继电器保护基本要求十篇

发布时间:2024-04-26 04:13:08

继电器保护基本要求篇1

【关键词】电力系统;继电器保护;维护

1前言

从目前电力系统的实际运行来看,继电器成为了保障电力系统有效运行的重要保护机构,作为电力系统的重要组成部分,继电器能否稳定工作决定了电力系统的稳定性和安全性。基于这一考虑,我们应对继电器的作用有正确认识,应在电力系统运行过程中,注重对继电器的保护和日常维护,并积极开展定期检修,保证继电器能够时刻保持正常工作状态,满足电力系统的运行需要,提高继电器本身的安全性和稳定性,为电力系统提供有力支持,促进电力系统发展。基于这一考虑,我们应对电力系统继电器的保护与维护进行深入探讨。

2电力系统对继电器的基本要求分析

从电力系统的实际运用来看,电力系统对继电器的基本要求包括以下几方面内容:

2.1选择性

当供电系统发生事故时,继电器应能有选择地将事故段切除,即断开距离事故点最近的开关设备,从而保证供电系统的其他部分能正常运行。这种选择性特征是继电器必须具备的功能之一,只有满足了这个工作要求,继电器才能更好的保证电力系统的有效运行,提高电力系统的安全性和稳定性。

2.2快速性

一般要求继电器应快速切除故障,以尽量减少事故的影响。在有些情况下,快速动作与选择性的要求是有矛盾的。在6~10kV的配电装置中,如果不能同时满足快速动作和选择性要求时,则应首先满足选择性的要求。但是如果不快速地切除故障会对生产造成很大的破坏时,则应选用快速但选择性较差的保护装置。由此可见,在电力系统中,继电器不但应具备选择性,还应具备快速性,对电力系统运行中发生的故障要快速准确的进行选择断开,保证电力系统的正常运行。

2.3灵敏性

继电器对其保护范围内发生事故和不正常运行状态的反应能力称为灵敏性,它应用灵敏系数来衡量。灵敏系数越高,则表明继电器对电力系统故障反应越灵敏。基于这种判断,继电器的灵敏系数必须达到一定的数值,必须具备足够的灵敏度,才能满足电力系统的运行需求。

2.4可靠性

继电器必须运行可靠。由于继电器是保护电力系统正常的重要部件,关系到电力系统的正常运行,因此可靠性是继电器的重要技术指标之一,只有满足了可靠性要求,才能保证电力系统的有效运行。

3影响继电器安全稳定的因素分析

在继电器的正常工作中,由于电力系统中运行环境复杂,受到的影响因素较多,继电器的安全性和稳定性受到了一定的影响,从目前继电器的实际工作来看,影响继电器安全稳定的因素主要分为以下几种:

3.1继电保护系统软件因素

软件出错将导致保护装置误动或拒动。日前影响微机保护软件可靠性的因素有:需求分析定义不够准确、软件结构设计失误;编码有误;测试不规范;定值输入出错等。从继电器的实际工作来看,软件问题成为了影响继电器正常工作的重要因素,一旦软件出现故障,将会对继电器的安全性和稳定性产生重要影响。所以,软件问题必须得到重视,应在继电系统中选择质量高稳定性强的软件。

3.2继电保护系统硬件装置因素

继电器、二次回路、继电保护辅助装置、装置的通信、通道及接口、断路器。这些电力网络的重要元件,其可靠性不仅关系到继电保护的可靠性,还关系到电力系统主接线的可靠性。从继电器系统的组成来看,继电器系统由许多硬件装置组成,硬件装置的稳定性对继电器系统产生了重要影响。为此,在硬件装置选择上,应本着优质高效、安全稳定的原则,选取质量过硬的硬件装置组成继电器系统。

3.3人为因素

安装人员不按设计要求接线或者误接线问题和检修、运行人员的误操作问题在不少电网中都曾发生过。

电力系统中的继电器是硬件部分的重要构件,在安装运行和检修中如果安装和操作人员不细心,很容易发生接线错误等问题,直接导致继电器状态异常。所以,我们应对人为因素对继电器的影响有正确认识。

4电力系统继电器保护与维护要点分析

为了保证电力系统能够安全稳定运行,需要对继电器采取必要的保护与维护措施,提高继电器工作的安全性和稳定性,满足电力系统的实际需要。从继电器的实际保护与维护过程来看,应做好以下几方面工作:

4.1严格遵循状态检修的原则

在电力系统继电器保护欲维护过程中,要想取得预期效果,就要严格遵循状态检修原则,按照操作规程和检修过程进行,按照标准规定,对必须维护和检修的部位进行重点检查,保证检修的总体效果满足继电器运行的实际需求。

4.2重视状态检修的技术管理要求

在电力系统中继电器的保护与维护中,应对继电器的状态进行整体检修,并认真研究继电器状态检修技术管理规定,重点研究技术管理要求,使继电器的状态检修能够满足电力系统的运行要求,提高继电器检修质量,保证继电器能够正常工作。

4.3状态检修的经济性要求

在继电器的状态检修中,既要满足检修需要,又要考虑经济因素。应在状态检修中,对技术管理规定进行深入研究,并把握检修原则,提高检修的实效性,注重状态检修的经济性,既要满足实际维护和检修需要,又要有效降低检修成本。

4.4高素质检修人员的培养

继电器的检修和维护,检修人员是重点,如果检修人员的素质不高,技能水平较差,不但无法满足检修和维护需求,还会造成检修和维护不彻底甚至继电器的损坏。为此,为了保证检修和维护的有效进行,应注重高素质检修人员的培养。

4.5明确二次设备状态检修与一次设备状态检修的关系

要搞好继电保护设备状态检修,建立每套保护装置的“设备变更记录”是非常重要的基础技术管理工作。“设备变更记录”应详细记载设备从投运到报废的整个使用过程中设备软、硬件发生的变化。

5结论

通过本文的分析可知,在电力系统运行中,应对继电器的作用有正确认识,并认真做好继电器的保护与维护工作,使继电器能够正常工作,提高继电器的安全性和稳定性,满足电力系统的运行需要,保证电力系统能够安全稳定运行。

参考文献:

[1]赵永昱.浅谈电力系统继电保护的维护及前景[J].科学之友,2011(10).

[2]柳运华,樊恩红.电力系统继电保护可靠性研究[J].科技资讯,2011(22).

[3]高海龙.电力系统继电保护安全运行措施探讨[J].机电信息,2011(18).

继电器保护基本要求篇2

关键词:继电保护变压器保护线路保护电动机保护

abstract:thispaperdescribesthedesignplanoftherelayprotectionofmeilongⅢStation,andintroducesthedesignofrelayprotectionoftheconventionalpumpingstationofwaterconservancyprojectcombinedwithengineeringpractice.

Keywords:relayprotection;transformerprotection;circuitprotection;motorprotection

中图分类号:tm58文献标识码:a文章编号:2095-2104(2012)

1概述

梅龙三站位于池州市梅龙镇安徽省江南产业集中区起步区内,主要承担业集中区内的排涝任务。本站电源引自集中区变电所35kV专用线路,本站设2台35kV主变压器,其中1#主变压器容量为6300kVa,给6台850kw电动机供电,2#主变压器容量为1600kVa,给2台425kw电动机供电,泵站总装机5950kw。项目初步设计阶段,需较合理的选用合适的继电保护方式及装置,保障整个工程电气安全可靠运行。

2继电保护的概念

电力系统继电保护(以下简称继电保护)是在电力系统发生故障和不正常运行情况时,用于快速切除故障,消除不正常状况的重要自动化技术。最早期的继电保护只是通过熔断器来实现过电流保护,后来发展到通过继电器的开闭触点实现保护,现在已经发展为广泛应用微机型保护装置来实现继电保护,进入了微机保护时代。

3继电保护设计的基本要求

继电保护的设计应以合理的运行方式和可能的故障类型为依据,并应满足可靠性、选择性、灵敏性和速动性这四个基本要求。

可靠性:继电保护设计要满足系统稳定可靠,应具有必要的检测、闭锁等措施,以保证本站的电气设备完好及人员安全。同时选用的保护装置应便于整定、调试及运行维护。

选择性:系统运行发生故障时,首先由故障设备或者线路本身的保护切除故障,以保证系统内其它设备的正常运行。仅当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备、线路的保护或断路器失灵保护切除故障。

