欧姆定律的一般形式十篇

发布时间:2024-04-29 12:10:54

欧姆定律的一般形式篇1

关键词:物理定律;教学方法;多种多样

关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/i),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。

(5)动量守恒定律历史上,牛顿第二定律是以F=dp/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。

欧姆定律的一般形式篇2

上一期文章介绍了自制欧姆表的作品创意。但在测试阶段,我们发现测量0~1KΩ的电阻时,指针的偏转角度很小,误差很大。不知道大家有没有想出优化方案呢?对于这个问题,仁者见仁,智者见智。我也提出了解决方案,供大家参考。

如图1,这是原欧姆表的仪表盘。表盘的量程为0~10KΩ。经过测试,发现0~1KΩ的电阻测量误差较大,需要进一步优化作品,增加0~1KΩ的精确度。一定要注意,这里的误差是指指针指示的误差,如果用串口监视器观察电阻值,就会发现串口显示的数值误差较小,一旦转换成舵机的变化角度,误差就很明显。

那么,如何解决这个问题呢?真实的指针式电压表或者电流表一般有两个量程,并且两个量程共用一个表盘。由此可以做出猜想,欧姆表的大小量程是否可以共用一个表盘呢?将0~1KΩ放大到整个表盘上,是否能实现0~1KΩ小量程段的精确测量?

改装

首先对表盘进行改进,在同一个表盘标明两个量程。如图2,在原有的基础上,将1KΩ均匀分成10份。每一份表示0.1KΩ,最小刻度为0.05KΩ。这是欧姆表改进的第一步。

除了对表盘进行改进外,是否还需要改进原欧姆表的电路连接呢?上文已经提到,对0~1KΩ电阻测量时,串口监视器观测到的电阻值显示精确,但转换成为舵机显示的数值时误差较大,因此可以推断出,电阻的计算公式完全正确,但在电阻值对应舵机角度变化的程序编写上,需要进一步优化。因此,多量程欧姆表电路连接图与原有电路图相比,只增加红、绿LeD灯。绿灯和红灯正极分别连接到2、3管脚,负极共地。红、绿LeD灯因程序需要添加,下文会详述(如上页图3)。

玩转

重新编写程序,需要设置多量程欧姆表的量程为0~1KΩ与0~10KΩ。当程序检测到电阻小于1KΩ时,r值放大100倍,与表盘100度对应;当检测到电阻大于1KΩ时,r值放大10倍,与表盘100度对应。这个程序仍会出现一个问题:观察者不知道舵机显示的阻值是大于1KΩ还是小于1KΩ。因此,有必要加入提示,我们为电路添加红绿灯,区分电阻大小。当检测到电阻大于等于1KΩ时,红灯亮;当检测到电阻小于1KΩ时,绿灯亮。打开mixly图形化编程,编写程序。

程序的编写大致分为三个部分:第一个部分是对变量的定义,第二个部分是各个小程序的编写,第三个部分是用程序语句连接各个小程序,实现多量程欧姆表的功能。

第一部分程序定义变量。定义analog变量为小数变量,初始值为0,模拟端口a0的数值会赋予这个变量。同理,经过欧姆定律公式计算,得到的待测电阻数值用r来表示:r扩大10倍得到的数值赋予a,a表示0~10KΩ电阻;r扩大100倍得到的数值赋予b,b表示0~1KΩ电阻(如图4)。

第二部分是各个小程序的编写。首先根据欧姆定律,编写待测电阻的计算程序。将模拟端口的a0数值赋予analog变量,再代入计算公式中。这里的计算公式与上述欧姆定律的计算公式一致。不同的是,总电压V原先是5V,现在是与5V对应的1023,而电压V1用变量analog表示。

名为“电阻”的程序被执行后,会得到待测电阻的精确数值r。程序如上页图5所示。

舵机显示0~1KΩ电阻测量值,首先将数值r放大100倍,之后与舵机旋转角度一一对应,同时绿灯亮,程序如上页图6所示。输出管脚2为高、3为低表示绿灯亮、红灯灭。

舵机显示0~10KΩ电阻测量值,首先将数值r放大10倍,之后与舵机旋转角度一一对应,同时红灯亮,程序如上页图7所示。输出管脚2为低、3为高表示绿灯灭、红灯亮。

第三部分程序,是用逻辑关系连接第二部分的程序。如果r小于1KΩ,执行“0~1KΩ程序”,如果r大于等于1KΩ,执行“0~10KΩ程序”。需要注意的是,要想使欧姆表能够及时复位,当不测量阻值,即analog变量等于0时,将指针旋转到10KΩ的位置。具体程序如上页图8所示。

最后,连接三部分程序,得到最终程序,如图9所示。

分享

欧姆定律的一般形式篇3

我们可以从以下几个方面加以区别理解。

一、它们描述的对象不同。电动势是电源具有的,是描述电源将其它形式的能转化为电能的本领的物理量;电压是针对一般电路中的两个点而说的,即某段电路两端的电压。

二、二者做功的力不同。电动势是反映电源非静电力做功特性的,它的数值大小等于电源非静电力从电源负极向正极移送单位正电荷所做的功,电动势w/q中的w就是非静电力所做的功,即电动势e是与非静电力做功相联系的。电压是电场中两点间的电势差值,是反映电场力做功本领的物理量,电场力在电场中移动单位正电荷所做的功就是电势差,公式电压U=w/q中w是电场力做的功,可见电压U是与电场力做功相联系的。

