电力人工智能技术十篇

发布时间:2024-04-26 11:14:55

电力人工智能技术篇1

关键词:电力系统;人工智能;继电保护;应用;

1引言

近年来,随着人工智能理论技术的不断发展,以模糊技术、人工神经网络和遗传算法为代表的智能理论方法在电力系统领域得到了十分广泛的应用。众所周知,电力系统是由各类发电装置、输配电线路、变压器以及用电装置等一系列单元组合而成的大规模动态系统,电力系统本质上是一个非线性动态大系统,存在着许多极为复杂的工程计算和非线性优化问题,例如:电力网络的无功优化调度电力系统规划运行、发电机组的优化组合、电力系统最优潮流计算、电力市场的交易定价等一系列问题。而这些问题都是多参数,多约束的非凸优化问题。长期以来,电力系统自动化研究者一直在寻找高效可靠的方法来解决这些问题。然而有许多电力系统中存在的问题无法得到快速与精确的结果。其主要原因在于:

(1)电力系统中的有些向题还无法建立精确切实的数学模型,包括不能完全用数学来表示反映问题实质的约束条件。

(2)随着问题的规模和复杂程度的增加,利用现有的算法和计算机条件,无法在较短的时问内获得满意的计算结果。

(3)许多问题的条件具有模糊性,对干系统的了解还不够精确,此外在求解问题的过程中需要专家的知识经验。这些都无法用精确的数学形式表示出来。

与传统的计算方法相比较,人工智能方法对于复杂的非线性系统问题求解有着极大的优势。它弥补了传统方法的单纯依靠数学求解的不足,解决了某些传统计算方法难于求解或不能解决的问题。

2人工智能技术在继电保护中的应用

2.1计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。某电力学院研制的微机线路保护硬件已经历了3个发展阶段:从8位单CpU结构的微机保护问世,不到5年时间就发展到多CpU结构,后又发展到总线不出模块的大模块结构,性能大大提高,得到了广泛应用。

某电力自动化研究院一开始就研制了16化CpU为基础的微机线路保护,已得到大面积推广,目前也在研究32位保护硬件系统。某大学研制的微机主设备保护的硬件也经过了多次改进和提高。某大学一开始即研制以16位多CpU为基础的微机线路保护,1988年即开始研究以32位数字信号处理器(DSp)为基础的保护、控制、测量一体化微机装置,目前已与某电自动化设备公可合作研制成一种功能齐全的32位大模块,一个模块就是一一个小型计算机。采用32位微机芯片并非只着眼干精度,因为精度受a/D转换器分辨率的限制,趟过l6位时在转换速度和成本方面都是难以接受的;更重要的是32位微机芯片具有很高的集成度,很高的工作频率和计算速度,很大的寻址空间,丰富的指令系统和较多的输入输出口,CpU的寄存器、数据总线、地址总线足32位的,具有存储器管理功能、存储器保护功能和任务转换功能,并将高速缓存(Cache)和浮点数部件都集成在CpU内。

电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度

联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有相当于一台pC机的功能。现在,同微机保护装大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机作成继电保护的时机已经成熟,这将是微机保护的发展方向之一。某大学已研制成用同微机保护装置结构完全相同的一种工控机加以改造作成的继电保护装置。这种装置的优点有:①具有486pC机的全部功能,能满足对当前和未来微机保护的各种功能要求。⑦尺寸和结构与目前的微机保护装置相似,工艺精良、防震、防过热、防电磁干扰能力强,可运行于非常恶劣的工作环境,成本可接受。③采用StD总线或pC总线,硬件模块化,对于不同的保护可任意选用不同模块,配置灵活、容易扩展。

继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。

2.2人工神经网络

人工神经网络(ann)是模拟人脑组织结构和人类认知过程的信息处理系统。它以其诸多优点,如并行分布处理、自适应、联想记忆等,在智能保护中受到越来越广泛的重视,而且已显示出巨大的潜力,并为智能化继电保护的研究开辟了一条新途径。应用ann技术实现故障诊断不同于eS诊断方法。ann方法通过现场大量的标准样本学习与训练,不断调整ann中的连接权和阂值,使获取的知识隐式分布在整个网络上,并实现ann的模式记忆。因此ann具有强大的知识获取能力,并能有效的处理含噪声数据,弥补了eS方法的不足。

神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解,因此在继电保护中也得到越来越多的应用,例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。近几年来,电力系统继电保护领域内出现了用人工神经网络来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。用人工神经网络原理来实现高压输电线的方向保护,提出用Bp模型作为方向保护的方向判别元件。研究结果表明,该方向判别元件能准确、快速地判别出故障的方向。基于神经网络的继电保护系统的优越性;论证了由单层感知器网络或tH网络可以实现最小二乘算法,这两种网络都可以在极短的时间(数纳秒或几百纳秒)内完成全部运算;给出了电流继电器、圆特性以及四边型特性阻抗继电器的神经网络模型,并证明了三种模型都具有很强的自适应性。基于人工神经网络的智能型自适应继电保护原理,利用了比传统保护多得多的信息量。它比传统保护能区分更多的故障类型,提高了继电保护的适用范围,从原理上解决了经高阻抗的短路故障保护问题。利用人工神经网络实现自适应电流保护的方法。该方法充分利用了人工神经网络所具有的强大的自适应能力,学习能力和模式识别能力,实现对电力系统中的各种故障情况的识别,解决电流保护中的灵敏度补偿和故障方向识别问题,使电流保护对正方向各种故障都有足够的保护范围,而对反方向的各种故障实行闭锁,从而实现电流保护的自适应。

利用神经网络可以在一定程度上提高故障诊断效率,解决用常规继电保护方法难以解决的问题,但该方法也存在“性能取决于样本是否完备、不擅长处理启发性的知识、训练时容易陷入局部最小”等问题。由于专家系统方法与神经网络方法在许多方面可以协调工作、互为补充,因此,如何取长补短将神经网络技术与故障诊断专家系统融为一体,以弥补诊断中的不足,并提供新的诊断技术和方法,具有很大的潜力和广阔的前景,是值得我们深入探讨和研究的。

2.3模糊理论(FuzzySetstheory)的应用

模糊逻辑能够完成传统数学方法难以做到的近似计算。近几年来,模糊集理论在电力系统中的诸多应用领域取得了飞速进展,包括了潮流计算、系统规划、模糊控制等方面。例如对干负荷变化和电力生产的不确定性,就可运用模糊值来表示某不确定负荷在实际集合中的隶属函数,建立起电力系统最优潮流的模糊模型。

传统无功电压优化算法一般是单目标优化问题,并没有考虑有功网损的降低和限制控制量调节数最少,而且在处理电压约束时,未考虑“软约束”特性。可引入模糊线性规划算法以解决这一问题。为很好地协调降低网损、限制调节量和确保节点电压裕度三者的关系,在有限控制量调节的前题下,可实现校正违界电压、降低系统网损和确保所有节点电压留有一定的裕度。利用模糊综合评判的方法对电能质量进行综合评价的二级评判法。

2.4遗传算法(Geneticalgorithms,Ga)的应用

遗传算法是基于自然选择和遗传机制,在计算机上模拟生物进化机制的寻优搜索算法。他能在复杂而庞大的搜索空间中自适应的搜索,寻找出最优或准最优解,且算法简单,适用,鲁棒性强。遗传算法对待求解问题几乎没有什么限制,也不涉及常规优化问题求解的复杂数学过程,并能够得到全局最优解或局部最优解集,这是他优于传统优化技术之处。遗传算法从优化的角度出发基本上可以解决故障诊断问题,尤其是在复故障或存在保护、断路器误动作的情况下,能够给出全局最优或局部最优的多个可能的诊断结果。但是如何建立合理的输电网络故障诊断模型是使用遗传算法的主要“瓶颈”。如果能够建立合理的数学模型,那么不仅可以使用遗传算法解决故障诊断问题,还可以使用其他类似的启发式优化算法解决故障诊断问题。

3智能方法的综合应用

每种智能控制方法都有其内在的局限性,难以满足处理电力系统实际复杂问题的需要。如何将这些控制方法结合起来形成一种综合的智能控制,使综合的智能控制系统能够体现出各种控制方法的优势而尽量避免各自的不足,综合利用模糊理论及人工神经网络各自的特点形成的模糊神经网络成为提高电力系统的可靠性、快速性、灵敏性及选择性的主要研究方向。结合eS和ann实现对以变电站故障诊断为基础的分层分布时故障诊断系统。基于模糊理论与神经网络理论,根据特征气体法和改良ieC三比值法,建立了模糊神

经网络的变压器故障诊断模型。该模型有效的处理了故障诊断中的不确定因素,并具有较强的知识获取能力。从基于人类思维发展模式的角度,融合设备故障诊断的eS和ann模型,构造了电力变压器的故障诊断分析系统。

综上所述,将不同的人工智能技术结合在一起。分析不确定因素对智能诊断系统的影响.从而提高诊断的准确率,是今后智能诊断的发展方向。

4结语

人工智能技术在电力系统的应用中已经获得了良好的发展。然而在我国,人工智能技术在电力系统中的应用研究才刚刚开始。随着我国电力系统的持续发展,电力系统数据总量的不断增加,管理上复杂程度的大幅度增长,以及市场竞争的影响和加大,为人工智能技术在电力系统的应用提供了广阔前景。可以预见,加强智能科学在电网中的科研和应用,将能更好的保证电网安全稳定经济运行。

参考文献

[1]韩富春,王娟娟;基于神经网络的电力系统状态估计[J];电力系统及其自动化学报,2002(6):49-51.

