航空航天的技术领域十篇

发布时间:2024-04-29 13:59:05

航空航天的技术领域篇1

前言

激光技术作为科学技术发展的重要产物,对带动相关行业领域的发展具有不可替代的作用。但较多领域如航空航天、机械加工在应用激光技术中,并未取得良好的效果,究其原因在于未使激光技术中较多技术手段的优势发挥出来,这就要求实际运用正确认识激光技术的本质并结合具体行业要求进行技术手段选择。因此,本文对航空航天领域、机械加工行业中现代激光技术的运用研究,具有十分重要的意义。

机械加工行业中激光技术的运用分析

a打标与切割技术的运用

机械加工行业中,一般对设备产品进行特殊符号、标记的设计都要求利用到激光打标技术。该技术应用极为广泛,如机械加工行业中的仪表、仪器、量具、汽车工业以及电子工业等,都涉及到打标工作。一般打标技术涉及到的对象多集中在印刷电路板、合成材料、橡胶、陶瓷、塑料、铝合金以及不锈钢等方面。另外,机械加工过程中往往也涉及较多材料处理工作,此时便要求引入切割技术,其主要通过聚焦镜的应用融化材料,并在激光束作用下将熔化材料吹走,这样便有相应的切缝形成。现代机械加工领域中,都将激光切割技术作为高新加工方式,能够使传统切割过程中变形过大、缝隙过大以及操作时间较长等问题得到解决。

b焊接与淬火技术的运用

关于激光焊接技术,其实质为将设备构件至于激光下,使构件能够连接为一体。将该技术引入机械加工领域中,其优势主要表现在对多种类型金属都可进行焊接,的且焊接后不会出现凹陷或其他变形现象,整个焊缝在外表上极为美观。目前机械加工领域中焊接技术的运用主要表现在两方面,即:①焊接金刚石锯片,可直接利用该技术实现;②对壳体类零件、汽车板以及钢板等,可利用激光焊接技术。该技术的运用对于解决传统机械加工中焊接质量不高、焊接表面美观性差等问题可起到明显的作用。另外,在淬火技术运用方面,其主要对工件表面利用高能激光进行扫描,这样整个工件面温度上升极快,且可瞬间自冷。所以其优势集中表现为:①相比一般淬火硬度,激光淬火方式下的制品将超出其15%左右;②加工时间较短,且可直接利用计算机对整个操作进行控制,具有一定的自动化加工特点,生产效率极高;③技术应用下不会产生较多的污染,且不必引入冷却介质便可快速完成低温淬火。

c熔覆技术与打孔技术的运用

对于机械加工领域中的再制造工程,常涉及到旧设备修复工作,而设备修复的主要技术便以激光熔覆为主。实际应用过程中,可直接对旧设备二次加工,提升设备的使用性能,能够满足现代企业发展中资源节约的要求。另外,机械加工领域中的激光技术,也表现在打孔技术方面。一般对于较软材料、金属材料或非金属材料等,往往需进行不同类型孔的加工,该过程中便可引入打孔技术。从打孔技术应用的优势看,主要表现在打孔精密度较高,能够准确定位中心孔,且能够自由控制打孔深度,不会产生较大的变形问题。

航空航天领域中激光技术的运用分析

a航空航天工业中激光焊接的应用

一般该工业较多零部件的焊接多引入铆接方式,其应用下尽管能够熔铝合金材料,但由于热处理效果较差,极易导致晶间裂纹的产生。而将激光焊接方式引入,这些问题可直接得到解决,且整个机身制造过程都得以简化。相关实践研究发现,利用激光焊接取代铆接工艺,其可使机身自重降低许多,这样相应的制造成本也会节约,可见激光焊接的作用极为明显。此外,该工业领域中,对于零件冷却孔打孔工作,要求引入激光打孔方式,其成本较低且打孔效果较高。

b航空航天工业中激光切割的应用

传统用于该工业中的切割手段很难保证外壳材料得到有效处理,原因在于外壳材料多具有硬度高、强度高等特点。而在激光切割技术运用下,许多如发动机机匣、主旋翼、尾翼壁板以及蒙皮等自带处理中都可起到良好的效果。

c航空航天工业中表面与成形技术的应用

由于航空发动机较多构件在价格上较为昂亏,若不断更换将会耗费极多的成本,因此可引入激光表面技术,对受损的构件进行修复,如发动机叶片受损后,便可采取表面技术中的三维修复措施,可保证修复后的构件整体性能不受到影响。由此可见,航空工业中的构件制造与修复很大程度需依托表面技术、成形技术来实现。

结论

现代激光技术的运用为航空工业以及机械加工工业提供坚实的技术保障。实际应用中,应结合具体的行业领域要求,合理选择相应的技术手段,如机械加工领域中的焊接、打标打孔以及切割等,以及航空工业中焊接、切割、成形与表面技术等,确保激光技术作用得到充分发挥,才能推动相关行业领域的快速发展。

参考:

[1]马付建.超声辅助加工系统研发及其在复合材料加工中的应用[D].大连理工大学,2013.

航空航天的技术领域篇2

航空产业是以航空器制造为主的产业形式,被誉为“现代科技和现代工业之花”,是凸显国家科技竞争力和创新性的关键所在。[1]从国际航空产业发展的历程来看,一个地区航空产业的发展与当地航空领域人力资源规模、结构、科技创新能力有着天然的、不可分割的紧密联系。我国航空工业经过60余年的发展取得了显著的成绩,但在制造水平和创新能力方面距离航空发达国家尚有较大差距。为此,我国在航空产业实施了两条腿走路的发展策略,一是推进以国产大飞机项目为代表的自主研发之路,另一条是以空客320总装项目为代表的引进吸收再创新的道路。无论走什么样的道路,围绕航空产业的人才资源和科技创新能力都是支撑产业发展的砥柱。充分借鉴国际上航空发达国家在航空教育领域的成功经验,对于快速形成支持我国航空产业发展的能力将起到关键作用。本文将透过比较教育研究视角,对航空发达国家的航空产业与当地航空教育之间的关系进行比较研究,提出对我国航空教育有益的建议。

一、航空产业与航空教育的关系

航空产业的水平代表着制造国整体的工业技术和创新能力水平。作为典型的高技术密集型产业,具有高投入、周期长和市场相对集中的特点。[2]具体表现在研发的前期投入大,制造过程中技术要求水平高,产品后续服务保障技术专业性强。从航空发达国家开展航空制造业的历程来看,其前期投入的研发经费和人员数量是巨大的。例如空中客车a380的研发费用就高达170亿美元。同时,研发的周期和投资回报周期都很长。因此,航空产业没有国家政府的支持和投入是难以立足和发展的,而国家之所以愿意投入巨资进行航空器的研发,看重的是航空产业背后高度的产业关联性和创新拉动作用。一般一个航空项目发展十年后给当地带来的效益能达到投入产出比1∶80,技术转移比1∶16,就业带动比1∶12。[3]日本曾做过一次500余项技术扩散案例分析,发现60%的技术源于航空工业。从产业投入产出的经济效益分析来看,飞机制造业的影响力系数在全部96个主要产业中位于第三,说明飞机制造业的最终产品对整个国民经济的发展具有较强的拉动作用。[4]作为位于产业链高端的高技术密集行业,航空产业的发展更多地依赖于技术创新水平的提升,而创新离不开高素质专业化的人才。因此,从航空发达国家的成功经验来看,注重航空教育是实现航空产业持续健康发展的前提和源泉。

二、航空教育的比较研究方法

航空发达国家在航空教育方面走过了较长的发展道路,积累了丰富的经验,对于我国尚处于大型民用航空器制造起步阶段的航空教育有许多值得参照和借鉴的地方。因此,本文通过运用比较教育的研究方法,对于不同体制下航空教育特点和要求进行研究。

1.比较教育的研究方法

比较教育学是用比较法研究和论述各国教育的发展、现状和趋向的一门教育学科。比较教育研究的一个主要目的就在于研究外国、思考本国、借鉴他国的教育经验,改进本国的教学实践。作为教育学的一个分支,其研究重点是各国的教育制度和基本的教育问题。但其基本研究方法可以推广用于与教育相关的诸多领域。比较教育的主要研究方法之一就是因素分析法,即抽出形成各国教育制度特点的各种因素,并把它们摆在历史文化传统和国民特性中加以研究。[5]通过对教育制度各因素的描述、解释、并置和比较研究,明晰研究对象国在教育制度形成中的影响因素和决策过程,特别是在教育改革中的经验与教训,为本国实施合理的教育制度和构建教育体系提供实证分析。

2.航空教育的比较研究对象

航空教育作为一个重要的教育领域,由于其服务的航空工业具有高技术密集型的特点,因此其培养层次主要以高等教育为主。长期以来,我国在航空高等教育方面主要偏重于为从事航空制造的航空工业企业和部门培养人才,也就形成了以航空制造为核心的学科专业体系和培养模式。而在航空运营领域,则建立的是与我国航空制造业基本联系很少的民航教育体系。二者长期分割的局面,造成了我国航空教育领域学科专业的过度分离,航空工业和民航业难以形成互相促进、互相支持发展的格局。从国际上来看,航空教育服务的对象应当是包括航空制造业和航空器运行在内的航空业全产业链。无论从学科结构、培养模式、专业建设、实验室建设等方面都有相通之处,故此本文将根据国际航空发达国家的航空教育基本形态与我国相对应的航空教育领域进行比较,为我国航空教育的改革和发展提出建议。

3.航空教育的比较研究要素

在对国内外航空教育进行比较前需要明确比较的要素。由于航空教育是教育领域之一,在确定比较要素时既要考虑一般对不同国度教育进行比较时需考虑的要素,同时还要充分挖掘能够体现航空教育特色的关键要素,能够突出比较效果,实现比较目的。在比较教育方法论中,认可度最高、最典型的一种方法是利用托马斯立方体进行多层次分析。在该立方体中给出了比较的维度和层次,其中按照地理/地域层次分为世界区域、国家、州/省、地区、学校、课堂和个体;按照非地域人口群体分为种族、年龄、宗教、性别、其他和全部人口;按照教育与社会方面分为课程、教学方法、教育财政、管理结构、政治变化、劳动力市场等。每一项比较教育研究都会涉及这三个维度,从而可以在这个立方体中找到相应的位置。[6]本文主要针对中法两国在航空教育领域选取相应比较项进行研究。