三、物理意义不同。电动势是描述电源转化其它形式能量本领的量度,在闭合电路中某种非静电力作用在被移动的电荷上,增加了电荷的电势能,在此其他形式的能如化学能、太阳能、机械能等转化为电能。不同的电源这种由非静电力做功转化为电能的本领不同,所以电动势也不同。而电压是电势能变化的量度,即是描述将电势能转化为其它形式的能量的多少,电压在数值上等于移动单位正电荷电场力做的功。它们都反映了能量的转化,但转化的过程是不一样的。

四、在给定电路中变与不变不同。对于一个给定的电源,电动势是常量,与外电路是否接通无关,也与外电路的组成情况无关,一节普通干电池不管新旧,它的电动势永远是1.5伏。而电路中的电压是变量,随外电路电阻的改变而改变,如并联支路数目增减,电阻变化时将引起电路各部分电流,电压重新分配,电压将发生变化。

欧姆定律的一般形式篇4

(一)知识与技能

(1)理解欧姆定律及其变换式的物理意义。

(2)会利用欧姆定律分析解决简单电路的有关问题。

(二)过程与方法

(1)初步掌握利用探索性实验研究物理问题,并归纳得出物理规律的一般方法,培养学生依据实验事实分析推理、归纳得出物理规律的能力以及利用物理规律解释同类物理现象的能力。

(2)初步学会在实验探究的基础上交流讨论,互相合作。

(三)情感态度与价值观

结合欧姆当年研究电流、电压和电阻三者关系的简史,培养学生刻苦钻研、大胆探索的科学精神,同时让学生在自我实现中增强成功体会。

二、教学重点:

欧姆定律所揭示的物理意义及其数学表达式。

三、教学难点:

欧姆定律的实验设计及学生对实验数据的分析、归纳以及结论的得出。

四、教学器材:

调光灯、小灯泡、电池组、滑动变阻器、电流表、电压表、阻值分别为5Ω、10Ω、15Ω的电阻器各一个、导线数根等。

五、教学过程:

(一)巧设情景,提出问题

教师演示:调光灯调节,灯时亮时暗。

师:灯时亮时暗说明什么?

生:电路中的电流有大有小。

师:电路中电流的大小由哪些因素决定?

(二)激励猜想,活化思维

鼓励学生大胆猜测:假如你是历史上第一个研究电流大小的人,你猜电流的大小究竟由哪些因素决定呢?

学生分组讨论,教师适当提示。学生联系上一章内容,猜想:电流与电压的大小有关,因为电压是形成电流的原因;可能电流与导体的电阻有关,因为电阻对电流有阻碍作用。教师针对学生的回答,给予肯定。最后根据猜想师生共同得到结论:电路中的电流与电压、电阻两者有关。

过渡:到底有怎样的关系呢?

“创设情景———提出问题———猜想”这两步引起学生极大的兴趣,学生注意力高度集中,急切盼望问题的解决,产生主动探索的动机。

(三)质疑聚思,设计实验

用投影仪打出思考题:

(1)根据研究电阻大小影响因素的方法,本问题应采用什么方法研究?

(2)选择使用哪些器材?

(3)该实验应分几步,具体步骤怎样?

学生激烈讨论,明确本问题的研究方法:必须设法控制其中一个量不变,才能研究另外两个物理量之间的变化关系,即控制变量法。

学生讨论:提出本实验必须分两步来完成:第一步,保持R不变,研究i与U的关系。第二步,保持U不变,研究i与R的关系。对于第一步,调节U(用电压表测),观察i(用电流表测),且电压的调节可通过改变电池节数来实现(阻值为R的电阻直接接在电源两端),或者通过电阻R与滑动变阻器串联,移动变阻器滑片来实现。

师生共同讨论:通过改变滑动变阻器的滑片改变电阻两端的电压比通过改变电池节数来实现要好。

学生纷纷要求在黑板上设计实验电路图。请一名同学上黑板画,其他同学在下面自己设计。

学生讨论:对于第二步,要研究i与R的关系,首先要改变图中R的值,可用5Ω、10Ω、15Ω的电阻。要保持U不变,可调节滑片p的位置,使电压表示数不变。

师生共同讨论:要完成以上实验,还必须测量相关数据。

(四)分组合作,深入探究

在此环节中,学生以两人为一个小组,像科学家那样兴趣盎然地开始按拟定的方案实验,边做边想边记。教师巡视,注意他们设计是否合理,仪器使用是否得当,数据记录是否正确,作个别辅导。

学生在教师的指导下,自觉、主动地和教师、教材、同学、教具相互作用,进行信息交流,自我调节,形成了一种和谐亲密、积极参与的教学气氛和一个思维活跃、鼓励创新的环境。学生的思维在开放、发散中涨落,在求异、探索中又趋于有序,这培养了学生的独立操作能力,发展了学生的思维能力、创造能力。

(五)综合分析,归纳总结

学生汇报:实验完毕后,分别推出代表汇报实验的数据,下面是两组学生的实验记录和结论(出示投影)。

学生讨论:从表一知电阻一定时,电流跟电压成正比;从表二可知,电压一定时,电流跟电阻成反比。

师:同学们总结的很好,现在我们用了几十分钟研究得出了这个电学规律。然而这一规律是德国物理学家欧姆在1827年用实验方法研究得出的,为此欧姆花费了10年心血。为了纪念他的伟大发现,这一规律被命名为欧姆定律。今天,当我们一起学习这一规律时,每名同学都能从他身上学到一点精神———坚持不懈地从事科学研究。

板书:欧姆定律

内容:一段导体中的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比。

数学表达式:i=U/R

公式变形

(1)U=iR用于计算导体两端的电压。

(2)R=U/i用于计算和测量电阻。

(六)巩固练习,强化理解

出示例题:

