卫星遥感技术应用十篇

发布时间:2024-04-25 23:53:27

卫星遥感技术应用篇1

关键词:SaRinSaR极化Dem

中图分类号:tp701文献标识码:a文章编号:1672-3791(2017)02(b)-0003-06

目前,随着航空航天技术和计算机技术的不断发展,卫星遥感技术也得到了巨大发展,卫星遥感数据在各个部门和领域的应用非常广泛。但是,传统光学遥感受到云层干扰很大,极大限制了卫星遥感获取地面信息的能力,因此,不受天气影响的雷达卫星遥感逐渐成为遥感研究的热点。相对于传统的光学卫星遥感,雷达卫星遥感不受云层遮挡限制,具有全天候对地观测的能力。除此之外,由于合成孔径干涉雷达可以快速生成数字高程模型(Dem),同时雷达卫星对水体、植物和冰川等地物的反射波有差异,因此,可以通过雷达遥感影像对地物进行分析。源于以上因素,从20世纪末开始,世界各国都大力发展雷达卫星遥感技术。目前欧美日等很多国家拥有民用或民两用雷达遥感卫星,主要卫星包括加拿大的envisat卫星、德国的terraX卫星、意大利的Cosmo-Skymed卫星、日本的aLoS卫星等,我国在2016年8月也发射了我国第一颗高分辨率雷达卫星――高分三号。

1雷达卫星遥感基本理论

1.1雷达工作原理

雷达的英文RaDaR是由RadioDetectionandRanging(无线电侦测与测区)的缩写。雷达工作原理是由电磁脉冲源系统发出电磁波脉冲,并侦测脉冲反射信号,通过发出和接收信号的时间、方位角以及电磁波强弱等信息计算目标物的距离、方位、大小和密度等特性。雷达自20世纪20年代诞生以来,在军事领域得到了广泛应用。二战结束后,雷达开始应用于非军事用途,如气象预报、环境监测、探矿和大地测量等。

雷达的波段属于电磁波中的微波波段,雷达根据用途不同采用不同的波段和频率,而不同雷达的观测分辨率和清晰度不同。根据微波探测基本理论,雷达波长越小,其频率越高,观测分辨率越高。雷达微波在电磁波中的位置段以及波长与频率的关系如图1所示。

雷达根据电磁波接收方式划分,可以分为主动式雷达和被动式雷达。

主动式雷达系统在电磁波源发射电磁波,碰到目标物后反射或散射,再被可接收各个方向的接受雷达端接收,利用不同路径的雷达信号对目标物的参数进行计算。主动雷达系统的信号发送与接收的雷达一般是同一部雷达,在特殊情况下可以是两部雷达。

被动式雷达系统只接收电磁波信号,由于空间中存在大量的电磁波信号,遇到目标物后会进行散射,其中一些电磁波会散射到被动雷达接收源,而接收雷达通过从不同的接收器接收的信号中或同一接收器在不同时间接收到的信号来估测目标的参数。一般情况下通过Bistatic方法比较反射信号与原来发射信号的差异可以计算所需的参数,如距离、方位、速度等,也可以通过monostatic方法利用反射或折射信号直接估算各项参数。

目前所有遥感卫星的星载雷达都是主动式雷达。

1.2雷达卫星遥感

雷达卫星遥感即将雷达安装到运行于地球太空轨道上的卫星上,实现对地球的观测。目前最常见的雷达遥感卫星是合成孔径雷达(SyntheticapertureRadar,简称SaR)卫星。SaR卫星可以充分使用地物的电磁波反射特性对地物目标进行侦测,通过地物的电磁波反射特性与电磁波频率、极化以及入射角的关系进行对地观测,可以获得被侦测目标地物各种丰富的信息,如材料、密度、水含量和结构可靠性等。在雷达卫星遥感技术诞生后,随着干涉技术的SaR卫星和聚束SaR技术发展,雷达卫星功能越来越强大,用途越来越广泛。因此,各主要国家在大力发展SaR卫星遥感的同时,也在发展遥感卫星编队组网以及卫星星座,编队飞行可以实现立体成像功能,卫星组成的飞行编队,可以连续对某个区域进行多景重叠成像,从而实现该区域的立体建模。

2SaR/inSaR卫星与数据处理方法

2.1合成孔径雷达遥感

合成孔径雷达卫星是目前卫星遥感的主流,合成孔径雷达是多个雷达孔径或天线组成的多电波源雷达系统。雷达和人眼都是通过电磁波的传输来观测目标物,雷达波段理论上是波段越小看到的影像越清晰,因此,雷达需要很长的天线才能发出所需的微波。目前大型的微波雷达天线达数公里,因此,传统雷达无法实现机载和星载,为了解决机载和星载高分辨率雷达的问题,采用多个雷达孔径同步或者异步观测,可以获得多个小波段的雷达成像。因此,从雷达卫星一般都采用合成孔径雷达作为传感器。

合成孔径雷达的操作原理复杂,但是可以通过实例说明基本作业原理。假设一搭载SaR卫星,SaR的观测方向与卫星轨道垂直,如图2所示。SaR直接产生二维空间影像,即range(行方位)维和azimuth(极方位)维,SaR影像所显示的则是其视角方向的相对距离与位置,视角方向是卫星电磁波传输与目标物的方向夹角。SaR卫星的电磁波Range维方向解析度由测量电磁波脉冲发射天线与接收天线的接收时间决定。

azimuth维与Range维垂直。与光学传感器不同,azimuth维的方位解析度可以与range维不同,azimuth解析度依赖于雷达天线的宽度,越大的雷达天线可以使目标物的对焦更加清晰,进而使azimuth维方向的解析度更高。与传统光学遥感传感器类似,越大的孔径获得的影像质量越佳。但是SaR所使用的频率远低于可见光,因此,如要提高SaR影像的成像品质,需要更长的雷达天线。但是无论是飞机还是卫星,其携带的雷达大小都是一定的。因此,为了解决该问题,雷达传感器可以改装成基于多普勒效应的多个小型天线以获得高分辨率遥感影像,即SaR传感器。SaR一次搭载了多个发射器,在飞行途中每个发射器都会发射出不同的电磁脉冲,再依照接收到电磁波脉冲的多普勒位移,经过处理可以提高成像品质,但也需要考虑地球自转所产生的频率位置误差,经过计算机增强后,可以将azimuth维方向的解析度提高3个数量级。

2.2SaR影像几何失真与纠正

在卫星雷达遥感成像中,被侦测地物目标的方位在卫星按飞行平台的时间序列进行成像,距离方向上是按照地物目标反射信息记录顺序成像,在高程上,即使微小变化,都可能引起较大范围的图像扭曲,我们将这些微小变化的产生因素称为诱导因子,从目前卫星雷达遥感的经验上看,目前最主要的诱导因子包括电磁波透视收缩、地物叠盖和阴影。

同时为了获得更大的侦测范围,SaR卫星一般采用侧视发射和接收电磁波的方式,这种方式获得的影像与正常影像有差异,这种差异称为几何失真。由于入射角不同,所以斜距不同,导致雷达斜距图像上的近距离压缩,就是图像失真,如图3所示。图中的山区部分,在迎向雷达区域会有缩短现象,而在背向雷达的区域会有变长现象。

以上原因导致了SaR影像各种失真,对于雷达遥感的几何失真,可以采用地距的显示方式进行消除,即Dem叠加影像获得实际距离,纠正SaR图像。

图4为广西柳州市红花水电站地区的eRS-2卫星SaR遥感影像,可以发现东边(右边)山区较白的区域较短,西边(左边)较深的区域较长,这是前波缩短和后波拉长造成的,由此可见卫星轨道是自西向东。

2.3合成孔径干涉雷达

合成孔径雷达就是让合成孔径雷达做干涉运动。SaR影像通常包含了距离与相位资讯,inSaR利用相位的信号得到空间信息。在对地形进行分析的过程中,可以挑选两张在不同时间拍摄的SaR影像并假设在拍摄时间段地表没有发生变化,若α秸庞跋窠行干涉,则可以得到相对高程值,其原理类似于立体相对。通过这种方法,可以获得数字高程模型,即Dem数据。利用该方法获得的Dem数据,其分辨率更高,但是目前要解决的主要问题是无地面像控点的数据校正处理,一般采用高精度轨道实现数据高精度校正和立体成像。