三、基于因素分析法的中法航空教育比较

航空教育的目的是为本国航空业的发展提供人才和科技的支持。因此,航空教育的水平与产业的发展水平和进程直接相关。在对中法航空教育进行比较分析中,选取了产业发展状况、教育资源、教育制度和与科技创新关联度等因素进行研究。

1.产业发展因素

法国航空航天工业在欧洲排名第一。法国西南部比邻的南比利牛斯大区和阿基坦大区是法国航空航天业的摇篮,也被称为航空航天谷。两个大区的著名城市图卢兹和波尔多构成了航空航天谷的核心。整个航空航天谷在机载系统方面是国际业界领袖,在下列产品市场中占据世界领先的位置:100座以上的民用飞机、豪华商用飞机、直升飞机专用涡轮发动机、起落架、航空器电池。居于欧洲领先水平的科技领域有:卫星制造、固体火箭燃料推进器、军用飞机、高性能复合材料、地球观测、机舱系统、返回大气层技术等。同时,还在航空学、航空电子学、试验和模拟等领域始终保持一流地位。中国在航空制造领域经过了60余年的发展,主要产品为军用飞机和民用中小型飞机。在大型客机和商用飞机领域,刚刚启动研制C919和aRJ21机型,为大型客机配套的大型商用发动机的研制也刚刚起步。总体上,中国航空制造业,特别是民用航空器的制造距离世界先进水平尚有一定差距。

2.教育资源因素

法国航空航天谷与航空领域高等教育有着密切的联系,它是欧洲航空和机载系统领域高级人才的摇篮。图卢兹高等教育发达,是仅次于巴黎的法国第二“大学城”,法国每年约16%的工程师毕业于图卢兹。法国最重要的3所航空航天大学均设于此:国立高等航空航天学院(SUpaeRo)培养飞行器和运输工具工程师,进行空间学、系统动能学、信息获取和处理、操纵与机载系统、系统工程与管理等方面的系统教育;设有航空学方向的航空航天技术专业硕士学位。国立民航学院(enaC)培养航空安全系统电子工程师、航线驾驶员;设有高级机械学和民航运营学、运营职员等专业;培养卫星通讯、航行和监视专业硕士、飞行安全/飞行操作硕士等专业人员。国立高等航空工程师学院(enSiCa)培养航空维修专业硕士和直升机工程学专业硕士。中国在航空领域的人才培养总体上较为分散,分别隶属于两个系统,一是航空工业系统,包括北京航空航天大学、南京航空航天大学、西北工业大学等一批以培养航空制造领域人才为主的院校;另一个是民航系统,包括中国民航大学等一批以培养航空运营人才为主的院校。两个系统的院校地理位置分布较广,院校间交流不多,形成了相对独立的培养体系。

3.教育制度因素

法国航空航天产业作为重要的国家支柱产业,需要大批高水平的专业技术人才。法国教育的品质是世界公认的,其中“大学校”是其特有的精英教育体系,以培养工程师为主,与综合性大学相比,其入学要求严格,教学质量更优。法国每年大约有70万高中毕业生参加会考,通过会考的学生就有资格在法国的任何一所综合性大学注册学习,然后其中2万名左右成绩优秀者才有资格进入大学校的预科班,再经过两年或三年的艰苦准备,参加激烈的全国性选拔考试,成绩优秀者方可能进入大学校学习。大学校的最大特点是和企业的关系非常密切,相当比例的任课教师是政府、企业和研究机构中的技术和管理骨干。法国航空航天类院校共同组建了航空航天大学校集团,依托大学校教育体系,开展航空工程师的培养,成为航空产业发展关键技术人才的重要来源。中国航空类教育是在现有普通高等教育体制下开展的,在培养层次、培养模式和组织方式上与其他专业领域并无太大差别。在与企业的关系上,虽然建立了实习制度,但多数由于各方面原因在实际运行中仅停留在认知实习层面,难以真正起到工程实践的作用。

4.与科技创新关联因素

在法国航空航天谷有17个研究中心、上千所科研单位、2万余名科研人员,研究的优势领域包括航空、航天和机载系统。研究中心是该地区技术能力和专业特长的集合体,可以为航空航天领域的大型工业集团、民用军用企业和中小型工业企业提供技术支持,以保证其材料、加工过程或被测试机器的性能、安全性和可靠性。其中,著名的研究中心如图卢兹航空试验中心,是欧洲军民用航空器地面试验、专家鉴定和评估的主要中心,承担包括结构机械行为分析、动力系统评估、着陆和滑行系统评估、环境组合、结构材料的性能和特征、系统和分系统对电磁入侵防御的评估、系统和软件功能安全可靠性分析等。中国围绕航空产业的科研机构一般均隶属于航空制造企业,主要从事企业产品的研发和技术验证。从地缘上看,这类科研机构一般都位于所主研产品的制造企业附近,与企业之间关系密切,而相关院校多数仅在选聘毕业生方面存在联系。

5.差异分析

从以上四方面因素的对比分析来看,在关系人才培养的教育资源和教育制度上,在科技创新上,在与社会服务的对象——航空产业的关系上,中法航空教育均存在较大的差异,这种差异也间接反映了我国在航空产业发展上的短板。总结起来,中国相对法国在航空教育上的差异体现为以下几点:

一是产学紧密度不足。航空产业对人才的专业度和水平要求高,人才培养的指向性明确,加强与航空制造和运营企业的合作是提高航空专业人才培养质量的必由之路。缺少企业的实践锻炼,院校培养的人才在工作中会直接反映为更长的职业适应期。同时,由于缺少更富实践经验的企业专业技术和管理人员加入到人才培养的环节中,也使得学生的学习内容针对性和有效性不足。

二是航空教育体系缺乏整合。法国拥有大型航空器的制造商,也是航空运输的大国,因此在航空人才培养上对于航空器制造和航空器运营并无明显的专业差异,作为航空类院校在人才培养上要求学生具备航空领域宽厚的知识基础,同时面向专业领域加强工程实践能力培养。而目前,我国在航空领域明确分为制造领域院校和民航运营领域院校,两类院校在人才培养体系方面缺乏沟通和整合,在人才培养上没有形成沟通协调和良性互动的局面。

三是学生工程实践能力培养欠缺。航空业作为资金密集型、技术密集型产业,无论从价值还是安全角度考虑都对从业人员的职业素质提出了较高要求。这就要求学生在接受教育中要有更长时间的培养和更为专业的训练,而目前我国在航空制造领域由于产品距离世界先进水平差距较大,产量有限,实际接收学生进行工程实习非常少。而在航空运营领域,出于安全方面的考虑,学生更多的是进行认知实习,缺少有工程实践目的的训练。

四是科技创新对人才培养的促进作用未完全体现。科技创新是推进人才培养和产业发展的重要动力。一方面科研为产业输出技术和产品,另一方面科研为人才培养输送人才和培养资源。在航空产业发展中,科研是技术进步的源泉,因此要充分发挥科研机构的作用,提升人才培养,特别是高端人才培养的水平。目前,我国航空制造领域的科研机构多附于制造企业,而航空运营领域的科研介入不深,在人才培养领域的作用均未充分体现。

四、对我国航空教育的启示

我国的航空教育从时间上看经历了60余年的发展,但由于在航空制造业的发展上经历了仿苏、仿美、自主研发等多条道路的探索和摇摆,航空教育的发展也经历了许多变化。当前,我国确定了自主研发大型客机的战略,并积极开展国际合作,推进航空制造水平的提升,为未来成为世界航空制造领域一极而努力。在我国由航空大国向航空强国迈进过程中,关键是人才,因此航空教育的发展直接关系到航空产业战略的实现。通过以上对比分析,借鉴航空发达国家的先进经验,对于我国航空教育发展有以下启示:

一是要构建基于航空全产业链的教育体系。航空制造业的发展离不开航空运营效果的反馈和支持,良好的商业运营是航空器制造的动力,反过来对航空器制造技术的掌握能够更好地支持经济高效的运营。因此,我国自主研发大飞机战略的实施为我国航空教育构建完成的教育体系,填平现存的在制造领域和运营领域人才培养间的沟壑提供了难得的机遇。特别是在航空制造和航空运营的连接点——航空器适航认证方面,加强人才培养交流合作将有力地支持我国大飞机的研制。

航空航天的技术领域篇3

关键词:计算力学;多物理场耦合;先进复合材料;有限元技术(Fem)

中图分类号:V211文献标识码:a文章编号:1671-2064(2017)12-0252-02

1力学在航空航天领域的支柱地位

作为与材料科学、能源科学并肩的航空航天领域三大基础学科之一,力学在航空航天领域拥有无可辩驳的支柱地位。航空航天技术的发展与力学学科的发展有着举足轻重的关系。同样,力学学科的发展也推动了航空航天技术的发展。从航空航天的历史开端,力学便扮演着开天辟地的角色:莱特兄弟发明飞机前的时代,人类的航空器长期停留在热气球与飞艇的水平,人们普遍认为任何总密度比空气重的航空器是无法上天的;而随着流体力学的发展,越来越多总密度大于空气的航空器被发明出来进行试验,而莱特兄弟的飞机即为第一个成功的尝试,莱特兄弟的L洞也成为一个经典(图1)。从此,航空器的发展步入了快车道,各种结构的飞机翱翔于蓝天,从不到一吨的轻型飞机到上百吨的运输机,直至今天我们对机已经习以为常。

