首页范文化工工艺流程设计十篇化工工艺流程设计十篇

化工工艺流程设计十篇

发布时间:2024-04-25 19:14:23

化工工艺流程设计篇1

关键词:氯碱工业;工艺流程

氯碱工业是最基本的化学工业之一,是中国现代化之母,其产品不仅应用于化学工业,同时还广泛应用于石油化学工业、纺织工业和公共事业等多个领域中。在实际的电解法制钾碱的生产中,对选择科学合理的工艺流程可以有效提高生产效益。现在笔者就对电解法制钾碱的关键工序的工艺流程进行详细分析,希望能够为设计人员提供参考依据。

1盐水一次精制的工艺流程

1.1盐水一次精制的传统工艺

传统工艺流程在国内外氯碱工业的使用历史悠久,且至今还在沿用这种传统的工艺。其一次盐水工序生产过程相对稳定,设备运行稳定,对设备检查维修的投入较少,且普通操作人员进行培训之后即可熟练操作。但是生产所需要的设备和装置大,占地面积相应的也会比较大;一次盐水工艺自动化程度低,一旦系统出现异常,那么技术人员需要花费较长的时间才能够找出故障点,会阻碍生产的进度;而砂滤器会产生二氧化硅造成二次污染;另外,一次盐水的固形物含量偏高,后序处理难度大。

1.2膜法过滤工艺

1.2.1戈尔膜盐水精制工艺特点。①脉冲式过滤。达到过滤时间之后,过滤器自动进入反冲状态,通过反向静压差使得滤饼脱落、沉降,经过一定的时间之后再开始下一个过滤周期;②高流量一次净化。其具有超强的过滤能力,是普通过滤器的5到10倍,并且无需再配置固液分离设备;③低压反冲不仅能够确保设备的正常运行,同时最大限度避免对其造成损害;④因为膜非常薄,可以将其看作表面过滤,即使滤程有轻微的堵塞用酸即可溶解,因此造成机械损伤的可能性微乎其微。1.2.2凯膜盐水精制工艺特点。①工艺简单,流程短。盐水中的悬浮物低于1mg/L,可以满足离子膜电解生产装置中电解槽的使用,同时无需再进行别的操作,可以直接进入离子交换树脂塔进行二次盐水精制;②固液分离一次完成,无需再配备过滤装置,且过滤能力高,过滤精度稳定,无需再进行改造,节约了大量的人力、财力的投入;③装置和设备小,并且对一些环节进行了精简,不需要清理澄清桶,大幅度减少了操作人员的工作量;④对原盐质量的要求降低了,进而降低原材料的采购成本,保证了盐水的质量,膜管的使用期限得到了延长,同时这个设备因为经过相应的防腐处理,对液体酸碱度的要求更宽松。

2氯化钾溶液电解的工艺流程

2.1盐水二次精制工艺

自一次盐水工序的精盐水进入过滤盐水槽,用蒸汽加热至65℃后,进入离子交换树脂塔除钙、镁离子至小于20ppb;失去交换能力的螯合树脂要用酸、碱及纯水每72小时自动再生一次。

2.2电解工艺

经树脂塔处理后的盐水送入盐水高位槽,自流进入各电解槽。在电解槽阳极室生成的淡盐水流进阳极液槽,然后经阳极液泵送到脱氯单元。在电解槽阳极室生成的氯气送氯处理工序。电槽阴极室产生的碱液一部分送各用碱工艺点;一部分碱液经阴极液冷却器调整温度后,通过加入纯水来控制碱液浓度循环回到电解槽;其余则送往蒸发工序。在电解槽阴极室生成的氢气送往氢气处理工序。

2.3淡盐水脱氯工艺

阳极液槽的淡盐水经阳极液泵送至脱氯塔,在真空下将溶解在盐水中的游离氯脱出,脱氯后的淡盐水仍含游离氯约20~30mg/l,加入32%碱液调节pH后,与K2So3溶液反应进一步除去游离氯,脱氯完全后的淡盐水由脱氯盐水泵送至一次盐水工序。由脱氯塔脱出的氯气经脱氯冷凝器冷却、分离水分后由脱氯真空泵送至氯气总管。脱氯冷凝器冷凝下来的氯水自流回阳极液槽。

3钾碱蒸发的工艺流程

3.1顺流流程

顺流流程指的是进入蒸发器的电解液与加热蒸汽的方向相同,假如一套多效蒸发设备,电解液流向的特点是电解液的浓度会越来越高,蒸汽压力会越来越低。根据串联蒸发器数量的不同,顺流流程又可以分为顺流双效、顺流三效部分强制循环等多种形式。

3.2逆流流程

逆流流程主要通过降膜浓缩器来实现,降膜浓缩器采用熔盐作为载热体,在系统中循环使用。由助燃空气鼓风机送来的助燃空气经助燃空气预热器预热后,与作为燃料的天然气一并送入天然气燃烧系统燃烧,并在熔盐加热器中,通过辐射和对流将熔盐加热到大约420℃送至降膜浓缩器浓缩碱液,而冷却后的熔盐自流入熔盐槽,再经熔盐泵送回熔盐加热器循环使用。

3.3流程讨论

化工工艺流程设计篇2

关键词:化工工程化工设计工艺流程设计

一、化工设计

(一)化工设计的概念和类型

1.化工设计的概念

设计是把一种计划、规划、设想通过视觉的形式传达出来的活动过程。化工设计是根据一个化学反应或过程设计出一个生产流程,并研究流程的合理性、先进性、可靠性和经济可行性,再根据工艺流程以及条件选择合适的生产设备、管道及仪表等,进行合理的工厂布局设计以满足生产的需要,最终使工厂建成投产的全过程。化工设计是一种创造性活动,它包括工艺设计和非工艺设计。工艺设计是化工厂设计的核心,决定了整个化工设计的概貌。非工艺设计是以工艺设计为依据,按照各专业的要求进行的设计,它包括总图运输、公用工程、土建、仪表及其控制等。

2.化工设计包括三种设计类型

新建工厂设计;原有工厂的改建和扩建设计;厂房的局部修建设计。每种化工设计通常分为以工厂为单位和以车间为单位的两种设计工厂化工设计包括厂址选择,总图设计,化工工艺设计,非工艺设计以及技术经济等各项设计工作。其中化工工艺设计内容主要有:生产方法的选择,生产工艺流程设计,工艺计算,设备选型,车间布置设计以及管道布置设计,向非工艺专业提供设计条件,设计文件以及概算的编制等。

(二)化工设计的分类

1.根据项目性质分类

(1)新建项目设计

新建项目设计包括新产品设计和采用新工艺或新技术的产品的设计。这类设计往往由开发研究单位提供基础设计,然后由工程研究部门根据建厂地区的实际情况进行工程设计。

(2)重复建设项目设计

由于市场需要或者设备老化,有些产品需要再建生产装置,由于新建厂的具体条件与原厂不同,即使产品的规模、规格及工艺完全相同,还是需要由工程设计部门进行设计。

(3)已有装置的改造设计

已有装置的改造包括去掉影响产品产量和质量的“瓶颈”,优化生产过程操作控制,提高能量的综合利用率和局部的工艺或设备改造更新等。这类设计通常由生产企业的设计部门进行设计,对于生产工艺过程复杂的大型装置可以委托工程设计部门进行设计。