(1)对欧姆定律理解的题。例如用上述实验记录表中某一行的数据编制一道习题。

(2)对公式R=U/i的理解的题。使学生明确:同一导体,电压增加几倍,电流也增加几倍,它们的比值不变;R与i、U无关,导体的电阻等于导体两端电压与通过导体的电流的比值。

课堂教学小结与延展:

(1)让学生回顾本课的探究过程:发现问题进行猜想探索研究得出结论指导实践,指明这是研究物理的基本思路。物理教学中应注意渗透科学研究方法,同时也应进行学法指导和辩证唯物主义教育。

欧姆定律的一般形式篇5

关键词:探究性实验教学;闭合电路欧姆定律;模拟实验;学生实验

中图分类号:G642.0文献标识码:a文章编号:1006-3315(2014)05-155-002

在科学技术快速发展的今天,实施以创新精神和实践能力为重点的素质教育,重要的着眼点是转变学生的学习习惯和学习方式。大多数民考民预科生模仿性学习心理是构成接受知识的主要因素。这种依赖性强,靠模仿去接受知识的习惯,是一种较为简单的学习心理,民考民预科生普遍认为物理难学。究其原因难在学生各方面能力与预科物理学习要求的差距大。预科阶段,乃至大学阶段,要求自主学习物理。不同于自学,它是指学生在教师的指导下,以学生自己的体验、参与和探究为主,从自身社会生活实践中获取物理知识,并创造性地解决生活中的问题的一种学习方法。怎样才能把课堂教学与探究性学习、发现性学习和自主性学习相结合?在大力倡导探究性实验教学的今天,迫切需要大量优秀的、具有创新性的探究实验来丰富我们的课堂教学。为此,我们立足民考民预科生学习特点,对探究式实验教学作一些有益的尝试,希望能够引领学生较为深入地学习物理的相关理论、方法、技能;提高学生的科学素养,激发学生实验探究的兴趣;增强学生的创新意识;培养学生实事求是,严谨认真的科学态度;养成交流与合作的良好习惯;发展学生的实践能力。本文就《闭合电路欧姆定律》一节做探究性实验教学设计。

一、教材和教学对象分析

闭合电路的欧姆定律主要分为电动势和闭合电路的欧姆定律两部分。电动势的概念是闭合电路欧姆定律的关键和基础。其基本内容有两个方面:电源电动势由电源本身性质决定的,它表征了电源将其他形式的能转化成电能本领的大小。电源电动势等于电源没有接入电路时两极间的电压,在闭合电路里电源电动势等于内外电压之和。本节难点是路端电压和外电阻之间的关系。学生通过多媒体的仿真实验记录数据,导出规律,使学生有感性的认识,课后让学生进入实验室,在做好仿真实验的前提下,进行实验,验证结论,减少盲目性。

二、教学目标

1.知识目标

理解电动势的定义。理解闭合电路欧姆定律及其公式,并能熟练地用来解决有关的电路问题。理解路端电压随电流(或外电阻)关系的公式表达和图象表达,并能用来分析、计算有关问题。知道闭合电路中能量的转化。

2.能力目标

通过路端电压与外电阻的关系实验探究,培养学生利用“实验研究,得出结论”的科学思路和方法。研究路端电压与电流的关系公式、图象及图象的物理意义,培养学生应用数学工具解决物理学问题的能力,培养学生运用物理知识解决实际问题的能力。

3.情感态度与价值观

通过多媒体仿真探究实验和课后的学生探究实验,激发学生求知欲和学习兴趣,享受成功的乐趣,体会物理学研究的科学性。通过分析路端电压与电流(外电阻)的关系,培养学生严谨的科学态度,感受物理之美。通过学生之间的讨论、交流与协作探究,培养团队合作精神。

三、教学重点

闭合电路欧姆定律。路端电压与电流(外电阻)关系的公式表示及图象表示。

四、教学难点

电动势的概念。路端电压与电流(外电阻)关系。

五、教学思路

《闭合电路欧姆定律》是学生感到较为难以理解的知识点,电动势的物理意义的理解是掌握闭合电路欧姆定律的关键和基础。首先让学生课前感受生活中的一些电源,初步明确电源是将其他形式的能转化成电能的装置,让学生自己用电压表测量不同类型的电源两极间的电压,为引入电动势的概念作铺垫。再让学生在电脑上进行仿真实验,学生通过连接不同的开关,改变外电阻阻值,内电阻阻值,记录电流、电压,分析数据,探究路端电压与外电阻(电流)的关系,得出路端电压与外电阻(电流)的关系。然后在课堂仿真实验的基础上进入实验室实验。避免了盲目性,引发学生学习的兴趣,再进行讨论,解释现象原因。讲授闭合电路中的功率,进一步从能量的转化角度说明电源是将其他形式的能转化成电能的装置。最后,利用两道例题来应用闭合电路欧姆定律,并适当地延伸拓展,通过课外思考题,使学生对电动势的概念有更深刻的理解。

六、教学方法:探究性实验教学法、多媒体仿真实验探究,实验室验证、实验分析、讨论等方法

(一)电源。展示不同型号、种类电池、手摇发电机,对小灯泡供电。电源不同,结构不同,但有相同的规律。演示:1用小灯泡点触干电池,点触蓄电池,小灯泡发光。2将小灯泡与手机电池相接,小灯泡发光。3手摇发电机,同样能够使小灯泡发光。学生得出结论:干电池、蓄电池是将化学能转化成电能;手摇发电机是将机械能转化成电能。