图5为Dem处理流程,图6为通过SaR数据处理获得的Dem数据。

如果在两种SaR影像采样过程中,地表有变动,则获取的高程数据将包括实际高度与变形,为了得到变形量,需要将高度数据去除。

2.4差分合成孔径干涉雷达

在合成孔径干涉雷达的数据中,将高度数据从合成孔径干涉雷达影像中去除,再通过另一景相同位置的SaR数据获取相对高程,称为差分合成孔径干涉雷达。这类方法按照轨迹数可以分为双轨迹法、三轨迹法和四轨迹法。双轨迹法是利用现有的数字高程模型(Dem)来减去高度数据,该方法的缺点是如果干涉影像的采样时间与数字高程模型的采样时间点内地表有大的变动,则该方法不能使用;三轨迹法是再使用一景SaR影像,与原相对的主影像作干涉,然后减去原干涉相对,这种方法可以得到研究时间范围内的全部动量,精度较高;四轨迹法是采用4张SaR影像,制作成两对干涉相对,将两相对进行差分,可以得到两相对间的地表变形量。如果观察地区有异常地物形变,还需要对非正常形变进行过滤。

2005年的影像(eRS影像)与2008年汶川地震后的影像(eRS影像)干涉后,再减去当地概略Dem(GDem数据)的结果,即双线法。该处变形指对于卫星视角方向的变形。

2.5SaR/inSaR极化

当雷达发射电极上有净电流通过的时候,电极电位显著地偏离了未通过净电流的起始电位值,这种现象叫极化。极化是底电磁波的偏振方式,可分为线极化、椭圆极化、圆极化。在线极化中,根据电场矢量方向随时间变化,又分为两个方向的极化,即水平极化(H极化)和垂直极化(V极化)。水平极化指电磁波的电场矢量与入射面垂直,垂直极化指电磁波的电场矢量与入射面平行。雷达极化是指雷达发射的电波和接收的回波的极化状态,线极化是目前雷达卫星遥感最常见的极化方式。在雷达遥感中,由于在传播过程中电波与媒质相互作用,电波与目标相互作用,导致波在传播过程中极化状态改变,这些改变都反映了媒质和目标的信息,因此,通过研究回波的极化状态可以提取有用信息。

根据极化理论,改变雷达发射天线的方向就可以改变电磁波的极化方式。

如果发射的是水平极化方式的电磁波,与地物表面发生作用后会使电磁波极化方向产生不同程度的旋转,形成水平和垂直两个分量,用不同极化方式的天线接收,形成HH和HV两种极化方式的图像。若雷达发射的是垂直极化方式的电磁波,同理,会产生VV和VH两种极化方式的图像。

多极化SaR通过测量地面每个分辨单元内的散射回波,进而获得极化散射矩阵以及Stokes矩阵。极化散射矩阵具有将目标散射的能量特性,为更加深入地研究地物目标提供了重要的依据,使SaR遥感对目标的信息获取能力极大增强。

极化干涉SaR是极化SaR与干涉SaR的结合,利用了相干性和干涉相位观测量随极化变化的特性,使干涉SaR观测量实现目标高程获取,又具有极化SaR对不同散射机理的分辨能力,同时使SaR遥感的SaR干涉获取数据具备提取地物参数的能力,实现对森林、岩石、水体和裸地等目标进行识别的能力。

3结语

SaR/inSaR卫星有着特殊优点,因此目前主要应用于军事侦察、地质和地震研究等。同时,由于雷达卫星影像数据的普及时间较短,现在仍然不断挖掘其应用潜力。主要包括对水体水质的探测分析、洪水预警分析和灾后损失分析、山体滑坡分析和预警、森林保护和估产、城市变迁等。雷达卫星遥感影像数据比传统光学影像数据更加具有应用挖掘潜力。但是,目前雷达卫星遥感影像数据处理技术未完全成熟,未来随着计算机技术的不断进步和算法的不断优化,相信雷达卫星遥感在世界各个行业将有更加广泛的应用。

参考文献

[1]S.kaya.theUseofRadarRemoteSensingforidentifyingenvironmentalFactorsassociatedwithmlariaRiskinCoastalKenya[C]//GaRSS02.2002.

[2]iBaran,mpstewart,Zperski,etal.modificationtoGoldsteinRadarinterferogramFilter[J].ieeetransactionsonGeoscienceandRemoteSensing,2002,41(9):2114-2118.

[3]孙佳.国外合成孔径雷达卫星发展趋势分析[J].装备指挥技术学院学报,2007,18(1):67-70.

[4]陈基炜.应用遥感卫星雷达干涉测量进行城市地面沉降研究[J].测绘通报,2001(8):13-15.

卫星遥感技术应用篇2

关键词:免费卫星遥感影像;林业调查设计;应用

中图分类号:F32文献标识码:aDoi:10.11974/nyyjs.20160432200

1免费卫星遥感影像在林业调查设计中的运用现状

卫星遥感影像技术在我国各种地质调查领域中都有所运用,在林业调查设计中的运用情况也发展较好。以玛纳斯县为例,在2003年首次利用Spot-5卫星遥感影像技术进行森林资源调查设计,之后在2006年在新疆全省进行全面推广。现在新疆各地区在进行林业调查设计时都会结合免费卫星遥感影像技术。例如新疆玛纳斯县在2014~2015年进行的林业调查中,使用的调查方法就包括了采用“3S”(地理信息系统(GiS)、遥感(RS)和全球定位系统(GpS))等技术,并且利用近期较高分辨率(2.5~5m)的卫星遥感影像数据进行小班判读区划。但是,我国各地区使用的卫星影像栅格数据大多都还是2006年的数据,这一数据较为可靠并容易进行调用,但是缺乏实时性,运用中有一定的局限性。因此现在林业调查设计中使用的卫星遥感影像数据还有待更新,才能够更加方便、准确地进行合理的林业调查设计规划。

2免费卫星遥感影像在林业调查设计中的使用方法

免费卫星遥感影像的使用需要经过一系列步骤,要利用免费的网络资源,获取到待调查区域的卫星遥感影像,然后要将这些影像进行栅格处理和配准校正等步骤,最后才能够将图像应用在林业调查设计工作中。这一系列步骤涉及到一些软件的操作及调试,具体步骤如下:进行准备工作。需要在windows操作系统中安装arcGiSDesktop10.0或者以上版本,并且安装好arcBrutile0.3.3插件。有了这些软件才能够正确显示图像并进行导出或者打印;开始获取遥感影像。在这步骤中,要经过arcmap进行地区定位,输入地区的经纬度进行数据获取,选定比例尺将得到的图像进行导出;根据图像叠加的方式进行配准校正,得到可以使用的卫星遥感影像。根据这些这些影像,就可以作为实际林业调查设计的参考,便于实际设计工作的进行,为设计林业调查方法或者进行区域划分提供真实的参考资料。

3免费卫星遥感影像在林业调查设计运用中的优势

免费卫星遥感影像在新疆各地区的林业调查设计中都得到了较为广泛的应用,这与免费卫星遥感影像的一些有利优势是分不开的,正是因为有了这些优点,才能够促进这种技术在林业调查设计中的推广。

3.1技术使用方便

免费卫星遥感影像的实际运用虽然涉及到一些计算机软件的操作和使用,但实际上技术并不复杂,并且由于大多数经常进行林业调查的地区都早已配备了较为完善的GpS设备,人员只需要进行简单培训就可以进行使用。例如在玛纳斯县的林业调查部门中,配有正版的GiS软件,并且为设计人员配有手执版GpS,方便操作,使用非常简单。运用现代软件进行操作比用人工测绘的方式要简单得多。

3.2数据结果可靠

免费卫星遥感影像能够实际拍摄地形情况,测量误差较小,并且具有多点校正配准技术,在实际使用中能够极大地减少人为因素带来的测量和估算误差,能够极大地提高林业调查结果的可靠性,为林业调查研究提供更加准确的参考资料。