2.根据化工过程开发程序分类

(1)概念设计。基础研究结束后,应进行概念设计。概念设计是从工程角度出发按照未来生产规模所进行的一种假想设计,内容包括:过程合成、分析和优化,得到最佳工艺流程,给出物料流程图;进行全系统的物料恒算、热量衡算和工艺设备计算,确定工艺操作条件及主要设备的形成和材质;进行参数的灵敏度和生产安全性分析,确定三废处理方案;估算装置投资与产品成本等主要技术经济指标。

(2)中试设计。按照现代技术开发的观点,中试的主要目的是验证模型和数据,即概念设计中的一些结果和设想通过中试来验证。

(3)基础设计。基础设计除了一般的工艺条件外,还包括了大量的化学工程方面的数据,特别是反应工程方面的数据以及利用这些数据进行设计计算的结果,

3.化工设计的特点

化工设计具有政策性强、技术性强、经济性强、综合性强、创造性强和受多方条件约束的特点。

二、化工工程设计的现状

我国化工设计行业的企业服务功能从单纯的工程设计,发展到为工程建设项目的勘察设计、采购、施工、调试等提供全过程服务的工程总承包和项目管理,服务领域也从单纯的工程技术服务延伸到向Bot、Boot等生产经营管理服务。化工设计作为主要服务于化工领域的行业,在近年来化工行业景气度提升、化工行业固定资产投资增长的背景下,主要工程公司/设计院工程业绩良好,企业资质能力不断提高,整体化工设计行业销售收入规模不断增长。在新的市场经济形势下,中小型化工设计院向工程公司转型关乎企业的生存需要。

三、化工工程设计

(一)生产方法和工艺流程

1.工艺流程选择的原则

(1)先进性先进性是指在化工设计过程中技术上的先进程度和经济上的合理可行。

(2)可靠性可靠性主要是指所选择的生产方法和工艺流程是否成熟可靠。

(3)合理性合理性是指在进行化工厂设计时,应该结合我国的国情,从实际情况出发,考虑各种问题,即宏观上的合理性。

2.生产方法和工艺流程确定的步骤

(1)材料搜集与项目调研(2)生产设备类型与制造厂商调研(3)对调研结果进行全面分析对比

(二)工艺流程设计

1.一个典型的工艺流程

2.工艺流程设计的任务

流程设计的主要任务包括两个方面:一是确定生产流程中各个生产过程的具体内容、顺序和组合方式,达到由原料制得所需产品的目的;二是绘制工艺流程图,要求以图解的形式表示生产过程中,当原料经过各个单元操作过程制得产品时,物料和能量发生的变化及其流向,以及采用了哪些化工过程和设备,再进一步通过图解形式表示出化工管道流程和计量控制流程。

设计目标:为了使设计出来的工艺流程能够实现优质、高产、低消耗和安全生产。

3.工艺流程设计方法

(1)先判断是成熟工艺还是待开发工艺,如果是成熟工艺可以参考借鉴已有装置或局部采用新技术新工艺,若为待开发工艺则应按照概念设计、中试、基础设计、工程设计的顺序进行设计。

(2)工艺流程:原料与处理过程、反应过程、产物处理过程。

四、结语

随着国内市场经济的不断发展,国民经济发展水平的不断提高,化工行业固定资产投资的稳定增长,未来化工设计行业在我国国民经济中的市场地位将会不断提高,同时国内西部大开发等区域战略实施将驱动未来国内化学工业投资需求,行业发展前景广阔。我国化工企业也在竞争中不断地变化。在化工工程项目造价管理领域,特别是在造价控制的方法上,从理论上、方法上借鉴国内外己有的成果,对化工工程造价控制的方法进行系统的分析,对于业主也就是投资方来说,可以减少在化工工程上面的投资,这些都是今后化工设计的主要研究方向。伴随着科研技术的不断深入和进步,我们有理由相信,我国的化工设计道路必然会越走越远。

参考文献

化工工艺流程设计篇3

关键词:化工;工艺设计;存在问题;对策

中图分类号:tU984文献标识码:a文章编号:

化工工艺设计是化工生产可以实施的前提,除了要严格、正确地执行政府法规、标准规范,还应该加强工艺过程的安全性。因此在当前化工工艺设计中,工艺的安全问题越来越受到化工行业的重视,在设计中保证生产的安全稳定显得越来越重要。下面本文主要对化工工艺设计中常见的安全问题、工艺控制及发展建议几个方面进行分析。

1化工工艺设计理论概述

众所周知,在整个项目设计过程中,设备布置、工艺流程和管道布置是化工工艺设计的3个重要方面。化工工艺设计的主要内容是通过工艺计算绘制工艺流程图,提供给设备专业绘制设备图纸的相关参数,并提出工艺控制方面的参数供自控专业仪表选型,然后工艺专业根据工艺流程图完成初步的设备布置图,最后由管道专业结合设备布置图进行管道配管并完成最终的管道布置图纸。

化工工艺设计要紧跟时展,同时将理论和实际有机结合起来,只有这样才能发挥其巨大的功效。化工工艺设计包括不同的种类,主要有概念设计、中试设计、基础设计、初步设计和施工图设计等。这些不同种类的设计在化工工艺的实践中都发挥着重要的作用。化工工艺设计过程中往往存在如下问题:设计的基础资料不完整,数据的可靠性和完整性不如常规装置;化工工艺设备种类繁多,规格特殊,对设备的设计和选用都提出了特殊要求;化工工艺设计工作量大,管道设计要作特殊考虑;设计周期短,为尽快占领市场,化工工艺设计往往边开发边设计,边建设边更改设计;规模大小不一,为节约投资,某些设计不可能完全按照规定去做。这些特点无疑会造成化工工艺设计的安全隐患,对化工设计的安全有很大的影响,也是引发化工工艺设计安全问题的重要因素,也越来越受到人们的重视。

2化工工艺设计中经常出现的安全问题与控制策略分析

化工工艺设计中的安全问题主要指的是生产中存在的可能导致事故发生的隐患和损失的不安全因素。因此在化工工艺设计中要不断增强危险识别意识,积极控制事故隐患,尽量防止不安全技术,避免危险物品及设备的使用,并采取相应的控制手段,提出预防、降低甚至消除危险性,提高工艺安全高效运转的措施及建议。

2.1对工艺物料方面安全问题的控制

化工工艺生产中的原材料、半成品、中间产品、副产品、产品以及贮存中的物质分别以不同的状态存在,即气、液、固态,这些物质都有其特殊的物理、化学性质,在一定状态下会产生危险或危害。因此,对这些物质的危险特性进行了解和掌握是非常重要的,而且要增强对这些物质稳定性、化学反应、毒性等的识别意识,进而做出评价和分析,防止或降低危害的发生。