电力人工智能技术篇2

关键词:电力系统;故障诊断;人工智能;实际应用

中图分类号:tp311文献标识码:a文章编号:1009-3044(2017)02-0183-03

科学技术的发展带动智能生活面向全社会各方面的逐渐普及,而我国现阶段正在大力推广实施智能电网,使现代的电力系统向着信息化、智能化迈进,在这些前提下人工智能技术在现代智能化电力系统建设中所起到的作用可以说相当重要。电力系统作为人们日常生活中组成的部分,其稳定性和安全性的保障至关重要,如果电力系统由于各种各样的原因出现了故障将会直接影响到人们正常的成产成活。同样的,如若电力系统的稳定运行不能得到及时的故障诊断,那么就会导致故障问题没办法得到及时的确认和处理,从而造成不必要的损失。为了避免这一现象的出现,应用人工智能的各种实际方法来对日常电力系统进行故障检测,是工作室以后电力系统检测维修的关键。接下来我们就分析一下人工智能技术的具体含义和实际应用。

随着人工智能技术的发展普及,其在现代电力系统中起到至关重要的作用,在电力系统日常生产运行的各个阶段中,专家系统(expertSystem,eS)、人工神经网络(artificialneuralnetwork,ann)、模糊理论(Fuzzytheory,Ft)、遗传(Geneticalgorithmic,Ga)等人工智能技术已经被广泛深入地运用到生产控制、监督管理、故障z测等电力作业当中。现代电网系统当中的智能检测系统主要是指,依托人工智能为专业的理论知识依据以及相关的技术手段来对电力设备中的各种故障进行智能化、信息化监督管理。为什么现在人工智能系统被得到广泛的认可,主要就是因为在平时的电力系统故障诊断工作中造成故障发生的原因多种多样,而安全检测人员在实际故障检测时容易出现失误,因此,人工智能技术可以帮助解决这些问题,从而保证资源的合理运用,节省人力物力等。

在这里,文章针对目前在国际电力故障诊断系统市场中最广泛的智能型FD-pS进行深入全面的归纳整理和分析探究,主要是对eS、ann、FSt、Ga及petri网络等技术在FD-pS中的实际应用进行整理。

1基于eS原理的电力系统故障诊断

eS原理指的是结合相关专业电力方面的书籍上的理论知识,再结合电力监督管理方面专家和工作人员们的实际作业经验来对各种电力故障问题进行科学合理的处理。对于那些单纯依赖普通解析办法无法解决的问题而言,eS的只是表达方式可以有效减少故障问题造成原因的范围,有助于提升工作效率,另一方面eS的推理解释也可以在很大程度上帮助电力系统故障检测与诊断作业的高效有序进行。

对于eS在电力系统故障诊断方面的具体应用进行分析,其主要的知识表达方式包括有:基于谓词逻辑表示法,基于产生式规则表示法,基于过程式知识表示法,基于框架式表示法,基于知识模型表示法还有基于面向对象表示法,这些表示方法当中基于谓词逻辑表示法、基于产生式规则表示法、基于过程式知识表示法是比较传统普遍的应用模式,而基于知识模型表示法和还有基于面向对象表示法呢,则是对于以上表示方法的进一步延伸扩展,是在其基础上形成发展出的新的表达形式和新的表达模式。接下来,我们就系统的分析一下这些表达方式在店里故障检测方面的具体应用:基于谓词逻辑表示法可以说是一种相较于其他表达方式比较早的专业知识表达描述方式,其主要的工作方式是利用保护和断路器信息的方法来构建专属的电力知识库,之后再使用prolog语言为谓词逻辑搭建构造几个知识库。第一个是用来系统的描述展现电力系统的具体结构,注重于保护和断路器动作关系这方面的专业知识以及正确描述断路器的状态;第二个则是主要用来强调如何对电力系统保护原理进行全面正确的描述表达;第三个呢则是具现到了实际的故障处理工作中,用以对日常故障出现位置的规律进行描述,还有利用反向推理的方法结合上面故障设备与保护、断路器的信息关系来完成诊断故障作业中出现的抗拒性因素处理。虽然办法简单有效,但是实际造作过程太麻烦并且效率较低是谓词逻辑法最大的局限。

1)以推理为基础的人工智能技术在电力系统故障诊断中的应用分析

以推理为基础的人工智能技术指的是通过计算设备或其他工具,模拟人的思维模式和思维过程,对于出现的电力系统故障问题,结合之前累积的相关经验以及专业的故障诊断理论知识,来进行正常的逻辑推理工作,从而诊断出真正的问题缘由,这样的推理模式称之为显性推理。而与之相反的就是利用数字化、抽象化等逻辑思维进行故障诊断作业的推理方法称为隐性推理。其中显性推理最主要的就是专家系统,指通过对电力系统故障诊断方面专家进行决策过程的适当模拟,再结合工作人员所掌握的专业知识以及相关经验,可以更好地完成对电力系统使用过程中出现的各种复杂问题的正确判断和适当处理。但是,由于专家系统要想完善构建程序,其中全面科学的专家知识库构造问题是一大难点,而如果知识库不够完善,就很容易造成故障诊断工作中出现差池,比如说发生遗漏掉每个因素而造成错误的判断等,这些问题都是不可以轻视更不可以忽略的,因此,在现阶段这种系统只能应用在针对于中小型的电力系统的故障诊断工作当中。

2)另外一种以推理为基础的人工智能技术,就是依靠对于人类神经系统的信息传输和处理等过程的模拟,在通过一般电力系统故障所特有的警示标志来于知识库进行对比,从而准确判定出故障问题出现的真正原因,再进行合理的处理修复。这样的诊断方法简便快捷,而且可以大大地解决人力、物力、财力方面的资源消耗比较大的问题,也正因如此,这样的诊断模式在电力系统故障诊断领域的应用相当广泛,只不过这种诊断系统也存在着一些弊端,那就是在诊断工作中实际算法收敛速度和具体解释能力等方面还有很大的缺陷。petri网的应用在电力系统故障诊断作业中也至关重要,主要是利用网络表示电力系统各元件之间同时、次序或循环发生的关系,这样可以完成对电力系统的实时监控管理,对与电力系统出现故障时的数据静态变化和动态变化之间的关系进行详细描述,特别是通过继电保护装置来对发生故障的反应以及切除行为的具体描述获取正确的故障诊断结果。虽然通过这种方法得到的诊断结果会比较准确,但是因为大量的故障诊断经验会影响作业人员的实际判断,并且当设备出现错误虚报故障时,其识别能力较弱且计算工作时间较长,另外一点最关键的,这种技术目前并不完善,主要技术还在深入的钻研探究阶段,所以其在实际电力系统故障诊断领域的应用范围并不广,很多时候都是结合着其他的人工智能技术来进行作业。

2以不确定性理论为基础的人工智能技术在电力系统故障诊断中的应用分析

信息的故障诊断是不确定的,主要是由于保护装置,断路器拒绝移动或者信息的传输过程中受损等原因。为此,研究人员在故障诊断领域都公布了一些不确定性的信息,引入不确定性的理论是基于这样的事实,该故障信息是由多种因素,并且通常不安全颜色的影响。基本的人工智能技术主要包括模糊理论,概率论,粗糙集等。模糊理论是关于专家,但他在实际作业的过程中延长时间,在实践能力,通常与其他方法结合起来,信息的模糊与专家的完整的系统诊断故障,计算传输使用petri网的不确定性和终止网络建成后,虽然有一定效果,但了解和控制的实际应用与维护的学习和功能的辛勤工作相结合,以确定成员的变化有关的问题仍处于研究阶段等因素的影响,应用仍然是有限的。概率理论被分成理论的理论贝叶斯可靠性,信息表现概率作为初步或电力系统的故障,实际执行的通过产生规则产生的信息保护的值的信念,该方法的组合的基础上概率petri网。效果是显而易见的,但由于其对一些信息经验的依赖,公式用于解决事件论自主决定能源系统粗糙认为,作为一个阶级属性一定的防御设备和交换机相结合故障表可能是不实际的决定控制。原设定的信息,以减少的原则算法的作用下,原太,减少粗糙集的最小化采取尽量减少决策。然而,真正的故障做出诊断,在这个阶段它的实际应用,很难影响当前表重大决策的形成是赏心悦目的效果。

1)以优化技术为基础的人工智能技术在电力系统故障诊断中的应用分析

基于计算机技术和计算机科学,工艺优化等于解决了这个问题无限的优化和全局优化算法,人工智能技术的不断发展零编程问题。例如,故障诊断诊断系统故障能量,根据使用开关保护遗传算法或数学理论,故障诊断之间的关系,可以被看成是基于使用整数编程,可以解Q的问题之前和改变网络拓扑之后创建区模型数据的故障的过程中网络发生解算法模拟退火以实现有效的还原基于配置车辆和故障信息介质溶液的数量,建立诊断故障的是用来模拟模型故障诊断。然而,这是难以建立为在实际应用中的故障诊断一个合理的模型,并且有许多随机因素,为了实现电力系统的故障诊断精准而快速的目的。