3.3技术易于推广

免费卫星遥感技术能够迅速在新疆地区进行大面积地推广正是因为这种主要依赖于卫星和信息技术的方法相比于传统方法更加容易进行推广,只需要安装相关软件并接入互联网就可以获取到影像资料,减少技术传播的中间过程。同时,这种技术易于学习,只要有一定的计算机基础即可学习使用这种技术,可以降低对使用人员的专业素质要求,使得这种技术更能够被基层林业部门掌握,也就利于这种技术在基层林业调查设计工作中的传播推广。

4结束语

免费卫星遥感影像在现代林业调查设计中被广泛应用,这种影像资源获取较为简单,技术容易学习掌握,在我国新疆地区等地全面进行了推广。通过使用这种免费的卫星遥感影像,可以帮助林业调查设计人员获取更加准确可靠的地形、林区、流域资料,对于设计过程中的调查方法的选用、调查区域的划分等工作安排有着重要的意义,进而可以有效提高实际的林业调查结果的准确性,有效提高林业调查效率。

参考文献

卫星遥感技术应用篇3

课程标准:结合实例、了解遥感在资源普查、环境和灾害监测中的应用。

课表分析:根据课标要求,要了解遥感的概念、特点、工作过程。重点掌握遥感在资源普查、环境和灾害监测中的具体应用与功能,进一步认识遥感在现代社会中发挥的巨大作用,还要初步学会判读简单的遥感影像。但是对于遥感工作原理不要求涉及“专业机理”,定位到“工作过程”程度即可,也不要求掌握遥感的分类等知识。

二、教材分析:

新课程标准把《地理信息技术的应用》列为必修课程,而“地理信息技术”体系主要由“3S”即地理信息系统(GiS)、遥感(RS)、全球定位系统(GpS)三方面的核心技术组成。另一方面,GiS、RS、GpS技术又以计算机科学、通信技术、遥测与卫星定位,以及系统论等信息技术和理论为支撑,属于地理科学与信息科学的交叉学科。遥感技术、全球定位系统、地理信息系统是地理信息技术的三种主要的技术手段,这三种手段相互促进、相互配合、共同应用的基础上,再结合网络技术、虚拟技术,人们提出了数字地球的设想。所以说,第三章第二节“遥感技术的应用”?与其他两门技术的应用介绍处于同等的地位,他们相互交织,相互配合,才能使数字地球的设想实现。而遥感技术在3s技术中也有不可代替的作用,遥感技术(RS)是地理信息系统(GiS)数据库的数据源;同时利用遥感数字影像获取地面高程,可以及时更新地理信息系统(GiS)中的数据。

三、教学内容:第二节、遥感技术的应用第一课时

四、教学目标:

1.知识与技能(知识目标):

(1)能用自己的语言表述遥感的概念;

(2)能简要说明遥感技术的发展过程和工作过程;

2、过程与方法(能力目标):

(1)通过读图或查阅相关资料,比较航天遥感、航空遥感、近地遥感使用的运载工具、主要优缺点及适用范围等方面的差异;

(2)通过查找遥感的有关资料,归纳遥感技术的特点。

3.情感、态度、价值观(情感目标):

(1)通过对遥感技术的迅猛发展的介绍,感悟新兴地理信息技术的生命力,从而初步养成热爱科学努力学习的好习惯;

(2)通过对迅速发展的中国遥感技术的学习,增强民族自信心和爱国情感。

五、教学重点难点:

遥感技术的基本原理。

六、教学方法:案例教学法。通过讨论活动了解遥感技术的工作过程

七、教学过程:

导入:设疑:中央电视台天气预报卫星云图是怎么得到的呢?它先是用风云卫星遥感拍照,然后通过计算机处理、编辑而成的动态图片。是遥感技术的应用。

填表比较人工实地调查与利用遥感技术调查,哪一种获取资料和信息的方法更好?

1.概念:

遥感:(简称RS)“遥远的感知”,是利用一定的技术设备和系统,在远离被测目标的位置上对被测目标的电测波进行测量、记录与分析的技术。

怎样感知?测量电磁波特征:不同的地物反射与吸收电磁波存在巨大差异。(p82图3-2-2)

遥感不仅可以通过可见光进行感知,同时也可以通过红外线、微波等,例如:法国的Spot-5卫星可以从七个波段获取信息。

为什么要分波段呢?因为不同波段不同地物的反射率与吸收率等有很大差异。(多媒体展示甲乙两种作物在不同生长阶段反射率不同示意图并分析)

2.分类:

按遥感平台高度(运载工具)分:地面遥感、航空遥感、航天遥感

地面遥感主要指以高塔、车、船为平台的遥感技术系统,地物波谱仪或传感器安装在这些地面平台上,可进行各种地物波谱测量。航空遥感泛指从飞机、飞艇、气球等空中平台对地面观测的遥感技术系统。航天遥感又称太空遥感,泛指利用各种太空飞行器为平台的遥感技术系统,以地球人造卫星为主体,包括载人飞船、航天飞机和太空站,有时也把各种行星探测器包括在内。卫星遥感为航天遥感的组成部分,以人造地球卫星作为遥感平台,主要利用卫星对地球和低层大气进行光学和电子观测。

4.遥感影像的基本特征:

(1)像元:遥感影像上能详细区分的最小单元

(2)分辨率:一个像元所代表的地面实际尺寸。1米分辨率就是指影像上的一个像元表示地面上1平方米的范围。例:Spot-5卫星的分辨率达全彩色波段可达2.5米,其它波段为5米。中巴资源卫星二号分辨率为20米。美国快鸟卫星为1米。

媒体展示图3-2-6让学生体验像元大小对影像信息的影响。相同范围的区域图片,像元越多,分辨率越高,图像越清晰。

(3)光谱特征(媒体展示读图判读,3-2-7、3-2-8、3-2-9图):

黑白:建筑物为灰白色,草地和林地颜色较深

彩色:分真彩色和假彩色

真彩色:真实反映实际地物的颜色特征

假彩色:草、树和庄稼通常为红色,水是灰色或蓝色,城市是蓝灰色

练习与评价:叙述真彩色遥感影像图像和假彩色遥感影像图的颜色特征。真彩色图片上的颜色基本显示地物的颜色,假彩色只是用不同的颜色区分不同的地物,显示的不是地物的颜色。

媒体展示美国快鸟卫星图片、我国风云卫星拍摄的云图、嫦娥探月卫星拍摄的月球表面影像让学生体会遥感技术的广泛应用及我国遥感技术的发展成就。

八、课堂小结与板书设计:本节课的重点和难点内容是遥感的工作过程。

九、课后作业:

1、什么事遥感影像的分辨率?说出分辨率大小和影像显示地表信息能力之间的关系。

2、叙述真彩色和假彩色遥感影像的颜色特征。

卫星遥感技术应用篇4

关键词:免费卫星遥感影像;林业调查设计;技术方法

中图分类号:p407.8文献标识码:aDoi:10.11974/nyyjs.20150501083

1技术方法

1.1获取卫星遥感影像

1.1.1获取遥感数据

首先做好相关准备工作,在windows系统中安装能够显示卫星遥感影像的软件,例如,arcGiSDesktop软件以及arcBrutile插件。连接互联网后,打开arcGiSDesktop桌面组件之一的arcmap程序,定义地图坐标系统;新建一个shapefile面层文件,给拟定林业调查区的的四至范围做一个掩膜,将图层的填充色设为无色,图层轮廓设为红色,宽度为1,注意该文件的投影坐标系定义必须与预定义保持一致;将掩膜缩放到图层上,点击arcBrutile插件,同时选中Bing菜单中的aerial键,数据缓冲后,便可得到拟定林业调查区的卫星遥感影像地图[2]。

1.1.2导出地图和拼接地图

首先,导出卫星遥感影像地图。如果屏幕上显示的地图区域已经覆盖了整个林业调查区,那么只需导出一幅地图即可;如果屏幕上显示的地图区域只是拟定林业调查区的一部分,那么需要分幅导出。然后,拼接卫星遥感影像地图。将所有导出的卫星遥感影像地图,放入arcmap中,屏幕上会显示整个调查区域的卫星遥感影像,运用镶嵌工具,将导出的多张卫星影像放到一幅导出影像图之中,形成整个林业调查区的卫星遥感影像地图[3]。