(二)电源的电动势:模拟实验,介绍电路图(如图1),介绍实验仪器。得出内、外电路,内、外电压的概念,指出电源内部有电阻。看电池内部(如图2),电荷定向移动形成电流,电荷电势能减小.从能量转化的角度初步理解电动势的物理意义。观察仿真实验:电场中两点间电势差在数值上等于什么?利用计算机课件进行模拟实验(如图3)【模拟实验一】:不闭合S2、S3,只闭合S1,观察V1的大小。问题思考:(1)闭合开关S1后,此时伏特表V1测得的电压?(2)此时外电阻多大?学生回答:电动势越大,电源把其他形式的能转化成电能的本领越强。学生模拟实验,分析得出(1)伏特表测电源电动势;(2)外电路电阻无穷大。e在数值上等于外电路断开时电源两端点压。

图1图2图3

欧姆定律的一般形式篇6

“工欲善其事,必先利其器”.要达到培养学生解题思维的目的,首先让学生明白欧姆定律的基本概念,加强对基本概念和基本思想的理解和掌握;其次,解题中最首要的问题是读懂题目,挖掘出隐含条件.所谓的隐含条件是指题目中那些若明若暗含而不露的已知条件,它往往是解题的关键,要培养学生挖掘隐含条件的思维能力.在欧姆定律的教学中,第一要让学生看懂电路,知道是串联电路还是并联电路,初中物理电学中因为电压表的阻值很大一般将电压表去掉,因为电流表的阻值很小一般将电流表改成导线,然后判断用电器之间的连接方式;第二要看懂各电表所测的物理量,在第一步的基础上,逐个添加电表,判断各电表所测的物理量;第三根据电路特点挖掘隐含条件,列出方程进行求解.学生按照这样的解题思路,通过思维的训练能很快地解决问题.本文以欧姆定律解题思路为例,探讨学生解题思维能力的培养.

1一题多解――拓展学生思维的广泛性和创造性

一题多解的解题训练可以启发学生多角度、多途径寻找解决问题的方法,充分挖掘题目中的隐含条件,开拓学生的横向思维,培养学生思维的独创性.

例1如图1所示,滑动变阻器的滑片在某两点间移动时,电流表示数范围为1a到2a之间,电压表示数范围为6V到9V之间.求定值电阻R的阻值及电源电压.

分析首先去掉电压表,把电流表改成导线,可以看出电路中R与R′组成串联电路,然后加上电流表和电压表,可知电流表测串联电路的电流,电压表测滑动变阻器R′的电压.当滑动变阻器的滑片移动时,电流表示数由1a变为2a,说明滑动变阻器的阻值变小,而定值电阻R上的电压(根据U=iR)增大,滑动变阻器上的电压要变小(根据U总=UR+UR′),对应的电压表示数由9V变为6V,即电路中的电流为1a时,电压表的示数为9V;电流为2a时,电压表的示数为6V.这是该题的切入点.

解法一电源电压不变.

理清思路后要充分挖掘题目的隐含条件,一般电路中电源的电压是不变的,根据这一特点,列出方程.当电流为1a时,

U总=UR+UR′=1a×R+9V,

当电流为2a时,

U总=UR+UR′=2a×R+6V,

因为U总不变,所以1a×R+9V=2a×R+6V,

解得R=3Ω.代入原方程得出

U总=UR+UR′=1a×3Ω+9V=12V.

解法二定值电阻的阻值不变.

一般电路中除了电源的电压不变外,定值电阻的阻值一般都是恒定不变的,它与电路中的电流和电压没有关系,所以根据这一特点,当电流为1a时,

R=U总-9V1a.

当电流为2a时,R=U总-6V2a.

解上面两个方程得R=3Ω,

U总=12V.

解法三根据定值电阻不变,R=ΔVΔi.

当电流由1a变为2a时,变阻器上的电压由9V变为6V,因为串联电路中电流处处相等,所以定值电阻的电流变化

Δi=i2-i1=2a-1a=1a,

而根据U总=UR+UR′,U总不变,得出ΔUR和ΔUR′的变化值相等,数值上

ΔUR=ΔUR′=9V-6V=3V.

根据R=ΔUΔi=3V1a=3Ω.

当电流为1a时,

U总=UR+UR′=1a×R+9V

=1a×3Ω+9V=12V.

通过一题多解的训练,学生学会了这类题的思维方式,知道了从电源电压不变和定值电阻的阻值不变为突破口,以后看到这类电学题就可以先从电源电压和定值电阻不变两方面思考,这样克服了学生的恐惧心理,学生也容易获得成就感.

2一题多变培养学生思维的深刻性和灵活性

通过改变题目的条件或情景,让学生获得一题多思,一题多练的机会.经常性地进行一题多变的训练,会让学生学会自己进行编题目,也能在解题中关注到题目中的关键字,克服了学生思维定势,培养了学生思维的深刻性和思维的灵活性.

例2两个电阻的规格分别为“6V0.2a”和“3V0.3a”,将它们串联后接入电路,其总电压不能超过V.

分析这是一道串联的安全题,串联电路电流处处相等,为了不损坏电阻,比较两电阻允许通过的最大电流,选其中较小的电流,根据欧姆定律求出两电阻的阻值,再根据电阻的串联和欧姆定律求出最大总电压;从本题可知,i1=0.2a,i2=0.3a,因串联电路中各处的电流相等,且i1

由i=UR可得,两电阻的阻值分别为

R1=U1i1=6V0.2a=30Ω,

R2=U2i2=3V0.3a=10Ω,

因串联电路中总电阻等于各部分电阻之和,所以,最大总电压为

U总=i(R1+R2)=0.2a×(30Ω+10Ω)

=8V.