2)以多种方法融合为基础的人工智能技术在电力系统故障诊断中的应用分析

合并多种方法、以多种方法融合为基础的人工智能技术是基于这样的思想:该电力系统的故障是复杂的,如果只进行单个的诊断方法,则全面性较差。例如,结合神经网络方法和模糊逻辑,整体性能实践显著改善,在这种方式下petri网的整合,以提高自学成才的信息不安全的能力和算法的神经可以组合与遗传算法和专家系统,以提高电力故障诊断系统的速度。而他的表现抗干扰能力强,可以看得出,在各种基于电力系统故障诊断工作中,人工智能技术集成方法是其未来发展的主要方向之一。

3)专家系统

eS是国内形成最早,最成熟的人工智能技术,根据知识和经验方面的专家进行理性的分析判断,解决那些需要专家决定的复杂问题模拟专家决策的具体过程。应用eS故障诊断应该要基于生产的规则,即形成故障诊断专家知识库系统,然后根据这些信息,保护电路动作数据稳定和经验诊断操作人员按照故障报警进行推理的知识基础,通过故障诊断得到结论,再利用一定的技巧来解释。一般的推理机制,诊断依据故障-eS可分为两类:一类是基于规则推理,它采用推理着相匹配的信息与知识库中的规则故障采取的故障诊断的完成演绎系统;系统逆推理。推理规则基于保险丝和保护设备之间的逻辑关系创建,并且可靠性被重合的实际信息和假设故障保护之间的程度来衡量。该方法提高混合推理和故障诊断专家系统的自学习能力的适用性。虽然理论eS是成熟和清晰,并能提供的诊断的完整说明,eS仍具有在实际应用中存在以下缺点,它难以得到知识的一个完整的基础上,并且其验证难度比较大;智能网络信息的变化,需要重新构建知识库,维修难度大;容错性比较低,存在着功能障碍现象,容易出现误判以及错判的情况。eS诊断方法可以提供增强人类语言的习惯能力,这更适合于电力系统的二次诊断和小故障诊断相应的结论和解释。

4)人工神经网络

ann同样也是一种人工智能技术,是通过模拟传输系统和人类的神经信息处理来进行工作的过程。它具有并行处理,非线性映射,联想记忆和在线学习能力的特点,已经被广泛应用于电力系统的各个领域当中。与eS相比,使用神经元和运行知识的隐式处理的权重之间的联系,与地图的强非线性和技术推广的优点,容错率要更高,即使与输入信号固定噪音,还可以给出准确的故障诊断结果。

基于神经网络故障诊断,故障信息被定义为用作神经网络的数字输入。生产代表了故障诊断的结果。首先,神经网络训练和学习,具体的故障报警作为样本,与样本知识库建设相吻合;然后利用神经网络,该网络将保留在连接的权利的形式的网络的知识的所有训练样本;在计算神经网络的时候可以输入相应的数据值,从而完成了故障诊断。使用记忆联想Hopfield神经网络模型,按照根据设计原理逆学习算法用它来实现系统故障,由部分信息扰动宽容的表现。结合参考文案中提到的径向核心功能(RBF)神经网络来实现高压输电线路故障诊断和反向传播(反向传播,Bp)对比神经网络,速度训练网络和宽容故障都优于应用传统的Bp神经网络。然而,在实际应用中仍然有存在一些问题,大量需要加强练习的网络智能信息技术,学习算法收敛速度缓慢;缺乏能力诊断结果的解释;良好地进行启发性知识处理。

3基于优化技术的故障诊断方法

随着科学技术水平的不断发展,计算机技术也逐渐地应用到我们的日常生活,我们的生活和工作学习也变得越来越快捷方便,在很大的程度上提高了工作效率。电网故障的诊断也需要与时俱进,不能只是应用传统的技术来进行诊断,应用新兴科技,把以往的优化技术更新换代,使得优化技术更加灵活,不再像传统技术一样死板。新兴的优化技术诊断方案相比以往的方案来讲,系统更加全面,分析数据更加准确,不会像传统技术那样出现失误,出现数据分析不合理的现象。所有的新兴技术都不是完美的,都会多多少少存在一些漏洞,这时候需要我们在实际的工作当中,进行实地地调研和分析,寻找到最优的解决方案。

电力系统的诊断过程中,以往采用传统的技术来进行诊断,诊断的过程中,数据分析并不是十分的准确,诊断出的问题并不是十分理想。人工智能的系统诊断并不能应对一些突发的情况,不能诊断出一些新出现的问题。人工智能诊断的方式是将以往发生过的问题和毛病,统一进行合并处理,然后将这些出现过的数据存入这个人工智能系统中,再通过这套系统来诊断,这样的诊断方式存在很多的漏洞。基于这种现象的发生,采用新兴的科学技术,将模糊理论应用到诊断系统中来,模糊理论不同于以往的技术理论,这套理论系统会处理一些突发的紧急的状况,不像以往的系统一样只能处理一些以前发生过的问题,这套系统会灵活诊断出一些新出现的问题和漏洞。模糊理论系统相比较与人工智能系统,能更好地灵活诊断,这套新兴的系统会根据人脑的判断来处理信息,同样也会存在一些漏洞,任何系统的完美程度都是比不上人脑系统的,模糊理论不具备自主思考的能力。

随着科学技术的发展,各种各样的技术都会研究和开发出来,不同的技术应用在不同的岗位需求上,在很大的程度上帮助人类解决了很多的问题,同样也提高了人们的工作效率,因为这些技术能够帮助人们处理大量的信息,从而能诊断出一系列的问题和漏洞。人工智能系统应用在电力诊断系统中,无疑是一项很大的突破,帮助人们处理了大量的信息,而且还能进行准确的分析,第一时间诊断出电力系统存在的问题,从而能够第一时间进行解决。随着技术进步,更多的新兴科技会应用到电力诊断系统中来,我们要根据自身的实际情况,制定出更适合我们的系统,更加方便我们工作的优化方案。

随着中国人口增多,企业和工厂在不断增加,我国的用电量也随之不断提升,这时候应该更好的解决电力系统。电力系统是一项庞大的系统,里面设计到很多的细节和面板问题,这是一项精密的系统,怎样能够更好的诊断电网故障,这项问题一直是国家电网立志研究的课题,当然随着科学的进步,各项新兴的技术应用到电网诊断系统中来,帮助电网事业解决了很多的问题,从而避免了很多的危险,毕竟电力诊断也是一项很危险的事情。这使得人们的生活更加便捷,用电更加的方便,方便了人们的生活。所以,致力于电网诊断的系统研究是目前很重要的一项工作。

4结语

国家的电网事业在不断上升,电网工程也在不断的壮大,随之居民和工厂、企业用电量也在不断增加,这对于国家电网事业是一项新的考验,同样也是利国利民的好事。怎样能够进一步提高电网的安全系统,对于电力系统的研究方向,毕竟随着生活水平的提高,各种各样的用电量在不断增加,对于电网的安全问题是一个很大的考验。将新兴技术应用到电网诊断系统中来,能够在很大的程度上解决这项问题。但随着电力系统的发展,各种各样的问题也会随之增加,以往的科学技术解决不了新出现的问题,这时候需要重新定义,研究出更适合现在电网系统的技术。电力系统稳定的运行才是电网事业关心的重大问题,综合现在的电力系y的内部分析,结合目前我国的用电量的多少,最重要的是对于以往诊断出的问题进行综合的分析,从而才能制定出更加完善的系统,研制出更符合现代的优化技术,我们要根据自身的实际情况,制定出更适合我们的系统,这项问题才是电力系统需要考虑的方向。

参考文献:

[1]钟金,郑睿敏,吴复立,等.建设信息时代的智能电网[J].电网技术,2009,33(13):12-18.

[2]孙静,秦世引,宋永华.模糊petri网在电力系统故障诊断中的应用[J].中国电机工程学报,2004,24(9):74-78.

[3]孙静,秦世引,宋永华.一种基于petri网和概率信息的电力系统故障诊断方法[J].电力系统自动化,2003,27(13):10-14.

[4]占才亮.人工智能技术在电力系统故障诊断中的应用[J].广东电力,2011(9):87-92.

[5]王磊.电网故障诊断方法及其系统架构研究[D].山东大学,2013.

[6]吴欣.基于改进贝叶斯网络方法的电力系统故障诊断研究[D].浙江大学,2005.

