压力容器设计实现了从手工绘图到计算机辅助设计与建模的过渡,当前常用autoCaD、pro/e、Solidworks等绘图软件进行图形绘制及建模,在保证图形质量的同时,大大提高了生产效率。

数字化在压力容器的应用中需要解决以下几个方面的内容:①建立统一的产品模型,向标准化方向实施,保证产品在维修阶段的有效性和统一性。②建立数据交换标准。使其达到有效的信息交换,保证各个阶段的动态联盟。③数据集成。使其完成管理系统、组织系统之间的数据管理和共享。④过程集成。完成现代化工艺流程化,使其整个生产过程统一化和简单化,在生产的过程中完成自动化管理和生产。

4.数字化在压力容器制造中的具体措施

数字化制造在压力容器中的应用,①从压力容器产品设计研发角度应用,则利用计算技术辅助设计CaD/Cam等软件平台,如配套应用建模分析方法有autoCaD、Solidworks、pro/e等制图软件平台,能够有效保障设计效率提升,使之与生产加工达到紧密衔接。②从产品加工工艺应用,Capp是实现计算机辅助设计CaD/Cam到产品制造系统的桥梁,通过计算机技术,以系统化、标准化方法,确定零件或产品从毛坯到成品的制造工艺流程方法与技术,与传统工艺相比,Capp能够提高工艺文件质量与工作效率,减少工艺编制工作对工艺人员技术的依赖,缩短工艺准备工作,建立工艺知识库。③从压力容器生产制造过程中应用数字化技术,首先建立可靠的pDm平台,然后配套应用计算机辅助设计手段、数控加工设备、焊接机器人等先进的生产装备流水线作业。我国当前的机器人技术已经较为成熟,可以根据对生产设备和管理技术的控制,实现工业机器人的自动化生产。

此外,在压力容器产品设计建模阶段,也应当建立一种可以展现产品全寿命周期数据的产品模型。此时,则需要考虑产品数据交换、数据集成、功能集成等,以做好软件平台应用的接口自动化,强化客户端与服务器间的信息资源控制等,从而才能搭建有力的网络辅助设计平台,指导于压力容器产品的实践加工。

5.结语

随着科学技术的不断发展,我国数字化技术在压力容器设计与制造中的应用将更加成熟,并逐渐向着网络化、智能化、一体化等标准发展。同时,随着国外标准一体化的相关规范标准的建立,压力容器中相关技术的应用将会更加全面,更加快捷。本文对数字化在压力容器的设计与制造中存在的问题讨论的不够具体,以及相关技术的应用讨论的不够全面,此点将是笔者今后的重点研究方向。

参考文献:

[1]刘检华,孙连胜,张旭,等.三维数字化设计制造技术内涵及关键问题[J].计算机集成制造系统,2014,03:494-504.

数字化设计与制造技术篇5

[关键词]数字化技术;飞机制造;综合保障

中图分类号:p231.5文献标识码:a文章编号:1009-914X(2014)46-0388-01

前言

数字化技术完善了飞机制造单位以往传统的设计、生产、管理等模式,可以迅速的给不对供给远程技术类服务,并且对提升飞机本身的可靠性、修护性、保障性等有着很深远的影响。交互式的电子技术手册呈现了技术手册的数字、智能化,目前已经成为了装备保障数字化技术探索欲使用的重点之一。

一、在飞机的研制进程中使用数字化技术

近几年来我国的飞机研制生产进程中,先进的数字化技术利用工程的并行以及无纸设计、数字化预装配、一体化设计制造、物流管理等诸多的方法逐渐的开始使用,改善了飞机的设计、生产、管理模式,这样减少了研究的时间,降低了费用,且获得了明显的效果。随着计算机以及网络技术的飞速进展,飞机的制造单位也将以多媒体计算机体系以及通讯网络的数字化技术为基准且使用机的寿命周期的全部过程中,不止是使用于设计、制造,还运用于产品的综合保护、运用修护等众多的方面。

1、以数字化为基准,深入探索五性CaD

根据目前所有的分析方式出现的问题,我国的飞机制造单位探索开发了五性CaD体系,也就是计算机辅助设计分析软件集成的环境,简称为CaRmS,也包含了可靠性的设计、安全性的设计、修护性的设计、测试性的设计、保障性的设计等分析。CaRmS是设计人员将可靠性修护性保障性等诸多的指标设计融入到产品中的有效工具。在保障性设计和以往传统设计同时的展开进程中,CaRmS可以立即的发现存在的问题、排除隐患、提升装备保障性的水平,它拥有着全方位的集成化技术方式。