灵敏性:设备或线路的被保护范围内发生短路时,保护装置应具有必要的灵敏系数。

速动性:保护装置应能尽快的切除故障,以提高系统稳定性,缩小故障的涉及范围,减轻损失。

此外,在满足了以上的基本要求的前提下,保护还应尽可能的简单,清楚以及配置方便以节省投资。

根据以上的各项基本要求,本初步设计阶段,梅龙三站的继电保护配置图如下图所示

图1继电保护配置图

4继电保护设计

4.1继电保护的分类

对于继电保护的分类,有多种的分类方式。按保护对象可分为:发电机保护、变压器保护、输电线路保护、母线保护、电动机保护、电容器保护等。按照故障类别可分为:相间短路保护、匝间短路保护、接地短路保护、断线保护、失步保护等。按照按功能可分为:主保护、后备保护(近后备保护、远后备保护)、辅助保护等。按照保护原理可分为:电流保护、电压保护、差动保护等。在水利工程大量的泵站设计中,一般是按照不同的保护对象来配置继电保护装置,水利工程泵站设计中常用的继电保护有变压器保护、母线保护、电动机保护和电容器保护。

4.2母线保护

母线上通常连有较多的电气元件,当母线发生故障时,将使这些元件断电,从而造成大面积断电事故,并可能破坏系统的稳定运行,使故障进一步扩大。因此,虽然母线发生故障的几率较线路低,母线故障仍是最严重的电气故障之一。

本工程中,微机型继电保护装置(以下简称微机保护装置)均选用珠海万利达公司系列产品,微机保护装置操作电源有交流电与直流电可选择,本工程由于配置有直流屏,直流操作电源可靠,故微机保护装置均选用直流220V电源操作类型。35kV母线、10kVⅠ段、10kVⅡ段母线保护均选用mLpR-610Hb-3微机保护装置。其中,35kV母线保护装设带时限电流速断保护、过负荷保护等,保护装置安装在35kV总柜中。10kVⅠ段、Ⅱ段母线保护均装设带时限电流速断保护、过负荷保护、母线低电压保护等,保护装置分别安装在10kVⅠ段、Ⅱ段母线电源进线柜中。并在10kV母线联络柜中,也安装一套mLpR-610Hb-3微机保护装置,装设带时限电流速断保护,通过与10kVⅠ段、Ⅱ段母线微机保护装置的整定配合,以实现当一段母线发生故障,联络柜中微机保护装置迅速切断断路器,以保障另一段母线安全可靠。

4.3变压器保护

本工程共设计有4台变压器,变压器的继电保护主要是根据容量的不同,选用不同的保护。其中,1#主变压器容量为6300kVa,为油浸变压器。依据《工业与民用配电设计手册》,容量在6300—8000的并列运行或重要的变压器,保护应装设微机型主变纵联差动保护,同时装设微机型主变后备保护,保护装置安装设在1#主变压器开关柜中,型号分别为mtpR-650Hb-3与mtpR-630Hb-3。微机型主变后备保护装置应配置过电流保护、过负荷保护、瓦斯保护、温度保护等。2#主变压器容量为1600kVa,为油浸变压器,保护选用微机型主变保护装置,型号为mtpR-620Hb-3,安装在2#主变压器开关柜中,配置有过电流保护、过负荷保护、瓦斯保护、温度保护、电流速断等。1#站用变压器为干式变压器,容量为80kVa,选择XRnt-3550/3a型变压器用高压限流熔断器保护,装设在站用变压器柜内,该限流熔断器具有速断功能,当变压器发生短路等故障时,该限流熔断器可以迅速的切除故障,有效的保护变压器。2#站用变压器容量为63kVa,为油浸变压器,采用跌落式熔断器保护,跌落式熔断器安装在10kV户外终端杆上。

4.4电动机保护

电动机的继电保护,也是根据电动机容量的不同,采用不同的保护,此外,对于异步电动机,需装设低电压保护,同步电动机需装设失步保护。本站1~8#电动机均为异步电动机,且容量均小于2000kw,故8台电动机保护配置相同,均采用mmpR-610Hb-3型微机型保护装置,安装于1~8#电动机开关柜中,均装设有电流速断保护、过电流保护、过负荷保护、堵转保护、低电压保护等。

4.5电容器保护

本站的无功补偿电容器有两种,一种是1#主变压器供电的六台电动机集中补偿的电容器组,另一种是2#主变压器供电的两台电动机就地补偿的电容器,两种电容器保护配置有所不同。对于电动机集中补偿的电容器组,采用mCpR-610Hb-3型微机保护装置,安装于电容集中补偿电源柜中,装设有电流速断保护、过电流保护、零序过流保护、过电压保护、低电压保护等。对于就地补偿用的电容器,考虑到经济性,采用负荷开关与熔断器组合保护,当故障时,熔断器可以快速可靠的切断故障处的电容器,从而避免电容器内部由元件击穿而可能引起的爆炸事故。

4.6其它保护

本站35kV母线电压互感器及避雷器柜中装设微机型断线闭锁装置。当电压回路一相或二相断线时造成失压时,将距离保护(包括相间距离和接地距离保护及高频距离保护)等闭锁,以防止该类元件误动作,待三相电压恢复正常且经过一定的延时后,再全部恢复正常运行。

5结论

本站为常规泵站,本站的继电保护设计思路同样适用于其它常规泵站。继电保护设计是电气设计中的一个重要的组成部分,合理、经济的设计继电保护与配置继电保护装置,可以为日常维护及故障检修带来方便,更为工程电气系统的可靠运行奠定了良好的技术保障。

参考文献

继电器保护基本要求篇3

(一)10KV供电系统在电力系统中的重要位置

电力系统是由发电、变电、输电、配电和用电等五个环节组成的。在电力系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不可避免的。由于电力系统的特殊性,上述五个环节应是环环相扣、时时平衡、缺一不可,是在同一时间内完成的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响。10KV供电系统是电力系统的一部分。它能否安全、稳定、可靠地运行,不但直接关系到企业用电的畅通,而且涉及到电力系统能否正常的运行。因此要全面地理解和执行地区电业部门的有关标准和规程以及相应的国家标准和规范。

(二)10KV系统中应配置的继电保护

按照工厂企业10KV供电系统的设计规范要求,在10KV的供电线路、配电变压器和分段母线上一般应设置以下保护装置:1、10KV线路应配置的继电保护。2、10KV配电变压器应配置的继电保护。(1)当配电变压器容量小于400KVa时:一般采用高压熔断器保护;(2)当配电变压器容量为400~630KVa,高压侧采用断路器时,应装设过电流保护,而当过流保护时限大于0.5s时,还应装设电流速断保护;(3)当配电变压器容量为800KVa及以上时,应装设过电流保护,而当过流保护时限大于0.5s时,还应装设电流速断保护;对于油浸式配电变压器还应装设气体保护。3、10KV分段母线应配置继电保护。

(三)10KV系统中继电保护的配置现状

目前,一般企业高压供电系统中均为10KV系统。除早期建设的10KV系统中,较多采用的是直流操作的定时限过电流保护和瞬时电流速断保护外,近些年来飞速建设的电网上一般均采用了环网或手车式高压开关柜,继电保护方式多为交流操作的反时限过电流保护装置。很多重要企业为双路10KV电源、高压母线分段但不联络或虽能联络但不能自动投入。

二、继电保护的基本概念

在10KV系统中装设继电保护装置的主要作用是通过缩小事故范围或预报事故的发生,来达到提高系统运行的可靠性,并最大限度地保证供电的安全和不间断。在10KV系统中的继电保护装置是供电系统能否安全可靠运行的不可缺少的重要组成部分。

(一)对继电保护装置的基本要求

对继电保护装置的基本要求有四点:1、选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。也就是它应该首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。系统中的继电保护装置能满足上述要求的,就称为有选择性,否则就称为没有选择性。2、灵敏性。灵敏性系指继电保护装置对故障和异常工作状况的反映能力。在保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作。但在保护区外发生故障时,又不应该产生错误动作。3、速动性。速动性是指保护装置应能尽快地切除短路故障。4、可靠性。

(二)继电保护的基本原理

1、电力系统故障的特点。电力系统中的故障种类很多,但最为常见、危害最大的应属各种类型的短路事故。一旦出现短路故障,就会伴随其产生三大特点。即:电流将急剧增大、电压将急剧下降、电压与电流之间的相位角发生变化。