电力人工智能技术篇3

关键词:电气工程;自动化控制;智能化技术;应用探讨

【分类号】:tG333.7

引言

在我国经济得到不断发展的同时,各个部门对电力系统的要求也不断提高。由于我国早期的自动化技术不完善,仍有一定的技术缺陷,所以引进了智能化技术。智能化技术是一种把人工智能融入计算机中的新型科技。这一技术的引进不但解决了这一技术问题而且在一定程度上更好的促进自动化技术的发展。目前我国的智能化技术在电气自动化中处于发展阶段,今后还会有更广阔的发展空间。

一、智能化技术概述

随着其不断发展,在20世纪50年代“人工智能”这一概念被提出,主要是用来模拟、扩大以及延伸人的智能,涉及的学科有:计算机、数学、哲学、心理学以及控制论等。就让计算机拥有与人相媲美的智慧,以此完成人类所需要的工作。现在这一技术已经被广泛应用在工业生产过程中,尤其在电气工程自动化控制过程中。特别是在对智能化技术的专家系统、语言识别与对智能化技术的专家系统、语言识别能力等自动控制能力等技术中进行有效的应用,以达到实现电气工程自动化控制的目的。电子工程主要研究的领域:与自身有关的电子与计算机的应用、系统运行、电子电气技术、信息处理以及自动控制等。

到现在为止,智能化技术已经逐渐形成了一门涉及电气实验分析、信息处理、自动控制以及系统运行的科学体系。

为了保证智能化技术在运用过程中具有实际操作性,可以通过开发研究相关智能机器的时效性,使计算机技术对其进行可操作性的实验。这不但有效促进电气工程自动化控制的发展,而且有效地节省了人力资源,使工作效率得到提高。

二、智能化技术的优势

第一,强控制的一致性,传统的控制算法是在针对控制对象的基础上进行设计的,因此一般只是对其所针对的控制对象的控制效果是较为良好的,而对于其他的控制对象则为较差的控制一致性。但是通过这种控制技术所使用的算法都无论是对于未指定的输入数据或者是指定的分析对象,可以进行有效的一致性控制。第二,系统适应性的强化,与传统控制技术相比,智能化控制设备在收集新信息以及新数据时会更便捷,更有效地提高控制系统的适应性。第三,高性能化,应用智能控制技术后,只需适当调整相关参数就会快速提高控制设备的控制性能。第四,设计思路的简洁化,现在使用智能技术,只需通过函数近似器就能简单地控制所需要控制的对象。

三、智能化技术在电气工程自动化控制中的重要性

智能化技术在电气工程自动化控制中发挥着至关重要的作用,体现在以下几个方面:

(一)电气工程自动化模型控制的简洁化

在相对优势的电力系统运行中,智能技术的使用可以简化控制电气自动化模型。由于在整个电力运行系统中,结构差异会对潜力企业造成一定的压力。假若电气工程自动化控制中的相关参数发生了变化,就会给电力系统的管理和控制带来一定的困难。智能化技术在电气工程自动化控制中的应用不但能够提高电力系统中设置参数的准确性,而且还能有效地避免电力故障。因此,从源头上减少对相关模型的控制才会更加有利于提高电力企业的整体工作效益。

(二)电力运行系统的整体控制力的加强化

在气工程自动化控制中,利用的智能化可以及时、高效地对电力系统中的相关电力设备和数据进行控制。整个电气工程自动化系统通过对相关控制器的安装和使用来保障整个电力系统的正常工作。特别是对在对相关的电力设备进行调控的过程中还能够有效地发挥自动化的优势,对电力设备中存在的隐患进行及时地预警并且反馈到正确的信息。同时,可以利用智能化的优势对电气工程进行远程控制,从而提高整个电力运行系统的控制能力,。

(三)电气工程自动化各个环节强化的一致性

电力运行系统的良好运行与各个环节的监控和管理息息相关。通过在电气工程自动化控制中,对相关具体数据的分析和整理智能化技术,来提高对整个电力运行系统的控制。同时,通过对智能化技术的使用不但可以有效地提高电力系统的运行效率,而且还能够充分地发挥高科技的优势。

四、智能化技术在电气工程自动化控制中的具体应用分析

(一)进行智能控制方面

在电气工程自动化控制中应用智能化技术,即可实现电气工程控制的高效化、自主化、远程化以及无人操作化。其应用范围包括:处理、在线诊断以及记录电气系统故障;对电气系统通过计算机系统进行实时控制;实时监督各种主要的电气系统、电气设备等运行状态;实时处理与采集电气系统撒气量、开关量等数据。智能化控制由于其智能化技术的优越性,不仅使其能够广泛应用于电气自动化技术中,而且还能为其在其他领域的发展夯实基础。

(二)进行故障诊断方面

电气工作系统在运行中,电气设备监测人员会不定期地对变压器的电气设备进行维修、检测。但是面临无法完全避免故障的发生时,就需要依靠智能化技术。这种技术会在故障发生前,就进行准确、全面地预测,从而降低因故障所造成的损失。

(三)进行设计优化方面

在电气工程的自动化控制过程中,智能化技术是会频繁出现的设备设计。这种设计过程是相当复杂的,不仅需要设计人员对电路、电气、磁力等学科知识的熟练掌握和正确的应用,而且还需要设计人员要有丰富的经验。现代设计方案是使用计算机的辅助软件和CaD技术来完成的。这样既保证设计方案的质量又可以减少了设计时所需要的时间。遗传算法是设计中智能化技术的一种体现,具有较强的先进性和实用性,在一定的程度上可以对设计进行优化处理。

五、结语

综上所述,智能化技术是在电气工程自动化控制中应用智能化控制技术。它不仅可以促进对电气设备的自动化控制能力,并且还会为电气工程安全、高效、快速地运行奠定了基础。从而为更好地促进我国电力企业的快速发展、更好地为社会的发展,提供高科技的服务。

参考文献

[1]李贺.电气工程自动化的智能化技术应用分析[J].科技创新与应用,2013,16:48.

电力人工智能技术篇4

电气工程自动化控制对电力系统的运行具有重要的作用,随着科学技术的发展,智能化技术被应用到电气工程控制自动化之中,提高了电气工程自动化的技术水平,为电气工程的发展提供了新的动力。本文对智能化技术在电气工程自动化控制中应用的理论基础进行了阐述,分析了智能化技术在电气工程自动化控制中应用的优势,并介绍了几种具体应用。

【关键词】电气工程自动化控制智能化技术

随着科学技术的不断发展,智能化技术被研发出来并被广泛应用于很多领域,电气工程自动化控制就是其中之一。智能化技术的应用,改变了传统自动化控制效率低下的状况,促进了电气工程自动化控制效率的提升,为电气工程的发展提供了新的动力。目前,智能化技术在电气工程自动化控制中还有很大的发展潜力,随着应用技术的不断发展,将会被更广泛的应用。

1智能化技术在电气工程自动化控制中应用的理论基础

智能化技术是一种新兴的科学技术,其本质上是计算机技术的一个高端分支,它也具有计算机技术所具有的改变人们工作和生活方式的能力。智能化技术不仅仅基于计算机技术,它的理论基础还涉及到了语言学、控制学、信息学等诸多学科,是一项综合了许多种类学科的综合性技术。智能化技术的主要应用方式是,利用智能化技术使机器具有一定的思维能力,能够独立的收集信息并进行处理,从而代替人类进行危险、高难度或者其他类型的工作。

电气工程自动化控制控制的主要工作是收集并处理信息,智能化技术在这方面有很大的应用空间。在电气工程自动化控制应用智能化技术的主要目的是提高电气工程自动化控制的效率,使企业的资源分配更加合理化,同时降低企业成本和工人的劳动强度,促进电力企业的快速发展。

2智能化技术在电气工程自动化控制中应用的优势

2.1无需建立控制模型

传统的控制器由于技术问题存在着一些缺陷,例如,当传统的控制器遇到控制对象包含复杂动态方程时,就会造成其不能对控制对象进行有效的掌控,这种情况下,会对控制对象模型的设计工作产生影响。智能化技术则避免了这些不良影响的发生,智能化技术在电气工程自动化控制中应用可以有效的帮助人们控制和处理复杂动态问题。应用了智能化技术的控制器面临上述问题时,则会将控制对象模型设计的内容进行删除,从而使电气工程自动化控制摆脱控制模型的影响,在没有控制模型的基础上进行调节和控制等相关工作。利用智能化技术,使电气工程自动化控制更具时效性,让自动化控制能够解决更复杂的问题。

2.2无人化操控

智能化技术的最大优势就是能够代替人类进行各种工作,与传统的自动化控制器相比,智能化控制器的工作更具效率和准确性。智能化控制器在实际的工作中通过对下降时间、响应时间和鲁棒性变化等条件的准确操控,来保证电气工程自动化控制工作的正常进行,这个过程完全可以不用人为操控。智能化技术通过调节这三方面因素,实现无人化操控下电气设备的自我调节,从而对工作和人力资源的利用效率进行提升,促进企业的健康发展。

2.3智能化控制器的一致性

智能化控制器的准确性很高,这一点主要表现在不同数据的处理问题上。对于输入的不同数据,无论数据常用还是不常用,智能化控制器都会迅速的开始评估,从而达到自动化控制的要求。智能化控制器的控制结果会因为控制对象的不同而产生差异,有着控制对象没有在指令发出后迅速的行动,但是同样可以产生良好的控制效果。同时,智能化控制也不能够全面化的控制所有对象,这是因为控制对象复杂并且多样,使得智能化控制不能产生理想的结果,这是智能化控制技术需要解决的问题。

3智能化技术在电气工程自动化控制中的具体应用

智能化技术在电气工程自动化控制中的具体应用主要有三方面:

(1)可以实现整个电气工程的自动化操作与控制,这主要利用了模糊控制、专家系统控制和神经网络控制等方法,利用智能化技术使得电气设备的运行相较于传统的控制设备控制下有明显的提升。