2.2化工工艺路线方面的安全问题与控制

化工设计中的一种反应往往会涉及几条工艺路线,在设计中要考虑采用哪条路线能使生产更安全或把危害降到最低。这个过程中对物料、生产条件、设备等的使用都要做出最完善的考虑。要尽量使用无害的或低危险性的物料;降低生产条件的苛刻程度来缓解反应的剧烈程度;新设备、新技术的采用要减少三废(废气、废液、废固)排放,并积极实施三废的回收循环使用,以减少对环境的污染。

2.3化工反应装置方面的安全问题与控制

化工反应是产品生产的核心,通过化工反应在获得所需产物的同时也产生了很多安全性问题,甚至可能导致严重事故的发生,因此反应装置的设计和选择都需要经过科学的分析和计算。化学反应的种类多样,在反应安全控制方面存在较大的难度。在化工反应中也存在着反应失控的潜在危机,如何控制反应物的反应速度或热效应都是非常重要的。在工艺设计中采用减少进料量、控制某种物料的加热速度、加大冷却能力如外循环冷却器的方法或采用多级反应等措施来控制反应。在反应器的运行过程中,有时会出现容器超压而变形甚至遭到破坏的现象,容易造成安全事故,因此在容器上安装压力释放装置必不可少。

2.4管道方面的安全问题与控制

通常管道输送的物料多属易燃、易爆甚至腐蚀性或毒性物品,如果管道中某些部分出现泄漏,各种有毒有害的物质就会漏出,这不仅对环境造成污染,而且对化工生产造成很大的安全隐患。因此在管道设计中,要充分考虑到管道的材料选择、布置和应力分析等可能造成管道泄漏的因素。例如管径、材质等的合理选择,尤其是注意管道连接处和拐弯处弯头的材料和管径选择,同时无论是在室内还是在室外,管道都必须可靠地与地面连接。

3促进化工工艺设计良性发展的建议

3.1化工工艺设计要注重降低能源消耗量

能源成本是化工生产总成本中的一个重要的组成部分,采用先进的技术手段降低能源消耗量是化工工艺设计和研究的重要方面。首先要选用先进的生产技术及最优化的工艺流程,从源头上控制能源的消耗,其次在工艺设计上要求流程简练、设备选型合理、布置紧凑、能量利用合理,同时还应尽可能采取物物换热设计,实现能量的分级使用和回收,以节约能源的消耗,根据工艺参数选择最佳的流程和最适宜的管径,降低流体输送阻力损失,降低能耗。

3.2积极改善生产环境

当前化工污染问题不可忽视,解决污染问题就要减少污染源并对废物进行回收利用。从工艺过程上要减少污染就必须重视现有装置的更新和污染物的终端处理两个问题。针对这两种情况就要不断提高化学反应和能源分离效率,提高能源利用率、减少能源转化率在生产过程中的损失,这不仅能增加产业效益而且能减少处理废物时的费用;积极应用Hen分析方法不断改进和更新装置,节约用水,并对废水进行再次回收利用,最大限度的节约水资源。

3.3工艺设计理论研究与实践协调发展

当前工艺设计应用亟待拓展,这就需要将研究开发与设计建设联系起来综合发展,并积极开发新的工艺设计方式。新的工艺设计方式应该是开发一个带有能量平衡流程、热力学软件包及研究容器设备的一个简单经济模型,摒弃传统方式过于程序化且生产效率较低的发展方式。新的发展方式应更重视推测和估算,目的是将试验计划尽快涉及到工艺的关键技术和相关经济问题,并通过专门的试验成果不断更新工艺发展的模型。总之化工工艺设计要将理论和实践结合并与时代的最新发展技术相接轨从而发挥其巨大功效。

4结束语

本文对化工工艺的概念、特点及分类进行阐述,并分析化工工艺设计中工艺物料、工艺路线、反应装置、管道方面的安全问题及其控制,并提出通过降低能源消耗量、积极改善生产环境、工艺设计理论研究与实践协调发展等途径提高化工工艺生产的高效运转,促进化工工业的良性发展。

参考文献:

[1]王红林,陈砺.化工设计简明手册[m].华南理工大学出版社,2005.

化工工艺流程设计篇4

在产品设计环节可以使用比较完备的pLm系统实行产品重要文档数据的管理,在产品生产阶段也有比较完备的eRp系统来完成产品供应链的工作。但是在工艺设计及管理阶段却欠缺设计比较完备的信息化软件系统来提升工作效率,故工艺设计阶段成为产品整个生命周期内的短板,所以研究设计适合于汽车企业的工艺设计及管理信息系统成为产品开发环节中的重中之重。其需求分析为:对pBom(工艺)进行管理,首先最为重要的是能够完成从e-Bom(设计)到pBom的调整与转变,在一个界面中,可以实现多种视图的管理样式,能够完成对不同视图之间的对比,并可以完成虚拟零部件的拆分与重组功能。对产品开发过程中三个阶段的信息系统进行集成。工艺规划阶段作为产品设计与产品制造之间连接的桥梁,其工艺数据也尤为重要,工艺数据把从设计环节中产生的产品数据作为基础,经过工艺调整后,传输到生产环节,各个生产部门依据工艺数据进行产品制造。所以,急需一个设计完备的工艺信息化系统和上游的pLm系统以及下游的eRp系统之间实现系统集成。对工艺设计数据进行管理,原始的工艺管理方式为:各类工艺文件大都使用个人计算机进行储存,无法对工艺文件的版本、查看权限等进行限制,而且存储到个人计算机中,文件查找困难,各类工艺文件之间无法实现关联,难以复用。对工艺规划阶段的各个流程进行管理,首先把工艺规划设计阶段所有的流程设计模板,进行标准化处理,完成后,操作流程的工作人员可以便捷地完成某个流程内的工作内容;另外标准化的工艺设计流程可以方便工作人员进行查询各个工艺设计流程中的流程状态。

2汽车企业工艺设计解决方案

结合国内某个自主品牌汽车企业的现状,在经过分析研究汽车企业工艺设计与管理信息化需求的前提下,通过一系列的市场调查与各种设计解决方案的比较,选择了其中一种比较适合企业自身特点的工艺设计与管理信息化解决方案。

2.1各类Bom的不同视图管理

在产品开发过程的三个重要环节中,各类Bom作为串联三个环节的关键数据信息,在每个环节所对应的工作人员、功效以及需求也有很大区别,而且每一类Bom也会有比较大的区别,不同环节当中的工作人员对产品的视角也会有所差异,所以每类Bom一定要符合每个环节的需求。工艺设计部门通过同一个平台进行工艺路线工作的设计,根据不同环节及工艺四大专业的区别产生不同的专业视图,从而每输,除去工艺设计及管理系统自身的功能外,个专业都可以根据适合自己专业的Bom视图来设计完成工艺规划。