2、数字化样机给飞机的可靠性设计和分析提供了机遇

当下机械CaD与电子CaD技术不断的进展成熟,产品的开发全部是在计算机上操作的,CaD软件已经局部的代替了图纸的设计。数字化技术也给飞机的可靠性定量性设计供给了一个有效的平台,现阶段CaD软件及有限元分析软件有效的结合、proe软件以及有限元分析软件的完美结合也已实现,工程分析的方式逐步的走向成熟,构造强度的分析能解决飞机可靠性问题。

3、虚拟修护技术与集成化技术的使用为飞机的综合保障带来很大的前景

3.1虚拟修护技术

利用对产品的实时的模拟仿真,设计人员或者用户可以像对待真正的产品实物一样移动、碰撞、运用虚拟的产品,在飞机的生命期限内各个阶段对性能实行各类的实时分析,比如有限元、人机工程、干涉、加工进程、装配等诸多的分析。利用VR进行方案的分析和修改,让飞机可以达到总体优化。

3.2集成优化技术

集成优化技术可以解决目前所有的CaD体系以及飞机可靠性修护性保障设计间的链接。目前的CaD与Capp、Cam等使用体系在以往的几十年进程中获得了飞速的进展,且在飞机行业中得到了很好的运用,不过各类型运作体系间的模型定义、呈现方式、存取方式都有着一定的差异,导致信息的交换出现了阻碍,很多的资源不能进行实时共享,且集成的力度很低。并且当下的CaD体系仅仅只重视零件的集合外形设计与体现,不能将尺寸、公差、装备、修护等诸多的特性、材料、功能有效的呈现,这就表明了高层次的语义信息以及产品寿命周期等其他的进程中所需要的信息,对设计的意蕴、功能需求以及装配的关系非几何类信息很难呈现,这些体系的信息模型只能进行几何信息以及拓扑信息,而对于可靠性分析、修护性分析、其他相关的信息在体系信息模型之中较少呈现。

二、建立远程数字化技术服务体系

远程数字化技术服务就是把网络信息检索技术以及数字化技术、数据库技术、装备修护保障技术有效的结合,且借助现代化的科技技术,迅速的为不对供给数字化技术。它可以跨地区的把运用不对、制造单位、科研院、装备部、军代表室等诸多的企业有效的组织,各方共同进行网络体系的组建,供给武器装备的数字化资料的支撑,辅助技术服务且提供迅速的信息放映与技术支持,并且所参与的各方也都能立即的获得各自需求的重要数字资源。

三、交互式电子技术手册

飞机保障技术的快速创新是提升飞机保障综合程度的基准,也是飞机现代化保障的主要标志。它不仅仅是一种电子手册,更是呈现了技术手册的数字化以及良好的交互功能,还呈现了智能化的技术手册。交互式电子技术手册的众多数据格式利用了目前美国与国际通用的较为成熟的标准,进而呈现了数据的互操作性以及实时共享性,呈现了数据网络集成化的最大可能。且它是数字化技术、英特网技术、人工智能技术有效结合的一体化强大技术,也是现代化体现装备的保障信息化的最关键技术。

四、构建装备订货数字化保障系统

装备订货数字化保障系统是依靠国家、国防信息的基础性设备以及军队的自动化信息网络系统,主要是以计算机、网络、通讯、数据库、电子数据交换等先进的技术为支撑的。它连接装备管理处、运用部队、军代表室、院所等企业的综合性集成化的网络数据库通讯,且有很大的优越性与先进性,它有着先进的思想、高端的方式、深层的目标,进而促进保障故障从开始的传统人力物力密集型的方向逐渐的走向技术密集的方向,呈现保障体系的网络化、数字化、准确化、一体化。

结语

数字化技术设计及制造已经使用在飞机制造业中有大约40年的历史了,这也逐步的改变了飞机传统的研究模式。依据科技的创新,构建装备订货数字化保障系统,提高装备保障的迅速反应程度以及迅速机动保障的力度,这也是打赢未来信息化进程的必要需求。

参考文献

[1]王祺瑞,石鹏.军用飞机推行综合保障工程的研究[J].飞机设计,2013(2).