(2)智能化技术能够优化电气工程的整体设计,利用智能化技术,使得工作人员在电气工程设计时避免了对设计方案进行反复的实验和改良,更多的是对相关数据进行调整和修正,这使工作效率有了明显的提升。

(3)智能化技术能够对电气工程自动化控制中的病因诊断,在电气工程的实际运行中,电气工程系统以及相关设备都需要通过病因诊断来对运行状态进行检测,智能化技术可能代替人工诊断方法,提高工作效率和质量。

例如,在水电站中应用智能化控制技术,可以减少工作人员的实用,避免因工作人员技术不熟练而造成的运行故障,提高其运行效率。同时智能化装置可以对发电机组进行实时、动态、自主的监控、保护、调节,保证发电机组的各项指标都处在标准范围内,保证发电机组的正常运行。智能化控制控制装置通过对水电站中所有系统实施精准、快速、动态的检测、并且进行记录与报警,可以使发电机组免遭各类故障侵袭,并且对发生的事故做出迅速、准确的处理,使发电机组保持平稳运行,提升水电站的正常工作。

4结论

智能化技术是计算机技术的一个分支,具有改变人们生产生活方式的能力,将智能化技术应用到电气工程自动化控制之中,能够充分发挥其特点,使其能够被应用于实现电气工程自动化操作与控制、优化电气工程整体设计以及对电气工程自动化控制病因分析等方面,促进电气工程自动化控制的发展。智能化技术在电气工程自动化控制中的还有很大的应用潜力,例如如何实现利用智能化技术实现全面化的控制所有对象还需要人们不断的研究,拓展智能技术在电气工程自动化控制中的应用,将是研究人员的重要目标。

参考文献

[1]柯志敏.智能化技术在电气工程自动化控制中的相关应用[J].企业技术开发月刊,2016,35(03):55-55.

[2]林集武.智能化技术在电气工程自动化控制中的应用[J].城市建设理论研究:电子版,2012(19).

[3]姜海军,王惠民,戎刚等.抽水蓄能电站自动化系统智能化发展探讨[J].水电厂自动化,2015(02):70-72.

电力人工智能技术篇5

【关键词】电气工程自动化智能化运用

改革开放一来,我国社会主义市场经济迅速发展,人们对生活水平和物质的要求也越来越高。在此背景下,工业对电的需求也是越来越高。在社会竞争激烈的大背景下,电力系统也被要求进一步提高运行效率。而智能化技术作为最能提高电气工程自动化运行和管理效率的手段之一,便顺应潮流地被广泛的运用到电气工程中来。智能化技术在电气工程自动化中的运用,将提高自身效率,增加企业竞争力,在激烈的竞争中立于不败之地。最终将推动电气行业乃至工业的发展。因此,如何在电气工程自动化中运用智能化技术,怎么才能更好的运用,便成为了本文要探讨的问题。

1什么是智能化技术

在计算机技术不断成熟的今天,电气自动化技术也随之发展。在此以前,电气工程领域主要是以人工生产为主,也正因此,引起该行业了效率低、出错率高等问题,限制了工业的发展。在这种背景下,电气工程自动化技术的出现也就成为了时展的必然要求。它的产生,使电气行业在生产过程中的出错率大大降低,而生产效率却大幅提升。智能化技术便是在此基础上,产生发展并运用到电气工程自动化中来的。它涵盖了计算机技术、GpS定位技术等,相较传统的自动化技术,运用智能技术的电气自动化具有前者所不具有的行为能力、感知能力和思考能力,能够更好地、更加独立的处理信息,采取对策,因而能够更进一步地提高生产效率。

2智能化技术的优点

智能化技术在电气工程自动化的运用使人们意识到,它相比于其他技术,更具优势。这些优势具体体现如下:

(1)智能化技术运行结果更加直观。在数据的处理过程中,智能化技术能够在快速精确地运行出结果的同时,对结果进行直观化处理。使结果不仅仅用数据表示,还能通过问题、图像、甚至动画效果表现出来,使得抽象的数据变得更加直观,让使用者更加容易理解,从某种意义上降低了使用门槛。(2)智能化技术使生产更加高效、精确。智能化技术对设备硬件要求十分之高,使用CpU芯片,使得处理数据更加迅速。多个CpU对数据进行处理,使得运行结果更加准确。而准确度和效率,对电气工程自动化而言,具有极其重要的意义。(3)一致性强,适用面广泛。智能化技术在面对不同数据的处理时,在数据结果的处理中具有极强的一致性。面对不同的问题,处理结果也是不同的。因而适用面更加广泛。(4)智能化技术可按照人们不同要求进行设置。智能化技术由于采用柔性系统进行控制,因而能在运行时改变参数变量,依照工作人员的需要,实时进行调整。

3电气工程自动化中智能化技术的运用

3.1电气产品的设计改进

电气产品厂商要想使自己能够具备市场竞争力,必须适应当代电气发展的要求,对其进行优化更新。这是一件繁杂的项目,且需要财力物力的大量投入才能达到预期的效果。而朝电气工程智能化方向研究正是优化的一个大方向,其中包括以下几个方向:

(1)产品优化,理论先行。作为产品优化最重要指导者,理论知识必须得到更新优化,这是电气产品优化的基础。(2)经验仍然十分重要。不论何时,经验都是十分宝贵的,有了经验才能保证制造时尽可能少的出错。在进行优化创新时,少走弯路,并且依据经验对结果进行全方位的检验。因此经验和财力一样重要,缺一不可。(3)利用智能化技术的优势,使计算机自动化技术完成所需的优化,这样既简化了优化设计,又降低了财力的投入,使所研发出的产品更加符合社会主义市场经济的需求,更有竞争力,同时也给电气工程自动化技术的发展提供了一道有力的保障。

3.2人工智能控制技术

人工智能控制技术的发展和运用现今已成为电气工程自动化优化的必经之路,未来人工智能控制技术也将变成优化过程中的中坚力量。目前,人工智能控制技术并不是特别先进,主要有三种只能控制方式:神经网络控制、模糊控制及专家系统控制。生产过程中遇到的疑难问题,正因有了人工智能控制技术,才能够得到及时的解决。提升了问题解决速度,进一步提升了生产率。人工智能控制技术在电气工程运作的过程中,对设备进行监控,对收集到的错误问题进行实时反馈处理,并在使人们能在第一时间采取解决措施。

3.3电气设备故障的诊断

电气设备由于自身较为复杂,具有难以诊断和维修的特点。在采用智能化技术以前,人们采用传统的工艺,检查效率低,且维修成本高,不能有效的配置人力物力财力。利用智能化技术之后,不仅使检查效率大大提高,也使诊断错误率大大降低,在一定程度上使电气自动化技术取得了很大的提高。

4智能化技术在电气工程自动化中运用的发展趋势

4.1主站规模的不断扩大

在智能化技术发展过程中,主站体系规模注定要不断扩大,这是由所需要接收的信息范围和信息量所决定的。因此在扩大的过程中,不仅要确保主站的规模,还要保证其基本的稳定和稳定。

4.2更加强调电力调度自动化主站体系的交互

在智能化技术不断发展的潮流下,电力自动化主站体系也不再是以前的单一化模式,而是逐步成为多元化的发展模式。主系统和子系统的相互推动,相互配合,使得信息间的交互模式不断增强。

5结语

电气工程自动化中智能化技术的运用,是科学进步的产物,也是社会发展的必然要求。智能化技术的运用不仅提升了生产率,而且降低了出错率,同时还推动了本行业以及其他工业方面的发展,具有十分重要的作用。

参考文献:

[1]万志成.探究电气工程自动化中智能化技术的运用[J].通讯世界,2014,20:144-145.

[2]郝建毛.电气工程自动化中智能化技术的运用[J].江西建材,2015,04:196.

电力人工智能技术篇6

关键词:物联网技术;智能电网;应用

1概述

物联网以及智能化的技术在我国电网管理中已经得到十分广泛的应用,尤其是物联网的技术,它可以为智能电网工作各个环节,如发、输、变等提供指导,因此,智能化的电网技术通过结合一定智能化的电网资源,能够更好地服务于智能电网工作,从而切实地提升了电网管理工作的效率,文章着重地分析了当前智能化电网管理工作的情况,然后探讨了物联网技术在电网故障检查以及规范管理等应用中的策略,从而将物联网和智能化的技术结合起来,共同促进电网管理工作取得更好的效果。

2物联网技术与智能电网分析

物联网的基本含义可以简单地理解成是“物物相连”的网络系统,它主要是通过一些特定的射频识别、GpS以及传感器等信息技术而为人们收集相关的信息,例如信息资料的提取、鉴别以及传递工作,它们按照一定的规定协议,把相关的信息通过网络实施连接,从而有效地实现信息交换以及通信交流工作的目的,进而可以较好地实现电网工作中智能化识别、区分、定位、跟踪以及监控等功能,在物联网中可以较好地构架其各个层次,如网络层、感知层以及应用层。在感知层中,其主要是通过各种传感器以及射频的识别技术对信息实施有效收集与整理,进而能够提供给物联网中的网络层[1],从而便于物联网中数据的分析,而在网络层中,物联网的技术主要是负责一些信息传递工作,其中所应用的方法主要包含了信息、通信方法,它能够灵活地把相关信息输入,从而为应用层提供了信息资料的分析;在物联网中,应用层主要的作用是:信息的存储、挖掘、计算、整理以及呈现,而高级的应用则体现为智能结果的分析工作,这为工作人员做出决策提供了有效帮助。