2、继电保护的类型。在电力系统中以上述物理量的变化为基础,利用正常运行和故障时各物理量的差别就可以构成各种不同原理和类型的继电保护装置。

三、几种常用电流保护的分析

1、反时限过电流保护。继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护就叫做反时限过电流保护。反时限过电流保护是由GL-15(25)感应型继电器构成的。当供电线路发生相间短路时,感应型继电器Ka1或(和)Ka2达到整定的一定时限后动作,首先使其常开触点闭合,这时断路器的脱扣器YR1或(和)YR2因有Ka1或(和)Ka2的常闭触点分流(短路),而无电流通过,故暂时不会动作。

2、定时限过电流保护。继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。

3、零序电流保护。电力系统中发电机或变压器的中性点运行方式,有中性点不接地、中性点经消弧线圈接地和中性点直接接地三种方式。10KV系统采用的是中性点不接地的运行方式。

继电器保护基本要求篇4

关键词:继电器;电气工程;自动低压电器;应用

中图分类号:tm585

前言

在电气工程中,继电器是不可或缺的设备之一,它的应用能够进一步降低自动化低压电器设备故障的发生几率。而想要使继电器充分发挥出自身的保护作用,应当进行合理选型,并确保继电器的运行可靠性。只有这样,才能使继电器在电气工程中的作用获得最大程度地发挥。

1继电器的基本原理与作用

1.1继电器的基本原理

现如今,随着科学技术水平的不断提高,电气系统的自动化程度也越来越高,继电器作为电气系统中较为重要的组成部分之一,其应用也越来越广泛。就继电器而言,其常常被用于

保护电气设备的运行安全性,如变压器、马达、发电机以及输电线路短路保护等等。当电力系统出现异常故障时,继电器可以向值守人员发出告警信号,而想要确保继电器能够发挥出应用的作用,其应当具备以下功能特性:其一,安全性和可靠性,这是一个合格的继电器必须具备的特性,只有这样才能避免继电器本身出现故障;其二,快速反应能力。能够以最短时间消除可以消除的所有故障;其三,选择性。继电器应当能够确保电力系统始终向无故障区域进行供电;其四,灵敏性。电力系统运行过程中的参数在正常运行和发生故障情况下的区别是非常明显的,继电器就是通过这些参数的具体变化情况,在反映和检测的基础之上对电力系统的故障性质和故障影响范围进行判断,并作出相应的反应和处理。

继电器的基本工作原理如下:由取样单元负责将被保护设备运行过程中的物理量经过电气隔离并将之转换为继电保护装置中比较鉴别单元能够接收到的信号,然后根据该单元的要求进行相应处理,再按照比较环节输出量的性质、大小以及组合方式出现顺序的先后确定出继电保护装置是否需要动作。

1.2继电器的作用

继电器本身具有以下优点:标准化程度高、通用性好、能够使电路简化等,正是因为继电器的这些优点使其被广泛应用于工业自动化控制以及家电产品等领域当中。但是有些专家认为,在电子元器件当中,继电器是最不可靠的一种装置,并且在整机的可靠性设计当中,往往将继电器、可调电感器以及电位器等装置列为不用或是少用的元件。然而,因为继电器在控制电路中有着十分独特的电气和物理特性,其断路状态下的高绝缘电阻以及通路状态下的低导通电阻是其它任何电子器件都无法比拟的。为此,确保继电器的运行可靠性成为业界研究的重点课题之一。电子元器件的可靠性应当包括以下两个方面的内容,即固有可靠性和使用可靠性。其中前者是元器件可靠的基础,一般都是通过设计和制造厂商来进行控制,以确保制造出来的元器件能够达到要求的可靠性等级,而后者则是整机可靠性的基础,必须阐明的是,使用高可靠质量等级的元器件却并一定能够制造出高可靠性的整机,这是因为里面涉及到使用可靠性的问题。使用可靠性具体是指按照各种元器件的特性通过可靠性设计方法,最大限度地发挥出元器件固有可靠性的作用,进而达到整机的可靠性要求。与其它电子元器件相比,继电器是由机械传动和电磁两个部分构成的,这种结构更加复杂,因而继电器的可靠性就显得相对较差,若是实际使用过程中采取一定的防范措施,则能够使其达到理想中的效果。此外,继电器可靠性不高除了自身质量原因外,使用方法不当也是一个原因。因此,想要使继电器能够充分发挥出自身的作用,不但应当进一步完善自身的质量,而且还必须合理使用。

2继电器在电气工程中的应用

2.1电磁类继电器的应用

1)电磁继电器的特性。此类继电器的主要特性是输入-输出,也就是我们通常所说的继电特性,其特性曲线如图1所示。当继电器的输入量X由0增至X2之前,继电器输出量Y为0;当输入量X增至X2时,继电器吸合,此时输出量为Y1,如果X继续增大,Y保持不变;当X减小至X1时,继电器释放,此时输出量由Y1变为0,若是X继续减小,Y值均为0。图1中的X2是继电器的吸合值,想要使继电器完成吸合这一过程,输入量就必须≥X2;X1是继电器的释放值,想要使继电器完成释放这一过程,输入量则必须≥X1。继电器的返回系数则可以用fK表示,12KX/Xf=,这是继电器较为重要的一个参数,并且fK本身是能够调节的,这样一来即便输入量的波动变化较大也不会引起继电器误动作。通常情况下,欠电压继电器对返回系数的要求相对较高,fK值应当>0.6。假设某一继电器的fK=0.66,吸合电压为额定电压的90%,那么当电压低于额定电压的50%时,继电器便会释放,

进而达到欠电压保护的目的。此外,继电器的吸合与释放时间也是比较重要的参数之一。其中吸合时间主要是指从线圈接受电信号到衔铁完成吸合过程所需要的时间,而释放时间则是指从线圈失电到衔铁完全释放所需要的时间。通常情况下,继电器的吸合与释放时间为0.05-0.15,该数值的大小对继电器的操作频率会有一定的影响。

2.2非电磁类继电器的应用

非电磁类继电器又被称为热继电器,即FR,这种类型的继电器常常被用于电力拖动系统当中电动机负载的过载保护。在实际运行过程中,电动机常常会出现过载的现象,一般时间

较短、绝缘绕组在允许温升范围内的过载是可以经常出现的,但是若过载情况比较严重、时间较长,便会引起电动机绝缘过早老化,这样会导致电动机的使用寿命缩短,如果过载情况非常严重,还有可能造成电动机烧损的后果。为此,对电动机进行过载保护就显得非常重要。FR主要由双金属片、热元件以及触点等组成,其中热元件是由发热电阻丝制作而成,双金属片具体是由两种热膨胀系数不停的金属辗压而成,当双金属片受热时便会出现弯曲变形的情况。实际使用时,可将热元件串接到电动机的主电路上,同时将常闭触点串接在电动机的控制电路当中。当电动机处于运转的状态时,虽然热元件所产生出来的热量也会使双金属出现弯曲的情况,但是并不足以是FR的触点发生动作;而当电动机过载时,双金属片的弯曲位移便会随之不断增大,在这一过程中会推动导板是常闭触点断开,进而起到切断电动机控制电路的作用,这样便不会造成电动机因过载损坏。通常情况下,FR动作之后不会自动复位,需要等待双金属片完全冷却后手动按下复位按钮才会恢复到原位。FR动作电流的调节可通过旋转凸轮到不同的位置来实现。

参考文献:

继电器保护基本要求篇5

运行直接影响到整个电厂的稳定性。同时火力发电机组造价昂贵,结构复杂,一旦受到损坏,需要的检修期长,给国民经济造成直接和间接的经济损失巨大,因此火力发电机组继电保护的技术指标要求很高,对其保护的可靠性、灵敏性、选择性和快速性提出了比较高的要求。本文以600mw火力发电机组的继电保护为例,论述了继电保护系统中汽轮发电机的继电保护、电力变压器继电保护、发电机―变压器组公用继电保护及继电保护运行故障处理等。

【关键词】火电厂;变压器;继电保护;过励磁保护

1.发电机继电保护

发电机保护配置的原则是,在发电机故障时,应能将损失减小到最小;在非正常状况时,应在充分利用发电机自身能力的前提下确保机组本身的安全。其保护方式有以下几种:

1.1发电机差动保护

根据接线方式和位置的不同,又可分为完全纵联差动和不完全纵联差动。比例制动式完全差动保护是发电机内部相间短路故障的主保护。作为相间短路主保护的纵差保护应用历史最为悠久,出现数字技术后人们首先进行的也是数字式纵差保护研究。继一种基于瞬时采样值的差动保护方案被提出后,用相关函数法计算发电机端和中性点侧电流相量来实现差动保护的方案被提出,并且采用比例差动或以差流平方作动作量的标积制动判据,对具有单侧供电电源的元件取得了较好的选择性和灵敏度。

1.2发电机定子接地保护

保护为100%定子接地保护,由三部分组成:95%基波电压部分;机端与中性点电压三次谐波比较部分;中性点三次谐波低电压部分。冗余的中性点三次谐波低电压保护使中性点附近部分做到了双重接地保护。中性点三次谐波低电压部分具有有功功率自适应能力(需要机端三相电压、电流信号),能有效防止误动。保护发电机定子及其引线的单相接地。保护装置由反映基波保护范围在发电机机端95%左右的零序过电压保护,和通过比较发电机中性点的三次谐波电压和发电机机端产生的三次谐波电压来保护定子绕组余下的15%,从而构成对定子绕组的100%保护。

1.3发电机失磁保护

根据发生失磁故障后机端各电量的变化规律和对统及失磁发电机安全运行的要求,可以选择合适的原理及动作处理方式来构成失磁保护。目前失磁保护的构成原理多种多样,以下以大型火力发电厂发电机常用失磁保护为例进行说明。

1.3.1用阻抗继电器构成的失磁保护原理

对于汽轮发电机,阻抗继电器可采用各种阻抗圆作为动作边界,来实现不同的动作判据。如可用表示静稳边界的临界失步圆作为阻抗继电器的动作边界,或者采用异步运行阻抗圆作为阻抗继电器的动作边界等。

1.3.2反映e和i随时间变化率的失磁保护原理

在失磁后的等有功过程中,发电机电势随时间不断减小,而定子电流在短暂下降后持续上升。这个规律是发电机失磁等有功过程中所特有的,可以用来构成失磁保护。

2.变压器继电保护

2.1主变压器差动保护

火力发电机组组均需装设单独的主变压器差动保护。主变压器差动保护通常为三侧电流差动,即主变压器高压侧电流引自高压断路器处的电流互感器,主变压器低压侧电流分为两路,一路引自高压厂用变压器高压侧电流互感器,另一路引自发电机机端处的电流互感器。故主变压器差动保护的保护范围为三组电流互感器所限定的区域,可以反应在这个区域内的相间短路,主变压器高压侧接地短路以及主变压器绕组匝间短路故障。

2.2主变压器中性点接地过电流保护

主变压器变低压侧接地保护结合发电机定子接地保护,可以用来区分发电机内部还是外部接地。发电机机端附近接地时,发电机定子接地保护和主变压器低压侧接地保护均动作,发电机定子接地保护动作将发电机解列后,如果主变压器低压侧接地保护仍然发信,则说明故障发生在发电机外。

2.3主变压器瓦斯保护

瓦斯保护主要由气体继电器构成。气体继电器安装于油箱与储油柜之间的连接管道上。不论那一种型式的起头继电器都有两对出点,一对反应轻瓦斯或油面降低的故障,另一对反应重瓦斯的故障。变压器内部发生严重漏油或距数很少的匝间短路故障以及绕组断线故障时,差动保护及其他反应电量的保护均不能动作,而瓦斯保护却能动作,因此瓦斯保护是变压器内部故障的重要保护装置。

3.发电机―变压器继电保护

3.1发电机―变压器组纵差保护

在发电机―变电器保护中,为了简化保护,通常并不按发电机和变压器各自单独配置第二套差动保护,而是采用发变组公用一套纵联差动保护方案,实现快速保护的双重化。保护原理同变压器纵差保护原理相同。

3.2断路器断口闪络保护

保护原理是利用负序电流i2和断路器的辅助触点QFU、QFV、QFw构成。当出现负序电流后,如果断路器有一相或两相是断开的,则说明是非全相运行,则动作于跳闸,断路器拒动时,启动断路器失灵保护;如果断路器三相是断开的,则说明是断口闪络,此时应首先动作本发电机灭磁,以降低断口电压,无效时,再启动失灵保护。

3.3过励磁保护

变压器运行中,因电压升高或频率降低,使变压器的工作磁密超过额定磁密的情况,称为变压器的过励磁。根据变压器的电压表达式,可以写出变压器的工作磁密B表达式为:B=(10-8/4.44nS)х(U/f)=KхU/f

式中:f―频率;n―绕组匝数;

S:铁心截面积;K―常数,K=(10-8/4.44nS)

由公式看出,工作磁密B与电压、频率之比U/f成正比,即电压升高或频率下降都会使工作磁密增加。当U/f增加时,工作磁密B增加,使变压器励磁电流增加,特别是在铁心饱和之后,励磁电流要急剧增大,造成变压器过励磁。因此,现代大型变压器应装过励磁保护。

4.继电保护故障处理

火电厂发电机运行时,对保护装置的连接片应根据运行方式的要求投、退。投、退时要两人同时进行,仔细辨别清楚,才能操作。对于跳闸回路的连接片,在对应开关运行时的投入,要先用直流电压表测量连接片两端无直流电压才能投入。电气运行人员对电机保护装置中的数据应定期检查,检查时应两人进行,且不得修改和消除内部数据。当保护装置发出异常信息时,运行人员应立即调出内部数据进行检查,检查时也是两人同时进行,要求做好记录,不得自行消除内部存储的数据信息。对于重要故障,应立即向有关部门汇报。对于报警信息,允许进行复位,以便下次报警信息到来时能及时显示。

5.结语

电力系统继电保护在电网的安全稳定运行中发挥着重要作用,在火力发电厂中继电保护装置在安装验收时,要求对继电器进行全面检查试验,以保证继电器投入运行后的性能和质量满足要求。继电器在现场运行后应定期进行检查试验,这样才能保证继电保护装置的正确工作。■

【参考文献】

[1]马志广,张磊,张义刚.电气运行技术问答[m].北京:化学工业出版社,2009.

继电器保护基本要求篇6

关键词:电力系统继电保护评价统计指标配电运行配置原则

中图分类号:tm774文献标识码:a文章编号:

一、前言

随着电力系统的快速发展和计算机通信技术的进步,继电保护技术的发展向计算机化、网络化、一体化、智能化方向发展,这对继电保护工作者提出了新的挑战。

二、继电保护的概念

继电保护装置是电力系统中的发电机、变压器、输电线路、配电装置等电气设备发生故障,危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令,终止这些故障发展的一种自动保护装置。

三、继电保护的工作原理

供电系统发生故障时,会引起电流增加、电压降低、以及电流电压间相位角的变化,因此出现故障时的参数与正常运行时的参数差别就可以构成不同原理和类型的继电保护。一般情况下继电保护是由测量部分、逻辑部分、执行部分组成。

测量部分从被保护对象读取有关信号,与给定的整定值相比较,比较结果输出至逻辑部分;逻辑部分根据测量部分各输出量的大小性质、出现的顺序或它们的组合,决定是否动作;如需动作,则发出信号给执行部分;执行部分立即或延时发出警报信号或跳闸信号。

四、对继电器的要求

(一)动作值的误差小。由于保护装置的灵敏度与动作值的误差有关,因此,继电器动作值的误差应尽可能小,以免引起误动作或降低保护的灵敏性。

(二)接点可靠。继电器接点接触要良好,并具有一定的负荷能力。对于常闭接点要有一定的压力;对于常开接点,闭合时要有一定的行程。

(三)返回时间短。继电器动作将故障切除后,继电器应在最短时间内返回到起始位置。

(四)消耗功率小。继电器消耗的功率通常指继电器线圈在额定状态下(额定电流或电压)所消耗的功率。继电器消耗的功率小,可以减轻互感器的负担。

五、目前常用的评价统计指标

(一)正确动作率。正确动作率即为一定期限内(例如一年)被统计的继电保护装置的正确动作次数与总动作次数之比。用公式表示为:

正确动作率=(正确动作次数/总动作次数)×100%

用正确动作率可以观测该继电保护系统每年的变化趋势,也可以反映不同的继电保护系统(如220kV与500kV)之间的对比情况,从中找出薄弱环节。

(二)可靠度。可靠度r(t)是指元件在起始时刻正常的条件下,在时间区间(0,t)不发生故障的概率。对于继电保护装置,注意力主要集中在从起始时刻到首次故障的时间。

(三)可用率。可用率a(t)是指元件在起始时刻正常工作的条件下,时刻t正常工作的概率。可靠度与可用率的区别在于,可靠度中的定义要求元件在时间区间(0,t)连续地处于正常状态,而可用率则无此要求。

(四)故障率。故障率h(t)是指元件从起始时刻直到时刻t完好条件下,在时刻t以后单位时间里发生故障的概率。

(五)平均无故障工作时间。平均无故障工作时间mtBF(meantimeBetweenFailure)。设从修复到首次故障之间的时间间隔为无故障工作时间,则其数学期望值为平均无故障工作时间。

(六)修复率。修复率m(t)是指元件自起始时刻直到时刻t故障的条件下,自时刻t以后每单位时间里修复的概率。

(七)平均修复时间。平均修复时间mttr(meantimetoRepair)是修复时间的数学期望值。

六、配电系统继电保护存在的问题

(一)电流互感器饱和。随着供电系统规模的不断扩大,很多低压配电系统短路电流会随着变大,当变、配电所出口处发生短路时,短路电流往往很大,甚至可以达到电流互感器一次侧额定电流的几百倍。若是在变电所出线故障则要靠母联断路器或主变压器后备保护来切除,延长了故障时间,使故障范围扩大;而若是在配电所的出线过流保护拒动,则将使整个配电所全停。

(二)二次设备及二次回路老化。现在我国很多配电系统的继电器是20世纪七八十年代的老式继电器,节点氧化尘太多,压力不够,也会造成保护误动,出口不可靠。

(三)环网供电无保护。目前我国环状配电网基本采用负荷开关为主,目前不设断路器,也没有保护。若装设断路器,由于运行方式变化,负荷转移等因素,继电保护选择性无法协调。

七、配电系统继电保护的改进措施

(一)避免电流互感器饱和。避免电流互感器饱和主要从3个方面入手:首先是电流互感器的变比不能选得太小,要考虑线路短路时电流互感器饱和问题。其次要尽量减少电流互感器二次负载阻抗。尽量避免保护和计量共用电流互感器,缩短电流互感器二次侧电缆长度及加大二次侧电缆截面。第三是遵守速断保护的原则。高压电动机按起动电流乘以1.2~1.3倍可靠系数确定,如超过其数值就可确定故障电流。时限整定os。超过2倍的电流整定值,按计算数据乘以可靠系数确定,采区变电所内进线柜则遵照最大整定值数据加上其余变压器的额定负荷。按等级划分,确定延时时间,仍有选择性。但短路情况下速断保护无选择性。

(二)完善环网结构的配套建设,目前环网结构是电缆网络采用的主要形式,目前还没有性能颇为理想的继电保护装置,为快速隔离故障、恢复供电,可以考虑结合配电自动化系统的建设,继电保护与自动化系统相互配合使用。

(三)实行状态检修。继电保护发展至今,从保护原理的设计,到生产厂家制造工艺,到售后服务,各方面都已比较完善。微机保护装置的性能已非常稳定。近几年在我区范围内,由于保护装置性能不稳定引起的误动基本上没有出现过,所发生的保护误动作基本上是保护装置外部原因引起的。因此我们建议对继电保护设备实行状态检修,也就是说,只要保护装置不告警,就不用进行检修。

(四)增加投入,更新设备,及时更新保护校验设备,完善供电网络建设,在不影响正常安全生产的情况下,确保各回路均有足够保护整定时间,使保护装置校验做到应校必校,不漏项,不简化。

八、结语

继电保护是保障电网安全稳定运行的第一道防线。近年来随着电网系统的不断发展,输送线路容量更大、线路距离更长、系统短路容量更大,因而对线路继电保护的要求也就更高。因此,如何在今后确保继电保护的更可靠运行,实施继电保护全过程管理,是牵涉继电保护可持续发展的重要课题。希望广大现场工作的运行维护技术人员能结合运行经验,提出对应的措施,共同做好工作。从而提高电网的可靠运行。

参考文献:

[1]赵勇,杨鑫.电力系统继电保护技术研究[n].科技创新导报,2009-19

继电器保护基本要求篇7

关键词:变电站;电力系统;继电保护装置

1 变电站继电保护装置的基本要求和主要任务

1.1基本要求

由于继电保护装置(以下简称保护装置)要求在变电站的设备和线路出现可能危及电力系统安全运行的故障时,能够及时控制相应断路器跳闸以控制故障的影响范围,并发出警报。因此,对其有以下基本要求:

(1)可靠性。是对继保装置的根本要求,若继保装置在不应该时动作了,就被称为误动;而在应该动作时却没有动作就被称为拒动。继保装置在选用时都尽量选用运行经验丰富、装置可靠性高、原理简单和维护方便的保护,就是因为继保装置的误动和拒动会严重影响装置的可靠性,进而严重破坏电力系统的安全稳定运行。

(2)选择性。其主要要求内容就是上、下级电网(也包括同级)的继保装置之间应遵循逐级配合的原则来进行整定,以保证故障发生时能够有选择性地切除故障。例如,在变电站某个设备或线路发生故障时,应首先由故障点的保护动作来切除故障。当故障点的保护、断路器拒动时,才由相邻设备或线路的保护、断路器动作来切除故障。

(3)快速性,这是继保装置对动作时间的要求。在故障发生时,为缩小故障影响的范围,确保系统稳定性,减轻故障设备和线路的损坏程度,继保装置必须在最短时间内切除故障,这对提高备用设备自动投入和自动重合闸的效果也很有利。

(4)灵敏性。灵敏度越高,就说明继保装置对故障的反应能力越强,保护动作的反应时间越短。可以通过对继保装置的整定值进行调校来实现更好的灵敏性。整定值的调校应由供电部门具有校验资质的专业人员一年进行一次。

1.2主要任务

继电保护装置组成见图1,其主要任务包括:

图1 继电保护装置的组成

(1)对变电站电气设备的不正常工作情况作出反应,一方面由装置自动地进行调整,另一方面将那些继续运行会引起事故的电气设备予以切除。并根据不同的设备运行维护条件和不正常工作情况发出相应信号,提醒变电站值班人员迅速采取措施以恢复电气设备的正常工作。

(2)监视变电站运行情况,最大限度地减少变电站故障对变电站设备和线路损坏,并降低故障对电力系统安全运行的影响。在故障发生时,故障点的继保装置应迅速准确地动作使故障设备或线路及时与电力系统断开。

(3)实现电力系统的自动化和远程操作,如备用电源自动投入、自动重合闸、遥控、遥测等工业生产自动控制功能。

2 常用的变电站继电保护装置

在变电站中,最为常用的继电保护装置主要有:

2.1电压保护

(1)过/欠电压保护,主要是防止变电站设备由于雷击、雷电波入侵、操作过电压等特殊情况导致电压突然升高,或其他情况导致电压突然降低,致使电气设备损坏而设置的继电保护装置。如在变压器低压侧装设避雷器是用来防止雷电波从低压侧侵入而击穿变压器绝缘;在变压器高压侧装设避雷器就是用来保护变压器。

(2)零序电压保护,可用来预防因为变压器某一相绝缘遭到破坏时发生单相接地故障。零序电压保护在三相三线制中性点绝缘(不接地)的电力系统中有广泛的应用。在正常运行及相间短路时,一次侧零序电流为零(相量和),二次侧有很小的不平衡电流。在单相接地故障发生时,产生的接地零序电流就会流入电流继电器,一旦达到或超过整定值,继电器就会动作并发出信号。

2.2电流保护

(1)过电流保护,一般会在时限上设有相应的级差,这是使上、下级过电流保护能具有选择性。为确保电气设备和线路的正常运行,其一般按照躲过被保护电气设备或线路中可能出现的最大负荷电流(如大电机启动电流和穿越性短路电流之类的非故障性电流)来整定动作值。电流速断保护和过电流保护常作为电气设备或线路的主保护和相邻线路的备用保护来配合使用。