1.2配准卫星遥感影像

1.2.1公共点的采集和参照

对于拟定林业调查区的四至边缘上的明显地点的坐标值进行采集,采集点一般在3个以上,明显的地点一般是指路的拐点或交叉点。采集完后,新建一个shapefile点层文件,将采集的公共点的坐标值输入进去,然后保存并导出shapefile点层文件[4]。

1.2.2配准校正

将导出的卫星遥感影像地图和shapefile点层文件添加到内容列表进行叠加,对公共点与遥感地图叠加后偏移的部分进行配准校正处理,具体操作方法为:进入地理工具配准工具条中的增加控制点,输入采集公共点的坐标值;点击地理标准工具条中的更新地理标准,尽可能的让公共点与卫星遥感影像地图重合。

2卫星遥感影像成果的使用实例

2.1毁林开荒调查

巍山县林业局接到举报有部分市民在附近的林业区进行非法毁林开荒工作,该林业局负责人获取了该林业区的卫星遥感像地图,相关工作人员将该图作为底图,与二类林业资源矢量图层进行叠加,确定了对林区的毁坏覆盖面积,此外还通过走访村民了解具体情况,发现情况属实,被举报人受到了相应的惩罚。

2.2森林抚育作业设计

大理州森林资源管理站准备在弥渡县开展森林抚育计划,由于该林业地区地质和历史的变迁,2006年应用的卫星遥感影像已经无法真实的反映该地区的地理面貌,如图1。于是通过利用上述技术方法,具体操作如下:获得弥渡县林业区的卫星遥感影像地图,如图2;采集3条公路和多个小路的交叉点坐标值,与卫星遥感影像地图进行配准校正;确定森林抚育区域,利用配准校正后的卫星遥感影像获取抚育区域的地形地貌、道路、水路等信息,并根据具体信息作出具体规划;排除不符合森林抚育条件的地段,避免不必要的浪费。

图12006年卫星遥感影像

图2新获取的卫星遥感影像

卫星遥感技术应用篇5

遥感,早期只是被人们用来给地球拍照,形成一幅幅地球的“照片”。但现在,随着技术手段的增强和分辨率的提高,通过提取地物的波谱特征,或利用图像处理系统对各种遥感信息进行增强与几何纠正、识别、分类,已经可以得到更多有价值的信息,“照片”变成了“魔镜”,这面镜子,除了展现出实物影像,还能剥离外表、识别真相。

数据获取与信息处理并重

汶川大地震使遥感技术得到空前普及,但还是暴露出了一些问题,例如航空遥感数据获取不及时、卫星遥感数据的空间分辨率不高、卫星遥感数据的时间分辨率不高、数据处理速度低、影像质量差导致目标解译困难等。此外,由于卫星遥感数据仍主要依靠外国卫星,应用的现实性和精度均受到不同程度的影响。另一方面,卫星数据在行业内部尚不能共享,一定程度上制约了遥感应用的发展。基于此,不难推测,在2009年,国家将大力发展我国的高分辨率对地观测系统,建立航空遥感应急响应系统以及空天地一体化的对地观测网格;提高航空、航天传感器的定规定姿精度和成像质量;研发数据处理的快速、智能和自动化方法也被提上日程。

中科院院士李小文曾做过这样的比喻:“遥感这门新兴交叉学科就像板块夹缝中露头的小芽,对任何成熟学科而言它都是边缘;但另一方面,它也的确存在很好的创新机遇。”未来,遥感技术应在两大方面寻求更大发展,一是观测技术,二是信息提取技术。目前,中国已建立了由气象卫星、海洋卫星、陆地资源卫星系列组成的长期稳定运行的空间对地观测体系,具备了航空航天遥感对地观测能力,基本实现了对中国及周边地区以及全球的大气、海洋和陆地系统观测和动态监测。

可以预计,2009年,卫星遥感单景覆盖范围将继续增大,分辨率也越来越高、响应时间越来越短、采集模式灵活、重访周期缩短,由此带来的连锁反应是,信息量越来越大,存档数据急速增加,而高性能计算技术的发展,必将给数据处理和应用带来很大便利,使中国遥感卫星地面接收、处理、存档和分发能力不断提高。

以应用为导向

2008年12月15日,中国太原卫星发射中心用长征四号乙运载火箭将“遥感卫星五号”成功送入太空。“遥感卫星五号”由中国航天科技集团公司研制,主要用于国土资源勘查、环境监测与保护、城市规划、农作物估产、防灾减灾和空间科学试验等领域的数据采集和传输任务。可以预测,我国将以应用拉动遥感产业的整体发展,并加强对遥感技术自主创新能力的扶持。

卫星遥感技术应用篇6

1多源卫星数据

1.1航空遥感

无人机是当前比较先进的航拍技术。自控的卫星五人驾驶机与传统航空遥感的区别在于其能够携带专业的数码相机,灵活性较强,可在云层下飞行,避免云对其的限制。这正这项优点其被研究生广泛应用。

1.2Landsat系列卫星

陆地卫星Landsat能够帮助获得tm等遥感图像,这些图像能够帮助土地利用现状,并编制具体运用情况。

tm影响共有7个波段,每个波段能够充分结合不同事物的光谱特征和大气影响,其自身已经实现优化。在具体实践中,只有第6个波段稍欠丰富外,其他的地表光谱信息是很全面的。

1.3Spot系列卫星

2002年5月Spot-5卫星发射升空。与之前发射的尾箱相比,其能够为研究者提供更加准确、丰富的地表信息资源。该卫星的遥感影像的控件分辨率是2.5m,其传感器能够帮助获得立体影像,并且在储存和传输等性能上都有提高。此外,其还能够符合土地利用动态变化检测的要求。将数据进行校正、增强和分类等,在通过实地调查资料的前提下,获得研究区内卫星区内遥感影响的翻译标志。然后根据对卫星遥感影像的计算机自动解译,能确定土地利用的类型。

1.4雷达遥感

雷达遥感比光学成像遥感要进步很多,其不仅能够长时间工作,还可以穿透地物。因此,雷达遥感是当前应用十分广泛的一种。

有学者针对热点雷达数据eRS-2展开探究,发现经过一系列的预处理后和实验区分区后,根据土地的类型可以分为非监督类和Bp神经网络类对土地利用进行划分。结果发现,多光谱遥感的数据,SaR遥感数据是可以替代的。

目前,我国SaR遥感监测技术主要被应用在那些不方便获得卫星遥感数据的区域。据数据统计显示:在农作物生长季,无论是北方还是南方多光谱遥感数据的利用率都普遍较低,不到5%,其中南方比北方总体上还要低。但是SaR获得的地观测数据可以达到100%。从上述调查中我们不难发现,SaR比较适合于农业、林业等资源调查较高的选择。

2多源遥感卫星数据的融合

2.1融合类型

2.1.1同一传感器不同分辨率的遥感影像数据的融合。笔者在分析资料时发现,有学者会选择法国的2.5m的Spot-5的全色卫星影像数据和10m的多光谱卫星影像数据,借助影像融合的办法,利用影像的纹理和光谱响应等特征,结合土地利用现状矢量图库完成土地利用现状的调查。

2.1.2不同传感器的遥感影像数据的融合。在不透光传感器的数据融合方面,有学者采用2002年和2003年Spot及etm+数据在专业遥感软件的辅助下利用多源遥感数据融合技术进行土地利用变化信息提取并对变化信息进行野外调查核实,这种办法能够大大降低查找变化地块的效率和时间,调查结果的质量也能够提升,其为以后开展土地变更调查工作的开展提供了一种新的途径和方法。

2.2多源遥感影像融合的过程

多源遥感影像融合的过程一般分为2个过程:数据预处理和影像融合。

3遥感影像分类

3.1目视解译法

目视翻译已经成为信息社会中地学研究中一项十分重要的基本技能,在遥感应用方面也不例外。遥感技术信息的获得能够更加实时、准确。例如重大自然灾害信息等等,其可以无时不刻的关注检测地球的资源和环境的变化程度,为日后世界各国的发展提供真实可靠的信息服务。

目视解释作为遥感图像解译的一类,有往往被称为目视判读。它指专业人员通过直接观察或借助辅助判读仪器在遥感图像上获取特定目标地物信息的过程。

3.2计算机自动分类法

计算机自动分类法主要分为非监督和监督两类。具体如下:

非监督是完全根据像元的光谱特性所进行的分类,比较适用于那些对分类区了解不够的情况。该方法的使用需要注意的是原始图像的所有波段应参照分类运算,结果是各类像元数大体等比例。非监督类受人为干预的影响较少,其自动化程度较高。非监督分类一般要按照以下几个步骤实施:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。

监督分类与非监督分类相比,其更多的是受人为干预较多,主要被应用在研究区域相对熟悉的情况。监督类应该首先选择那些可以识别或借助其他相关信息可以断定类型的模板,然后将通过计算机将具有相同特性的像元进行分类。监督分类是运行需要经过以下结果步骤:建立模板(训练样本)、评价模板、确定初步分类图、检验分类结果、分类后处理、分类特征统计、栅格矢量转换。

为了保证数据的精确度,一些新的分类方法也逐渐出现,但是大都由于程序过于复杂而没有被广泛应用。因此,在遥感技术不断发展的条件下,应该充分利用多源遥感技术数据,并借助GiS技术,尽量实现遥感数据的进一步精确。 

4讨论

随着我国科学技术水平的不断进步,多源卫星遥感成为土地利用中不可缺少的重要工具。其融合选择的最佳办法是能够针对不同区域和图像特点进行选择和融合。其融合不同于其他,其关键在于不仅需要融合前两幅图像的精确配准,还应该具体融合方法。

当前,多源卫星遥感数据的融合仍然存在诸多问题,这些问题的存在严重影响融合的质量和水平。其具体融合需要解决的问题主要有以下几点:多光谱与多传感器、多空间下遥感影像的融合的理论框架、模型及其算法的研究,影像的性能评价标准的确定,融合理论的精度的提高,实际应用时会受不同影响以及计算机自动分类等问题,是今后卫星遥感数据融合需要努力研究的方向。

卫星遥感技术应用篇7

面向海上台风监测、海上溢油监测和森林火灾监测等典型应用主题对多源遥感卫星协同观测的复杂任务要求,研究面向应用主题的多源遥感卫星需求建模方法,开展典型应用主题的多样化需求建模、多源卫星观测能力建模和多源卫星协同观测策略建模研究,并基于上述模型开展多源卫星协同观测策略建模研究,为多星协同任务规划提供优化目标和约束条件,并完成相关模型方法的软件实现。

【关键词】遥感卫星应用主题需求建模协同观测

1问题概述

1.1研究现状

遥感卫星需求建模是对卫星观测任务的要求进行定义、量化和综合的过程,也是对不同类型的应用需求进行统筹、提高应用需求满足度的过程,是卫星任务规划的优化目标,是确保任务规划结果的正确性、合理性的基础,也是卫星观测应用效能充分发挥的基础。早期遥感卫星需求建模以简单的轨道覆盖需求为主,主要用于单一遥感卫星、单一观测任务的访问时间窗任务规划;随着遥感卫星功能性能的提升、应用领域的扩展和卫星数量的增多,遥感卫星需求建模开始关注空间分辨率、载荷谱段、侧摆范围等多要素的整体需求建模,为多源卫星的多任务规划提供支撑。

1.2主要问题

目前遥感卫星需求建模存在的主要问题是:在需求模型要素体系构建方面,虽然在观测需求模型中已开始考虑分辨率、载荷谱段等观测能力指标要求,但这些单纯的指标要求并不能全面完整反映卫星遥感应用,例如国土、海洋、林业、减灾等业务应用领域的应用需求,缺乏将最终应用需求转化为卫星观测能力指标和工作约束条件的模型;在多星协同观测需求建模方面,虽然在需求模型中已开始引入多星、多任务及任务协作的观测要求,但这种需求模型通常与具体的应用场景联系不密切,没有从应用目的对多源卫星协同观测的要求出发开展协同观测需求建模。

上述传统的遥感卫星需求建模方法,在当今卫星遥感应用在响应时效性、手段综合性、任务精准性等要求日益突出,遥感卫星多星组网协同观测能力持续提升的背景下,愈来愈难以适应满足复杂多样应用需求、提升任务规划有效性、发挥多源卫星系统综合效能的要求。因此亟需面向若干典型应用主题,开展多源遥感卫星需求建模方法研究,为充分发挥多源遥感卫星针对复杂应用任务的综合效能奠定技术基础。

2基本模式

面向应用主题的多源遥感卫星需求建模与任务规划的基本模式是:

(1)首先进行典型应用主题的多样化需求建模,采用统一的需求定义模板,将不同应用主题的差异化需求转化为结构统一、参量各异的定量化需求模型;

(2)其次进行多源卫星观测能力建模,同样采用统一的约束定义模板,将不同卫星的轨道、姿态、成像等观测能力约束条件转化为统一的观测能力模型;

(3)然后进行多源卫星协同观测策略建模,根据不同应用主题的观测要求,按照观测任务间的逻辑与时序关系,构建多源卫星的协同观测策略组合;

(4)进而开展应用需求与卫星观测能力模型关联分析,通过应用需求模型各参量与观测能力模型各参量间的映射关系,将各自应用主题的应用需求转化为卫星观测能力约束条件,筛选出观测能力约束条件满足应用需求的卫星及其载荷资源;

(5)最后进行多源卫星协同任务规划,基于模型关联分析得到的可用卫星及其载荷资源,按照上文构建的观测策略组合,针对观测目标进行访问时间窗计算,在消解访问冲突后得到任务规划结果;如果结果不满足应用需求,则可通过调整应用需求或卫星观测能力的模型设置,通过迭代修正进行优化

面向应用主题的多源遥感卫星需求建模与任务规划的基本模式如图1所示。

3建模与分析方法

3.1典型应用主题的多样化需求建模方法

传统的遥感卫星任务调度方法对观测需求通常只考虑任务目标区域可覆盖、任务时间不超出给定范围等指标,很少从特定应用对观测资源和能力的要求出发,包含分辨率、观测谱段、协同观测时序等应用能力指标的观测需求模型。典型应用主题的多样化需求建模方法流程如图2所示。

(1)确定所需观测的应用主题,例如海上台风监测、海上溢油监测、森林火灾监测等应用主题,记为a;

(2)基于给定的应用主题a,提取和筛选应关注的重点观测目标,目标形态可以是点目标、线目标或区域目标,目标数量可以是单个也可以是多个,目标状态可以是静止目标、固定时敏目标或位置移动目标,这些观测目标记为t1,t2……tm,m为观测目标数量;

(3)针对观测目标ti(i=1,2……m),从发现、识别、确认、量测、属性分析等应用要求与观测信息提取程度出发,构建相应目标的观测特征要素体系,例如位置、尺寸、形态、色调、纹理、光谱、空间结构等,这些特征记为S1,S2……Sn,n为观测目标ti数量;

(4)针对特征要素Sj(j=1,2……n),使用通用的观测指标体系,例如覆盖范围、空间分辨率、光谱谱段、观测频次、响应时长等,对每一个观测目标特征要素的观测需求进行定量化的描述,这些指标记为X1,X2……Xr,r为观测目标ti的特征Sj数量;

(5)根据应用主题a对上述特征要素S1,S2……Sn观测需求的优先度差异,以及获取不同类型特征要素间内在的逻辑关系,构建不同特征要素在时序与优先级上的逻辑关系,用函数表示为F(X1,X2……Xr)。

完成上述流程后,面向给定典型应用主题的多样化需求模型即构建完成,该需求模型是面向应用主题的多源遥感卫星需求建模的初始条件,也是多源卫星协同任务规划的规划目标。

3.2多源卫星观测能力建模方法

对遥感卫星及其载荷的观测能力建模,定量描述卫星及其载荷能力约束条件,是多源遥感卫星需求建模和任务规划的基本要求。传统的遥感卫星任务调度方法的卫星及载荷能力约束条件一般只考虑轨道、姿态、载荷视场等特性,某些场合增加一些卫星能源、数据存储方面的约束,但很少考虑成像质量、响应时效性、信息获取能力等卫星应用能力约束条件。多源卫星存在应用对象复杂、卫星性能多样、应用能力不一等特点,若采用传统方法存在卫星及载荷能力约束与应用需求相脱节的问题。多源卫星及载荷多样化能力建模方法基于不同卫星各自的平台、载荷等性能指标及其成像能力,构建跨卫星、跨载荷的多源卫星观测能力指标体系,将个别的、具体的卫星观测能力指标转为一般的、通用的卫星观测能力模型,以适应多源卫星协同观测的需要。多源卫星观测能力建模方法如图3所示。