在智能化的电网中,工作人员可以把先进技术中的信息通信、传感测量、分析决策以及自动控制等的能源配置要求,更好地与电网相关技术结合在一起,从而使得电网能够形成新型的现代化电网管理以及检修系统,其中在智能化的技术中,主要的作用是为电网的管理带来较大的便利性,尤其是故障的监控工作,能够为其提供较好地帮助,因此,把物联网的技术应用在智能化的电网中,不仅能够优化电网管理工作,而且还可以提升电网结构的灵活性,从而为电网管理带来积极作用[2]。

3智能电网中物联网技术的有效运用

3.1物联网技术在智能用电信息采集系统中的运用

首先,物联网的技术是通过建立一个远程用电的信息系统,在此系统中能够对信息采集工作进行及时地反馈,可以准确地把数据进行优化与分析,更好地反馈给工作人员,此时,工作人员就可以适时地调峰、调频,从而能够提升电力管理工作的效率;其次,在电力信息的方面,物联网能够在双向互动过程中较好的服务电力管理工作,因为电力中的信息管理较大部分与用户相关,例如用户的基本资料、用电情况、电费的缴纳情况以及余额查询等,所以运用物联网技术可以较好地提升信息的管理水平;最后,通过采用双向互动信息采集方式,能够较好地提升电力系统中信息收集的工作效率[3],因此,电力企业的工作人员可以运用物联网的技术,提升智能化电力中的信息管理以及服务水平,尤其能够为用户提供良好的服务,例如在用电量、用户信息和用电情况中,增加了查询服务。

3.2物联网下的智能信息监控平台分析

在电力系统中,信息监控工作非常重要,例如对输电线中所承受的电压能力的监控,通过物联网的技术能够把光缆信息传输给工作人员,从而使得工作人员能够更好地调试电力设备,保证设备中的信号状态得到更好的连接,并且还可以通过智能化的平台更好地传输信息,从而保证了数据的真实性以及有效性,同时避免一些繁杂数据在转换以及处理中出现问题,通过物联网技术就可以发挥重要作用。

3.3物联网下配变电设备监测系统分析

在智能化的电网中,配变电设备也可以在物联网的技术支持下,进一步地提升其安全性能,通过物联网的相关技术,能够更好地实施设备监测工作,一方面可以对传感器中的变电设备进行监测,使得工作人员能够对其运行的状态做出有效判断,进而为设备的维修以及管理工作带来有效地指导;另一方面在物联网技术的支持下,对设备运行实施监督以及控制,这在很大地程度上可以有效地提高配电设备在维护工作中的有效性,避免设备出现滞后性问题,因此,在智能化的电网管理中,结合物联网的技术可以为当前的电网管理工作提供有效地指导,同时也为电力的检修工作带来一定的帮助。

4智能电网的发展分析

物联网在物体的识别、感知、控制、信息处理以及决策工作中都能够发挥着重要的作用,这对智能化的电网发展产生了极大的推动作用,从目前发展的趋势分析,当前,物联网技术应用在智能化的电网管理工作中,能够给电网的工作人员在管理方面提供有效的指导,同时在故障检查方面也能够带来一定的指导,例如在输电线路的可视化方面[4],通过物联网的技术,能够有效地实施远程识别以及感知,进而更好地提升电网线路监控力度,提升了可视化的水平,除此之外,结合目前无线通信以及全球定位等的技术,能够对输电线路中发生冰冻、震动以及其他故障等问题的改善带来积极作用,此外,物联网还可以在电力设备的检查、管理以及用电巡检等工作中提供较好地技术保障,有效地提高电网安全性以及可靠性,同时提高用户的满意度。

5结束语

物联网的技术应用于智能电网中,为电网管理工作带来了积极的作用,首先是构建了一个良好的信息平台,在这个平台中,通过物联网的技术收集电网中的各种信息,然后传输给电网管理人员,进而提升工作人员对电网情况的控制能力;其次,在人们的研究以及应用推广工作中,物联网的技术不仅推进了电网的管理工作逐步走向科学化,而且也提升了电网管理的工作效率;最后,电力企业的工作人员在处理电网中发生的故障问题时,也可以借助物联网的技术,以提升电力设备的可靠性以及安全性,因此,在物联网的技术支持下,智能化的技术应用于电网管理工作中可以有效提升工作效率,同时对电网故障的监控工作也提供一定的指导作用。

参考文献

[1]邸剑,肖军,王春新,等.基于物联网的变电站智能辅助系统应用研究[J].物联网技术,2013,08(15):33-37.

[2]王继业.物联网及可视化技术在新一代智能变电站中的研究及应用[J].电气应用,2013,10(05):68-72.

电力人工智能技术篇7

关键词:电气自动化;人工智能;技术

中图分类号:C35文献标识码:a

引言

在经济合理的条件下为用户提供高质量的电能是电力系统运行控制的最基本目标,因此对电力系统进行规划、监视和控制一直以来都是电力企业关注的重点。而随着社会经济的日益发展,国家电网的规模也在不断扩大,特别是各地区特高压电网建设的顺利完成,能源管理系统(emS)运行人员面临着前所未有的压力,这种情况下很难保证电力系统安全、经济、可靠运行。除此之外还有一个不容忽略的问题就是目前emS中心的计算机软件主要是以数据分析软件为主,对于电力系统运行中的突发事件缺乏智能化处理,这一实际情况使得电力系统运行控制完全依靠人工决策,尤其是在事故状态中,人工决策对于电力系统的正常运行有着决定性作用。为此,将智能技术引入到电力系统来推动电力系统自动化的发展具有普遍的现实意义。

1、人工智能技术概况

随着社会的发展,各种工程计算的增多,人脑无法承担越来越繁重的科学和工程计算,计算机能够比人脑更加快速、准确的计算出这些数据,因此,利用计算机形成的人工智能技术也就随之应运而生了。人工智能技术是于1956年的一次会议上提出来的,涉及到计算机、心理学、数学、认知科学、哲学等多个学科,属于自然科学和社会科学的交叉学科,和空间技术、能源技术并称为世界三大尖端技术。人工智能研究的主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作,它主要通过计算机来实现智能的原理、制造类似于人脑智能的计算机,使得计算机能够实现更高层次的应用。人工智能不仅局限于逻辑思维,还综合考虑了形象思维和灵感思维,此外,还可以借助数学工具,使数学进行人工智能的学科。不同的人工智能技术具有不同的优势,例如人工智能建模技术就具有以下的优点:自治性、社会能力、响应性、能动性等。在复杂工程系统中运用人工智能建模技术,可以通过复杂系统中的基本元素及其之间的交互的建模和仿真,将复杂系统的微观行为和宏观“涌现”现象有机的结合到一起。人工智能建模技术对自身状态和行为有一定程度的控制能力,在完成建模和仿真任务时无需人为的干预,具有一定的自治性。人工智能建模技术能够理解自身所处的环境,可以对周围的环境变化作出及时和快速的响应。此外,人工智能建模技术还可以显示出有意识的不失时机和目标导向的行为表现。

智能控制理论概述智能控制是随着控制理论的发展而提出的一项控制技术,其主要作用是帮助解决传统控制方法中无法解决的控制问题,对于那些适应性要求高、不确定性和非线性强的控制系统尤为适用。而电力系统就是一个不确定性和非线性很强的复杂系统,系统中包含了大量未实现建模的动态部分,加上其分布地域范围十分广,对其进行控制管理是非常困难的。同时,随着我国经济社会和科学技术的不断发展,传统的调度控制模式已经无法适应时代对电网运行控制的要求,传统电网控制调度缺少必要的控制技术和指令设备,在控制过程中易出现误动、据动等问题,影响了电网运行效率。为了解决这些问题,电力控制系统中的智能控制就被提了出来。

2、电气自动化控制中人工智能技术的应用

2.1、人工智能技术在电气自动化控制中的应用现状

虽然科学技术在不断的进步,电气自动化控制水平也在不断的提高,传统的发展模式逐步得到改善,但相比于其他行业,电气自动化控制还需要不断的引进先进的自动化科学技术。

人工智能技术的引进,把电气设备设计从手工制图中解放出来,利用人工智能技术进行设计(例如遗传算法、专家系统等),大大提高了设计的效率和设计的质量,缩短了产品开发的周期。

在电气自动化控制系统中运用人工智能技术可以对所有开关量、模拟量进行实时采集,并按要求处理或存储。人工智能技术还可以模拟电气设备系统运行的实际情况,可以实时的显示电流、电压等实际开关状态及挂牌检修功能,并自动的生成历史趋势图。此外,还可以对电气工程中的主要设备、系统的运行进行监视,一旦发生故障,立刻报警。人工智能技术还可以对运行人员的权限加以限制,方便各级运行值班的管理。