(2)定时限过电流保护,其动作时间是恒定的,与短路电流的大小无关。定时限过电流保护一般由电流继电器、时间继电器和信号继电器三个元件组成,其中电流继电器用来测量电流大小,时间继电器用来设定动作时间,而信号继电器则发出动作信号。在被保护线路正常运行时,电流继电器不动作;而当被保护线路上发生故障时,电流继电器应可靠动作,经过设定好的动作时间,发生动作信号来切除故障。

(3)无时限电流速断保护,它的选择性是靠动作电流的整定获得的(一般是在最大的运行方式下按照躲过变压器二次侧发生三相短路时的短路电流或被保护线路末端可能出现的最大短路电流来整定动作值)。因此只能保护一部分线路,不能保护整条线路。此外,速断保护的特性受被保护线路的长短影响也较大,在线路较短时,保护范围就较小,受系统运行方式影响也较大;反之,当线路较长时,保护范围就较大,而且受系统运行方式的影响也较小。在规程中要求,无时限电流速断保护最小保护范围不应小于线路全长的15%。

2.3变压器保护

变压器主保护为差动保护,在变压器空投和变压器区外短路切除时,会产生很大的励磁涌流,使差动保护误动。差动保护是根据被保护电气设备发生短路故障时在保护中产生的电流差而动作的保护装置。差动保护在保护区内发生故障时,可以整定为瞬时动作。其对保护区外的故障不会动作,因此不需要与保护区外相邻元件保护在动作值和动作时限上相互配合。差动保护可以用来对双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障、变压器单相匝间短路故障进行保护。当变压器内部严重故障时,短路电流很大,ta饱和,ta二次电流的波形将发生畸变,并含有大量的谐波分量,从而使涌流判别误动,导致变压器差动保护拒动。为此差动保护设置了差流速断元件。数字化变电站采用了光学互感器,ta不会饱和,且响应频带宽,因此,可将差流速断元件取消,简化了变压器差动保护逻辑。微机变压器纵差保护主要受励磁涌流的影响。如果考虑电源回路电阻、变压器绕组的电阻和漏电感带来的时间常数影响,则磁通ф为

ф=-фm cos(ωt+α)+фm cosαeτt+ψs

式中фm——电源电压产生的恒定磁通;

t——时间常数(与电源回路的电阻、变压器绕组的电阻和漏电感有关);

α——合闸角;

ψs——变压器剩磁。

在变压器空投瞬间,铁心中的磁通由强迫分量磁通фmcos(ωt+α)、决定于合闸角α的自有分量磁通фmcosα及剩磁通ψs组成。如果在电压瞬时值为0时空投变压器,合闸角α=0,在忽略变压器及合闸回路电阻时,时间常数t为无穷大,磁通中的自由分量不衰减。假如剩磁ψs的方向与合闸之后фm cosα的方向相同,变压器铁心中的综合磁通如图2所示。铁心中的最大磁通可达到2фm+ψs。如果剩磁通ψs=0.9фm,铁心中的最大磁通可达正常运行时磁通幅值的3倍,使变压器铁心严重饱和,励磁电流急剧增大,产生励磁涌流。由于数字化变电站采用智能断路器,分合闸瞬间可对电压角度进行精确控制,通过控制断路器分合闸角度,达到抑制变压器励磁涌流的目的。在变压器正常停电时,首先确认负荷已停,变压器处于空载,此时负荷电流为空载电流(可近似为0),在电压瞬时为峰值、磁通最小时分闸,可以保证剩磁通ψs最小。此时的分闸与故障时刻分闸不同,不需在电流过0时分闸,因为电流很小,断路器可以可靠分闸。下一次空投变压器时,控制断路器在电压峰值、磁通最小时合闸,励磁涌流中的自由分量最小。变压器空投时涌流判别元件不易启动,从而提高了变压器差动保护的灵敏度。

图2

2.4电容器保护

主要用来防止电容器本身发生故障以及可能出现的引线短路故障,一般应配置带时限的速断保护和带外熔丝的电容器保护。若电容器组容量较大,可以加装零序保护或差动保护。

3 结论

继电保护系统是变电站安全稳定、节能经济运行的重要保证条件,其硬件、软件、以及定值不正确等隐含性故障引起的“拒动”、“误动”将会给变电站带来严重经济损失,因此,应从技术、管理等方面,尽量减少或避免继电保护装置隐含故障的发生,确保变电站具有较高的安全稳定性能。随着继电保护在硬件和软件上不断地向前发展,其在系统实现和功能上都较以往的单纯隔离、切除故障有了很大的不同。继电保护的动作速度越来越快、集成化程度越来越高、自动化程度越来越强、保护之间的联系也越来越紧密,相应能够实现的功能也越来越多。因此,继电保护工作者应在实践中应不断总结经验,探索求新,推进继电保护技术的不断前进。

参考文献

[1]李忠平.变电站继电保护装置的作用及分类[J].科技资讯,2010,16:134-135.

继电器保护基本要求篇8

论文摘要:继电保护技术向计算机化、网络化、智能化、保护、控制、测量和数据通信—体化方向发展。并且电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用,本文对继电保护发展现状、电力系统中继电保护的配置与应用、继电保护装置的维护作了详细的介绍。

电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用。现代电力系统是—个由电能产生、输送、分配和用电环节组成的大系统。电力系统的飞速发展对电力系统的继电保护不断提出新的要求,近年来,电子技术及计算机通信技术的飞速发展为继电保护技术的发展注入了新的活力。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。

1、继电保护发展现状

电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。

建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有。在大约10年的时间里走过了先进国家半个世纪走过的道路。上世纪50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍。对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国己建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。

2、电力系统中继电保护的配置与应用

2.1继电保护装置的任务

继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时准确地发出信号或警报,通知值班人员尽快做出处理。

2.2继电保护装置的基本要求

1)选择性:当供电系统中发生故障时,继电保护除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。

2)灵敏性:保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。

3)速动性:是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定眭。

4)可靠性:保护装置如能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定训算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。

2.3保护装置的应用

继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:

①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。

②母联保护:需同时装设限时电流速断保护和过电流保护。

③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。

④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。

随着继电保护技术的飞速发展,微机保护的装置逐渐投入使用,由于生产厂家的不同、开发时间的先后,微机保护呈现丰富多彩、各显神通的局面,但基本原理及要达到的目的基本一致。

3、继电保护装置的维护

值班人员定时对继电保护装置巡视和检查,并做好各仪表的运行记录。在继电保护运行过程中,发现异常现象时,应加强监视并向主管部门报告。建立岗位责任制,做到每个盘柜有值班人员负责。做到人人有岗、每岗有人。值班人员对保护装置的操作,一般只允许接通或断开压板,切换开关及卸装熔丝等工作,工作过程中应严格遵守电业安全工作规定。

做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。对微机保护的电流、电压采样值每周记录一次,每月对微机保护的打印机进行定期检查并打印。定期对继电保护装置检修及没备查评:

①检查二次设备各元件标志、名称是否齐全;

②检查转换开关、各种按钮、动作是否灵活无卡涉,动作灵活。接点接触有无足够压力和烧伤;

③检查控制室光字牌、红绿指示灯泡是否完好;

④检查各盘柜上表计、继电器及接线端子螺钉有无松动;

⑤检查电压互感器、电流互感器二次引线端子是否完好;

⑥配线是否整齐,固定卡子有无脱落;

⑦检查断路器的操作机构动作是否正常。

根据每年对继电保护装置的定期查评,按情节将设备分为三类:经过运行检验,技术状况良好无缺陷,能保证安全、经济运行的设备为一类设备;设备基本完好、个别零件虽有一般缺陷,但尚能安全运行,不危及人身、设备安全为二类设备。有重大缺陷的设备,危及安全运行,出力降低,“三漏”情况严重的设备为三类。如发现继电保护有缺陷必须及时处理,严禁其存在隐患运行。对有缺陷经处理好的继电保护装置建立设备缺陷台帐,有利于今后对其检修工作。

随着电力系统的告诉发展和计算机通信技术的进步,继电保护技术的发展向计算机化、网络化、—体化、智能化方向发展,这对继电保护工作者提出了新的挑战。只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,提高供电可靠性。

参考文献

继电器保护基本要求篇9

关键词:电力继电保护;基本要求;主要故障;维修技术

abstract:inthepowersystemprotectioncanrespondtothepowerequipmentofthestatusofthepowersystemandremoethefaultoccurred,thefaultofpowersystem,theimpactofmaximumlimittoaminimum.atthesametime,relayprotectionandensuretheelectricpowerenterprisecontinuous,uninterruptedpowersupplyisveryimportantpartoftherelayprotectioncanimprovetheoperationoftheelectricaccidentanalysislevelandprocessinglevel,andknowtheentirenetworkandtheprotectionofthemicrocomputermonitoringwaverecordoperationoftheplant,toensurethestabilityofpowersystem,andhealthy.thispapermainlyonpowerrelayprotectionofbasicrequirements,mainfaultandmaintenancetechnologymemorytheanalysis.