(1)根据给定的应用主题a,以及给定可用的多源遥感卫星w1,w2……wr(r为卫星数量),识别出卫星及其载荷观测能力的共性要素,例如轨道、姿态、成像质量、信息获取能力等,记为p1,p2……pm,m为共性要素数量;

(2)针对要素pi(i=1,2……m),按照不同观测能力要素的特点,分别用不同方法构建要素pi的描述模型,例如:对于轨道要素可用二体运动模型、J2模型、两行根数模型等进行公式化的描述,对于姿态要素可用姿态参数序列等进行序列化的描述,对于成像质量要素可用包含空间分辨率、光谱谱段、视场角、信噪比等参量进行指数化的描述,对于信息获取能力可用是否具备立体观测能力、是否具备全天候观测能力等进行模板化的描述;

(3)针对要素pi(i=1,2……m)的描述模型,确定其模型参数,记为Q1,Q2……Qn,n为模型参数数量,从而使得要素pi的模型可用函数G(Q1,Q2……Qn)表示,例如:对于轨道模型中的二体模型可用轨道六根数作为模型参数,对于姿态模型可用滚动、俯仰、偏航三轴姿态角的时序参数作为模型参数;

(4)从全部给定可用卫星中,选定卫星wj(j=1,2……r),其中若一颗卫星有多个载荷,因不同载荷的观测能力存在差异,可将同一卫星的不同载荷也等同于多个卫星;

(5)对选定的卫星wj(j=1,2……r)的模型参数Q1,Q2……Qn进行量化,具体参数量化值可来自于卫星设计参数、地面测试参数或在轨运行监测参数。

上述步骤即是多源卫星观测能力建模方法的基本流程,完成这一过程即为多源卫星需求建模和协同任务规划提供了基本约束条件。

3.3多源卫星协同观测策略建模方法

上述卫星观测能力建模完成后,各个卫星自身的观测能力即可得到定量化描述,但是多源遥感卫星协同观测与单星观测的区别除了卫星数量的增多、重访周期的缩短等外部特点以外,其本质特点在于通过多个遥感卫星及其载荷间的引导、互补、覆盖、接力、融合、多视角等关联性,实现单个卫星、单一观测手段难以实现的观测能力,使得多源卫星协同观测的整体观测能力大于各个单一卫星独立观测能力的总和。多源卫星协同观测主要有以下几种策略:

(1)引导协同策略:指的是以某一颗或某一类遥感卫星的观测结果,作为其它遥感卫星进行观测的引导信息,从而实现不同遥感卫星间的信息引导观测。例如:在森林火灾监测这一典型应用主题中,首先使用大幅宽但是空间、光谱分辨率较低卫星进行大范围的区域普查,发现疑似火点信息,然后再引导高光谱、高空间分辨率的卫星进行精细识别,从而实现森林火灾等目标的快速感知与精细识别的统一,提高卫星用于应急响应的应用能力;

(2)互补协同策略:指的是具备不同观测能力的多颗、多类遥感卫星,根据不同的观测条件,选择满足观测条件最优的卫星进行观测,从而实现不同遥感卫星信息获取手段上的互补,提高观测可靠性与有效性。例如:在海上船只识别这一典型应用主题中,当观测时段为白天、天气条件良好的情况下优先选用光学遥感卫星进行观测,而当观测时段为黑夜或天气条件恶劣的情况下则优先选用SaR遥感卫星进行观测,从而实现光学和SaR两种类型遥感卫星间的互补协同,最终实现对海上船只的全天候观测能力;

(3)覆盖协同策略:指的是多颗遥感卫星针对大范围区域目标,为各颗卫星分别指定不同观测区域,从而实现多颗遥感卫星对大范围区域的快速观测,减少或避免无效的重复观测,缩短整体观测周期,提升信息获取时效性;

(4)接力协同策略:指的是对同一目标,通过多个卫星在短时间内依次过境进行多次观测,延长对同一目标的整体观测时长,实现对同一目标特别是固定时敏目标或位置移动目标的连续观测能力。例如:在海上船只监测这一典型应用主题中,可以通过多颗卫星在短时间内连续通过目标区,实现十余分钟至数十分钟的连续监视,从而实现对海上船只运动过程、运动状态的观测;

(5)融合协同策略:指的是对同一目标,通过多种不同类型卫星或载荷分别进行观测,获取不同类型观测信息,对这些观测信息进行像素、特征或决策等不同尺度的信息融合处理,实现多种信息源的融合应用。例如:全色卫星载荷与多光谱卫星载荷融合便是典型的融合协同观测,可以实现对同一目标的高空间分辨率与高光谱分辨率信息融合应用。

(6)多视角协同策略:指的是对同一目标,通过多颗遥感卫星从多个角度同时或在较短时间内进行多次观测,从而不仅可以获取目标各个方向、各个角度的信息,更可以通过摄影测量处理获取目标的三维立体信息。

多源卫星协同观测策略建模的基本方法如图4所示。

(1)确定协同观测策略类型:基于给定的典型应用主题a,从上述协同观测策略或更多的协同观测策略中,选取一种或多种多源遥感卫星协同观测策略类型,记为C;

(2)筛选协同观测卫星及其载荷资源:在给定的协同观测策略类型C条件下,从给定可用的多源遥感卫星w1,w2……wr(r为卫星数量)中,选取若干遥感卫星及其载荷作为参与协同观测的卫星资源,记为K1,K2……Kl(l为参与协同观测的卫星数量);

(3)定义多源卫星及其载荷观测时序:根据协同观测策略类型C,以及应用主题a和参与协同观测的卫星资源K1,K2……Kl等条件,同时考虑不同卫星及其载荷间的数据特征依赖关系,定义多颗遥感卫星协同观测的时序,包括一般意义上的时间顺序,也包括逻辑上的前后承接关系,例如:假设Ki为大幅宽、中低分辨率卫星资源,Kj为小幅宽、高分辨率卫星资源,在观测时Ki卫星首先进行大范围普查观测,Kj卫星然后进行小区域精细观测,则上述两颗卫星观测的时序可记为KiKj;

(4)定义多源卫星及其载荷多次观测的间隔时间要求:在确定多源卫星及其载荷观测时序后,进一步定义相邻时序的前序卫星资源观测事件与后续卫星资源观测事件的间隔时间要求,包括最小间隔时间和最大间隔时间,例如:对于卫星观测时序KiKj,其最小间隔时间记为Δtmin,最大间隔时间记为Δtmax;

(5)量化描述单次观测的特定观测条件:对于任意一次观测事件Ki,对其特定的观测条件,例如:卫星观测指向角、单次连续观测时长、是否要求立体成像等用量化指标进行描述,可以是指数型参数,也可以是状态型参数,记为Y1,Y2……Yh(h为单次观测的特点观测条件参数数量)。

通过上述步骤,即完成了多源卫星协同观测策略建模,为多源卫星需求建模和协同任务规划提供了协同观测约束条件。

3.4应用需求与卫星观测能力模型关联分析方法

在典型应用主题的多样化需求建模、多源卫星观测能力建模和多源卫星协同观测策略建模完成后,以同类模型参数为纽带,构建典型应用主题的多样化需求模型的需求指标参数与多源卫星观测能力模型的卫星及载荷能力指标参数间的映射关系,实现“应用任务需求参数――卫星及载荷能力参数”的关联与转化;同时以卫星轨道运动模型为基础,将多源卫星协同观测策略模型的相关策略参数转化为时间序列事件,并引入卫星轨道运动时间序列中,从而实现将多源卫星协同观测策略模型参数转化为多源卫星观测能力模型附有时间条件的约束参数;最终基于卫星轨道运动模型及目标访问计算进行任务规划,得到满足给定应用需求与卫星观测能力的可用任务集。