变式一两个电阻的规格分别为“6V0.2a”和“3V0.3a”,将它们并联后接入电路,其总电流不能超过a.

分析当它们并联接到电路里时,

U1=6V,U2=3V,

因并联电路中各支路两端的电压相等,且U1>U2,所以,为了让每一个用电器都安全工作,并联电路两端的电压为U′=3V,

此时i1′=U1′R1=3V30Ω=0.1a,R2正常工作.

因并联电路中干路电流等于各支路电流之和,所以,干路的最大电流为

i=i1′+i2=0.1a+0.3a=0.4a.

变式二将R1改为滑动变阻器,它的规格为“30Ω0.2a”,定值电阻的规格为“3V0.3a”,将它们并联后接入电路,其总电流不能超过a.

分析当它们并联接到电路里时,

U1=6V,U2=3V,

因并联电路中各支路两端的电压相等,且U1>U2,所以,为了让每一个用电器都安全工作,并联电路两端的电压为U′=3V,(同上).

此时通过调节滑动变阻器,i1′可以不为0.1a,当变阻器电阻减小时,电路中的电流可以调为最大值0.2a.所以,干路的最大电流为

i=i1′+i2=0.2a+0.3a=0.5a.

欧姆定律的一般形式篇7

科学探究指的是科学家研究自然界,根据研究中发现的证据提出解释的多样化的活动方式。探究性学习指的是仿照科学研究的过程来学习科学内容,从而在掌握科学内容的同时体验、理解和应用科学研究方法,掌握科研能力的一种学习方式。探究性学习包括提出问题、收集数据、形成解释、评价结果、检验结果五个方面。它与科学探究有联系又有区别,这五个方面的特征构成了探究性学习的五个基本特征。本文结合笔者听的两节课,试图探寻“探究性学习”的本意以及如何发挥探究性学习的功能。

案例1:自由落体运动规律的探究

老师在口头介绍了频闪照片研究自由落体的实验以后,出示了一组实验数据(表1)。

老师提示学生:研究问题要从最简单的开始,在有个别学生说出可以研究x/t以后,老师引出x/t、x/t2两栏计算要求,让学生计算并寻找规律。学生填写了x/t一栏数据(9.5、19.3、28.8、38.6、48.5)后,没有发现任何规律。老师马上告诉学生,如果求出每0.02秒的路程,再求出这段路程的平均速度,画图可以发现一定的规律,让学生课后去完成;接着,老师让学生计算x/t2,得出一组数据:4.75、4.81、4.81、4.83、4.85,师生共同分析发现x/t2数很接近,有一定的规律,且单位是m/s2,可能与加速度有关。最后老师讲解,自由落体的加速度是一个常数,在9.8m/s2左右,从而说明自由落体运动是一个匀变速直线运动。

评析在这个教学环节中,学生经历的只是探究性学习的“形成解释、评价结果”两个过程。学生的角色只是一个数据处理员,问题提出、收集数据都是老师完成的,而且对x/t2进行计算也是老师强加给学生的,这样的所谓“探究性学习”还不少。

究其原因,一方面,老师对探究性学习的五个特征没有充分的认识,缺乏引导学生怎样问问题、怎样评价问题,怎样分析实证材料以及观点之间有什么不同,怎样形成有力的解释;另一方面,老师考虑到课时不够怕影响进度,还是用这种“灌输式探究”方便省时。试想,这样的探究性学习怎能达到培养学生科学素养、提升学生创造能力的目的?上述探究过程可以变成学生用打点计时器得到点迹,在作图和实证数据分析基础上总结出自由落体运动规律。学生运用已有知识和技能探究新的规律,同时体验到与科学相联系的各种不同的认知过程――如归类、分析、推论、预测等一般方法,这样的探究性学习才是有价值的。

案例2:欧姆定律的探究

老师在介绍了电压和电阻的概念以后,提出通过实验来探究电流跟电压和电阻之间有什么关系?老师演示(或学生分组)实验,记录表格得出,当电阻不变时,电流跟电压成正比,当电压不变时,电流跟电阻成反比的关系。在此基础上,老师归纳出欧姆定律,并把这一过程也美其名曰“科学探究”。

评析欧姆定律在我们今天看来很简单,然而它的发现过程却并非如一般人想象的那么简单。欧姆最初进行的试验主要是研究各种不同金属丝导电性的强弱,用各种不同的导体来观察磁针的偏转角度。后来在试验改变电路上的电动势中,他发现了电动势与电阻之间的依存关系,这就是欧姆定律。在那个年代,人们对电流强度、电压、电阻等概念都还不大清楚,特别是电阻的概念还没有建立,当然也就根本谈不上对它们进行精确测量了;况且欧姆本人在他的研究过程中,也几乎没有机会跟他那个时代的物理学家进行接触,他的这一发现是独立进行的。

综上所述,我们要把探究性学习和科学探究区别开,不要盲目夸大探究性学习的功效,要明确探究性学习的五个基本特征,使探究性学习真正发挥其培养学生科学素养、深化对物理概念认识的作用。引导学生进行探究性学习需要注意如下几点:

1.探究性学习提出的问题必须适合学生的认识水平

探究性学习提出的问题与科学问题在深度和广度上有所不同。在课堂里,提出对学生有意义的有针对性的问题能够丰富学生的探究活动,但是它们不能是深不可测的,而必须能够通过学生的观察和从可靠的渠道获得的科学知识来解决。学生必须掌握解答问题的基本知识和步骤,这些知识与步骤必须是便于检索和利用的,必须适合学生的认知发展水平。