数字化设计与制造技术篇6

以飞机装配工艺为例,过去采用样板、模线、样件等模拟量传递方式,效率,准确度,产品质量都比较低。而现在基于计算机的先进装配协调方法采用了数字量传递的方式,效率,准确度都有很大提高。然而无论是哪种装配,协调工艺都决定于其设计。因此要提高装配,协调工艺必须从设计入手。数字化设计技术以CaD/Cam技术、计算机技术、网络数据库技术和信息集成技术发展等为基础,主要内容有产品数字化定义、虚拟装配和并行技术等。产品数字化定义是应用计算机来描述和定义产品的研制,它的目的是对在产品全生命周期的数字化过程中所包含的信息进行定义和描述,以及这些信息之间的相互关联。产品数字化装配是指对已进行数字化定义的产品零部件通过计算机实体进行虚拟装配,确定航空部件的配合是否符合尺寸,配合要求是否存在超差等等。使在设计过程中的可能不合理因素减到最少,从而减少在制造过程中的更改与返工。由于采用了数字化设计技术,使波音777研制周期缩短了一半,降低了25%的成本,减少了75%的出错与返工率,产品质量得到了大幅度提高。并在波音777飞机开发与制造过程中的成功应用,使数字化设计技术的重要性得到充分认识。

2集成技术

由于航空产品有研制周期长,结构复杂,制造精度要求高,产品使用期长,售后情况复杂,研发生产合作国际化等特点,因此集成技术显得尤为重要。作为集成制造技术的重要组成部分,计算机集成制造技术通过计算机技术将CaD、数控编程、数控加工等原本各自独立的环节整合为一个有机整体,以达到提高产品质量,缩短制造过程,减少生产成本的目的。现代集成技术包含有信息集成、过程集成和企业间集成。通过现代集成技术可实现数字化、网络化、全球化制造。完成波音777研发生产后波音公司,开始实施DCaC/mRm(飞机结构设计与控制/制造资源管理),以达到从用户订单、设计制造、最终到交付使用的统一信息和过程管理的目的。现代集成技术可以解决以前单一数据源方面存在的问题,统一管理产品数据、生产管理过程数据。确定信息的完整性、唯一性、协调性、有效性、无冗余和安全性。将资源管理、设计、制造、销售、服务等5个过程的信息整合为一体。

3数控加工技术

先进的数控加工技术是当代航空制造业中一个重要的组成部分,也是柔性制造技术的基础。随着我国近年来大量新机研制项目的开发,大量的业务都需要国际间合作,各航空企业所保有的数控机床总量已大幅度增加,通过数控机床加工的零件数量明显增多。在航空制造所涉及的零部件主要特点是结构复杂、零件数量多,表面形状复杂。因此加工技术难度很大,在此需求背景下,对航空行业的数控加工技术水平有很高要求。为实现这一要求,以特征技术为基础的针对飞机零部件和发动机机构件的CaD/Capp/Cam集成系统技术,分布式的DnC技术,Cap智能化技术,网络数据库以及相应的数据管理技术,车间生产组织、管理调度技术有了很大的提高。

4虚拟制造技术

虚拟制造的实质是通过相关软件在计算机中的制造,可在计算机中演示完整的制造过程。通过虚拟制造可以验证制造过程的安全性,并且可以进一步优化生产方案。从而保证设备与操作人员的安全,降低产品的生产成本,缩短生产工期,提高生产效率。

5计算机技术

在常规成形领域中的应用作为最早于计算机技术相结合的行业,计算机技术明显地推动着航空制造工业各方面的改变。计算机技术在航空部件制造的三大传统工艺(钣金、机械加工、铆装)中的广泛应用,航空制造技术水平有很大进步。飞机钣金件往往具有结构体积大,质量轻的特点,而且大部分飞机结构中的钣金部分是保证飞机气动外形的重要组成,其加工水平直接决定了飞机的气动性能。然而以蒙皮加工为例,传统的蒙皮拉形机往往以人工操作为主,加工质量取决于操作员的熟练度与技术水平,导致产品质量不稳定。不过随着大量采用数控技术的蒙皮拉形机的投入使用,产品质量得到稳定保障。在传统的机械加工方面,大量地对先进数控设备进行采用,使飞机零部件中的复杂表面加工,如发动机叶片的生产效率大大提高。在传统的飞机连接技术中主要采用铆接等方法,同时也导致了疲劳寿命低,密封性差等。而随着对真空电子束焊,激光焊等先进连接技术的研究,可以有效地改善机体结构的各项力学性能。