应用需求与卫星观测能力模型关联分析基本流程如图5所示。

(1)获取典型应用主题的多样化需求模型的模型参数集:这里的模型参数主要指需求模型特征参数X;

(2)获取多源卫星观测能力模型的模型参数集:这里的模型参数主要指卫星及载荷观测能力指标参数Q;

(3)需求与观测能力模型参数关联与转化:构建典型应用主题的多样化需求模型的模型参数集X与多源卫星观测能力模型的模型参数集Q两者间的同类型模型参数间的映射关系,例如:应用需求模型的空间分辨率参数为Xi,卫星观测能力模型的某卫星资源空间分辨率指标参数为Qj,则建立Xi到Qj的映射;

(4)卫星及载荷资源筛选:根据需求与观测能力模型参数的关联关系,通过模型参数比对分析,计算卫星观测能力参数是否满足应用需求参数的要求,筛选出满足要求的卫星及载荷资源;

(5)获取多源卫星协同观测策略模型参数集:这里的模型参数主要指策略条件参数Y;

(6)策略分解为时序事件:将设置的多源卫星协同观测策略Y按照策略中定义的事件的时间序列分解,构建时序事件Y(t),将协同观测策略用一系列卫星动作事件的时间序列来表示;

(7)策略时序事件关联与转化:将多源卫星协同观测策略时序事件Y(t)与经过卫星与载荷资源筛选的多源卫星观测能力模型的模型参数集Q进行关联,根据策略时序事件Y(t),分别为每一步时序事件设置对应的卫星观测能力模型参数;

(8)目标访问任务规划:在上述模型参数关联分析的基础上,基于卫星轨道模型进行目标访问计算,得到满足应用需求与卫星观测能力要求的观测任务序列。

上述步骤完成后,即完成了整个的面向应用主题的多源遥感卫星需求建模,从而将用户的观测应用需求,转化为符合卫星及载荷观测能力约束条件,并通过任务规划得到满足应用需求的观测任务,从而为卫星观测任务计划制定提供依据。

4软件实现

基于上文所述的建模方法,面向海上台风监测、海上溢油监测和森林火灾监测等典型应用主题,以目前在轨的高分、资源、环境等国产遥感卫星为卫星资源,研制多源遥感卫星协同数据获取需求建模软件,实现面向应用主题的多源遥感卫星需求建模方法软件实现。

整个软件采用“平台+插件”的体系架构,构建统一的基础支撑平台,实现对处理数据、计算资源和模块插件的统一管理;上文所述的各个模型开发为相对独立的算法模块插件,可被软件基础支撑平台灵活调用,并通过不同插件之间的组合,形成不同的处理流程和完整的面向应用主题多源遥感卫星需求建模功能。

软件主要包括三大组成部分:观测需求分析软件、观测任务管理软件、分析结果可视化软件。观测需求分析软件实现对典型应用主题多样化需求的建模和多源卫星观测能力的建模,观测任务管理软件实现对多源卫星协同观测策略的定制以及任务规划分析,分析结果可视化软件实现对基于需求建模的任务规划分析结果三维可视化展示。

观测需求分析软件的整体界面及典型应用主题多样化观测需求配置界面分别如图6和图7所示。

观测任务管理软件的整体界面及多源卫星协同观测策略配置界面分别如图8和图9所示。

分析结果可视化软件的需求建模与任务规划分析结果界面如图10所示。

5结论

本文面向多源遥感卫星的协同观测应用需求,针对典型应用主题开展了了多样化需求建模研究;针对多星、多载荷的差异化观测能力与协同观测要求,开展了多源遥感卫星观测能力建模与多源卫星协同观测策略建模研究;并基于上述建模结果,开展了应用需求与卫星观测能力模型关联分析研究,实现应用需求向卫星观测能力的转化;最后对相关模型开发相应软件,完成面向应用主题的多源遥感卫星需求建模软件实现。

本文所述的面向应用主题的多源遥感卫星需求建模方法可以为复杂卫星对地观测任务的任务规划提供技术支撑,也可以为卫星遥感应用效能优化提供验证手段。同时,本文所研究的建模方法还只以若干典型应用主题为个别应用场景开展研究,模型所用的卫星资源也只是常规遥感卫星资源,后续一方面应对所研究的应用主题进行拓展,使本文所述建模方法成为具有应用主题普适应的需求模型构建方法,另一方面应将敏捷卫星、静止轨道凝视卫星、视频卫星等新型卫星资源开展纳入建模体系并开展研究,应对卫星技术发展的需要。

参考文献

[1]马万权,张学庆,崔庆丰等.多用户对地观测需求统筹处理模型研究[J].测绘通报,2014(S0):141-143.

[2]巫兆聪,徐卓知,杨帆.遥感卫星应用需求满足度的模糊评估[J].应用科学学报,2015,33(3):299-308.

[3]michelVasquez,Jin-KaoHao.UpperBoundsfortheSpot5DailyphotographSchedulingproblem[J].JournalofCombinatorialoptimization,2003,7(1):87-103.

[4]贺仁杰.成像侦察卫星调度问题研究[C].国防科学技术大学,2004,13-16.

[5]nicolaBianchessi,GiovanniRighini.planningandschedulingalgorithmsfortheCoSmo-Skymedconstellation[J].aerospaceScienceandtechnology,2008,12(7):535-544.

[6]李菊芳,姚锋,白保存等.面向区域目标的多星协同对地观测任务规划问题[J].测绘科学,2008,33(S0):54-56.

[7]慈元卓,谭跃进,贺仁杰等.多星联合对地搜索任务规划技术研究[J].宇航学报,2008,29(2):653-658.

[8]郭玉华.多类型对地观测卫星联合任务规划关键技术研究[C].国防科学技术大学,2009,19-57.

[9]LiuXiaolu,BaiBaocun,ChenYingwu,etc.multisatellitesschedulingalgorithmbasedontaskmergingmechanism[J].appliedmathematicsandComputaiton,2014,Vol:230.

[10]姜维,庞秀丽,郝会成.成像卫星协同任务规划模型与算法[J].系统科学与电子技术,2013,35(10):2093-2101.

[11]JunLi,JunLi,ningJing.asatelliteschedulabilitypredictionalgorithmforeoSpS[J].ChineseJournalofaeronautics,2013,26(3):705-716.

[12]刘浩,陈兆荣,陈浩.多载荷对地观测卫星任务驱动规划方法研究[J].计算机工程与应用,2012,48(S2):157-161,231.

[13]高黎.对地观测分布式卫星系统任务协作问题研究[J].国防科学技术大学,2007,29-47.

[14]peiwang,GerhardReinelt,pengGao.amodel,aheuristicandadecisionsupportsystemtosolvetheschedulingproblemofanearthobservingsatelliteconstellation[J].Computers&industrialengineering,2011,61(2):322-335.

[15]王冲.基于agent的对地观测卫星分布式协同任务规划研究[C].国防科学技术大学,2011,29-48.

[16]Xiaonanniu,Hongtang,Lixinwu.imaging-DurationembeddedDynamicSchedulingofearthobservationSatellitesforemergentevents[J].mathematicalproblemsinengineering,2015,articleiD731734.