时至今日,航空航天的总体设计已由庞大的力学各分支支撑起来,从最基本的方面分类,可包括:飞行器整体气动外形归属于空气动力学;整体支承结构归属于结构力学以及材料力学;复合材料归属于复合材料力学;材料疲劳性能归属于疲劳分析;结构动力特性归属于振动力学;缺陷结构分析归属于损伤力学以及断裂力学。而对于具体的问题细分,则还有如:针对超高速飞行器的高超空气动力学;针对紊流等大气不稳定情况的非定常空气动力学;针对流固耦合问题的气动弹性力学;以及针对非金属材料的粘弹性力学等。此外,还有众多与力学相关的技术被发展起来,如有限元技术(Fem)等。

展望未来,力学发展的源动力在于航空航天综合多学科的交叉与技术。被誉为“工业之花”的航空航天工业,其研发生产涵盖了目前已知的所有工科门类,如此多的学科交叉下,力学的发展势必会与其他学科进行技术交流,这会带来问题的进一步复杂化,同时也丰富了力学的研究内容。

2航空航天领域力学发展新挑战

航空航天的发展,给力学带来了新的挑战。结构的日趋复杂,给力学计算带来困难;繁琐的理论公式,需根据工程需要进行必须的简化;新材料的应用在航空航天领域最为敏感,在为飞行器降低结构重量的同时,也带来诸多的不利因素如耐热性能差、环境敏感度高等;而在某些关键部件的多物理场耦合问题也将成为重要的研究方向。

2.1程序化

航空航天器和大型空间柔性结构的分析规模往往高达数万个结点、近十万个自由度的计算量级,这些问题包括但不限于:飞行器的高速碰撞间题,如飞机的鸟撞,坠撞,包容发动机的叶片与机匣设计,装甲的设计与分析,载人飞船在着陆或溅落时的撞击等。为了解决这种计算量庞大的问题,上世纪50年代初,力学便发展出一门崭新的分支学科――计算力学。伴随着电子计算机以及有限元技术的发展,计算力学取得辉煌的成绩,这也说明了其本身发展潜力巨大。

力学分析技术的发展,特别是对于各种非线性问题(几何非线性、材料非线性、接触问题等)分析能力,是长期存在的。然而在很长一段时间内,受到计算机能力的制约,以及模型建立本身的局限性,力学分析求解停留在解析方法和小规模数值算法中。这对于工程人员的设计工作是一个极大的限制,对于航空航天领域而言则尤甚如此。计算力学的发展,带来的效益是巨大的。首先其可以用计算机数值模拟一些常规的验证性试验和小部分研究型试验,这可以节省很大一笔试验费用。其次,其可以求解某些逆问题,逆问题的理论解往往无法通过非数值的手段得到。最后,从工程管理角度考虑,数值模拟方法大大节省了产品研发的周期,由此单位时间内产生了更多的经济收益。有限无技术分析机翼见图2。

上述计算力学给工程设计方面带来的种种好处,都基于一个很重要的前提。那就是力学问题程序化。如何将力学问题转化为一个计算机可以求解的程序,一直是计算力学研究的重点,比如有限元技术就是其中一个典型代表。目前,有限元技术已经涵盖了大部分力学问题,包括:静力学求解,动力学求解,各种非线性问题,以及多物理场耦合等。但值得注意的是,除了静力学以及相对简单的问题外,其余问题所用的算法目前精度仍然有限,相较于工程运用而言仍存在诸多壁垒。对于这些问题算法的更新,是力学问题程序化必须面对的挑战,仍需研究人员不断探索。

2.2工程化

力学工程化依然是基于计算力学而讨论的。所不同的是,程序化是针对一项力学问题能不能解决,工程化关注的问题是如何使得力学问题的解决过程更符合工程需求。

21世纪的航空航天,已经越来越趋向于商业化,美国已有数家私有航天企业成立,我国的航天科技集团也在进行着一些商业卫星发射。而商业化的工程问题,所追求的目标永远是效益。因此,力学工程化发展也应基于这一要求。航空航天工程的研发工作,一直给人周期长的印象,动辄10年以上的研究周期,对于目前商业化的运营是不适用的。如何快速的给出解决方案,是今后力学工程化的重要考量。随着软件技术的发展,越来越多的数值计算可以通过可视化、图表化等快捷的交互式设计方法呈现出结果,这可以直观地给予工程师设计反馈,从而达到加快设计进程的目的。同时,直观的结果反馈,也能避免数据分析过程出现人为失误,起到规避风险的作用。

2.3非均质化

新材料往往首先出现在航空航天领域,其中典型代表便是先进复合材料。先进复合材料具有高比强度、高比模量、耐腐蚀、耐疲劳、阻尼减震性好、破损安全性好以及性能可设计等优点。由于上述优点,先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。

复合材料的运用给力学提出了新要求,相比于传统各向同性的金属材料,其各向异性的力学特性使得非均质力学应运而生,代表便是复合材料力学的诞生。非均质化力学需要将材料的承力主方向设计为结构中的主承力方向,而非主承力方向则需要保证一定强度,不至于破坏,这是其主要的设计特点。相比各向同性材料,其理论模型更为复杂,相应的数值求解方法也没有那么完善。同时,实际中复合材料的性能分散性和环境依赖性相当复杂,设计准则和结构设计值的确定还很保守,导致最终设计结果并没有理论中那么完美,很大程度上制约了工程领域大规模使用复合材料。对于国内而言,复合材料研究工作相比国外则更为落后,无论是设计经验还是试验数据积累都有不小差距。

建立完备的非均质化力学模型,积累足够的原始参数,大胆尝试提高复合材料的设计水平以及用量是今后力学非均质化的主要任务,需要研究人员付出更多的努力。

2.4多物理场耦合

2.4.1电磁与力学耦合

新时代下的航空航天材料,已不仅仅局限于提供简单的支承作用,功能化是航空航天器新材料发展的重点和热点,其最终目的是为了未来航空航天器发展智能化目标。

目前,越来越多的具有电-力耦合功能的新型材料正成为航空航天器结构材料的选择。因为在对飞行器的自我检测技术方面,具有电-力耦合功能的材料的受力状态与电磁性能存在特定的函数关系,由此系统能通过检测电磁性能达到检测受力状态的效果,这大大方便了对飞行器的健康监测,也有效保证了飞行器的安全。这其中耦合函数的准确性便成为关键,电-力耦合的发展能促进这些技术的健全,具有十分积极意义。

2.4.2温度与力学耦合

温度场与力场的耦合主要体现在发动机上,对于发动机内部涵道的设计最优化一直是热力学着力解决的问题。

目前大部分飞机均采用喷气式发动机,包括:涡喷发动机、涡扇发动机以及涡桨发动机。上世纪40年代末,涡喷发动机出现,飞机飞行速度第一次能超过音速,带来了一场飞机发动机的技术革命。由此,包括进气道以及发动机涵道的设计成为发动机研发的一个关键点,早期的涡喷发动机,由于涵道上的设计缺陷,导致燃料燃烧产生热能转化为推进力的转化比很低,同时伴随着燃烧不充分,因此发动机耗油量很高且推力较小。经过几十年的发展,目前无论军用还是民用飞机发动机,大部分均采用涡扇发动机,通过优化得到的涵道形状最大化了单位燃油所提供的推力。图3为民用客机发动机涵道。

我国的飞机发动机工业水平距离世界领先水平仍有较大距离,特别是在大涵道比的商用发动机研发上。发展热力学,对热-力耦合问题进行更深入的研究,是发展我国飞机发动机事业的奠基石。

2.4.3流固耦合

流固耦合是飞行器研制最基本的问题之一。几十年的发展历程中,基于流固耦合研究的飞机外形设计取得了诸多进展,包括整体机身外形的优化,翼梢小翼的出现等。随着飞机飞行速度的不断提高,特别是军用飞机机动性的要求,出现了许许多多新的流固耦合问题。比如针对飞机在大攻角飞行时(一般出现在军机上),传统小攻角气动表示法、稳定理论等均不再适用。因此,解决大攻角非定常问题,需要从飞行器运动以及流动方程同时出发,建立多自由度分析和数值模拟模型。这是典型的流固耦合问题。

同时,以往旧的流固耦合理论,在先进复合材料大量运用的今天,显然已经不再使用。对旧有理论进行必要的修正,也将成为流固耦合问题亟需完成的工作。

3结语

当前,国家大力发展航空航天事业,作为高精尖产业,其所运用的理论与技术绝不能落后。力学作为一门古老而又应用广泛的学科,其对航空航天事业的发展起着举足轻重的作用。为符合未来航空航天领域发展,航空航天领域的力学应着力向着程序化、工程化、非均质化、以及多物理场耦合化综合发展。

参考文献

[1]杜善义.先进复合材料与航空航天[J].复合材料学报,2007(2):1-11.

[2]尧南.计算固体力学的发展及其在航空航天工程中的应用[J].计算结构力学及其应用,1993(3):199-209.