2.2、模糊逻辑控制技术

对电力系统自动化的影响在智能技术的众多分支中,模糊逻辑控制技术可以说是最简单、最容易掌握的一种控制技术,从应用效果和应用范围来考虑这种技术具有很强的实用性和优越性,目前在家用电器中已经得到了广泛的应用如生活中常见的电风扇、电磁炉、电饭煲等都是通过模糊逻辑控制技术来实现控制的。而以模糊逻辑控制技术为基础的电力自动化控制系统具有一个完整、系统的逻辑推理,能够充分的表达语言变量,从而实现与人类逻辑相似的性能。2.5综合智能控制技术对电力系统自动化的影响智能技术是一个广泛的概念,到目前为止其已经衍生出专家控制技术、神经网络控制技术等多个分支,其中每一个分支都有着自己的优势和不足之处,而综合智能控制技术则是对这些智能技术的一种综合性应用。这种控制技术对于电力系统的影响将是全方位的,例如模糊控制技术只适合处理机构化知识,而神经网络控制技术在处理非机构化信息上更有优势,那么通过综合智能控制技术将二者进行补充结合,可以从不同方面来为电力系统自动化提供服务。笔者认为,融合了多种智能技术优势的综合智能控制技术对于电力系统自动化的发展所起到的推动作用更大,在未来将成为主要的研究方向。

2.3、线性最优控制技术

最优控制是最优化理论在系统控制方面的具体应用,其原理是在一定条件下,寻找最适合系统的控制策略,以使性能指标达到最大化或最小化。其在电力控制系统中的应用由来已久,有研究已经证明,利用最优控制手段能够提高电网远距离输电的输电能力,并能提高输电线路的输电品质。但由于其只能对电力控制系统中的局部线性模型进行最优策略的选择,因而控制作用有限,对于强非线性电力控制系统的最优控制效果并不理想,在实际应用过程中多用于对电力系统中局部进行控制的线性模型中。

2.4、监控技术

监控技术是电力自动化系统中不可缺少的一部分,通过监控,电力控制中心人员能够实时掌握电力系统各部分的运行状况。而随着电力行业的发展,智能监控技术得到了广泛应用。智能监控技术能够为用户提供数字化的监控界面,并对电力系统的运行进行实时地图形和数据分析,为控制人员提供决策支持。另外,现代智能监控系统还具备远程遥控界面、实时报警以及遥控闭锁等功能,使电力自动化控制的工作效率得到明显提高,节约了电力企业人力资源,增强了电力生产的安全可靠性,提升了电力系统的自动化水平,适应了时展要求。其智能性主要体现在,当对电力系统中高压进线部分,低压进线部分以及电源切换等部分进行分析时,会优先使用分布分层式的系统结构,并对各层的温度变化和运行状况进行监控。同时,智能监控还能够监测到电力系统中多种遥信量信号,并将这些信号实时反馈给监控中心。

3、结语

人工智能技术随着科技的不断发展,已经广泛应用在生活和生产当中,它作为一种高科技手段,改变着人类的产生、生活方式。人工智能代替传统智能在电气自动化中的应用,标志着电气产业的改革与发展,有效的降低了电气自动化的投入成本,最大程度的提高了工作效率,推动了电气自动化的健康发展。

参考文献

[1]周超.人工智能技术在电气自动化控制中的运用[J].硅谷,2012,08:21+87.

[2]张聪一,刘颖超.电气自动化控制中人工智能技术[J].科技传播,2012,15:83+79.

电力人工智能技术篇8

【关键词】电气自动化控制;人工智能技术;应用

电气自动化控制中应用人工智能技术,就可以对系统运行流程进行简单化处理,优化控制系统,同时,人工智能技术为电气自动化控制提供了技术和安全保障。电气自动化工作人员的工作也随之变得简单,在节省人力和物力的基础上提高了工作质量。目前,智能化技术在所有领域都有应用,推动了我国各行业整体向前发展。

1人工智能技术

1.1人工智能技术的阐述

人工智能技术就是计算技术对人脑进行模拟,同时发出类似人类的行为指令,最后解决传统的科技难题。人工智能技术不但涵盖了传统数学和计算机,还关系到了一些人文学科,例如:哲学和伦理学等,结合了自然和社会两门学科,有着较为广泛的影响内容。现在人们生活中已经离不开计算机技术,人工智能技术也逐渐发展起来,因此,计算机技术在处理问题时更类似于人脑,使工作效率提高,系统运作更加灵活和稳定,不断地增加了自动化程度。

1.2人工智能技术在电气自动化应用中的功能

(1)采集和处理数据的功能

人功智能技术在电气自动化控制中的应用,就可以很好的采集电气设备中的模拟量和开关量,在一定情况下,还可以处理和存储一些数据。

(2)监视运行系统,并及时发出报警

人工智能技术的应用不但可以监视和模拟电气系统,还可以对设备开关量的情况进行智能监视,监视事件的状态变化,如果出现状况就会报警;对系统运行的实际情况进行记录以及对事故进行自动提示和处理;除此之外,还具备声光功能、图像功能、电话报警功能等。

(3)操作控制的功能

电气自动化控制中应用人工智能技术通过鼠标和键盘控制断路器和电动隔离开关,还可以调整励磁电流。电气自动化控制的工作人员可以根据顺控程序实现停机操作。同时,电气系统想要适应所有系统的值班要求,就会对操作人员的操作权限进行限制。

2电气自动化控制中人工智能技术的应用

2.1电气自动化中人工智能技术的应用分析

电气自动化设备在运行的过程会涉及到很多的学科,想要熟练的掌握其操作流程,就需要工作人员具备较为专业的知识积累和良好素质。所以,想要使电气自动化设备可以正常运行,必须应用人工智能化技术。人工智能化技术能够编写程序,之后由计算机技术负责操作,使电气设备实现自动化运行,取代了人脑劳动,使工作时间缩短,人力成本降低。

2.2人工智能技术在电气控制中的应用

人工智能技术在电气自动化控制中的应用,主要就是控制神经网络、模糊控制、专家系统控制。笔者主要介绍了模糊控制,电气传动过程中应用模糊控制来实现直流电和交流电的传动,其直流传动有Sugeno与mamdani两种传动,在运转的过程,mamdani的作用就是控制调速,而mamdani的另一种情况就是Sugeno;在交流电传动过程中,模糊控制就可以实现人工智能技术。

2.3人工智能技术在平常操作中的应用

电气自动化有着较为繁琐的操作流程,并且对操作程序也有较严格的要求,如果有操作问题出现,就很可能会出现机器故障,因此就会造成较为严重的损失。而在电气设备运转的过程中应用人工智能技术进行操作,这样就简单化了控制流程,方便技术人员对其进行检查和维修,在节约时间的基础上又降低了成本。

2.4人工智能技术在事故和故障诊断中的应用

专家系统由8大类型组成,具体如(表1),在电气事故和故障诊断中,诊断型专家系统较为重要,主要处理的故障为:发动机故障、发电机故障、变压器故障等。电气自动化控制过程中,会发生很多不同的故障。可传统的诊断方法非常复杂,准确率较低,而应用人工智能技术就可以根据专家的指导和平时收集的机器故障样本,进行问题分析,最后制定解决策略,这样分析将会更加准确,问题存在的时间也随之缩短,使处理问题的效率提高。

表1专家系统类型表

3人工智能系统的应用--简析恒压供水案例

3.1恒压供水的概况

现在我国普遍使用的供水系统就是恒压供水,因为此系统有着不确定的负荷变化,所以传统的piD算法在压力控制方面不能达到理想效果。在具体的运行过程中,我们发现模糊控制的应用效果较好,在实施此方案中,应用ai-808控制器进行人工智能调节,并对FXinpLC控制逻辑加以结合,这样水厂的恒压供水就可以实现全自动化。

3.2ai-808人工智能的工作原理

ai-808人工智能变频器、调节器、阀门等构成了此系统。主要由压力传感器检测水管压力,之后利用变压器将信息传送给ai-808仪表,将其与设定值做比较,进而得出压力误差,在ai-808所具有的模糊基础上结合piC控制算法进行运算,将控制信号4~20ma传到变频器的控制端,之后对频率进行调节,使其达到水管所要求的指标。如果用户用水量增加,一台水泵变频到50赫兹后,还是达不到供水压的规定,piC将对ai-808调节器中的压力信号进行检测,之后给出另一台水泵,再由它进行工频运行;如果用户供水量降低,piC会接受ai-808调节器发出的水压高信号后,退出运行中的一台水泵。

上述叙述的案例只是电气自动化控制中小范围的应用人工智能化技术,同时也为电气设备的生产和供给过程中的一个方向,在电气自动化控制中应用人工智能化技术有着较为重要的意义,值得我们对其进行深入的研究。

4结语

总而言之,人工智能化技术是现代科技发展过程的产物,这项技术一直向着成熟方向发展,随之走入到人们的日常生活中。智能化技术不但给人们带来了很多的便利,而且也是改变传统电气的机会,使电气自动化控制的工作效率得到提高,减少了在人力和物力上投入的成本。

参考文献:

[1]李悦.刍议pLC技术在化工装置电气自动化控制中的运用[J].中国化工贸易,2014(35).