2.2工艺设计及管理系统数据模型

对于工艺设计及管理阶段来说,主要有以下四个方面的数据信息:produc(t制造什么),process(怎样制造),plan(t在什么地方制造),resource(使用什么设备造)。通过使用面向对象的系统开发方法,把以上四个方面的数据信息有机整合在一起,形成一个比较完备的数据管理模型(也可称为pppR模型,在企业中形成一个串联产品设计、工艺设计及管理以及产品制造三个阶段的结构化数据信息统一体系。为了使产品在开发过程中的各类数据信息可以准确、快捷地在各个环节之间进行传输,除去工艺设计及管理系统自身的功能外,工艺设计及管理信息系统还需要做到能与上游的pLm系统以及下游的eRp系统集成,与上游的pLm系统集成可以将其上游的e-Bom经过调整后直接传输给工艺设计系统,从而可以作为工艺规划的基础;与下游的eRp系统集成可以将各种供应链信息传输到生产制造部门,作为产品制造的基础。

3汽车工艺设计及管理信息化系统的重要作用

化工工艺流程设计篇5

1.机床工艺设计应用系统体系结构

结合机床装备工艺设计需求和网络化制造的发展趋势,构建了Soa架构(Service-orientedarchitecture,面向服务架构)的机床网络化制造工艺设计平台体系结构,由支撑层、标准协议层、中间件层、基本服务层、领域服务层、应用层等组成。

2.机床网络化制造平台的概念体系

机床网络化制造平台的具体功能包括网络化制造资源管理,该模块在制造资源本体模型的基础上,为外协企业提供制造资源的注册、检索、分类、更新等功能;网络化制造工艺任务分解,在分析零件制造特征的基础上,在时序和装配特征的约束下,对工艺设计任务进行分解,为企业选择和资源匹配提供支持;网络化制造工艺管理是平台的核心功能模块,包括工艺设计任务管理、工艺知识管理、典型工艺管理、网络化工艺优化、网络化工艺审批等;网络化制造成员企业选择;系统管理;网络化制造过程协调与管理。

二、机床装备网络化制造工艺设计应用系统典型界面

1.机床产品零件信息本体建模模块

传统查询方式采用基于语法的查询,如关键字的匹配,这样无法在语义层对同义词、上下位概念进行检索,无法保证查准率和查全率,使用本体可以实现多层次检索。

2.机床网络化制造p-p-R管理模块

网络化制造任务管理模块提供对制造任务的定义、分解、编辑、撤销等操作。任务定义界面,对任务基本信息进行描述,根据任务约束对制造资源进行检索。

3.机床网络化制造资源信息表达模块

(1)网络化制造资源管理主要提供企业整体信息的录入、查看。其外协采用企业树形式,分别按行业和企业性质进行分类,针对树中每一个企业节点显示相对应的企业基本信息,当需要浏览该企业的制造资源详细信息时,则转到企业资源管理模块,以列表形式列出企业具有的制造资源信息及资源的主要技术参数,从而了解该企业制造资源的制造能力信息。(2)网络化制造资源的发现制造资源发现功能模块,通过制造任务的特征属性和制造资源的制造能力相匹配实现制造资源的发现。(3)制造企业评价根据企业目标设计一级评价指标和二级评价指标,采用五级分制为制造企业打分。

4.机床网络化制造工艺匹配优化模块

网络化制造工艺匹配优化模块的功能菜单包括网络化工艺规划、工艺标准化和工艺更改三部分。

5.机床网络化制造工艺流程重组模块

计划人员通过工艺流程管理模块完成工艺审核流程的定义工作。首先,工作流管理系统流程设计人员登录工作流管理系统,通过“工作流模型”为机床立柱加工工艺过程建立模型,完成工艺审核过程的建立和节点属性的定义等工作;再次,将各个活动与相关管理人员进行绑定,并赋予管理人员相应权限,保证流程管理过程数据安全,降低操作人员的出错概率。

三、结语

化工工艺流程设计篇6

关键词:工艺流程变型二次开发事物特性表工艺信息主模型

中图分类号:tH122文献标识码:a文章编号:1672-3791(2014)01(a)-0036-01

随着机械加工市场的日益国际化,用户对产品的需求越来越趋向于多样化、个性化,产品的设计周期也变得越来越短。企业不得不放弃原有的产品设计和生产方式,基于SmL的产品变型设计技术的研究为企业指明了方向。

基于SmL的零件工艺流程变型设计将以事物特性表为基础,驱动参数化CaD系统中的工艺信息主模型,生成新的实例模型,形成新的工艺流程。企业可以在已有产品零件工艺信息的基础上提高自身产品的工艺多样性,缩短设计周期,使自身在市场上更具竞争力。

1基于SmL的零件工艺流程变型设计基本原理

以企业原有产品的工艺信息建立数据库,在此基础上通过事物特性表调取并更改原有的特性值(如零件表面粗糙度)来驱动参数化CaD系统中主模型的变量表,生成新的零件工艺信息主模型,再通过excel导出新的零件加工工艺流程。

(1)事物特性表原理。事物特性表技术起源于德国,德文表示:Sach-merkLeisten(简称SmL),德国于1981年制定了相应的工业标准Din4000/1-81[1]。

构建事物特性表主要是为了实现对象的主键信息驱动,支持有效的检索和变型设计。首先对企业已有零部件和工艺资源等相关信息进行有效整合,形成相应的产品系列和工艺资源系列。在此基础上,分析各个系列中对象的共性和个性,抽象出能够表征和区分对象的决定性特性,归纳出事物特性参数类,按照规定格式,用不同代码表示事物特性,构建事物特性表模块,并通过本体技术,对其进行有效的维护,以支持后续的工艺流程变型设计[2]。

(2)基于SmL的零件工艺流程变型设计原理。为了实现通过SmL来驱动Solidedge系统中的零件主模型变量表,需要用Solidedge系统中的零件主模型按Din4000中的规定构建事物特性表,因此,要对Solidedge变量表功能进行二次开发。Solidedge内置与CaD系统进行格式交换的数据器,有助于与CaD系统设计数据的集成。在应用程序的接口方面,Solidedge应用程序采用标准的windowsoLe自动化和组件对象模型(com)技术。用户和软件开发者能够以VB或其他标准程序语言对其进行二次开发[3]。

通过Solidedge在其三维设计模型中提供的可供用户操作的变量表,可以定义或编辑零部件模型中各类特征的关系和大小。变量表中的变量可分为尺寸变量和用户变量两种。尺寸变量来源于设计过程,可以直接控制设计中的各个形状特征;用户变量则是用户在变量表中自行定义的变量,可以通过变量表中的数学关系式,将其与尺寸变量联系起来,从而间接控制设计中的各个特征。因此,可以利用Solidedge实现满足客户要求的各种变型设计。