航空航天的技术领域篇4

我国的航空运输在随着时代飞速发展,民航在航空流量方面一直处于持续增加的状态,当民航的管理系统水平能力和空中领域的资源不能满足快速升高的民航流量值时,就会出现空中领域的飞行线路交错堵塞,对于民航的安全问题造成了巨大的威胁,对于民航来说也是巨大的经济损失。因此对于航空流量的技术管理系统分析是眼下重要的研究课题。

【关键词】

航空;流量;技术;管理

民航有关于“航空流量技术”的架构和模式是有专门的管理研究部门和流量管理系统的,对于航空的各个时段的实时航空流量信息都要通过控制中心来管理核对。在主要航道上却往往因为各种外界因素造成的原因让某一时段的航空流量处于饱和点,这样就会对航空流量的控制造成许多困难和阻塞。目前民航的应对方式是限制航班的变动和增减还有改变航道的策略来调控航空流量的技术管理,这样的做法是缺少巨大的实践性的,调整的不恰当和没有预见性可能会让民航损失更多的经济利益。民航在航空流量技术管理系统的运行环境和系统需求上都要做更多的研讨和探索,以适应近年来的流量值大幅度上升的现象,建立其成熟的航空流量技术管理系统。

1航空流量的技术管理系统所具有的内涵价值

根据整个航空的飞行计划和空中领域资源合理的调整利用还有对天气等各种因素的信息整合为依据来构建合理的航空流量管技术管理系统,这样对于整个航空流量的顺利流通和民航的发展前景是有巨大的帮助的。航空流量的技术管理系统是有许多技术要素包含在其中的,简要的以主体次要和知识三个方面来划分其要素内容。航空流量技术管理系统在主体方面的主要因素是对于系统中的技术设计专家、流量管理系统的信息技术开发专家、对于航空流量技术管理系统的设计开发组织生产等的发明创造者、航空流量技术的管理部门人员、机场当局等方面而言的。航空流量技术管理的次要方面可以从两个方向来解释,一种是信息技术和系统所需要的硬件设施的搭配处理,流量监控方面关于监控和控制单位的问题、还有流量显示的实时信息等。另一种方向是对于航空流量技术管理的组织搭配,在组织中的各个团体软件配置,如团体的培新实训中心,训练模拟场地等。还有就是航空流量技术管理系统的知识要素,知识要素在内容和实质上属于软件的配置,比如航空流量技术管理系统需要的技术软件和通讯设备传输设备的各种系统活动。这三者之间要协调搭配达到和谐共融的效果才能让航空流量技术管理系统完整的运行。航空流量技术管理系统不是简单的系统,而是各个板块之间的相互协调相互制约相互助力的复杂系统,在各个板块的共同限制和规划下设计出的航空流量技术管理系统才会有具体的成绩。

2航空流量技术管理系统的功能研究分析

航空流量技术管理的主要任务就是对空中流量的控制和协调,对空中的交通产生良好的制约和调整作用,尽可能保证航空流量的最佳协调状态,提高民航对于机场和航班的有效利用率。因此在航空流量技术管理中要更多的做好准备工作以面对各种突发状况,在面对各种紧急情况时需要有详尽可靠的解决办法,对航空流量和质量有一个高价值的保障,对航空流量的实时管理提供有效的基础服务。首先是对于航路航班的优化问题需要进行具有策略性的改善优化,缓解各个高峰期的空中交通拥挤现象,减少空中的紧急情况发生概率,同时也在另一方面降低了工作人员因为职责繁重而可能出现过失的现象。航空流量管理的优化板块主要的功能可以从两个方面来分析:一是预测和估算出对于航班中可能出现的高峰和紧急拥挤状况然后寻找适当的解决方法,二是计算高峰期的流量值和可用航路的控制,找出合理的备用方案,调整航空路线降低风险。关于航空流量的管理策略需要在执行的同时考虑预备方案的准备工作,以便应对突发状况,减少因意外事故而出现的负担。还有对于航空流量技术管理系统的基本数据的管理,这个管理的模块是对航空的日常进行维护和管理。航空流量技术的管理系统中有容量的评估,容量评估模块的内容主要是对于航空流量优化管理的策略性提供一些依据。航空流量技术管理的航班时刻也需要优化,协调民航各个公司之间的飞行计划,有完整良好的航班规划,对于航班的启动时间和运行时间做出优化。航空流量技术管理系统中还有对策略实施的评估问题,这一内容主要是对不同的策略内容进行分析汇报,然后通过航空中心确定然后施行。

3航空流量技术管理系统在我国的构架设计

在国家关于航空事业的框架之中,构架起完整的飞行流量技术管理系统,其主要内容包含以下这么几点:

1)建立与航空流量相对应的数据管理系统,对于航空公司的飞行安排和航线规划航班容量等信息进行协调搭配。

2)构建起对于各种问题的预测预报功能,预测各个机场和航班之间的高峰期和事故状况发生的高频期,对于航空流量应该具有较强的预测功能和监控功能,统计完整的流量数据通知各个流量管理部门。

3)构建对航空流量的完整监控模式和对于航线的正确搭配,对于容量的检测验证也需要做到细致。

4)协调不同航班之间对于空中领域的分布状况,控制好的流量峰值时的航空问题,将准确的流量管理模式方案通知到相关部门。

5)向各个航空公司的参与者进行及时的汇报和信息综合概括,对空中领域的交通状况有及时准确的了解把握。

6)应该建立起稳定的预备策略设定系统,处理对于空中领域出现的各种突发状况和问题。

4总结

通过对于航空流量技术管理系统的分析研究和对于航空流量技术管理系统内涵的研究可以深刻探索出航空流量技术管理的本质,它不仅仅是对于空中领域的交通流量的管理系统,还是对于航空安全的技术保障系统。航空流量技术管理系统在其组织架构中仍旧有许多不足和可变规律,需要在长久的研究中逐渐改善。对于我国航空流量技术管理系统尚且存在的各种问题,我国的技术人员和部门需要从系统设计的初始开始就构建起正确的技术组织,对我国的航空流量管理技术系统做出正确的策略基础提供,让航空流量技术管理系统的真正价值体现出来,让航空流量技术管理系统更完整更有效。

【参考文献】

[1]荀海波,徐肖豪,陈绪华.机场终端区着陆次序的排序规划算法[J].南京航空航天大学学报.1999(02)

[2]葛柏君.短期区域飞行流量预测问题研究[D].南京航空航天大学2008

[3]彭瑛,胡明华,张颖.动态航迹推测方法[J].交通运输工程学报.2005(01)

航空航天的技术领域篇5

关键词:低空无人机航摄遥感应用

中图分类号:p237文献标识码:a文章编号:1672-3791(2014)05(a)-0049-01

随着科学技术的飞速发展以及经济建设的快速成长,我国在测绘领域也取得了巨大的进步,同时对于测绘的在实时性、机动性、分辨率等方面的要求也越来越高。这也使得使用较为广泛的传统航空拍摄和卫星遥感获取的数据无法满足现代测绘的要求。为了能够得到满足现代测绘要求的数据,低空无人机航摄遥感技术的使用就显得迫在眉睫,它不仅满足了传统卫星,打飞机航空摄像技术对大范围内的测绘数据的要求,也能够在小区域内进行测绘,并且能够及时的反馈信息。

1广阔的应用领域

低空无人机航摄遥感技术目前已得到了非常广泛的应用,它采用了红外,摄像等许多先进的技术,将从低空中摄像收集到的有效数据,通过计算机等技术的加工处理,可以非常清楚的反应出地表地貌的测绘信息来供人们使用。根据我国目前的情况,科学技术的不断提高,以及对数据信息的要求的增长,低空无人机航摄遥感融合了GpS差分定位、遥控以及计算机软件处理技术等先进科学技术,并且在国家积极的政策推动下,低空无人机航摄遥感技术从设计、制造到飞行使用,以及到后来的数据处理、信息共享等都得到了大力的支持,并且得到了进一步的推广使用。目前,人们在测绘、遥感等方向的要求越来越高,而低空无人机航摄能够在许多方面为人们提供数据支持,不仅满足了人们对于地形地貌的测绘要求,也可以为人类对周边环境做出实时有效地监控,对自然资源进行检测,并能够保护周边环境,防止自然灾害的发生。低空无人机航摄体现出了非常重要的使用价值。

2优势特点

2.1快速、高效

低空无人机航摄遥感技术拥有快速、高效的反馈信息的能力,这些在旧的技术中是无法实现的。生活中时常会发生地震、泥石流等自然灾害,这些事件的发生存在不定时性,并且有非常大的破坏作用,使得测量任务非常艰巨,这就要求我们能够及时的对周边环境进行准确地测量。低空无人机航摄遥感技术不仅能够快速,高效的对周边环境进行测量,并能够将数据通过计算机技术进行处理转换成清晰易懂的图像信息,为人们及时掌握周边环境、采取合理有效的措施实施救援提供了非常有用的帮助。去年,安徽省测绘局利用低空无人机遥感技术对合肥市周边地区进行秸秆焚烧监察活动。通过获取的正射影像处理和分析,准确评估秸秆焚烧的地点、面积、危害程度等,对合肥市政府有效治理秸秆焚烧对空气、航班的影响起到非常重要的作用。

2.2机动、灵活

在测绘工作中,低空无人机快速出击的响应能力是应急遥感测绘有力的保障,低空无人机因为机身设备轻便、运输灵活、越野能力强、对起降场地要求低、起降方式多种多样,而且安装、调试、起飞作业快捷等优点,得到广大用户的满意和广泛应用。特别是在山高、地形复杂、客观起降条件差的情况下,使用大飞机航空摄影较为困难的地区,应用低空无人机就可以快速获取高精度、高清新影像数据资料,极大提高测绘成果的实效性,提高了测绘应急保障服务能力。

2.3分辨率高、处理速度快

低空无人机航摄遥感数据分辨率可达到0.1~0.5m,相对卫星影像数据具有很大的优越性。数据采集处理速度快,目前可达到一个工作日单机3架次航空摄影100km2,及时为政府和用户单位提供地理信息数据。去年上半年,我院利用低空无人机航摄遥感技术顺利完成了金寨县天堂寨镇40km2和金寨县产业园60km2范围1∶1000比例尺地形图测绘工作。特别是天堂寨镇属于大别山区,测区内地形复杂多样,最高海拔800多米,相对高差200多米,利用常规航空摄影方法在30个工作日内完成测绘任务,显然不可能。因此,我院利用无人机技术在一个工作日内就获取了天堂寨镇40km2的全部影像数据,再经过数据处理、像控测量、加密、采集、调绘、编辑等工序,最终在预定工期内,将合格的地形图资料提供给天堂寨镇,得到了镇领导的高度评价,为我们测绘行业也赢得了荣誉。运行成本低低空无人机航摄遥感数据不仅具有卫星影像数据的价值,而且具有大飞机航空摄影的快速采集优势。低空无人机不需要大飞机那样的专业停机场和专业的驾驶员班组,储存、运输、飞行作业均方便快捷。低空无人机航摄遥感技术采用的计算机处理技术,能够高度有效的对数据进行一系列的加工处理,并快速地输出数据,减少了数据处理得时间,也降低了使用成本。