6结束语

数字化设计与制造技术篇7

航空饭金工装数字化设计制造技术

与其他加工制造方法相比,饭金件的数字化设计制造有自身的特点。饭金件并非一次成形,它的制造过程包括多个工序,因此饭金件的数字化定义不仅包括零件本身的定义,更包括工序件的定义和优化。为了保证制造精度,必须根据零件形状、成形工艺、材料特性等进行成形过程中工艺数模的定义,作为工序间的制造依据和检测依据。其次,饭金件成形是塑性变形过程,无法完全定量控制。再次,饭金成形过程中需控制的主要是成形力、温度等工艺过程参数,而非坐标等几何参数,控制难度更大。由于材料性能的不稳定性和随机性,使工艺参数设计和成形过程精确控制十分困难。因此必须从成形工艺开始直至工装模具试压交付整个过程进行研究,形成饭金件数字化设计制造的解决方案,建立饭金的数字化设计制造体系。饭金数字化设计制造包括工艺数字化设计、数字化工艺数模(即制造模型)、工装数字化设计、工装模具数字化制造等内容,这些内容以产品数模库、产品工艺数据库、工艺数模库、模具设计知识库、标准件库、成形分析/仿真库等共享数据为支撑,通过数据接口与相关部门进行数据交换,由数据管理系统进行管理,进行系统集成,实现并行设计制造,从而提高饭金模具设计质量,缩短制造周期。饭金的数字化设计制造技术工艺设计和制造模型的定义是核心,应该进行以下方面的工作:建立企业共享数据库。饭金件设计是典型的知识需求密集的过程。企业在以往的制造过程中积累了大量关于饭金材料性能数据、典型流程、工艺参数等经验及试验数据,这些数据转化为共享知识,建立模具工艺知识数据库,有助于提高饭金工艺设计的效率和成形质量。此外还有模具设计知识数据库、模具数字化分析数据库等。研究饭金件制造模型定义方法,建立毛坯和工艺模型的专用计算工具,为工装设计、工艺参数设计、数控编程等提供数据源,以满足零件精密成形的需要。图1中,成形模具的外形制造依据为制造模型中的成形工艺模型而不是零件原始数模。成形工艺模型考虑了零件的回弹等因素,对型面和尺寸进行了合理的预修正。以制造模型为框肋零件橡皮囊液压成形工艺过程的数据源,改变了反复试错的制造方式,简化了模具设计的工作,减少了人为不确定因素的影响,提高了模具设计的效率,同时可保证零件成形后的精度,提高零件制造的质量,实现零件的精密、快速和低成本的制造。图1框类零件橡皮囊液爪成形过程飞机蒙皮柔性工装是数字化制造的一个典型案例。图2所示是一种柔性多点吸盘式夹持工装系统,采用数字量传递的蒙皮制造技术,与工艺数字化和数控设备结合很容易实现蒙皮零件的数字化生产,使工装制造周期大幅减少,生产效率显著提高。模具外形调整在10分钟之内可以完成,对于多品种小批量蒙皮零件的生产具有独特优势。国内北京航空制造工程研究所已经开展了这方面的工作5:。

国内航空公司的饭金工装数字化设计制造

数字化设计与制造技术篇8

关键词数字化协同设计;pDm;应用

中图分类号tp3文献标识码a文章编号2095-6363(2015)09-0036-01

随着计算机和网络技术的发展,在设计领域,数字化协同设计将是发展趋势,也是互联网+的一种实现。pDm则是数字化协同设计的重要实现方法。pDm发展较早,它与现代互联网技术结合,可以作为数字化协同设计的重要实现手段,为数字化协同设计提供有力的技术支持,保证数字化协同设计取得积极效果。基于这一认识,我们应认真分析pDm与数字化协同设计的概念和内容,并深入探讨pDm在数字化协同设计中的应用,重点从构建pDm数据库和构建新的产品开发平台两个方面入手,分析pDm在数字化协同设计中的应用效果,为数字化协同设计提供有力支持。

1数字化协同设计和pDm的主要概念和内容

数字化协同设计DCD(DigitalCooperativeDesign)是由计算机图形学、远程会议系统、并行工程、多媒体技术、互联网技术、图形与图形通信和协作信息管理系统等多学科知识集成的系统技术。协同设计从根本上改变了传统单机作业的设计方式,在分布式协同设计环境下,设计人员可以在产品开发的过程中寻找合作,借助于系统提供的功能共同完成设计。

pDm(productDatamanagement,产品数据管理)技术出现于八十年代初期,大多是由各CaD供应商推出的配合CaD产品的系统,主要局限在工程图纸的管理,解决了大量工程图纸、技术文档以及CaD文件的计算机管理问题。这是第一代pDm产品。随着pDm技术的发展,目前pDm产品已经发展到了第三代,无论是技术成熟度还是对数字化协同设计的支持,都比第一代产品有明显的优势。因此,正确分析pDm技术,并掌握pDm技术,对推动数字化协同设计发展和提高设计质量具有重要作用。由此可见,正确分析数字化协同设计和pDm技术的概念和内容,对推动pDm在数字化协同设计中的应用具有重要作用。