2.探究性学习收集的数据尽可能是学生自己采集

科学家用感觉器官或借助工具、仪器,通过自然情境下的观察和测量以及在实验室中进行的实验和测量来收集实证资料。在某些情况下,科学家能够控制条件以获得实证资料和结果;在另一些情况下,他们不能控制条件或控制会歪曲现象,他们则通过对自然发生的情况进行大范围的观察来收集数据或通过长时间的观察来收集数据。在探究性学习中收集的数据要尽可能是学生自己采集,因为数据收集是培养学生尊重事实、耐心仔细的科学素养的一种有效途径。课堂教学中老师常常因为课时紧,直接把数据提供给学生进行分析,这是探究性学习得一大缺憾。

3.探究性学习的结果要让学生进行交流评价

学生们通过参与对话比较各自的研究结果,或把他们的结果与教师或教材提出的结果相比较来评价各种可能的解释。也可以为其他人提供问问题、检验实证材料、找出错误的推理、出实证资料所不能证明的表述以及根据同一观察资料提出其他不同解释的机会。交流结果能够引入新问题,或者加强在实证资料与已有的科学知识以及学生提出的解释之间已有的联系。与科学探究不同的是,学生只要将他们的结果和适应他们的发展水平的科学知识相结合,就达到了探究性学习的目的。

4.探究性学习要依靠和利用他人帮助

中学阶段,由于学生知识的缺陷和时间的限制,探究性学习要从教师、教学材料、网络或其他途径获得实证资料,来使他们的探究进行下去。与科学探究不同的是,探究性学习中收集实证资料的过程能够更多地获得和利用他人的帮助,这也是符合中学实际的。

5.探究性学习过程不要求完整严密

欧姆定律的一般形式篇8

电阻的英文名称为resistance缩写res,通常用字母r表示。电阻的基本单位是欧姆,用希腊字母“ω”来表示。电阻的单位欧姆是这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。在电阻体上一般都标称电阻的阻值有的还标识功率。在这里我们对电阻的功率不做其阐述,电阻其标称有四种表示方法即:直标法、文字符号法、数码法和色标法。

1)直标法

用阿拉伯数字和单位符号在电阻器表面直接标出标称阻值和技术参数,电阻值单位欧姆用“ω”表示,千欧用“kω”表示,兆欧用“mω”表示,允许偏差一般直接用百分数或用ⅰ(±5%);ⅱ(±10%);ⅲ(±20%)表示。

2)文字符号法

用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,其允许偏差用文字符号表示:b(±0.1%)、c(±0.25%)、d(±0.5%)、f(±1%)、g(±2%)、j(±5%)、k(±10%)、m(±20%)、n(±30%)。符号前面的数字表示整数阻值,后面的数字表示小数阻值。

3)数码法

用三位阿拉伯数字表示,前两位数字表示阻值的有效数,第三位数字表示有效数后面零的个数。当阻值小于10欧时,常以×r×表示,将r看作小数点单位为欧姆。偏差通常采用符号表示:b(±0.1%)、c(±0.25%)、d(±0.5%)、f(±1%)、g(±2%)、j(±5%)、k(±10%)、m(±20%)、n(±30%)。

4)色标法

用颜色来表示电阻的大小的一种方法。对于小型电阻值常用四环色环或五环色环表示电阻的大小。

四环电阻:第一,第二色环表示阻值有效数字,第三色环表示10的幂数,第四色环为电阻的误差等级。五环电阻:第一,第二,第三环表示三位数字,第四环表示10的幂数,第五环表示误差等级。电阻上的每一个颜色都代表一个数字。

欧姆定律的一般形式篇9

摘要:物理是一项以实验为基础的自然科学,是高中理科的一项重点教学科目,也是培养学生全面发展、实现学生健康成长的一个必修科目,高中物理在延续初中物理内容的基础上,也增加了很多新的知识点,这些对于学生的未来生活、工作都有着很大的影响意义,做好高中物理教学,意义深远。本文笔者就自身的一些教学经验以及学习心得入手,教学中的一些体会进行论述,旨在为提升高中物理的教学效果贡献一份自己的力量。

关键词:高中物理教学心得体会研究

一、追根寻源,让学生感受知识的形成过程

新课改确定了学生在课堂上的主体地位,在笔者看来,实际上就是注重了学生对于知识的实际体验过程,物理是一项自然科学,也是一项实验科学,让学生在学习的过程中更多的感受知识的形成过程对于加深学生的理解有很大的帮助。我们知道,学生学习物理,首先接触到的就是物理定律。因此,怎样搞好物理定律教学,必然是每个物理教师首先要考虑的问题。在进行某一物理定律教学时,我们有意识补充了大量的与这一定律的建立过程有关的内容,这就是所谓的“溯源”教学。任何一个重要物理定律的建立,都有一个艰辛而漫长的过程。探索定律的工作之所以能成功,这个定律最后之所以能够确立起来,其中一定有很多科学的研究方法和正确的推理思维方式,这些内容毫无疑问是属于物理学科中最重要的东西,是人类一笔宝贵的知识财富,也是我们物理教学的宝贵财富。