Keywords:electricpowerrelayprotection;Basicrequirements;mainfault;maintenancetechnology

中图分类号:F407.61文献标识码:a文章编号:

1.电力继电保护的基本要求分析

1.1电力继电保护的选择性

当电力系统发生故障时,继电保护不仅要有选择地切除故障路线,而且要在保障可靠性和稳定性的前提下尽量快速地执行,以最大限度地减少故障造成的损失。这种在电流瞬时增大时所进行的电流保护动作就是电流速断保护,传统的速断装置是在离线状态下,假定工作是在最大运行方式下进行,在线路末端发生短路时确定出整定值并让设备依据这个值来进行保护工作。

1.2电力继电保护的灵敏性

电力继电保护的灵敏性指的是电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,电力继电保护装置的反应能力。能满足灵敏性要求的继电保护,在规定的范围内故障时,不论短路点的位置和短路的类型如何,以及短路点是否有过渡电阻,都能做出正确的反应动作,这不但要求在系统最大运行方式下三相短路时做出可靠动作,还要求在系统最小运行方式下经过较大的过渡电阻两相或单相短路故障时也能做出可靠动作。

1.3电力继电保护的可靠性

电力系统的可靠主要是由电力设备的可靠性程度来决定,现在电网的容量在不断的增大,用户对供电可靠性的要求也越来越高,电力设备维修管理的地位也得到了提高。电气的二次设备大致包括自动装置、继电保护、故障录波、就地监控,这些设备的正常安全运行对整个电网运行的可靠性起着较大的作用,特别是继电保护装置对电网的运行影响极大,如果继电保护装置出现问题不仅会加深电力系统故障的严重性,甚至还可能导致许多不良的连锁反应进而造成整个系统崩溃,大面积停电与重大的经济损失,严重影响着人们的生产与生活。

2.电力继电保护主要故障分析

2.1开关保护设备故障

由于现在的电力企业广泛应用符合密集区建立开关站,电力系统工作人员通过控制开关站向广大用户供电,形成了:变电所—开关站—配电变压器的供电模式。在未实现继电保护自动化的开关站内,电力工作人员应该运用负荷开关或者负荷开关与熔断器的组合器作为开关保护设备。通常情况下,电力企业对于开关站的进口线柜路往往是运用负荷开关进行分合操作以及切断负荷电流,对于带有变压器的出口线柜应用负荷开关和熔断器的组合器。但是,由于电力工作人员将负荷开关和熔断器的组合器应用到带有配电变压器的出口线柜上,很可能会造成电力系统的出口线出现故障,造成开关站越级跳闸,出现大范围停电。

2.2微机继电保护装置故障

微机继电保护装置最常见的设备故障主要有以下三种:(1)干扰和绝缘因素。由于微机继电保护装置抗外界干扰的能力较弱,再加上设备自身的绝缘性,当其附近有干扰器或者无线电设备使用时,会引起内部元件运行出错,进而威胁到微机继电保护装置的性能;(2)电源问题。电源问题是影响微机继电保护装置能否正常运行的极为关键的因素,电源的输出功率不能满足要求时,输出的电压也就相应降低,下降太多时就会导致电路的电路充电时间缩短、基准值起伏不定等问题,对微机继电保护装置的逻辑配合能力造成影响,甚至会引起微机继电保护装置逻辑功能的判断失误;(3)静电作用。制作工艺的精进让设备元件焊点与导线间的间距很小,微机继电保护装置经过较长时间的运转之,逐渐聚集大量的静电尘埃,造成导电通道发生短路,从而微机继电保护装置出现运行故障。

2.3电压互感器二次回路故障

pt二次电压回路故障主要体现在以下两个方面:(1)二次中性点接地方式异常。二次中性点接地方式异常主要表现在多点接地或二次未接地,二次未接除了变电站接地网的原因,更多是由接线工艺引起的。pt二次接地相和地网间产生电压,这个电压叠加到保护装置各相电压上,让各相电压产生幅值和相位变化,造成方向元件与阻抗元件的误动或者拒动;(2)pt开口三角电压回路异常。在变压器和电磁型母线保护中,为达到零序电压定值,往往将电压继电器中限流电阻短接,有的使用小刻度的电流继电器,从而大大减小了开口三角的回路阻抗。当出口接地或者变电站内发生故障时,零序电压就会变大,而回路负荷的阻抗较小,回路电流又比较大,电压继电器发生短路,长时间的短路就会将线圈烧断,从而使开口三角电压回路发生断线。

3.电力继电保护的维修技术分析

继电器保护基本要求篇10

【关键词】分布式电源并网保护逆变器并网保护逻辑

【中图分类号】tm77【文献标识码】a【文章编号】2095-3089(2013)10-0228-03

分布式电源接入电网可能对原有的电网继电保护产生影响。各个分布式电源的进线断路器连接并网保护起着关键的作用。同时需要考虑到各个变电站的运行方式可靠性和安全性。多数的分布式电源的配电网其结构较为简单,配电网的继电保护是以此结构为基础设计运行的。需要特别着重研究针对故障情况下分布式电源进线的保护配置,包括负荷侧使用过程中的故障及上级配电网可能发生的失电情况等。对分布式电源的接入使配电网的结构变化情况下保证电网运行的安全性。本文针对配电网原有保护的不足,研究了分布式电源的并网保护问题,分析了其并网保护的一些应用性问题,包括孤岛检测与孤岛运行,并给出了并网保护的功能要求及配置。

1.分布式电源

分布式电源(DistributedGeneration,DG)是指直接布置在配电网或分布在负荷附近的发电设施,经济、高效、可靠地发电。分布式电源(DistributedGeneratingSource,DGS)包括功率较小内燃机(internalCombustionengines)、微型燃气轮机(micro-turbines)、燃料电池(FuelCell)、可再生能源如太阳能发电的光伏电池(photovoltaicCell)和风力发电、生物发电等。

作为一种高效、环保、便捷的新型发电技术,分布式电源在世界范围内得到了迅速发展。近年来,受石油价格上涨和全球气候变化的影响,可再生能源开发利用日益受到国际社会的重视,许多国家纷纷出台政策和法规促进可再生能源技术的发展。

2.DG并网保护功能配置

2.1并网系统的保护配置要求

并网功能首先是保证主电网免受DG的故障影响;其次是保证DG设备免受市电电网故障后的影响。为了保证并网系统的安全性、可靠性,并网保护需要有以下的要求:

1)DG侧断路器装置应装设过/低电压保护、高/低频率保护,且保证在电网侧故障情况下跳闸,使DG能够被可靠地快速切除。

2)DG和相关断路器装置不允许形成意外运行情况下的孤岛状态。

3)在故障恢复后,电网的电压和频率须在满足稳定要求时才允许DG重新并网。

4)并网联接的断路器和其它开关装置必须能够开断最大故障电流。

2.2并网保护功能实现

1)检测DG孤岛运行状态

孤岛的发生首先可能引起运行电压的瞬间降低。瞬时低电压保护继电器可以反应电压的这一变化并将DG快速切除。一般为了快速地隔离故障,需要将继电器的灵敏度设置得很高,不过这样可能造成继电器易受到干扰,使保护误动的概率增加。因此,低电压保护启动需要设定延时启动,时延设置不可过长,否则可能在恶意孤岛发生时由于不能及时切除DG导致系统稳定性破坏,使电气设备受损。另外,当电网轻载时,会引起的过电压情况,同样需配置过电压保护继电器,延时启动。