2pDm在数字化协同设计中的应用,应构建pDm数据库

pDm作为所有产品知识的唯一数据源,提供了丰富的知识查询手段,特别是对部件和文档的分类管理,使pDm真正成为了一个能够读解数据含义的业务知识系统,使得pDm远远超出了普通的文档服务器(FileServerorFtp)以及VSS这样的协同控制领域,成为最接近知识管理的应用系统。具体应从以下几个方面

入手。

1)将pDm作为搭建数据库的主要技术。考虑到pDm技术的优越性,以及pDm技术对数字化协同设计的作用,在数字化协同设计过程中,积极构建pDm数据库是十分重要的。结合当前数字化协同设计实际,将pDm作为搭建数据库的主要技术,对提高数据库构建质量和满足数字化协同设计需要,具有重要作用。因此,应掌握pDm技术特点,并根据数字化协同设计的实际需要,利用pDm技术,构建数字化协同设计所需的数据库。

2)根据数字化协同设计的现实需要,构建pDm数据库。在了解了pDm技术之后,我们应认真分析数字化协同设计的需求,并根据数字化协同设计的现实特点,利用pDm技术构建数据库,将该数据库作为数字化协同设计过程中的重要数据支撑手段,提高pDm的应用性,为数字化协同设计提供更加完善的数据支撑,最大程度的满足数字化协同设计需要,为数字化协同设计提供有力的支持。

3)把握正确的构建原则,提高数据库的实用性。鉴于pDm技术的优点,以及pDm技术在构建数据库中的作用,在构建数据库过程中,我们应把握正确的构建原则,即把握准确性原则,做好技术选择,把握全面性原则,保证数据库能够起到积极作用,把握有效性原则,保证数据库在实际使用中能够达到预期目的,提高数字化协同设计的整体质量。因此,把握正确的构建原则,并提高数据库的实用性,对pDm技术应用具有重要作用。

3pDm在数字化协同设计中的应用,应构建新的产品开发平台

pDm建立了一个产品开发的平台,使企业能够运用并行工程(Concurrentengineering)的原理,使产品在设计阶段就包含产品相关的各个部门,如设计、工艺、制造、采购等,能够让各个部门协同工作。设计人员在初期就可以选用满足要求并且成本低的零部件,产品设计的缺陷(无论是影响产品性能,还是影响产品的可制造性)也可以被及早发现,从而减少了工程变更的次数,缩短厂产品的研发时间。基于pDm的这一优势,pDm在数字化协同设计中的应用,应构建新的产品开发平台。具体应从以下几个方面入手。

1)根据实际需要,构建新的产品开发平台。在pDm技术应用过程中,考虑到pDm对数字化协同设计的促进,构建新的产品开发平台,是解决数字化协同设计现存问题的重要手段。因此,pDm技术在具体应用过程中,应根据实际需要,构建全面新颖的产品开发平台,提高其针对性。

2)在产品开发平台的构建中,以满足数字化协同设计需求为准。为了保证产品开发平台的构建取得实效,在利用pDm技术构建产品开发平台过程中,应正确分析数字化协同设计的需求,并以满足实际需求为准,做好产品开发平台的构建,提供数字化协同设计的整体质量,提高pDm的应用效果。

3)优化设计流程,提高产品设计的合理性。构建新的产品开发平台之后,应将主要精力放在设计流程的优化上,通过对设计流程的优化,使产品设计的合理性得到全面提高,进而满足数字化协同设计的需要,最终达到提高数字化协同设计效果的目的,为数字化协同设计提供有力支持。

4结论

通过本文的分析可知,pDm技术可以作为数字化协同设计的重要手段,为数字化协同设计提供有力的技术支持,保证数字化协同设计取得积极效果。基于这一认识,我们应认真分析pDm与数字化协同设计的概念和内容,并深入探讨pDm在数字化协同设计中的应用,重点从构建pDm数据库和构建新的产品开发平台两个方面入手,分析pDm在数字化协同设计中的应用效果,为数字化协同设计提供有力支持。

参考文献

[1]张新访.工程数据库系统的版本管理模型[J].华中理工大学学报,2014(2).

[2]曹健,吴瑞珉,张友良.CSCw环境下协同设计的多版本问题及其管理策略[J].计算机工程与应用,2014(11).