作者简介

张晓(1985-),男,四川省合江县人。硕士学位。现为航天恒星科技有限公司系统设计师、工程师。主要研究方向为天地一体化对地观测系统仿真、效能评估与数据处理。

卫星遥感技术应用篇8

遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。利用遥感技术,可以高速度、高质量地测绘地图。目前,我国的遥感技术应用还不尽如人意,存在自主卫星数据种类单一、数据源缺乏等问题。而购买国外卫星的数据资源,不仅代价昂贵,而且时效性难以保障。包括遥感应用研究也非常零碎,缺乏整体规划,不同部门和不同应用领域存在着重复投入和重复建设带来的极大浪费。而国家重大专项“高分辨率对地观测系统”就是为了打破这一局面。

2013年4月26日,“高分一号”卫星成功发射升空。相比其他光学遥感卫星,“高分一号”卫星突破了高空间分辨率、多光谱与宽覆盖相结合的光学遥感等关键技术,在设计寿命上刷新了低轨卫星平均3年的纪录,达到5至8年。它的高分辨率体现在空间、时间和光谱分辨率3个方面。

空间分辨率指从卫星照片上能辨别地面目标的最小尺寸,“高分一号”可达两米左右,这意味着从卫星上可以清楚地看到地面上的小汽车甚至自行车。时间分辨率指重复观察同一地物所需要的时间。据了解,“高分一号”只需4天就能把地球完整地看一遍。

卫星遥感技术应用篇9

中国卫星北斗导航应用产业发展思路

需求和技术,双轮驱动卫星应用发展

中国西部地区专用通信卫星系统构想

对探月工程嫦娥三号任务圆满成功的贺电

2012年世界航天发展的重要趋势与进展

2012年俄罗斯GLonaSS系统发展及概况

国外对地观测数据及应用标准对我国的启示

国外基础产业卫星应用案例分析

北京市卫星应用产业现状分析

卫星aiS探测技术发展现状及应用前景分析

美国国防部新的航天政策

中国的东方红4号通信卫星平台

国外各界盛赞神舟九号,中国航天自信前行

2019年军用天基对地观测市场的预测

冲向跳板的中国卫星导航与位置服务产业

2011年中国航天产业上市公司发展分析

卫星信息共享分发系统发展思考

四大全球导航卫星系统鼎力的思考

美国商业遥感数据公司运营模式研究

利用合作社形式大力推广航天蔬菜品种

我国卫星遥感技术发展与应用思考

外军天基信息技术现状及发展

中国资源卫星辐射校正及其应用效果

高分辨率卫星遥感应用战略转型后的商业前景

世博园区魅力无限卫星应用异彩纷呈

卫星文化网格——信息阳光,你我共同分享

北斗电力全网时间同步管理系统的应用

我国数字城市建设成就与发展建议

天基太阳能发电:一种新的战略选择

美国商用高分辨率遥感数据的管理和使用

北斗卫星导航系统的应用及产业发展建议

美国商用高分辨率遥感数据的管理和使用

俄罗斯GLonaSS系统日臻完善导航信号覆盖全境

专家探讨北斗卫星导航产业及应用发展

从2014年开局看日本环境探测遥感卫星发展

北斗在交通旅游领域的应用

跨界融合,创新发展——北斗产业化制胜关键

国际移动卫星公司在北京设立办公室及实验室

关于国家卫星导航产业政策体系建设的探讨

中国首次载人交会对接航天展举行全国巡展

长三角--中国北斗导航产业发展的先锋地区

中国卫星导航芯片产业竞争策略分析

车载智能通信系统telematics现状与发展

全球卫星移动通信产业现状与发展趋势

美国商用高分辨率遥感数据的管理和使用

欧洲全球环境与安全监视计划发展综述

国外空间攻防装备体系最新进展与发展趋势研究

卫星遥感技术应用篇10

关键词:卫星应用产业化地理国情监测应急保障

中图分类号:p23文献标识码:a文章编号:1672-3791(2012)05(a)-0002-02

卫星应用产业是以卫星遥感、卫星导航、卫星通信技术为核心的高科技产业,是我国航天领域高技术与市场经济充分融合的新兴产业,是代表国家科技水平、改造传统产业的战略性高新技术产业,卫星应用主要包括通信广播、导航、卫星遥感应用等三大领域。

遵照中央新疆工作座谈会精神、结合新疆新疆自身地域广阔、资源丰富、地处祖国西部边陲的优势特点,积极推动“揽天经地纬、谱智慧新疆”的卫星应用产业化发展战略。对于新疆卫星应用产业化发展“十二五”及中长期规划做以下方面的思考。

1卫星遥感应用方面

1.1新疆卫星应用产业化将为新疆各领域提供各级分辨率的遥感数据

新疆地域辽阔,现有卫星遥感数据覆盖极为不全、大部分遥感市场数据来自国外卫星,并且在许多应用领域过分依赖国外卫星,大大制约了自治区各产业应用的发展,在新疆卫星应用产业化发展的过程中可以围绕国土资源、农、林、矿产、测绘、应急保障等领域,重点开发获取各种分辨率的卫星遥感数据,为自治区其他产业应用提供保障服务。

现阶段疆内拥有的高分辨率的遥感数据仅限90个县市主城区0.6米QuickBird影像数据,其余数据大部分均为空白,或是第二次国土调查QuickBird0.61米遥感影像数据,其余各分辨率遥感数据均由各行业部门各自掌握,数据获取途径各不相同,数据共享方面极为不畅通。在新疆卫星应用产业化过程中将可以向自治区各部门提供其所需分辨率遥感数据,并通过整合各方数据做到数据的共建共享。

并且可向中亚等地区国家提供相应遥感数据,创造更大的经济效益。

1.2将新疆卫星应用产业化与地理国情监测紧密的结合

监测地理国情是对地理国情(是国土疆域面积、地理区域划分、地形地貌特征、道路交通网络、江河湖海分布、土地利用状况、植被覆盖情况、城市布局和城镇化扩展、生产力空间布局等自然和人文地理要素的宏观性、整体性、综合性体现)进行动态的遥感影像获取、统计和分析研究,向政府和有关部门提供权威、客观、准确的地理国情信息,为科学决策、科学评价、科学管理等提供重要依据。

新疆是伟大祖国的一块宝地,新疆的发展和稳定,关系到全国改革发展的稳定大局,更影响到祖国统一、民族团结、国家安全和中华民族的伟大复兴,在新疆开展监测地理国情有其特殊的必要性和紧迫性。

1.2.1对全疆生态环境的动态监测

新疆地域辽阔但绿洲面积不大,气候干旱,气温变化大,水资源总量丰富,但时空分布不均;土地面积大,但林地面积小,土壤质量差且沙化,土壤盐碱量高。以上自然生态环境特征决定了新疆在开发建设中,一旦被污染破坏,将产生难以恢复和永久性的后果。现阶段对新疆生态环境开展地理国情监测、不仅仅是传统意义上提供地理信息服务,而是需要充分利用新疆卫星应用产业化所提供的遥感数据、技术、装备、人才优势,通过向政府报告和向社会公布地表覆盖变化、水利交通路网发展等数据,对土地利用、粮食播种、退耕还林、退牧改草、城乡建设、重大工程实施等情况进行监督。真正做到通过卫星应用产业化对地理国情信息“变化”的监测:例如:城市城镇布局变化、土地利用状况变化、道路交通路网变化、区域沙漠化变化、区域绿洲化变化等。有效利用卫星遥感影像、航测等新技术手段来尽量短周期的更新覆盖全疆的卫星遥感数据库,做出详细的地表覆盖现状和趋势报告,为自治区提供有力的科学依据,以便做出科学正确的决策。

2北斗卫星导航应用方面

北斗卫星导航系统的加速推进,将成为全球第三大导航系统,现阶段到2020年我国在北斗系统逐步建成后,产业规模将保持高速增长,2012年北斗实现亚太区域覆盖,今后的导航(位置服务)产业将快速增长,新疆对导航(位置服务)方面的应用十分迫切。

2.1应急保障

新疆地处祖国西北边陲,区域情况特殊,战略地位重要。不仅地域辽阔,资源丰富,交通线、边境线长,而且气候多变,干旱少雨,自然灾害频繁发生,加之周边复杂,境内外敌对势力始终没有放弃对我实施“西化”、“分化”的图谋,分裂与斗争形势十分严峻。因此,我区的应急管理工作不同于内地省区市,有着相当的复杂性和特殊性。加强应急管理工作,妥善预防和处置突发公共事件,切实保障各族人民群众生命财产安全,确保我区改革发展和稳定大局,既是促进经济繁荣、维护社会安全、建设社会主义和谐社会的迫切需要,也是与全国同步建设小康社会、提高各族群众物质文化生活的迫切要求。

根据新疆自身特点,新疆卫星导航产业化应用于处理应急突发事件时,对应急保障及、应急指挥通信与一般通信一般有以下几点要求。

(1)实时性:应急通信系统应能在发生突发事件状况时及时、可靠的将现场情况向有关部门报告,另外有关指挥处理突发事件的命令要及时准确的传送到事故现场。

(2)作用区域广:新疆地域辽阔,突发事件通常会发生在通信不发达的边远地区,因此应急指挥通信必须覆盖这些区域,在这些区域内能有效、可靠的工作。