比如在讲授牛顿万有引力定律时,我们从天文学家第谷对行星进行几十年的观测积累的大量第一手资料讲起,然后是开普勒在拥有这些数据的基础上,通过大量计算总结出描写天体运动的经验规律(开普勒三定律),最后才是牛顿用定量的动力学原理对这些规律予以解释,终于发现了对天上、地上的物体具有普遍意义的万有引力定律。另外在学习欧姆定律的过程中,学生一开始都以为研究通过导体的电流和导体两端的电压之间的关系是不困难的,只要用电流表、电压表再加电源和可变电阻器等组成电路即可。可是我告诉他们,在欧姆那个年代,非但没有电流表、电压表等仪器,连电压、电流和电阻的定义和单位都没有,欧姆所面临的困难之大是可想而知的。他到底是怎样得到这个电学中最重要的定律的呢?学生顿时产生了浓厚的兴趣。在学习欧姆定律诞生过程的同时,我们还结合欧姆的实践,介绍了用图线探究新规律的方法。笔者认为,在物理定律的教学中,我们应该在课堂上经常采用设问的方法,不是直接告诉学生某个定律是怎样建立起来的,而是不断地提出问题让学生去思考,摆出困难让学生去克服,提出任务让学生去完成,制定目标让学生去实现。这样可以有效地发展学生的创造性思维和解决问题的能力。

二、加强实践,让学生关注知识的形成过程

实验是物理教学的必修项目,因为物理学是一门实验科学,物理学中的每一个概念、规律的发现和确立主要依赖于实验。因此,在高中物理教学中加强学生实验方面的训练,无疑是提高物理教学质量的一条必由之路。目前中学物理教学大纲中安排了相对数量的学生实验和演示实验,不难发现,这些实验存在着某些不足,主要表现在下面几个方面:

首先,教材中几乎所有实验是为配合所学内容而安排的,目的是帮助学生加深对所学内容的理解,因此学生不易通过这些实验掌握一些重要的实验方法。

其次,课本中每个实验的实验原理及操作步骤都讲得十分清楚,学生只需按部就班地完成实验操作即可。这样的实验只能增加学生的感性认识,锻炼学生的动手操作能力,而对学生创造性思维的训练是不够的,也无法培养学生解决问题的能力。

再次,目前课本中的实验大多是验证性实验,学生只要学懂了书上的定律,一般都能轻而易举地完成实验。这种安排违反了教育应该走在学生智力发展前面的原则,对培养学生的能力是不利的。

针对以上不足,我们对实验教学内容和教学方法进行了改革,使实验教学为发展学生的智力,提高学生的素质服务。在实验内容的改革方面,我们主要采取了以下三条措施:

首先,增加实验数量。不论是在课堂演示实验,还是在学生实验或小实验方面,平均增加了60%的实验。其中有一部分新实验,学校没有现成的仪器,安排学生自己制作,对学生有较高的要求。

其次,重视实验误差讨论。物理实验离不开测量,测量是实验科学最本质的东西。从某种意义上讲,结果准确的实验就是成功的实验,反之就是不成功的实验。因此在培养优秀学生的过程中,应该让他们掌握一些必要的实验误差的基本知识。

再次,加强重要实验方法教学。在实验领域中有一些重要的方法,比如减小实验系统误差的方法、减小实验偶然误差的方法、实验探究规律的方法、迂回测量的方法等,这些方法不是在个别实验中,而是在许多实验中都有应用,因此具有一定的普遍意义,这些方法一定要让学生很好地掌握。

三、注重习题,让学生领会知识的更深层次

物理习题教学是物理教学的重要组成部分,既是考察学生知识掌握的一个途径,也是让学生及时复习的一个方法,所以不论是教师还是学生,都在解习题上花费了大量的时间,因此,习题教学的改革是一个很重要的问题。就本质来说,物理习题的目的无非是要培养学生的理解、分析、推理等能力。所以物理习题教学应该围绕这个目标来进行。我们常用以下两种方法来进行习题教学:

首先按照解题方法组织习题教学:一般的习题都是按力、热、电、光的顺序来讲授的,但我们比较倾向于按照解题方法来讲解物理习题。例如理想化法、整体法和隔离法、等效替代法、小量分析法、叠加法、对称法、图象法等,这样比较有利于学生掌握一些重要的解题方法。到学习的某一阶段,集中将一批用解决方法相同的习题安排给学生练习,使他们由不会用到会用这种方法。在以后的学习中,每隔一定阶段让这种方法再出现一次,以加深这种解题方法在大脑中的印象,达到牢固掌握,应用自如的目的。

其次采用“台阶法”帮助学生掌握一些难度较高的解题方法:学生有一道难题不会做怎么办?老师不是直接告诉他怎么做,而是另外出几道与这道难题内容相似,难度较小一点的题让他去做,或者是出一道内容完全不同,但所用方法有某些类似之处的题让他去做,直至他领悟出这道难题应该怎样解为止。我们称这种方法是搭一个台阶让学生自己往上爬,用这种“台阶法”进行习题教学能使学生自己提高自己的水平,比被动地听老师讲解那道难题的效果要好得多。

参考文献:

欧姆定律的一般形式篇10

一、设计实践性作业,让作业成为锻炼实践能力的基地

突出实践性是科学新课程的一大特色。学生通过实践活动,能初步获得一些科学活动的经验,了解科学在日常生活中的简单应用,加深对所学科学知识和方法的理解,初步学会与别人合作交流,获得积极的科学学习情感。实践型作业的特点是突出科学活动的实践性,使学生不仅能在纸上做科学,而且能在动手、动口、动脑中学科学,能运用所学知识去开展调查、收集、选择、分析、解释信息活动。实践性作业一般取材于生活实际的现实问题作情境材料,设置具有社会参与性的实践问题。作业的方式一般有科学观察,检测、调查、材料的收集和整理,方案的设计和问题解决的建议和设想等。