[3]于源,卢军敏,王小椿.基于多色图理论的pDm版本管理模型的研究[J].计算机辅助设计与图形学学报,2013(12).

[4]于戈,宋宝燕,田文虎,等.现代集成制造中的工作流管理技术研究[J].计算机集成制造系统-CimS,2014(6).

数字化设计与制造技术篇9

关键词:民用飞机;设计制造;竞争力

前言

航空技术的不断发展和完善,使一些民用飞机逐渐露出弊端,其制造成本高、运行效率低、人工技术差等问题提出了一些改进设计,采用数字化设计技术,提高民用飞机的性能特点,加大了市场竞争力。

1飞机制造中的问题分析

1.1模拟技术在应用中的问题

模拟仿真技术在飞机的研发中占据重要地位,需要从最开始的产品设计中便开始使用,并且需要在制作的整个过程中存在,但目前发现的问题多数都出现在运用时间上。飞机的研发过程中与各环节出现了时间不协调,忽略了飞机设计初期对仿真的重要性,所以容易发生时间错误等问题。

在民用飞机的研发过程中,需要与产品设计、工装设计、工艺设计等方面的工作人员协调到互相合作模式,进行流水工程,改善在工作时间上的浪费。但就我国目前来看,并没有做到以上相互合作模式,还需要从外国发展中吸取更多宝贵经验,结合我国企业情况,快速奠定飞机制造业的基础。另外,我国飞机制造行业的数字化设计与仿真模拟技术的本身也具有一定程度的不足,还需重点关注,加大技术的创新力量。

目前国际上民用飞机使用最多的软件是日本索尼公司的DeLmia软件,此软件应用量大,但仍存在不足,比如,此软件不具备实现重力仿真技术,在模拟仿真中的三维软件都是模拟存在,在模拟仿真中,无法正面的反映出应用部件的刚性及柔韧性。因此,在使用DeLmia软件时,仍然需要对该软件产生的缺陷进行分析,减少设计中的错误。

在实际工作中,通常只会通过技术人员的工作经验和产品来确定仿真模拟的情况,并没有建立起数字化设计与仿真设计应用的统一,造成的结果不一致,严重影响了飞机模拟制造时的质量。因此,在设计制作过程中,需要制定一定标准的规范体制,按照相应标准,从设计初期便统一执行。

1.2仿真使用系统的问题

飞机制造中,使用的系统之间相差较大,非常容易使效果产生变化,因此,在扩大数字化技术应用的使用范围时,还需要对系统界面进行合理设计,并对工作人员进行技术培训,提高数字化设计系统的实用性和安全性。

1.3现场数据的采集和反馈问题

设计中最主要的工作是对现场环境的数据采集和反馈,能够为接下来的工作提供有效依据,对现场生产过程的实时监控,并制定合理的制造计划、安排合理的制造进度,但目前所应用的民用飞机制造应用系统中不具备这项功能,因此也无法全面的实现现场环境的数据采集等工作[1]。

民航企业中还未普及数字化管理系统软件,仍然采用纸质数据报表,容易产生漏洞或信息错误,也无法对产品数据进行统一的划分。目前多家测量软件均可以直接生成表格,应用到系统中,可以将数据存储,为以后的设计质量监控和安全生产做出指导意义。

2数字化设计与制造的意义

数字化设计是基于多种形式媒体的支持下产生的,能够达到用户的需求。将虚拟显示、计算机网络、数据库和多媒体统一在一个系统下,为满足用户需求建立的一种数字化设计和制造的系统。对产品信息、工艺信息和资源信息进行统一分析、统一规划和统一组建等,达到快速生产出能够满足用户需求的整个设计与制造的过程。民用飞机制造行业的大力发展也带动了计算机技术、制造设计技术、信息管理技术的不断发展,因此,数字化设计与制造是现代民用飞机制造行业的发展趋势。

民用飞机制造企业使用数字化设计技术,能够有效提高企业竞争力,结合其他相关技术,使数字化设计融合计算机、网络信息,再采用数据库平台,完成飞机的设计制造。由此可见,民用飞机行业的发展需要以科技技术为主,以提高飞机设计、制造、管理、售后服务的目标努力,全面实行数字化管理流程,建立起数字化的设计制造体系,完全实现民用飞机制造业的真正数字化意义[2]。

3数字化设计与制造的特点分析

飞机制造行业的传统设计方法从概念设计到初步设计,最后到生产设计的三个阶段,每一阶段都有相关的设计绘制模型,工作人员需要按照相应的绘制模型的样机对飞机内部配置进行设计。飞机制造行业融合的各项技术,发挥了先进科学技术的优势,改善了企业的整体经济运营[3]。