2基于SmL的零件工艺流程变型设计过程和方法

2.1零件工艺信息模型建立过程

零件工艺信息模型主要包括事物特性表、零件工艺信息主模型以及事物特性表与零件工艺信息主模型之间的关联。

2.1.1构建零件工艺信息模型

模型建立过程如下:步骤1通过对零件的分析建立事物特性表;步骤2基于事物特性表,在Solidedge系统中建立零件工艺信息主模型;步骤3采用VB对Solidedge变量表进行二次开发,得到所有设计变量;步骤4利用VB以及oLe技术,将从主模型中得到的所有设计变量提取到事物特性表中,与原来存在于事物特性表中的零件事物特性(或导出特性)关联起来,建立零件工艺信息主模型,为下一阶段的产品变型设计工作做好准备[4]。

2.1.2变量表的二次开发过程

变量表二次开发过程:

添加类型库―获取零件三维模型中的全部设计变量和物理属性―将获取的设计变量和物理属性与SmL中相应的事物特性和导出特性建立关联[4]。

2.2零件工艺流程变型总体过程

完成零件工艺信息模型建立后,只需按照用户的要求在合理范围内改变事物特性表中的数值,系统就能够自动改变工艺信息主模型中对应的参数信息,生成符合用户要求的零件工艺模型,最后在excel中导出所需的工艺流程。

3应用实例

以某减速器齿轮轴的工艺流程变形设计为例。当用户要进行变型设计时,直接从数据库中调取齿轮轴的零件工艺信息,然后将表面粗糙度1由原来的0.8改为1.6,如图1。

同时,新的特性值驱动参数化CaD系统,自动生成新的零件工艺信息主模型;最后在excel中导出新的零件工艺流程,如图2。

4结语

本文通过学习事物特性表原理,建立事物特性表;对参数化CaD系统的变量表功能进行二次开发,用VB以及oLe技术将两者关联起来,形成零件工艺信息模型,在此基础上实现零件工艺流程变型设计。通过该技术企业可以大大地缩短零件的设计周期,快速占领市场。

参考文献

[1]祁国宁,(德)J.萧塔纳,等.图解产品数据管理[m].北京:机械工程出版社,2005.

[2]陈宗舜.事物特性表GB10091与Gt编码、Gt图册浅析[J].成组技术与生产现代化,1997.

化工工艺流程设计篇7

[关键词]伴生气轻烃设备工艺

中图分类号:tQ340.68文献标识码:a文章编号:1009-914X(2014)21-0033-01

油田开发中有着很丰富的伴生气,通过轻烃回收装置的使用能很好的利用这部分天然气资源而获得一定的经济效益。现今国产化装置中存在工艺方案不合理、能耗高以及产品收率低等不足,本文主要是从工艺流程出发,针对伴生气轻烃回收工艺,讨论设备选型和设计以及控制系统等,提出工艺设计的相关思路和原则。

一、回收工艺特点分析

目前对轻烃的回收普遍采用冷凝分离法,制冷工艺主要有冷凝制冷法、膨胀制冷法以及混合制冷法,在工艺上都是通过气体冷凝获得液烃,液烃经蒸馏分离后得到合格产品。其流程组成是由七个单元组成:原料气预处理、增压、脱水、冷凝分离、制冷系统、液烃分流以及产品储配。

一般的伴生气压力低其气质富,由于冷凝分离的工艺要求,需要增压压缩机来对伴生气进行增压,增压值的大小与干起外输压力、分馏塔塔压、制冷温度、产品收率等因素相关。

二、工艺流程优化

工艺流程的优化主要包含了制冷工艺的选择、工艺流程的设计以及工艺参数的优化。

1、制冷工艺的选择

制冷工艺的选择主要是在分析原料气的压力、组成以及液烃回收率等基础上进行的,如果伴生气的处理量较小、组成较富,可通过浅冷回收工艺来对C3+烃类进行回收,制冷工艺一般为冷剂制冷或者为冷剂制冷与节流膨胀制冷相结合。如果伴生气的处理量较大且组成贫,对乙烷的回收就采用深冷回收工艺,制冷工艺多为混合冷剂制冷、复叠式制冷、膨胀机制冷或是冷剂制冷与膨胀机制冷结合的方式。

国内冷剂制冷工艺主要采用丙烷压缩循环制冷,制冷系数较大,所采用的装置所需要的冷量是由外部制冷系统提供,运行过程中可通过调节制冷量来适应原料气的变化。膨胀机制冷的三种方式为透平膨胀机、热分离机和气波机制冷。透平膨胀机因为其质量保证,操作维修方便等优点而被优先选用,而对于无供电条件的地区则有限采用热分离机或气波机制冷。

2、工艺流程的设计

伴生气的轻烃回收工艺流程中主要是由七个单元组成,工艺流程的设计就需要以这七个单元为基础统一组织,保证经济、高效运行。浅冷工艺所需冷量是由外加冷剂制冷提供,改装置运行的主要能耗是对外加冷源和原料气的增压消耗,流程组织中需尽量减少增压能耗和冷损。在冷凝压力一定时,合理匹配气源压力、液烃分馏塔压力、外输压力以及产品收率等来保证最小的增压能耗,同时还需做好低温分离器排除气体的能量回收问题。工艺的设计需要从整个流程综合分析,合理设计增压、制冷、冷凝分离和液烃分馏几个单元,有效利用亚能与外加冷量。

在深冷工艺出于对冷量的要求需采用冷剂制冷和膨胀机制冷相结合的制冷工艺,从整个流程出发来安排原料气是采取先膨胀后增压或先增压后膨胀的方式来获得合适的膨胀比而得到更低的制冷温度与更高的收率。工艺流程的设计需要多使用新技术、新工艺,如液体过冷工艺LSp、气体过冷工艺GSp、直接换热工艺DHX以及混合冷剂制冷工艺等。

3、工艺参数的优化

为保证装置的经济合理运行,就需要制定合理的工艺参数,在伴生气组成一定的情况下,浅冷工艺中主要需要确定的是冷凝温度与压力。

冷凝压力是由气体外输压力决定,如果液烃输送到液烃分流单元需要在自身压力下进行,冷凝压力就需要满足分馏操作的压力要求。冷凝压力是以气体外输压力和液烃分馏操作压力中的高值来确定,如果采用膨胀机制冷,冷凝压力需创造条件来达到一定的膨胀比。在C3+烃类回收装置中,初步确定冷凝压力后,温度的选择在保证C3较高的冷凝率同时也不能使C2有着过高的冷凝率。压力一定时,温度与气体的组成相关,C3+含量较多时的温度较高,反之则低。如果冷凝温度降低会增加C3+的冷凝率,但C2的冷凝率会增加更快,这就耗费了更多的冷量,还需从凝析液中除出,浪费能量造成经济损失。

冷凝温度和压力的确定需要从整个工艺流程出发,综合考虑各单元的能量利用来进行工艺设计。在C3+烃类的浅冷装置中一般C3收率为50~80%比较合适,在深冷装置中一般采取60~85%的C2回收率,最佳产品收率的确定还需进行工艺计算和方案对比来获得。冷凝温度在-20~-35°C时,冷量可通过丙烷冷剂压缩循环制冷来提供,温度低于-35°C时,可采取膨胀制冷,同时也可适当提高冷凝压力来获得更为经济的轻烃回收率。

三、设备选型及设计

工艺流程的设计中的关键问题之一就是设备选型和设计,这也是保证工艺流程实现的基础,选型与设计时应遵循高效、轻便、技术先进且工作可靠等原则。

装置中的气-液分离器如果设计计算和内部结构不合理就会使得气相中携带液滴而造成液烃回收率降低。制冷机、压缩机和膨胀机在设计选型中需与厂家充分协商,提供准确的参数和相关工艺要求,确保正确选型和机组的供货质量。作为主要的能耗部分,选型的合理与否直接决定了能耗的高低。

伴生气一般压力低、气质富,需要进行压缩机增压来适应冷凝分离工艺要求,增压值的大小主要由制冷温度、干气外输压力、分馏塔塔压和产品收率决定。在选用制冷工艺时应精心组织工艺流程,合理利用外冷和内冷,综合分析工艺和参数来获得更好的经济性,设备选型设计主要体现先进技术和高效的原则来提高轻烃回收率。

参考文献

[1]高钊刘德俊王芙马焱李小月高吉庆滩海油田伴生气回收研究[J]当代化工2013.10.