3先进的技术水平

低空无人机航摄遥感技术的诸多优点得到了人们的认可。在国家测绘地理信息局等有关部门的支持下,低空无人机航摄遥感技术在全国范围内得到了全面的推广应用。国家鼓励对低空无人机航摄遥感技术的研究开发,同时建立了从设计开发,培训使用,带维护升级等一系列服务,使得低空无人机航摄遥感技术能够完善系统的为人们服务,这也使得测量技术和数据信息处理技术的到了空前的发展。我国的低空无人机航摄遥感技术已经在各个领域的应用中得到了非常有效的作用,特别是在雪域高原和等条件恶劣的无人区进行了航摄遥感测量,为人们对这些地方的开发利用提供了巨大的帮助。我国的低空无人机航摄遥感技术在原有的GpS导航技术等技术的基础上,增加了许多像高精度几何检校标定的小型数码相机等机栽遥感设备以及其他先进的科学技术,以及自动、高效的数据信息处理技术,这使得低空无人机航摄遥感技术得来的数据能够满足现代测绘的高要求。当今,我国低空无人机航摄遥感技术已达到国际领先水平。

4结语

在经济建设快速发展的时代,测绘技术必须不断的提高以满足各行各业对测绘的要求。低空无人机遥感技术的推广使用,能够快速高效的为人们提供测绘数据信息,为各行各业的飞速发展提供非常重要的技术支持。另外,以低空无人机航摄遥感为载体,以权威、精准数据为基础,为政府和公众积极参与我国各行各业建设和管理,提供了新颖、直观、可视化的服务平台,对于我国其他行业的发展提供有力的测绘保障。

参考文献

航空航天的技术领域篇6

【关键词】航天器航天器集群群智能太空探索微纳卫星

【中图分类号】V423.9【文献标识码】a

【Doi】10.16619/ki.rmltxsqy.2017.05.003

自20世纪80年代以来,随着微电子、微机械技术迅猛发展,信息产业发生了翻天覆地的变化,计算机外型越来越轻巧,功能也越来越强大。依靠这些技术的进步,航天器也逐渐向小型化、低成本的方向发展。90年代以硇∥佬羌际醭鱿郑其优势也越来越明显。一方面,以美国、欧盟为首的航天大国已经将现代小卫星技术列为航天技术发展的重点领域之一;另一方面,多颗小卫星协同工作完成复杂太空探索任务已成为当今国际航天领域的一个研究热点,航天器集群的应用与开发必将成为未来国际太空发展的战略重点。

随着小卫星的发展,微纳航天器渐渐地成为了航天领域一个热点问题。由于微纳航天器采用了大量的高新技术,具有功能密度与技术性能高、投资运营成本低、灵活性强、研制周期短、风险小等优点,在计算机网络技术的启发下,由多颗微纳航天器编队飞行而构成的“空间飞行集群”的概念被广泛接受,并迅速成为航天领域学术研究的焦点。

目前,在天文观测、深空探测、对地勘测以及空间技术验证任务方面,美国国家航空航天局、德国宇航中心、欧洲空间局、日本宇航事业部以及中国航天局相继提出并逐渐实施各式各样的航天器集群计划。未来航天器集群飞行模式必然会成为宇宙探索和空间应用领域的主流。

航天器集群概念的产生

“航天器集群”这种新概念主要来源于对昆虫群体的观察。自然界存在很多集群性昆虫和生物,比如蜜蜂、蚂蚁、大雁和鸟等,即使没有明显的类似于人类社会的组织级别,这些生物在大群体中仍然可以共同合作,完成很多复杂的工作。未来,这种集群技术,可以用于清理海洋石油管道、深海探索、军事侦察以及行星探测。

根据文献分析结果可知,集群的概念已经引起国内外航天器设计和导弹设计领域的高度重视,如多弹拦截、智能卵石和小卫星编队等。如美国2008年启动的计划――“分布式模块化卫星系统”也含有集群的技术成分,尽管项目计划困难重重,并且目前已经终止了,但世界各国的权威专家认为:“项目计划终止不等于这种理念终止,而这种理念将永存。”

直到今天,航天器集群还没有统一定义,但有一个共识,即航天器集群是一片被控制的卫星云,一个航天器集群是由多个航天器单体所组成,它们共同合作完成一个任务。在执行任务时,它们形成一个松散的聚集族,本着简单的行为和原则聚集在一起,好像昆虫群体社会。而学术界认为“任何一种受昆虫群体或其他动物社会行为机制而激发设计出的算法或分布式解决问题的策略均属于集群智能范畴”。由此可见,所谓航天器集群,是指数量巨大,至少100颗,甚至数千颗航天器组成的群体。

对于成百上千颗航天器组成的群体,其控制和管理就显得尤其重要,采用常规的集中式的航天器管理模式来管理数量巨大的集群系统显然是不现实的。所以,结合集群理论研究航天器集群系统,探索集群系统的应用,将会丰富和推动空间探索技术的发展。迄今为止,在集群理论探索方面,自组织聚集、自组织分散、连接运动、协同传输、模式构成和自组织建设仍然是热点问题。

大多数的群体都存在一定的结构,内部耦合紧密的群体大多都有如层次等级结构,有些是社会分工造成,有些是以能力高低区分,这种结构使得信息在群体间传播快速且有效,促使集体行为快速执行。不同的群体结构中,个体所发挥的作用也不一样,个体与环境、个体与个体之间的通信效率和通信范围也随之不同,最终导致的群体效果也不同。集群系统应该具备一定的结构,这是建立信息通道、实现个体交互的基础。这里的结构关系包括了结构形式、连接关系以及个体的地位分工等。所以,未来航天器集群系统级也应该具有生物自然群的三种主要功能。

鲁棒性:航天器集群是在外界干扰和单体波动的情况下运行,协作是分散式的,且构成航天器集群的单体相对简单,载荷是分布的,因此集群对环境的扰动具有鲁棒性。

灵活性:航天器集群中的单体有能力协作其他单体完成任务,也有能力在不同的组里工作,且支持大量单体的自主行为。

扩展性和容错性:航天器集群是个冗余系统,单体的缺失可以立即由另外一个单体补偿,因此群中某一特定部分的故障不会使其停止工作。

纵观各式各样的航天器集群计划

欧空局的CLUSteR计划。CLUSteR于2000年8月发射,目前仍在运行。CLUSteR计划是由欧空局提出的,由四颗相同的卫星组成,这四颗卫星运行于大椭圆地球极地轨道,轨道近地点和远地点高度分别为19000km和119000km。在实施CLUSteR太空计划之前,一般情况下是采用单个航天器对空间环境的局部区域进行探测,当然也有特例,极少数的情况下采用了双星探测,因此在对地球近地空间环境进行探测时无法在三维的视角下完成。然而,CLUSteR计划的成功实施,为地球空间探测领域开辟出了新的路径。CLUSteR计划在太空中采用了一个四面体的空间队形进行编队飞行,并可根据不同探测任务对其星间距离进行调整。这种航天器集群能够监测太阳离子和地球磁场之间的交互作用,从而得到太阳和地球电磁交互的三维模型。

St-5计划。2006年3月22日,美国成功发射了三颗卫星(Spacetechnology5,St-5),旨在验证未来科学任务试验的新技术。单颗St-5卫星重24.75kg,采用机载发射方式入轨。三颗卫星排成星座,近乎位于同一轨道面内,每颗卫星相距约354km,通过微推进器实现轨道与姿态的联合控制。

St-5计划中的卫星虽然在尺寸和重量上都小于其他卫星,但每颗卫星均可提供全套服务,具有动力、推进、通信、制导、导航和控制功能,以及搭载地磁场测量载荷的能力。该计划有效验证了利用星座进行极地极光研究的优势,小型无线电转发器与常规天线、计算机优化天线组成新型通信链路的可行性,小型动力系统的可行性以及地面系统制造技术的可行性。

St-5计划作为naSa“新千禧计划”的一部分,它的成功实施为美国小型化航天部件、批量制造数十至数百颗微卫星打下了坚实基础。

mmS(magnetosphericmultiscalemission)项目。2015年3月,naSa通过“宇宙神”火箭成功发射了mmS项目的四颗卫星,用以实现对地球电磁场的高精度测量。该项目中卫星的结构和功能完全相同,卫星的有效载荷包括等检测设备高能粒子探测仪、电场仪器、数据处理设备离子分析仪、姿态敏感器磁强计和防干扰设备等。四颗卫星组成一个边长从1km到几个地球半径长度变化的四面体,能够在地球磁层中,在三维视角下对磁边界进行相关的测量,以此来分析研究磁重联现象。空间天气的混乱主要是由太阳风对地球磁层的影响造成,研究人员的主要任务就是结合mmS卫星编队对当前的主流磁场理论进行相关的实验验证。

“天拓三号”微纳卫星集群飞行计划。2015年9月,由我国高校自主研制的微纳卫星“天拓三号”搭载火箭长征六号成功发射进入预定轨道。“天拓三号”卫星集群中包含6颗卫星,采用“一主五从”的模式进行编队飞行,其中主星的质量在20kg左右,从星中包含有1颗1kg级的手机卫星和4颗100g级的飞卫星。在整个卫星集群成功入轨之后,从星将与主星分离,以较为形象的“母鸡带小鸡”的方式在太空形成微小卫星的星间组网,实现6颗卫星在空间中的集群飞行。

“天拓三号”星群系统中的主星也称为“吕梁一号”,采用的l星体系结构与立方星类似,即模块化多层板式结构,该星群主要任务是星载航空目标信号监视(aDS-B)、新型星载船舶自动识别系统(aiS)的信号接收、20kg级通用化卫星平台以及火灾监测等一系列新技术验证和科学实验。星载aDS-B能够在全球范围内对航空目标进行准实时的空中流量测量,并实现对航空目标的准实时监测,为航空服务的空管系统提供高时效性的飞行数据,进而能够使得航空飞行的效率提高一个档次。