4最新技术在民用飞机设计中的发展

4.1加大对数字化设计仿真技术的开发应用

产品研发设计中,单一使用DeLmia软件无法将信息传递到各个环节,因此需要引入不同的数字仿真设计技术,从最初的研发工作开始,各部门工作人员的高度配合,利用数字化的工作设计研究理论,提高研发的质量,建立起一个集成系统软件平台。在产品设计中,将DeLmia软件与pDm软件相结合,能够将数据存储和调用,实现数据资料的及时性和准确性;若将DeLmia软件与Capp软件相结合,可以具有较强的文本处理功能,使系统更加具有实用性[4]。

4.2建立数字化的组织管理体系

采用最新的管理方式,建设专业的管理团队,将数字化系统的组织建立成为管理平台,利用各部门之间的资源,将产业链条的结构作为各企业间的链条,达到国际供应商的标准规模,在产品设计研发中,需要对每一项工作进行严格的监督审查,改变传统的管理方式,与制造商和使用商的良好沟通,组建管理小组,及时解决产品研发过程中的技术问题,争取缩短工期、提高工作效率、降低成本、实现经济效益。

4.3提高系统的价值

民用飞机的客户群广泛,民用飞机制造企业在制造过程中需要运用系统软件,将文件格式及签订模式个性化,满足一些客户对工艺文件的格式签订的需求。实际管理中,将物料资源进行条码管理,降低管理人员的劳动力度,也能防止人工带来的错误操作,同时结合人性化的管理模式,将系统的功能特点得到充分发挥[5]。

5结束语

综上所述,民用飞机制造业的竞争力主要受控于时间、成本、质量和服务四个方面,这几方面已经成为航空航天领域的发展目标。数字化的设计与制造技术改善了航空制造业,提高了民用飞机的质量、缩短了研制周期、降低了成本投入,达到了客户的满意度。民用飞机制造业的整体技术改革,领导者需要建立起专业的工作团队,全面提高企业在本行业中的竞争地位。

参考文献

[1]李湘芝,史善华.数字化背景下民用飞机设计制造竞争力提升[J].科技创新导报,2013,05(14):92-93.

[2]吴晓宇.探讨供应商管理在中国民用飞机制造产业中的发展方向[J].科技信息,2013,03(21):61+44.

[3]马翔,曾国毅,赵荣泳.民用飞机制造企业特殊工种管理系统设计[J].机电产品开发与创新,2013,06(05):17-19.

数字化设计与制造技术篇10

关键词:数字化;设计;农机;应用

1关于数字化设计技术

数字化设计是随着计算机在各个行业应用和辅助下而诞生的一门新型技术,因此,数字化设计技术的核心和发展,其实是以计算机信息处理技术在数字领域的升级与应用为依托(如压缩与编码)。CaD(计算机辅助设计)就是最早应用在设计与制造行业中的数字化技术,而且涵盖非常广泛,有效推动了设计技术的应用与升级,也在很大程度上拓宽了数字化设计技术的应用领域。[1]数字化设计技术的关键是以打造呈现产品形态的信息平台为基准,借此生成以计算机为核心的数字化模型,然后再将其渗透到产品开发的各个环节,从而实现不需要再借助实物模型就可以完成产品开发的目标。其核心优势主要体现在如下几个方面。

1.1优化设计的实用性与消解缺陷

不同的设计环节,会对产品生出不一样的定义,具有很大的不确定性;而且各个类型的定义模块在彼此转化时,非常容易造成数据的流失。这就造成数字化设计会形成定义产品的单一模型,但这种单一性会随着信息密集程度的改变而导致产品模型也随之发生转化,如全信息化模型和集成类产品模型的差别。对数字化设计而言,这其实是一种有效的技术辅助,从而让设计更具针对性与有效性。但同时,因为数字化设计的概念还是过于抽象,所以会在制造环节存有不足之处,需要反复修改和测试。这会加大成本的耗损,并拉长了产品上市的时间。为此,需要在制造实物模型之前,先进行大量且有效的仿真分析与测试,不断消解设计缺陷。

1.2优化数字化设计合作

对于所有的设计工作者而言,一个产品项目的设计与开发,必须结合不同小组的特色与优势来进行科学化的分工协作。唯有这样,才能实现技术优势的全面整合,共同搭建出更加完善和具有可行性的数字化制造模型,以此提高设计和开发的效率。