化工工艺流程设计篇8

【关键词】伴生气轻烃设备工艺

油田开发中有着很丰富的伴生气,通过轻烃回收装置的使用能很好的利用这部分天然气资源而获得一定的经济效益。现今国产化装置中存在工艺方案不合理、能耗高以及产品收率低等不足,本文主要是从工艺流程出发,针对伴生气轻烃回收工艺,讨论设备选型和设计以及控制系统等,提出工艺设计的相关思路和原则。

1回收工艺特点分析

目前对轻烃的回收普遍采用冷凝分离法,制冷工艺主要有冷凝制冷法、膨胀制冷法以及混合制冷法,在工艺上都是通过气体冷凝获得液烃,液烃经蒸馏分离后得到合格产品。其流程组织是由七个单元组成:原料气预处理、增压、脱水、冷凝分离、制冷系统、液烃分流以及产品储配。

一般的伴生气压力低其气质富,由于冷凝分离的工艺要求,需要增加压缩机来对伴生气进行增压,增压值的大小与干起外输压力、分馏塔塔压、制冷温度、产品收率等因素相关。

2工艺流程优化

工艺流程的优化主要包含了制冷工艺的选择、工艺流程的设计以及工艺参数的优化。

2.1制冷工艺的选择

制冷工艺的选择主要是在分析原料气的压力、组成以及液烃回收率等基础上进行的,如果伴生气的处理量较小、组成较富,可通过浅冷回收工艺来对C3+烃类进行回收,制冷工艺一般为冷寂制冷或者为冷寂制冷与节流膨胀制冷相结合。如果伴生气的处理量较大且组成贫,对乙烷的回收就采用深冷回收工艺,制冷工艺多为混合冷剂制冷、复叠式制冷、膨胀机制冷或是冷剂制冷与膨胀机制冷结合的方式。

国内冷剂制冷工艺主要采用丙烷压缩循环制冷,制冷系数较大,所采用的装置所需要的冷量是由外部制冷系统提供,运行过程中可通过调节制冷量来适应原料气的变化。膨胀机制冷的三种方式为透平膨胀机、热分离机和气波机制冷。透平膨胀机因为其质量保证,操作维修方便等优点而被优先选用,而对于无供电条件的地区则有限采用热分离机或气波机制冷。

2.2工艺流程的设计

伴生气的轻烃回收工艺流程中主要是由七个单元组成,工艺流程的设计就需要以这七个单元为基础统一组织,保证经济、高效运行。浅冷工艺所需冷凉是由外加冷剂制冷提供,改装置运行的主要能耗是对外加冷渊和原料气的增压消耗,流程组织中需尽量减少增压能耗和冷损。在冷凝压力一定时,合理匹配气源压力、液烃分馏塔压力、外输压力以及产品收率等来保证最小的增压能耗,同时还需做好低温分离器排除气体的能量回收问题。工艺的设计需要从整个流程综合分析,合理设计增压、制冷、冷凝分离和液烃分馏几个单元,有效利用亚能与外加冷量。

在深冷工艺出于对冷量的要求需采用冷剂制冷和膨胀机制冷想结合的制冷工艺,从整个流程出发来安排原料气是采取先膨胀后增压或先增压后膨胀的方式来获得合适的膨胀比而得到更低的制冷温度与更高的收率。工艺流程的设计需要多使用新技术、新工艺,如液体过冷工艺LSp、气体过冷工艺GSp、直接换热工艺DHX以及混合冷剂制冷工艺等。

2.3工艺参数的优化

为保证装置的经济合理运行,就需要制定合理的工艺参数,在伴生气组成一定的情况下,浅冷工艺中主要需要确定的是冷凝温度与压力。

冷凝压力是由气体外输压力决定,如果液烃输送到液烃分流单元需要在自身压力下进行,冷凝压力就需要满足分馏操作的压力要求。冷凝压力是以气体外输压力和液烃分馏操作压力中的高值来确定,如果采用膨胀机制冷,冷凝压力需创造条件来达到一定的膨胀比。在C3+烃类回收装置中,初步确定冷凝压力后,温度的选择在保证C3较高的冷凝率同时也不能使C2有着过高的冷凝率。压力一定时,温度与气体的组成相关,C3+含量较多时的温度较高,反之则低。如果冷凝温度降低会增加C3+的冷凝率,但C2的冷凝率会增加更快,这就耗费了更多的冷量,还需从凝析液中除出,浪费能量造成经济损失。

冷凝温度和压力的确定需要从整个工艺流程出发,综合考虑各单元的能量利用来进行工艺设计。在C3+烃类的浅冷装置中一般C3收率为50~80%比较合适,在深冷装置中一般采取60~85%的C2回收率,最佳产品收率的确定还需进行工艺计算和方案对比来获得。冷凝温度在-20~-35°C时,冷量可通过丙烷冷剂压缩循环制冷来提供,温度低于-35℃时,可采取膨胀制冷,同时也可适当提高冷凝压力来获得更为经济的轻烃回收率。

3设备选型及设计

工艺流程的设计中的关键问题之一就是设备选型和设计,这也是保证工艺流程实现的基础,选型与设计中应遵循高效、轻便、技术先进且工作可靠等原则。

装置中的气-液分离器如果设计计算和内部结构不合理就会使得气相中携带液滴而造成液烃回收率降低。制冷机、压缩机和膨胀机的设计选型中需与厂家充分协商,提供准确的参数和相关工艺要求,确保正确选型和机组的供货质量。作为主要的能耗部分,选型的合理与否直接决定了能耗的高低。因体积小、换热面积大、换热温差下一集介质适应性强等优点,板翅式换热器较受欢迎,但是在选型中因为没有标准系列需给厂家提供各股流的参数、热负荷和工艺要求来选用。分馏塔多采用填料塔而较少使用浮阀板式塔,填料塔的填料层中的传质比较为复杂,没有统一的关联式来进行设计,其高度通常是参考实际数据获得,一般采用等板高度法。设计加热炉时应遵循热效率高、结构简单、占地面积小、造价低的炉体,实现连续和平稳的运行工艺要求,能实现撬装化。