多规模磁性层测量任务的四星编队。2015年7月19号,美国宇航局执行多规模磁性层测量任务的四星编队首次排成三棱锥队形飞行,也称四面体编队飞行,这是美国宇航局第四个太阳探测任务。采用这种队形意味着科学家们可以利用这些探测器进行三维观察。三棱锥队形对于提供地球空间环境的三维信息是至关重要的,如果四个探测器都在一条直线或一个平面上运动,当它们飞经某个天体结构时,就不能观测到该天体结构的完整形态。

因为四星编队每个探测器的轨道可以单独调整,科学家们可以调节四个探测器之间的距离,类似于望远镜调焦,通过调整四星编队的队形,它们会让不同过程成为我们的焦点,这样就使得他们可以从很多不同的空间方位来研究磁重联。

飓风全球导航卫星器群。美国宇航局计划2016年12月中旬在佛罗里达州卡纳维拉尔角空军基地发射地球科学小型卫星群,其任务是勘测一些科学家感兴趣的关于地球科学的未知信息,从而更准确地理解热带气旋和飓风的形成和强度。

飓风全球导航卫星器群基于GpS道路导航技术,使用8个小型卫星群测量地球海洋的表面粗糙度。科学家将利用这些数据计算海洋表面风速,进而更好地分析风暴的强度。“飓风全球导航卫星群”聚焦于低成本、快速的科学勘测,是人类首次为地球飓风勘测,卫星群将完成单个探测器无法完成的任务,能够穿透“飓风眼壁”的暴雨,获得关于风暴强烈内核的重要数据。所谓“飓风眼壁”是雷暴云层的密集环状结构,它环绕平静的飓风眼,内核区域就像是风暴发动机,从温暖表面海水抽取能量,再蒸发至地球大气层。

“飓风全球导航卫星群”能够持续监测全球热带飓风带纬度海洋的表面风力。每颗卫星能够每秒进行4次风力测量,对于卫星群而言,每秒能够进行32次风力测量。

naSa拟派遣微型机器人舰队探索木卫二。“新视野”号探测器让全世界都知晓了它的任务,花了10年时间飞了50亿公里,确实够震撼。最近,naSa又向美国政府要钱,计划向木星发送一个庞大的微型机器人舰队。

目前,人类对木星探索已经进行了三轮,第一轮美国“旅行者号”飞掠了木星,第二轮伽利略探测器专门研究木星,今年“朱诺号”探测器又抵达木星,这还不算一些借力木星加速的任务。“朱诺号”探测器全副武装,使用了最先进的防辐射技术来抵抗木星辐射。现在,naSa已经开始着手下一轮木星系统的探索,并邀请了全美10所高校参与木星微型机器人舰队的研发,目标是木卫二。木卫二是太阳系中除了地球外,最有潜力拥有生命的星球,目前已经发现了冰下海洋,接下来就要对木卫二实地勘察。

至于naSa为什么要研发微型机器人舰队,这主要出于对经费方面的考虑。以立方星为架构的微卫星是一个方向,每个探测器任务专一,造价较低,比如可以收集木卫二稀薄大气的信息、携带高能粒子探测装置后可研究带电粒子的问题等。但naSa希望研制出更先进的微型探测器,而不是简约型的立方体平台,能够在太阳系内广泛部署。前期任务主要涉及对木卫二的探索,比如对木卫二大气、冰层以及冰下海洋进行针对性调查,后期将拓展至整个太阳系。南加州大学提出并且有能力开发出标准化的微型平台,比如适用于登陆小行星、彗星,以及较大的卫星等。naSa工程师打算研制一种飞往木星的微型机器人,称为“windbots”,这种微型机器人外形呈多面体,穿越木星大气层时,在木星大气的湍流作用下,旋转吸收能量,产生漂浮升力。它允许科学家详细地研究气体行星,也可以应用于地球上的飓风和龙卷风的研究。

美国的antS集群探测系统。美国naSa受昆虫社会行为的启发,计划于2020~2030年发射一个卫星集群探索小行星带,该计划暂命名为antS(autonomousnanotechnologySatellite)。antS系统由1000颗皮星组成,其任务是利用群智能技术,探索和勘测小行星带的小行星。antS系统运行在小行星带内,这其中,空间环境十分恶劣,传统的大卫星是不能生存的。小行星带介于火星和木星轨道之间,在这里估计有50万颗小行星。

antS系统的主要任务就是想利用价格低廉的皮卫星群完成小行星带的勘探。为了克服任务规划工作带来的挑战,naSa在系统设计时模仿昆虫的“无智能或简单智能的主体通过任何形式的聚集协作而表现出智能行为的特性”,antS系统按照不同等级进行管理,群卫星体系结构的等级划分包括“队”和“群”,“群”还包括“子群”等,不同卫星装载的仪器是不同的,所以需要协同工作和共享信息才能很好地完成任务。

在这个群卫星系统里,有几种不同类型的卫星,一类称为“worker”,它们载有不同的载荷和仪器,如磁强计、X射线仪、质谱仪和可见光和红外相机等,每个“worker”只能获取一种特定的数据;另一类称为“Ruler”,它们起统治作用,协调各个“worker”工作,并确定勘测目标;还有一类称“messenger”,仅仅起通信作用,它们是地球、“worker”和“Ruler”之间的信使。每个“worker”都会主动勘测所遇到的小行星,然后把信息发送给“Ruler”,“Ruler”评估这些数据,形成一个总勘测报告。

antS系统的皮卫星是依靠一艘飞船运载到小行星带附近的拉各朗日点,然后释放。在antS系统中,80%的皮卫星是“worker”,当“worker”收集到数据时,它们首先把数据发给“messenger”,同时这些数据也可以判断“worker”是否被毁坏,大约70%的“worker”穿过小行星带时被毁坏。这就要求它们有足够的队伍重构能力,同时还要有很好的自恢复能力。

antS系统飞越小行星时,需要完成许多工作。它们首先要确定小行星的大小、旋转轴、小行星的卫星/月亮、轨道和盘旋点等。随着获取小行星数据量的增大,antS还会派更多的子群,参与协作搜集更详细和更全面的小行星数据。

为了实现高度的自主性计划,基于社会结构的推理方法必须运用先进的人工智能技术,如神经网络、模糊逻辑和遗传算法等。为了辅助和维持高水平的自主性,更重要的任务还要考虑自主运行的修正能力,以便适应环境变化、远距离操控和低带宽通讯等问题。

英国的“天基镜群”方案。英国拉斯哥大学massimilianoVasile教授在分析小天体变轨的几种流行技术方案的基础上,提出了一种基于航天器群建立“天基镜子”的方案。该方案的部署是通过火箭将航天器群从地球发射升空,进入预定轨道,然后航天器集群再自主地逐渐徘徊于目标小天体附近,依靠协同控制技术,进行优化部署后,将太阳光能聚集到小行星表面的某一点上。

首次提出这种方法的并不是massimilianoVasile教授。早在1993年,美国亚利桑那州立大学的Jaymelosh曾建议将一面非常大的镜子安放在一颗大卫星上,以此来达到上述目的。

“天基镜群”的工作原理是发射一个航天器集群,集群中航天器都是纳型重量级的,每颗纳型航天器携带一个小镜子,一颗纳型航天器就是一个镜子模块,然后通过统一的星务系统进行管理,建立一个天基群镜系统,这样就可以把反射太阳光聚焦于小天体表面的某一指定点,将小天体的表面加热到至少2100°C,使得小天体汽化。汽化后的小天体内部会喷射出气体,由牛顿定律可知,小天体将会产生一个与喷射方向相反的推力,进而改变小天体的轨道。

基于全球卫星定位系统对航天器集群进行导航,结合自主控制技术,采用数十颗小卫星组成集群,使直径为数百米的小天体变轨是可以完全可行的。若利用10颗纳型航天器群,每颗航天器均承载一个20m宽的充气镜子,大约可以在六个月内使一个直径约为150m的小天体发生变轨;若增加到100颗纳型航天器,只需几天的时间就可以完成上述任务;假如要使直径为20km的小天体变轨,则需要集合5000颗纳型航天器,汇聚太阳光至该小行星表面长达3年的时间就可以使其发生变轨。尽管目前控制5000颗航天器的技术有很多困难,但随着群智能理论及其应用技术的深入发展,对于数千颗航天器的协调控制,未来将不再是问题。所以航天器群的概念未来一定具有巨大的应用前景。

航天器集群的管理

目前,从航天器集群的管理技术来看,不同的航天器集群具有不同的技术特征,归纳起来有四类:轨道跟踪法、领航跟随法、虚拟结构法、蜂拥控制法。

轨道跟踪法。单个的航天器一般都采用周期性轨道控制方法将航天器时刻保持在某特定轨道上,该方法也适用于微小型航天器集群的飞行任务,即将群系统中的成员航天器都控制在预先指定的期望轨道上。这种方法无需航天器间的信息交互,适用于群系统规模较小的情况,但对于数量较多的群系统来说,该方法不太现实。

领航跟随法。在领航跟随法中,引领航天器在规划好的参考轨道上按计划运行,利用传统的周期性机动,使得跟随航天器跟踪引领航天器,保持稳定的相对运动状态。该方法的优点在于群系统中大多数微小型航天器可以按照引领航天器的绝对轨道自然飞行,只需定期控制就能实现相对状态的维持。在领航跟随法中,由于引领航天器处于一种参考状态,跟随航天器保持整体构型就需要消耗更多的燃料,因此未来需要围绕能源消耗问题做进一步的改进。