电力人工智能技术篇9

关键词:电子工程;自动化控制;智能技术;应用

一、人工智能应用概述

十九世纪中期人工智能技术由国外知名科学家提出,随着时代不断的发展,人工智能技术也随之不断发展,由一开始简单的加减法计算器转变为正式的计算机系统。人工智能技术作为一门综合性的学科,其中包括计算机科学、心理学、控制论、信息论、哲学等科学知识,经过长期发展与研究,现阶段人工智能技术通过模拟人脑思维活动,来代替人们完成生产、生活,人工智能几乎与人脑没有区别。人工智能理论是在丰富的人工智能经验下总结出的知识,主要分析了模拟人脑的科学理论及其发展趋向,人工智能技术属于计算机科学中的一部分,同样也是人工智能系统的基础,为生产出与人脑思维模式相同的人工机器,使其取代人的工作,经过大量研究人员的辛勤研究,当前人们的生活与计算机技术已牢不可分。计算机技术可通过编程来模拟人脑活动,例如收集、处理、分析、交换信息等,编程技术极大的促进了智能化系统的发展,在生产活动中发挥了巨大的优势,将智能技术运用在电气工程自动化中,生产效率与效益得到提高。通过对电气工程系统生产中各个环节进行优化和控制,节省了生产时间、成本、人力,智能化控制实现了自动化的电气工程。

二、人工智能控制的优点

人工智能技术控制系统是一个比较复杂的过程,与以往的线性函数控制器不同,人工智能技术采用遗传算法、模糊神经网络系统,使用非线性函数控制器,便于对系统各部件的了解,从而实现了对系统控制策略的研究与分析。一般的函数控制器无法对系统各部件进行动态的了解和分析,而人工智能技术的优势正是在此,可对系统各部件动态进行全方位的了解与掌握,有助于控制和管理系统的运行。一般的系统控制器通过收集控制对象的动态参数,建立与之相应的模型,尽量减少或规避不稳定因素,例如参数起落较大、非线性信息的变化等,人工智能技术则不用建立控制对象的模型,而是依据下降时间、响应时间,来及时调整系统,使其性能得到提高。人工智能技术运用模糊控制与逻辑控制来调节下降时间,与一般的控制器相比要好上四倍,和最好的piD控制器相比还要好两倍。

人工智能控制器与以往的控制器进行对比,会发现人工智能控制器不仅易于调节,其操作也更便捷,即使在无人操作的情况下,人工智能系统仍能自动生成信息数据、语言来完成设计。并且人工智能控制器干扰较少,几乎不受驱动器的干扰自动运作,任意输入信息人工智能系统都能计算出来。面对不同的控制对象时,一般控制器可使用,人工智能控制器使用效果不错,一般控制器不能使用,人工智能控制器也能保证使用效果的良好,根据设计情况来判断选择适合的控制器。人工智能系统在进行模糊化与反模糊化时可确定和适应隶属函数、规则库、模糊神经控制器等,其应用方法还需要进行更多的研究。

三、智能技术在电子工程自动化控制中的应用

随着时代的发展,互联网技术在各行各业落地生根,而人工智能技术也随之大力发展,现阶段将人工智能技术与电气工程自动化控制联系在一起,有助于处理和诊断故障,提高生产效率和工作效率,节省了生产成本与时间,实现企业最佳经济效益。因此,要注重研究人工智能技术是如何对机械故障进行判断和检测、怎样实现优化设计电气产品、控制与保护电子工程生产等问题。

电气机械设计是电子工程生产中的重中之重,由于其设计十分复杂,设计人员既要具备丰富的基础知识,也要拥有精湛的操作技术水平,最好还能灵活运用理论知识。在以往设计电子产品的时候,大多是根据自身经验与试验来进行设计,以人工操作的形式来展开设计方案,这样无法保证设计出的电子产品是否实用。

目前将电子产品设计与计算机技术联系在一起,改变了传统的设计方式,在计算机的帮助下设计电子产品,能够及时对产品进行检测和试验,不但提高了生产效率,也减少了预定的开发产品时间。人工智能化技术使得CaD技术也得到发展,通过遗传算法与专家系统的应用,优化了电气产品设计,遗传算法是一种新兴的计算方法,在计算大量数据时也能保证计算精度高,在电气产品生产与设计环节较多应用,这也证明了遗传算法在电子工程生产中有着重要的作用。电子产品故障具有非线性、不稳定性的特点,其故障间必然存在某种密切的关联,并且此种关联与故障有着内在的联系,这时可采用专家系统来诊断电气故障。智能化技术的应用方法包括神经网络系统、模糊逻辑系统、专家系统等,变压器是整个电力系统中的关键内容之一,其故障诊断是根据判断变压器中分解油的气体,来找出故障位置与原因。

在电力系统自动化中应用可编程逻辑控制器,对工序和开关进行控制,在一些大型的电力企业当中,基本由可编程逻辑控制器取代了继电控制器,直接对生产过程中任一工序进行控制,还可调整总体系统,保证电子产品的顺利生产。一般电力企业的输煤系统由多个部分组成,例如卸煤、上煤、储煤、配煤等,电力系统的主站区、现场传感器、远程站点共同构成一个整体的输煤控制系统,便于对输煤环节进行控制。主站区由人机接口与可编程逻辑控制器构成,设立在集控室内,主要依靠自动控制系统,技术人员通过监视器,对现场控制系统进行控制。可编程逻辑控制器的应用取代了软继电器,不但提高了生产效率,电力系统也变得稳定、可靠,供电系统也可由智能控制,使其具备自动切换的功能,电能也变得更加安全可靠。

四、结束语

综上所述,人工智能技术是一种新型的科学技术,具有自动化、数字化、智能化的特点,在电气工程自动化控制中应用人工智能化技术,能够发挥出智能化技术的最大优势,优化了电子产品设计,促进了电气工程生产的自动化控制。

参考文献:

[1]沈医卫.浅谈电子工程自动化控制中的智能技术[J].机电信息,2013(36)

[2]杨振兴.电气工程自动化控制中智能技术的应用研究[J].科技传播,2013(7)

[3]娅.智能化技术在电气工程自动化控制中的应用[J].科技致富向导,2012(27)

电力人工智能技术篇10

1智能化技术在电气工程自动化发展进程中的概述

所谓的电气工程自动化是由多个现代化高科技发展技术的综合应用,这其中包括:电气工程技术、信息化发展技术、控制关联技术、计算机互联网技术等内容。所谓的智能化技术是人工智能科技与计算机互联网技术的有机结合。因此,智能化技术在电气工程自动化发展进程中,不仅体现社会经济发展与智能管理技术的综合能力,同时,对于衡量电气工程自动化的快速、操作流程的简单及控制的精细度、效率及速度等都起到了重要的带动作用。

2智能化技术的特点

智能化技术理论早在上世纪50年代被提出,后来被逐渐运用到各个领域中。它是人类模拟思维成长发展为基础所研制开发的科学技术,它蕴含了自动化技术、信息理论研究、语言化理论、控制管理理论、心理学理论、仿生学理论、哲学理论等学科内容。它是借助人类大脑活动思维的智能活动过程应用于机器操作中,促使机器能够尽可能地模仿人类的形为结构进行工作。在电气工程中则将智能化的信息处理能力、系统的运行能力和电子技术的相关研究通过计算机互联技术的程序编辑,以实现信息的接收、文字图像的识别及分析判断电气自动化的控制能力及手段,从而提高了电气工程系统的自动化能力,保证了电气自动化的稳定持久性,使机械设备运转及处理更加精确流畅,不仅强化了系统工作的效率,而且大大降低了人力资源成本,实现了在无人进行操作的情况下,能够准确、完整地进行控制实施。

3智能化技术控制的优势

智能化技术实质上就是将人工管理的智能手段通过计算机编程程序予以实现,它本身所具有的优势如下:

3.1能够对电气工程自动化的整个过程实施有效的控制

智能化技术控制较传统的控制方式更能够涉及全面的管控范围,延伸面积也更加广阔,使控制环节更加立体化,同时扩大控制的广度与深度。

3.2能够同时实施复合控制

传统的控制形为因其人力及环境等诸多因素受到限制,而智能化技术控制将解决不同复杂工序的控制标准。

4电气工程自动化发展进程中智能化技术的运用

智能化技术在电气工程自动化发展过程中起到非常关键的作用,而且已经普遍应用于实践工作中。

4.1诊断故障

电气自动化的工程控制系统的实践中,难免会发生一些故障问题,而且这些问题往往具有复杂的联系性。因此,通过人工智能化技术进行诊断故障,并全面分析、找出问题的症结,以保证故障诊断排查的准确度。

4.2智能化管理控制

对电气工程设备进行控制操作难度相当大,因此,将专业的技术知识与高密的紧迫管理及专家经验相融的控制管理方式,只有智能化管理控制能够做到,所以,通过智能化控制技术中的网络互联及上述综合指标的导入化管理,不仅使运算过程更加精密,节约大量的时间及人力、物力成本,而且通过大量的实践证明,智能化控制管理能够更大程度地提高电气自动化设备的使用完善周期,提高电气设备控制的持久安全性,使电气设备运行控制更加稳定可靠。

4.3智能控制管理的优化管理设计

如上所述,电气工程自动化管理控制过程是个极其繁琐复杂的过程,因此,在最初电气工程设备设计时,就应该充分考虑到上述因素,并进行优化管理的设计,但是,在实施设计的过程中,需要运用大量的机械电路、电子导流等相关专业的知识及相关数据,同时,还要根据既定目标并结合以往的丰富实践经验相互融通。

5电气工程自动化发展进程中智能化技术运用的未来发展