当检测到DG的孤岛运行状态后,应保证快速地切除DG,使电网故障及时地隔离。DG的切除时间,应该根据电网的实际情况而定。通常使用低频率保护时,要求DG的切除要早于故障后断路器的再重合,避免非同期合闸。该配置的缺点是如果系统发生振荡,DG可能会无法继续向电网供电。但是随着DG的快速发展,DG在电网中所占的容量比例逐渐增大,这是这种保护配置就会对电网的供电可靠性有较大影响。这样可以对DG的切除设置一定的延时启动时间,以保证供电可靠性,同时对重合闸配备非同期检查,防止非同期合闸。

在孤岛发生时,如果DG提供的有功功率不足,孤岛运行的频率就会下降,同时有功负荷过小,过频率的情况会发生。因此,配置高/低频率继电器也是实现孤岛检测的要求之一。根据用电负荷运行要求,±5%频率变化的极限范围,频率继电器需要在最短的时间内将DG从电网中隔离。

同时,电压、频率是电能质量的基本要求,也是孤岛检测最基本的依据,实现孤岛检测功能需要配置基本的过/低电压继电器、高/低频率继电器。

2)保护配置的故障反馈检测

电网上游接地故障发生时,原有的保护可能无法识别并隔离故障,此时DG将持续提供短路电流,这就会危害设备并且危及到工作人员的人身安全,而且DG的容量越大,造成的情况会更加严重。因此,并网保护必须及时切除此类故障。

故障反馈检测功能是检测过电流,实现此功能的继电器包括过电流继电器、方向过电流继电器、阻抗继电器。过电流继电器不分辨流过继电器的故障电流方向,只要出现DG提供过电流的情况均产生保护动作。为了提高保护灵敏度,也可以考虑使用电压控制启动的过电流保护动作来实现故障反馈检测功能。方向过电流继电器主要是考虑到为了在故障发生后保持DG继续向本地的部分负荷供电。

并网变压器的故障反馈检测与其联接形式有关,并网变压器一次绕组不接地可能会导致过电压的问题,因此对低压侧Y或接法的变压器,采用过电压保护检测接地故障,对低压侧Y接法中性点直接接地的变压器,采用过电流保护实现故障反馈检测功能。

3)三相不平衡的检测

电网中的不平衡电流会增加线路及变压器的铜损,增加变压器的铁损,降低变压器的输出功率,甚至会影响变压器的安全运行,会造成三相电压不平衡因而降低了供电质量,甚至可能影响电能表的精度而造成计量错误。针对可能存在的不平衡状态,需配置负序过电流保护继电器和负序过电压保护继电器。

4)反向功率检测

部分并网要求中严格限制DG向市电电网负荷供电。孤岛形成后,DG将向孤岛内的负荷供电,包括本地负荷和部分电网负荷。当DG向电网负荷提供的反向功率越界时,功率方向继电器动作,使该部分负荷从孤岛中切除。功率方向保护可以实现检测反向功率的功能。

5)故障排除后并网

故障排除后恢复供电时,DG应能够重新并网。配电网的故障中永久性故障不到10%,因此广泛应用自动重合闸提高供电可靠性。但在孤岛发生后,重合闸重合期间,孤岛与主电网可能已经不再是同步运行,此时非同期合闸将给电网和DG造成很大的冲击和破坏,因此需要设置同期检查继电器,用于DG并网的同期检查。同期检查因素包括相角差(Δθ)、滑差(Δ?)、电压幅值差(ΔV)。

总结以上分析,并网保护需要考虑表1中的保护配置。在实际的并网保护中还需要考虑到DG的容量、位置和DG的类型对并网保护配置的影响。

分析了并网变压器的联接形式对并网保护的影响,介绍了DG并网的孤岛问题及孤岛检测方法,通过对并网保护功能的分析给出了DG并网保护的功能配置。

3.光伏逆变器并网运行

市电电网可视为容量无穷大的定值交流电压源,光伏并网逆变器的输出可以控制为电压源或电流源。如果光伏并网逆变器的输出采用电压控制,则光伏并网系统和电网实际上就是两个交流电压源的并联运行,即通过光伏电池汇集电能至逆变器,然后经过升压变压器并网,通过调整并网逆变器输出电压的幅值与相位来保证与市电电网的同步。这种情况下要保证光伏并网发电系统稳定运行。

3.1逆变并网的国际通用标准

孤岛检测的最直接的方式是针对电网的检测。通常在电网的配电断路器分闸时,若光伏逆变并网发电系统的供电容量和电网负荷的需求量不匹配,那么电网的电压和频率会发生较大的波动,此时可以利用电网电压的过/欠电压保护和过/欠频率保护来检测电网是否断电,以此防止孤岛现象的发生。但是当光伏逆变并网发电系统的供电容量和电网负荷所需求量匹配或差距非常小的时候,电网的配电断路器分闸后,光伏并网发电系统附近电网的电压和频率的变动将不能够被保护电路检测到,而发生孤岛现象。

根据专业标准ieeeStd.2000-929和ULl74的规定,所有的并网逆变器必须具有反孤岛效应的功能,同时这两个标准给出了并网逆变器在电网断电后检测到孤岛现象并将逆变器与电网断开的时间限制,见表2:

4.继电保护配置

4.1分布式电源并网保护功能的要求

具体配置继电保护装置需要满足相应功能,并可以实时监测相应物理量,且具备记录或者上传功能。现以GeF650数字间隔控制器保护配置应用为例,以满足电源进线的保护配置。并对其具体保护功能运用进行配置。

该综合保护装置既可以作为配电馈线及传输线路的主保护,也可作为变压器、母线、电容器组等的后备保护。

F650装置的主要功能包含:

1)相间、中性点、接地及灵敏接地的方向过流保护

2)欠压及过压保护

3)欠频及过频保护

4)自动重合闸

5)同期

6)测量

7)录波记录、故障报告、数据记录

8)间隔控制(断开/闭合等命令)

9)通讯(RS232/RS485/光纤/以太网)

测量:测量相、接地及灵敏接地输入的电流;相间及相对地电压;有功无功及视在功率及功率因数;频率;电路、电压的相序分量、输入/输出:

1)9个模拟量输入:5个电流输入(3个相电流,1个接地电流,1个灵敏接地电流),4个电压输入(3个相电压,1个母线或者辅助电压)

2)数字可编程接点输入(32个)

3)数字可编程接点输出(16个)

4)32个锁定的虚拟输入,32个自复位

5)虚拟输出(512个)

6)跳闸及合闸回路监视

根据以上内容,该数字式间隔控制器可以满足分布式电源进线断路器的保护功能配置。

4.2继电保护应用与分析

现以一户内变电站为例,主接线形式为单母线分段,该电气主接线方式比较简单,且运用范围较广,具有一定代表性。该变电站供电运行方式为双电源分段运行,以其中某一段母线后备电源进线为分布式电源进线(光伏逆变后升压),根据其供电运行方式进行继电保护配置设计;分布式电源进线的继电保护设置其保护逻辑设置如图1所示。

根据变电站运行操作规程,在保护功能配置的要求下增加就地操作和远动操作的功能。

基本要求为故障状态下禁止人员对进线断路器进行操作,就地与远方操作只可取其一。为保证在可能的孤岛效应发生的情况下,不产生故障扩大化的情况,要求进线电缆或者母线电压检测满足失压条件进行断路器动作,同时也兼顾双电源的互为备用切换功能。满足正常使用的倒闸操作要求,对断路器进行分合闸操作。

对于不直接设置为保护动作的功率方向(32Fp)、过频率/欠频率(81o/81U)等可以作为事件记录保存,或者通过通讯输出,传至远方操作人员或者相关工作人员掌握和记录其设备运行状态和情况。其控制逻辑如图2所示。

5.结语

配电网继电保护的工作原理和配电网的馈线自动化方案保证分布式电源接入后的安全性和可靠性。配电网主要采用速断和过电流两种保护方式,速断保护保护线路的全长,过流保护作为线路的后备保护,同时还配置零序保护。分析了DG经过逆变器并网保护功能的要求及实现方法。对于今后分布式电源接入配电网的发展,各类型的继电保护配置还需进一步综合使用经验。深入完善各类型分布式电源及其保护装置运用。

参考文献:

[1]李佑光.电力系统继电保护原理.北京:科学出版社,2003

[2]许建安.电力系统继电保护(第二版).北京:中国水利水电出版社,2005