虚拟结构法。虚拟结构法,即根据实际需求,给整个群系统分配一组合适的期望状态,使得系统的整体状态误差最小。与领航跟随法相比,这种方法的主要优点在于群系统中所有的微小型航天器都有误差存在,但该方法可以从宏观角度考虑这些误差,并引入燃料消耗加权,从而使得星间燃料消耗达到均衡状态。该方法的关键技术是需要保证微小型航天器之间信息交互的畅通性,并强调整体的协同。

蜂拥控制法。群体系统蜂拥控制方法是近年来受到国内外众多领域高度重视热点研究问题,主要借鉴仿生领域关于群体蜂拥行为的研究成果,集中在个体之间交互形成的网络拓扑结构已知条件下的控制问题。当微小型航天器集群系统中航天器个体数量较多时,若区域信息的交互能够形成一定规则的形状,则可以利用启发式控制算法。大规模的航天器集群往往会带来较为繁重的通信和计算负担,而蜂拥控制法采用分布式并行处理模式,能够很好地解决这个问题。但是蜂拥控制方法也存在着一定的缺陷,该方法没有将碰撞规避的问题纳入研究范围,且该构形下不是燃料最优的。

结束语

相比于传统的大卫星,微纳卫星的研发成本低、设计周期短、功能密度高。成百上千颗微纳卫星构成的集群灵活性高、鲁棒性高,能完成大卫星无法完成的任务,应用前景广阔,而发展微纳卫星集群的关键就是高集成模块化技术和分布式协同控制技术,相信在不久的将来,随着其功能的不断完善,将会逐渐取代传统卫星成为空间应用的主流。

从历史上看,航天系统工程的发展将会带动其他学科发展。上世纪60年代美国阿波罗登月所研制的新材料、新技术和新工艺推广到各个领域,如果说美国的计算机水平一直领先于世界,可以说是得益于阿波罗计划的推动。所以,类似地,今天航天器集群的技术也将推动其他科学技术的发展。

航空航天的技术领域篇7

“商业化”的起爆点:

一切从球开始

在世界范围内,有许多私营航天科技公司成功的先例:2014年,Facebook与titanaerospace进行了一笔达6000万美元的交易。Facebook购买了多架该公司生产的近地面太空无人机,用于自己旗下的太空网络信号转播项目,届时,全球都会被免费的无线网络覆盖。而在民营航天成功先例中,最著名的恐怕就是SpaceX公司。

和美国不同,中国航天事业主要由国家掌控和运作,但这并不意味着私营航天在中国无从谈起。

去年5月,“中国制造2025”规划,在新常态的语境下,国家把目光再次聚焦到工业实体。有分析认为,仅卫星应用这一领域的产值就将在2020年达到5000亿元,“十三五”末我国航天工业的整体产值将能达到8000亿元至10000亿元的水平。

据行业人士测算,商业航天领域每投入1美元,可获得7至14美元的回报。经过多年发展,商业航天已成为世界航天产业发展的主要动力。

“坐长征火箭20万美元游太空”“推出太空专车、太空顺风车、太空班车等发射服务计划”……事实上,曾经颇显神秘的中国航天业,已悄然开启商业化的大幕。虽然让公众兴奋的太空游还略显遥远,但作为交通工具的长征火箭其实已开始“专车”服务(指发射卫星等)。

位于一间普通写字楼的中国长征火箭有限公司(以下简称中国火箭公司)没有过多国企做派和军工的神秘,也还没有互联网企业足够的简明高效,但这家企业已经站上中国航天商业化的时代“风口”。

作为商业航天发展的基础运输平台,长征火箭正通过创新运营模式、打造专属列车、提供定制服务等创新举措,努力在商业航天市场的激烈竞争中抢得先机。布局并不止于目前披露的商业发射服务、亚轨道飞行体验、空间资源利用三大业务板块,“对标SpaceX只是近期目标。”

百度Ceo李彦宏曾在2014年的全国政协委员会上递交提案,建议国家相关主管部门鼓励民营企业开展火箭、卫星等的研制、生产和发射业务,促进航天技术在其他领域的应用,带动其他相关产业的发展。

航天领域的民间机会

2015年12月22日上午九点,美国太空探索公司SpaceX成功将其自主研制的Falcon9Ft火箭发射升空,成为首个成功进入太空的民间企业。这被视为私人航天时代即将到来的标志。

在中国,航天领域长期为国有力量主导。即便是国有机构,要制造完整的火箭也非一家所能。火箭的不同结构,在传统的航天系统中有着严格的分工。

但在民营航天爱好者的眼中,只要技术操作与基本工艺到位,使用民用级别的原材料进行航天器制造,并非不可能。

2013年,大三学生胡振宇与科创广州项目组成员一起,到内蒙古发射了一枚火箭。

胡振宇曾在中科院空间所实习了1个多月,而这家机构是航天四院的主要客户之一。他听到的最大抱怨是“太贵了”,“贵到以至于中科院自己都想做探空火箭,忍无可忍了”。几年后,他创办了翎客航天,计划把价格拉低至200万元,同时提供更好的性能。其中的关键是缩短供应商链条,减少分包成本,避免层层倒手、加价,以确保毛利润率。

按照胡振宇的规划,他创建的翎客航天将是国内首家提供探空火箭发射服务的私人企业。与公众更加熟悉的“长征”等运载火箭相比,他的探空火箭体型更小,通常长度不超过10米,箭体直径不超过300毫米,有效载荷数十公斤。它的作用是将搭载的仪器送到几十至几百公里的高空,进行几分钟的科学观测,相对简单的结构和功能,让民间科研力量有望参与其中,甚至成为市场的主要玩家。

2015年7月,中国民间航天组织中规模最大的“科创航天局”主席罗澍等人做的卫星研制方案得到了投资人的认可。投资人认为,没有民间及商业化的航天就没有人类航天的飞跃。现在人类处于技术空前平民化的阶段,所以会出现几个年轻人在短短几年间通过互联网改变数亿人的生活,“沿着平民化路线看看有没有突破口。”

民间的商业航天行为,最终落点还是“商业”,在国家大力推动军民融合、“航天+互联网”的信息产业变革,以及全球新一轮的工业革命的大背景下,越来越多的企业将通过航天的“商业化”道路,寻求新的投资机会。

中国航天的山东元素

在神舟十一号任务中与天宫二号空间实验室成功实现自动交会对接后,513所承担了多项保障工作。

513所即山东航天电子技术研究所,隶属于中国航天科技集团公司第五研究院,始建于1966年。1986年由山西太谷搬迁至山东烟台。是目前山东省唯一一家从事航天高科技研究的科研事业单位。513所先后参与了我国从神舟一号到神舟十一号、天宫一号、天宫二号等所有载人航天工程型号的研制,均圆满完成任务。

10月19日3时31分,神舟十一号载人飞船与天宫二号空间实验室成功实现自动交会对接。6时32分,航天员景海鹏、陈冬先后进入天宫二号空间实验室。据了解,2名航天员将按照飞行手册、操作指南和地面指令进行工作和生活,按计划开展有关科学实验。完成组合体飞行后,神舟十一号撤离天宫二号,并于1天内返回至着陆场,天宫二号转入独立运行模式。

据报道,在航天员空间实验的过程中,513所研制的多项产品将发挥至关重要的作用。其中,513所研发的氧分压调理电路、二氧化碳分压传感器、舱内气体采样装置将净化空气,确保太空没有“雾霾”;液路断接器和封气装置是载人飞船的安全卫士;失重生理效应实验装置、骨丢失对抗仪、无创心功能监测仪为航天员提供了完善的健康保障体系;无线语音系统将实现航天员与地面的天地通话。

作为航天电子重要研制单位,在发展中,513所逐渐形成了信息系统与综合电子、测控与通信、电力电子、计算机应用以及部组件五个专业领域,建成了完整的适应宇航和武器产业要求的电子产品科研、生产、实验体系,形成了从前沿技术跟踪、论证,到原理样机研制、产品工程化实现,以及技术成果转化的完整链条。研制的产品广泛应用于卫星、飞船、火箭和防务装备领域。

航空航天的技术领域篇8

关键词:膜分离技术高端领域应用研究

中图分类号:tQ028.8文献标识码:a文章编号:1007-3973(2012)011-030-02

膜分离技术是基于膜材料形成的分离边界的分离技术,最初应用于军事、航空航天、原子能等高端领域,随着其在民用领域应用日趋广泛,被公认为是20世纪末到21世纪最有发展前途的高新科技之一。

1膜分离技术在高端领域的应用

膜是具有选择性分离功能的材料。膜分离技术是指利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程。它与传统过滤的不同在于膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。基于膜分离技术的这些特点和优势,可实现料液的无热相变分离,高精度分离过滤及浓缩提纯。

2膜分离技术在军事上的应用

军事战争是一个国家国防的重要手段,单兵作为军事战争的最小战斗单元,在整个战争的过程中具有举足轻重的作用。战争的战场危险丛生、环境恶劣,单兵的生存维持和体力保障是单兵作战保障的头等大事。饮用水保障是单兵战场生存维持和体力保障的重要课题,但是战场环境往往没有任何的可以供单兵利用水源,比如海湾战争中的伊拉克和科威特,大片的沙漠没有水源可以利用,这在水处理技术层面上称为水量型缺水。另外的情况即使有水源,但是由于敌方投毒甚至各种污染导致无法正常饮用,即水质型缺水。无论哪种形式的缺水,都对单兵战场生存构成威胁。为了应对战场中的饮水问题,单兵携带大量的饮用水参加战斗显然是不现实的解决方案。膜技术与其它水处理技术的优化组合,为单兵在战场环境下的饮水问题提供了良好的解决方案。

如图2所示,膜分离技术与物化沉淀技术相结合,以单兵的尿液为水源,经过处理后可产生供士兵饮用的纯净水,且纯净水的水质达到饮用纯净水的水质标准,妥善科学的解决了单兵战场生存中饮水供应的首要难题。该技术通过一套简单的单兵供水装置得以实现,膜分离过滤的压力通过手动施压机械装置实现,操作简便、灵活高效,具有良好的战地实用性,有力的保障了单兵的战场生存能力。