[例1]学习了元素符号后,笔者布置学生到超市调查市面上出售保健品的种类,想办法通过同伴的的家庭收集各类保健品的说明书,分析保健品为什么具有保健作用。学生在收集资料中发现,保健品的种类层出不穷,但所含元素的种类却大同小异。于是,他们提出异议,保健品的保健作用是否像广告说的那样呢?于是笔者就将“中学生是否需要用保健品”作为调查的主题,促使他们进一步的调查、采访。

完成本题的过程,就是一次综合性社会实践活动的过程。在实践的过程中,学生获得了综合实践所必须的一些方法,亲历了知识获得和知识在现实社会生活中应用的过程,体验了知识的有用性和真正的价值之所在,锻炼了学生的实践能力,培养了学生的社会责任感。

二、设计探究型作业,让作业成为指引科学探究的向导

科学学习过程充满着观察、实验、分析、推理及探索性与挑战性的活动。探究活动是学习科学的最重要的方式,因而探究作业也是科学作业中最重要的形式之一。探究型作业,可以利用学生身边的学习用具、生活用品进行探究性实验,也可是学生遇到的生活、学习、自然中的科学问题进行探究,所布置的探究作业应着眼于学生的发展,培养学生正确的科学法、严谨的科学态度及良好的思维习惯,让他们不仅学会从科学现象、科学规律中探究问题,而且要从实际生活中不断发现问题、提出问题、研究问题、解决问题,形成完整严谨的科学思维品质和良好的行为习惯。探究性作业的功能在于让学生的学习从死记硬背走向自主探索、积极思考。学生在独立思考的基础上,完成既有趣又有挑战性的作业,能很好地落实过程与方法相统一的教学目标,并能成为指引学生在科学习中注重探究性学习的向导。

[例2]探究热水降温的规律。

问题情境:有一杯热水,放在桌上,让它自然冷却,热水的温度会随着时间而降低,我们将研究热水降温的快慢有什么规律,即温度降低的速度是一定的呢?还是越来越快,或是越来越慢?

要求根据所提的问题,作出猜测;设计实验方案,写出实验步骤,绘制实验数据记录表;要通过实验检验猜测是否正确,找出需要的实验器材;根据实验方案进行实验,并做有关记录;根据实验记录,将热水降温的规律用图象表示;写出得到的规律。

本题以现实生活为背景材料,设置问题情境,引领学生学会用猜想验证的方法进行科学探究,激活了学生的思维,锻炼了学生的思维品质。

三、设计教育型作业,让作业成为培养思想品德的养料

科学教学不仅要让学生获得科学知识与技能,同样担负着思想教育的功能。教育型作业是通过设计具有思想品德教育意义的问题情境,来达到潜移默化的德育效果。这类作业的情境材料一般是学生关注的社会热点问题,社会经济发展中的具有教育价值的问题,体现正确价值观导向的问题和学生生活中的一些思想品德教育问题。这类作业的教育功能在于对学生进行引导,让学生懂得一个人既要有渊博的文化知识,更要有良好的道德修养。力图培养学生从小事做起、从我做起的社会责任感,逐步懂得作为新时代的青少年什么是该做的,什么是不该做的,什么是好的品质,什么是不良习惯,使情感、态度与价值观的教学目标充分得以实现。

[例3]我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升。小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴了______毫升水。本例通过一些具体数据的体验,使同学们感受到节约用水的重要性,提倡人人都节约用水,培养学生从小事做起、从我做起的优秀品质。

[例4]保护环境、节约能源要从我做起。下列做法中,需要改正的是()

a.自觉养成购买物品时不用塑料袋的习惯;

B.尽可能用太阳能热水器代替电热水器;

C.及时将生活垃圾、废旧电池装在一起丢弃到垃圾箱中;

D.用洗脸水冲刷厕所,将废报纸、酒瓶等送到废品收购站。

本题以当代社会的热点问题――环保教育为主题,将环保知识与环境道德融合一体,通过道德行为的选择,对学生进行环保意识的引导和教育。

四、设计阅读型作业,让作业成为开阔学生视野的利器

有目的、有计划地让学生带着问题阅读有关科普知识或科学著作,不仅能激发学生的学习兴趣,拓宽学生的知识视野,培养学生的自学能力、分析问题和解决问题的能力,还能使学生从阅读中感悟科学家创造知识的人格魅力,领悟科学的思维方法,培养学生献身科学的情感意志。设计阅读型作业,取材要尽可能简洁精炼、典型,要适合学生的认知水平。内容上要注意科学性和思想性的统一。布置阅读型作业可指导学生阅读指定资料,比如暑假时可以布置学生阅读科普著作《万物简史》,也可以上网查阅相关内容,还可让学生间相互交流感兴趣的科普材料,以增加学生的学习渠道。

[例5]阅读短文,回答下面问题。我们现在看到的欧姆定律公式那么简单,可是,当年欧姆却为此花费了十多年的心血。这是由于当时的实验条件很差,还没有测量电流的仪器,电源的电压也很不稳定。欧姆凭着自己坚持不懈的精神和少年时期在作坊里练习出的一双巧手,经历无数次的失败才自己制成了比较精确的测量电流的仪器。1821年德国物理学家塞贝克发现了温差电池,这为欧姆提供了可以“保持电压不变”的稳定的电源。欧姆经过几年的细致研究,终于取得了成功。1826年他的研究成果发表,但当时的科学学界并不重视。后来,随着对电研究的深入,大家终于认识到这一成果的重要性,欧姆本人也被聘为大学教授,并获得英国皇家学会的奖章。谈谈你从欧姆发现“欧姆定律”的过程中得到什么启示?