伴生气一般压力低、气质富,需要进行压缩机增压来适应冷凝分离工艺要求,增压值的大小主要由制冷温度、干气外输压力、分馏塔塔压和产品收率决定。在选用制冷工艺时应精心组织工艺流程,合理利用外冷和内冷,综合分析工艺和参数来获得更好的经济性,设备选型设计主要体现先进技术和高效的原则来提高轻烃回收率。

参考文献

化工工艺流程设计篇9

关键词:伴生气轻烃回收工艺流程设计设备

在油气田中有着众多的伴生气资源。为了确保油气具有较高的综合利用效率,加强伴生气轻烃回收工艺技术研究至关重要。工艺设计过程中应选择相匹配的制冷工艺,科学合理的设置工艺流程,利用好外冷与内冷;在选用设备时,要遵循技术先进高效的原则。

一、伴生气轻烃回收的工艺流程设计

虽然实际中存在各式各样的伴生气轻烃回收的工艺流程,但总的来说由几个单元组合而成。工艺设计时,应对所有的工艺单元进行统一安排组织,以系统优化角度上出发,切实保证产品的实际收率与质量,合理的节省工程投资,降低运行费用,从而实现技术经济效益最大化目标。

1.浅冷工艺装置的设计

外加冷剂制冷提供所需的冷量,在该装置运行能耗中最不可忽视的就是外加冷源和原料气增压压缩机消耗的动力。所以,该装置要想既经济又正常的作业,就要求在流程设计过程中,防止有过多的增压能耗与冷损情况的发生。对冷凝压力进行选择时,必须全面了解掌握气源压力、产品收率、外输压力、液烃分馏塔压力等情况,降低增压能耗。此外,进行浅冷分离时,常常会因为低温分离器分出的气体存在1.0mpa以上的压力,而该气体通常都会直接外输,不用这么高的压力,所以,应将该部分的能量予以回收。实际中,应通过膨胀制冷,这样能够得到相应的温降,发挥着补充装置冷量的作用。我们应从总体流程角度出发,对增压、冷凝分离、制冷、液烃分馏等各单元进行科学合理的设计,确保压能与外加冷量的较高利用率。

2.深冷工艺装置的设计

为了达到工艺条件下提出的冷量要求,要首选我们国家自己研发出的成效高的膨胀机制冷,如果只采用伴生气压降膨胀制冷是根本无法实现装置对冷量的要求的。所以,应采用相应的外加冷剂制冷对冷量进行补充,也就是将冷剂制冷与膨胀机制冷综合而形成的一种混合制冷工艺。在以膨胀机制冷为主的装置中,当原料气预冷后,是先实施膨胀后在进行增压(这里指的是逆升压),还是先增压完再膨胀(这里指的是正升压),必须对总体的流程安排予以充分的考虑,这样就能够保证其具有合理的膨胀比,获得较低的制冷温度及较高的收率。工艺流程设计时,要充分运用先进的工艺技术,实现节能降耗的目的,不断增强液烃收率。比如,可采用气体过冷工艺、直接换热工艺、混合冷剂制冷工艺等。

3.以回收C3+烃类为目的装置的设计

在初步明确冷凝压力后且明确具体的冷凝温度时,要求确保C3冷凝率的适当性,不能过高又不能过低。当达到一定的压力后,冷凝温度由气体组成而最终决定。如果伴生气内存在较多C3含量,那么,冷凝温度就会很高,含量较少时,冷凝温度就会很低。一旦冷凝温度下降,尽管C3的冷凝率进一步提升,但常常会由于C2冷凝率提升速率更快,需要使用庞大的冷量对C2进行冷凝,同时还会耗费掉一定的热量从凝析液中脱除,根本达不到经济合理的要求。

二、伴生气轻烃回收的工艺设备

工艺流程内包含了各种工艺设备,流程是否能满足工艺设计的要求,主要看其选用的设备是否是高效完善的。在选择设备过程中,要始终以高效、技术先进、可靠等角度出发。

如果装置中的气——液分离器有内部结构及设计计算不达标的问题,那么,就会直接导致气相携带出液滴,很难获取到符合于计算结果的凝液量,这样大大削弱了液烃回收率。我们一般使用的重力分离器没有多佳的分离效果,为了确保具有较高的分离效果,多数相关学者都加大了该方面的研究力度,研发了多样化的分离器,能够应用于回收装置中,从而保证气——液分离效果。

1.压缩机、制冷机、膨胀机的选择

应积极和制造厂商沟通交流,将具体的工艺要求与有关参数告知给厂商,合理的选择设备,以确保所选设备具有较高质量。选型过程中,要以国内自行生产的设备为首选,特殊情况下可选择国外一些先进的设备。压缩机和冷剂制冷机组在伴生气轻烃回收装置中占有重要地位,实际选型过程中,必须精确的估算出压缩机的功率和制冷机的制冷量,这样能够防止过多的能耗。

2.板翅式换热器

由于该设备缺乏一套规范系列,所以,选择设备时,相关设计工作者应将各股流的工艺参数、热负荷、工艺要求全部转达给生产厂商,然后,生产厂商再据此进行科学合理的生产,这样所制造出的换热器在质量上就可得到保证。无论是冷换设备还是冷剂蒸发器均适合采用板翅式换热器,不仅具有较好的换热效率,而且还给橇装设计提供了极大的便利。

3.加热炉

选用造价合理、炉体结构简单、热效率性好的加热炉,严格根据相关的工艺要求生产,切实做到橇装化。我国自行生产了圆筒式和火筒式两种加热炉。如果实际中存在100o一2500kw的热负荷,应以圆筒式加热炉为首选;在一些小型装置中,当存在20—500kw的热负荷时,以火筒式加热炉为主,该炉的最大优势是重量轻、不会耗费太多的钢材,也不会挤占太大的面积,对于橇装化目标的实现提供了重要的保障。

三、结论

综上所述可知,科学合理的设计工艺流程,选择相配套的制冷工艺,用好外冷与内冷,优选优质工艺方案,确保液烃具有较高回收率,适当的节约投资。使用先进高效的设备,促进技术经济效益最大化。

参考文献

[1]边龙.轻烃提炼天然气中找油田[n].大庆日报,2008年.

[2]朱良.轻烃类石化冷却系统的空冷器散热性能及优化技术研究[D].内蒙古工业大学,2010年.

[3]童立志,李少军,刘洪杰,贾琴芳,朱汉兵.轻烃回收膨胀机制冷工艺、编程计算方法及计算分析[J].内蒙古石油化工,2009年20期.

[4]童立志,李少军,刘洪杰,贾琴芳,朱汉兵.冷凝分离法轻烃回收工艺影响C_3~+收率因素系统分析[J].化工技术与开发,2010年01期.