1.3减少对实物模型的依赖

数字化技术的应用,让设计越来越脱离了对实物模型的依赖,并且可以通过仿真技术的不断测试和分析,将设计中存在的缺陷尽可能地剔除,从而达到制作出与设计要求最匹配的实物模型。这将大大缩减产品的开发成本,提高设计的成功率与效率。

2数字化设计技术在农业机械设计中的应用

2.1行业竞争推动数字化技术的普及

随着社会的进步与发展,农业机械设计越来越希望让消费者具备更多的选择性。因此应用创新和减少故障发生率,成为优化农业机械产品设计的必经之路。为了降低常见故障的发生,在设计时就必须采取相应的改进方法,并提前进行仿真推演与测试,一旦验证了改进方法的有效性,就能将制造与生产环节的成本纳入可控范围,极大地增强了企业在同类农业机械产品中的竞争力。于是更多的农业机械制造企业为了赢得市场,就会加大在设计环节的创新投入来获取消费者的认可。农业机械行业采用以数字化技术为支撑的决策模式,相继开发出了知识型数据库,进一步加大了整个行业对数字化设计技术的应用程度。

2.2在普及中优化了虚拟化现实技术

数字化技术应用的普及和升级,加快了农业机械产品设计向虚拟化现实技术的转化,并通过融入和吸收诸如多媒体与3D图形新形态,让设计者在进行产品设计时拥有了更为真实的多维体验,也让用户能对产品的性能有了更具体的视觉感受,极大地优化了产品性能和提高了上市成功的概率。特别对于农业机械这种相对复杂的产品,设计意图与应用效果之间会存在很大的差距。虚拟化现实技术的出现,不仅有效解决了农业机械的设计与应用两个环节无法实现无缝对接的难题,而且优化了针对农业机械的设计周期长、内部结构复杂等问题的处理办法,让农业机械的产品性能通过模拟性应用来进行验证,然后再根据验证情况着手进行改进。在设计目标完成后,便可让目标用户来对产品结构和性能进行模拟应用评估,并从他们口中得到最有效的反馈建议,使产品在上市后就能获得用户的极大认可。目前农业机械设计,首先是借助CaD系统形成模型,再将其导入虚拟环境中,以此提高设计的可视化程度。其次是利用VR-CaD(虚拟现实-计算机辅助设计)系统帮助设计者在虚拟化的环境中进行设计。但我国在虚拟化技术层面的研究还处于相对滞后的阶段,仍需对更为系统和完善的研究理论与应用方案进行深入探索。

2.3加强数字化设计的协同性

农业机械生产企业既要参与市场竞争,同时又要实现跨企业的协同合作,以满足客户越来越个性化的定制需求。因此协同化设计同样成为农机企业生存与发展的重要经营手段,并可能成为整个行业创新发展的重要方向。为了从浩瀚的技术信息与零件资源中找到有效的资讯,就必须对搜索技术加以优化。比如某个服务器存储了上百万的零件信息,而且还在不断成级数增加。农机企业在进行新产品设计时,就要对需要的零部件的参数和性能进行搜索,并且探讨怎样才能匹配到有效的供应商客户端。随着数字化设计技术在农业机械领域应用影响的不断扩大,设计者、供应商与制造商之间,必须在设计端就要开展深入的协同合作,才能借助各自的资源与软件技术优势,实现新型农业机械产品的不断升级,并从设计和制造两个环节不断提升产品的国际竞争力和生产效率,并确保达到最佳的制造品质。

3农业机械数字化设计技术的创新之处

农业机械本身属于制造业的范畴,产品种类齐全且复杂,优势是国内外的市场需求体量非常巨大。近年来,我国企业将数字化技术应用于大型农业机械的研究与开发,其力度越来越大。通过引进更多的工程技术和仿真技术来对产品性能进行设计和检测,希望能借此不断优化产品结构和性能。对今后的研发趋势应多关注如下几个重点。

3.1强化产品的创新思维

以往产品创新只是针对少数用户,根据他们的需求对产品原有技术做一些优化,在局部功能上改善和某些实用操作上升级,进而满足他们的需求。而今后的农业机械设计将更加重视产品的原始创意设计,将以克服人们农艺作业上的困难和满足人们对生产力提升的需求(含潜在的需求)为创新点,通过对某一需求市场的分析,并在得到评估和确认后进入到技术层面的匹配性论证,然后对具体产品设计中的各种难题逐一筛选与解除,进而切入到制造环节各种元件的经济技术指标的分析、供应商设备和配件的优选和确认,以及更细化的加工流程的取舍和确认。