化工工艺流程设计篇10

【关键词】化工工艺优化设计

中图分类号:F407.45文献标识码:a

随着近年来工艺工程的发展和进步,工艺工程在当下已经发生了巨大变化,主要体现在两个方面:开发新观念和新的分析及优化方法。

一、化工工艺设计的定义

根据以往的流程定义,化工工艺设计总共包括三个方面:设备布置、工艺流程及管道布置三个方面。就是提出工艺参数让土建专业、设备专业的选择型号、基础,绘制工艺流程图后,根据设备专业及土建专业的图纸定出设备布置图,协调完成,最后配管,定管道布置图纸

二、化工工艺设计现状

化工工艺过程的变革常常会遇到很大阻力,主要原因是化学工业具有资本密集型的特性,一旦工艺失败将造成巨大的资金损失。通过对化学品生产的成本构成分析,可以看出基本建设投资和原材料在总成本中占有主要份额。因为装置费用大,常常要运转多年。现在许多装置都已经拥有50年的寿命,将它们进行改造、扩大能力、解决薄弱环节要比新建一套装置便宜得多。按此趋势分析,2020年销售的产品中约有3/4将仍由1999年运转的装置生产,但是必须改进装置性能、扩大产能和减少污染。当然,也会有一些主要的工艺过程出现革命性的变革,对化工生产有重大影响,但也须经过较长时间,一般要10~20年。

大量生产的产品影响制造成本的两个主要因素是原材料费用和基建投资。每年在基建方面分摊费用约占30%,而其他费用诸如能源、劳动、维修、税赋、废料处理等总计约占50%。少量生产品种的原料和基建费用所占份额较低。为了提高现有装置产能,降低单位生产成本,选择改建、消灭瓶颈和更新战略,可以减少投资。

三、对未来化工工艺设计的几点思考

3.1要能体现降低能耗

许多人将能源成本作为生产总成本中一个重要的构成部分,但是一般并非如此。分离需解决的重点是能量消耗大和基建投资高两个方面。降低能耗及其相关投资的课题研究常常颇为见效,例如应用超临界流体于许多大型分离装置。当前的研究表明,一些系统的能源费用可以低于许多常用的技术,诸如蒸馏、恒沸蒸馏和萃取。能耗的降低是工艺工程设计和研究的重要内容。Hen分析提供了一个简单的手段,使整个过程中的热流变为可视的,从而弄清各种不同物流和热流可以进行热交换,以减少对加热和致冷的能量需要。通过Hen分析可以达到最小的能量利用和交换器数量。Hen分析已经用于一些工艺过程设计软件包,可在新装置设计中应用,也可在现有装置的改进中应用。在分离范围内,许多研究工作都在寻找替代蒸馏的方法以达到节能的目的。但这方面的效果不很大,因为要改变就要花费基建投资,这常常难以与节能所降低的成本平衡;另一方面,蒸馏也有不少改进技术既可节能又省投资。蒸馏塔的串联是节能的主要措施,串联中将一塔的顶端汽流作为另一塔的热源,这种操作与多重蒸发类似,但是应用中需要完善解决工艺过程的控制问题,包括工艺控制技术和实时组份传感器等,同时需要重视这种串联塔的关停问题。

3.2要能体现降低基本建设投资

化学工业是资本密集型产业,除非有化学的重大突破使主要产品的生产工艺得到更新升级、用新装置生产代替原有生产工艺具有优良的经济特性,一般都是通过现有装置改造、解决瓶颈问题、扩大产能来达到改进和提高的目的,因为这样可以节约基本建设投资。通过工艺过程强化、减少设备尺寸,可以显著地节约投资。如Higee工艺可普遍用于蒸馏塔的改造,对流气液在转动的填料柱中快速接触,达到一定的理论塔板高度,由于接触效率显著改进,所以能够取得良好的经济效果。但是,有两个因素影响其实施:①径向缩小设备需要投资于自旋的转子,而且自旋采用电力,因而要增加能源费用;②标准蒸馏塔的辅助件,如冷凝器、管道和控制系统等一般不需变动。这两个因素使Higee设备只在少数装置上应用。改变蒸馏塔的填料装填结构也可以带效益,提高能力,改进分离效率。另一条途径是减少工艺过程中的设备台数,将几种功能在1台设备中完成,如醋酸甲酯和mtBe、tame等生产中应用蒸馏反应器即是实例。在醋酸甲酯工艺中,由于将反应与分离结合起来,因此避免了几种共沸物的形成,从而显著简化了分离工序。此外,膜反应器对受化学平衡限制的反应十分有利,可以有选择性地将一种产物从反应物料中移出,从而在通常的化学平衡条件下提高了转化率。对工艺过程序列和工艺选择技术在今后数十年内将是增长和发展甚快的序列,应用了一些称之为结构相关技术,如超结构、状态2空间表达和工艺过程图(p2graphs)等。其中工艺过程图可以迅速地进行计算机化,可以类似寻求最佳化方案的方法。随着时间的推移,这些技术将结合其他分离技术发展,如吸附、膜和萃取等,在工艺过程中进行推理组合,在经济上取得最优化的结果。一种称之为结构无关的新技术也已出现,如质量交换网络分析,该技术与热交换网络分析类似。上述两种分析法可在今后10年内对非常复杂的问题进行分析,综合出经济上最佳的工艺流程,对新建或改建、对多用或少用新技术作出选择,从而得出化学工业如何降低基建投资的答案。

3.3要能体现改善环境行为

据美国化学制造商协会的研究报告,解决污染问题就是减少污染源、回收利用,最后就是终端处理。从工艺过程上要减少未来污染的设计战略必须重视两个问题:一是到2020年多数装置将在现有装置上扩大和升级;二是多数机遇可能出现在终端处理的应用上。从工艺过程本身加以改进也有几种可能:①提高化学反应的效率特别重要;②提高分离效率,使产品转化率提高而少损失,同时增加收益而减少废料处理费用;③应用Hen分析方法缩小装置规模,减少用水量,在装置改进和更新中收效明显。在工艺过程设计中减少废料总量是特别重要的观念,因此要进行水的再次利用,把废水减到最低程度。现在已有一些新方法和水压缩技术可以确定工艺对新鲜水的最低用量。

3.4新模式:将设计与研究集成

当前的工艺过程设计应用应该拓展,但需要将研究开发中的试验结果与设计建设结合起来。传统方式是当研究开发出新的工艺过程时,应定期与设计者对话,当达到中试阶段才形成一个试验性的软件包,一些工艺过程设计活动才开始,最后使此试验性软件包完善,以完成进一步的技术设计。新方式是首先开发一个带有物料和能量平衡的流程、一个热力学软件包、研究容器的设备尺寸和制作一个简单的经济模型。其中有不少推测和估算,但目的是将试验计划能尽快地涉及此工艺的关键技术和经济问题。例如,有共沸物生成分离是否困难?反应器和分离系统是否需要大量投资?能否改变分离手段来减少总体复杂性和分离系统的费用?研究开发部门与设计者进行对话,寻求问题的答案,通过专门的试验成果来更新工艺过程模型,同时又可提出进一步试验的课题。这样可以节约研究与开发的费用25%~50%,而且节约大量时间。