3膜分离技术在航空航天上的应用

航空航天工程是现代社会人类文明的的重要标志,而载人航天技术是航空航天技术的关键环节。载人航天空间站技术是实现人类太空生存的关键技术,国际上美国、俄罗斯在此方面创造过连续两年载人太空空间站生活的记录。连续长时间的载人太空生活,生命维持所需的各种资源和生存环境维持是必须解决的关键问题。供航天员生存所需的空气、水、食物以及航天员代谢的尿液、粪便等排泄物的处理,以及空间站环境中的空气质量控制等一系列问题的解决,是载人航天工程取得成功的关键环节。这些关键问题的解决,一方面靠从地球发射航天飞机补充给养,另一方面是靠空间站内相关设备设施工作来处理废物维持空间生存环境的品质。

当今世界最前沿的航空水处理技术,如图3所示,将航天员在空间站中所排泄的尿液、汗液、呼出的水蒸汽收集作为水源,通过化学沉淀、蒸发、冷凝、膜单元过滤等操作单元,最终产生纯净的水供给航天员使用,满足长时间持续的生存对于水的需求。

4膜分离技术在人工器官医疗上的应用

人类疾病与医疗卫生贯穿人类发展的整个历史,不同的疾病致病机理的阐明为医学寻找可靠的治疗方法提供了坚实的基础保证。在人类的众多疾病中,呼吸系统的疾病往往危及人类的生命,因为血液循环和氧气供给为生命的支撑提供了最重要的氧与二氧化碳的代谢,将人体中的部分代谢产物通过呼吸系统排出体外,保证了人体体液系统的酸碱平衡以及其他的体液成分稳定。重要的人体器官肺在整个呼吸系统中占据不可替代的位置,其中的数以亿计的微小肺泡为人体完成呼吸功能提供了必备场所,但是由于诸多疾病可以造成人体肺部功能丧失,在这样的情况下人体呼吸功能无法完成,带来一系列生理机能障碍将会直接威胁生命。无独有偶,人体血液中各个组织器官的无数细胞都在进行新陈代谢,尿素、尿素等对人体有害的物质将在人体肾脏肾小球细胞的收下形成尿液排出体外,这样可以避免人体体液中由于尿素、尿酸等有害物质不断积累导致的中毒症状。由于肾脏炎症造成的肾脏功能损伤,直接导致尿素、尿酸收集效率降低,尿中出现蛋白质和血液,身体浮肿,情况严重可危及生命,这就是“尿毒症”。

基于膜分离技术的特点和优势,使用特殊的气体膜分离单元,可实现人体中氧气和二氧化碳的有效交换,为肺功能缺失的病人提供肺部的功能,以人造器官代替人体器官,这就是“人工肺”。

如图4所示,结合膜分离技术与其它技术优化组合,可实现人体血液中不同成分的相互交换,专业名称定义为血液透析。经过血液透析之后,可以将血液中的尿素、尿酸等有毒有害物质排出体外,而血细胞、蛋白质等有用成分继续保留在人体血液中,为肾脏功能缺失的病人提供正常的肾脏功能,这种技术就是“人工肾”。

5膜分离技术在原子能方面的应用

航空航天的技术领域篇9

关键词:“工程材料学”;航空航天专业;教学改革

“工程材料学”是航空主机类专业(包括飞行器设计与工程、飞行器动力工程、飞行器制造工程和机械工程等专业)的学科基础课程。该课程虽然仅有48学时,但承担着为未来的航空工程师构建材料知识体系的重任,对学生今后的发展起着重要作用。本文结合近年的工作实践,对该课程在教学要求、教学内容和教学方法等方面的改革进行研讨。

一、高度重视航空和材料领域发展对“工程材料学”课程教学的影响

材料学既是基础科学,也是应用科学。材料科学与技术的发展,解决了很多工程领域的关键问题,有力地推进了相关科学和技术的进步,使得材料科学成为最活跃的科学领域,材料产业也成为国民经济发展的重要支柱产业。“工程材料学”以物理学、化学等理论为知识基础,系统介绍材料科学的基础理论和实验技能,着重培养学生把这些知识应用于解决工程实际中提出的对材料结构、性能等方面问题的能力。作为一门重要的学科基础课程,“工程材料学”具有较长的开设历史,在人才培养中发挥了重要的作用。航空航天领域的发展对工程技术人员的能力素质提出了更高的要求,特别是“卓越工程师”教育培养计划的实施,对工程类课程建设的需求更加迫切,有必要以新的形势为背景反思该课程的教学改革。航空以众多学科知识、先进研究成果为基础,已发展成为一个由多个分系统组成的大系统,需要工程技术人员采用系统工程的方法进行综合设计。现代航空技术一百多年的发展,使得人们可以在更大的范围内探索天空,也使得飞行器的工作条件更加恶劣,工作环境更加严苛。现代飞行器不仅要具有速度快、航程大、载重多等特点,还要满足节能低碳等要求。材料科学技术的发展,为解决航空航天领域的诸多难题提供了可能,“一代材料,一代飞机”已成为飞行器发展公认的规律。这对航空航天工程技术人员的材料知识提出了更高的要求。在飞行器及其主要部件的设计、制造和维护工作中,要全面认识材料的性质和特点,才能挖掘材料的潜能,充分利用材料的特性,满足工作需要。面对航空航天迅猛的发展形势,仅了解和掌握已有材料的知识是不够的。具有创新素质的工程技术人员,要了解材料科学与工程的发展方向和趋势,分析材料领域的发展对航空航天领域的影响,同时要认真研究具体工作对新材料、新工艺的要求,明确材料发展的需求。在新型飞行器的研发过程中,要综合考虑用户对飞行器总体性能的多种要求,对各项技术参数进行统一的优化。在落实对飞行器性能的要求时可以发现,很多要求是相互矛盾的,比如飞机的航程和机动性就存在着较大的矛盾。为了获得较好的综合性能,需要对飞机进行一体化设计,要及时掌握各种设计方案对飞机主要材料和工艺的要求,对飞机整体结构进行综合优化。在此过程中,各部门工程师都需要和材料系统密切配合,才能实现信息和资源共享,降低全系统的风险,提高系统的可靠性和综合性能。材料科学技术的迅速发展也对课程教学提出了新的要求。材料科学与技术是研究材料成分、结构、加工工艺与其性能和应用的学科。在现代科学技术中,材料科学是发展最快速的学科之一,在金属材料、无机非金属材料、高分子材料、耐磨材料、表面强化、材料加工工程等主要方向上的发展日新月异,促使“工程材料学”课程内容的不断充实。“工程材料学”课程要系统讲授材料科学与技术的基础理论和实验技能,使得学生掌握工程材料的合成、制备、结构、性能、应用等方面的知识。早期的航空工程结构以自然材料为主,如在美国莱特兄弟制造出第一架飞机上,木材占47%,普通钢占35%,布占18%。随后,以德国科学家发明具有时效强化功能的硬铝为代表,很多优质金属材料被开发出来,使得大量采用金属材料制造飞机结构成为可能,也使得研究者们投入了更多的精力于金属材料的探索。相应地,这一时期“工程材料学”课程内容也以金属材料为主。上世纪70年代以后,复合材料开始在航空领域应用。复合材料具有较高比强度和比刚度的优点使得工程技术人员对其抱有很大的希望。航空工程师首先采用复合材料制造舱门、整流罩、安定面等次承力结构,而现在复合材料已广泛应用于机翼、机身等部位,向主承力结构过渡。复合材料因其良好的制造性能被大量应用在复杂曲面构件上。复合材料构件共固化、整体成型工艺能够成型大型整体部件,减少零件、紧固件和模具的数量,降低成本,减少装配,减轻重量。复合材料的用量已成为先进飞行器的重要标志。相应地,复合材料必然要在“工程材料学”课程中占重要地位。钛合金的开发和应用使得飞行器具有更好的耐热能力,提高了发动机、蒙皮等结构的性能,有效解决了防热问题。“工程材料学”课程的教学内容应该及时反映材料科学在提高飞行器性能方面的新应用与新进展。与此同时,其他相关学科也取得了长足的发展,使得主机专业教学内容大幅度增加,“工程材料学”课程的教学内容和学时之间的矛盾愈加突出。

二、认真分析专业教学对“工程材料学”课程的不同要求

“工程材料学”课程是一门重要的学科基础课,是基础课与专业课间的桥梁和纽带,在航空航天主机类专业培养学生实践动手和创新创造能力,提高学生综合素质等方面具有重要作用。在多年的教学实践中,该课程对主机类各专业采用同一标准教学。虽然主机类各专业人才培养有其共性要求,但随着航空航天事业的发展,专业分工越来越细,差异化特征也越来越明显,因此“工程材料学”课程应该充分考虑不同专业的具体需求,结合各专业的课程体系安排教学。飞行器设计与工程、飞行器动力工程、飞行器制造工程和机械工程等主机类专业根据航空领域中的分工培养学生,毕业学生的工作要求有所不同,对知识结构的要求也不一样。就材料方面知识而言,不同专业学生也会有所区别,应按照专业特点纵向划分对“工程材料学”课程的要求。不同专业主要服务对象的材料特点是确定课程要求的主要依据。飞行器设计与工程专业要全面统筹飞行器产品及各部件的设计和制造,主要从事飞行器总体设计、结构设计、飞机外形设计、飞机性能计算与分析、结构受力与分析、飞机故障诊断及维修等工作,要求了解材料科学与工程的发展对现代飞行器设计技术的影响,因此要较全面地掌握主要航空材料的性能、制造等方面的知识,了解轻质高强材料的发展动态和发展趋势。飞行器动力工程专业要求学生学习飞行器动力装置或飞行器动力装置控制系统等方面的知识,主要培养能从事飞行器动力装置及其他热动力机械的设计、研究、生产、实验、运行维护和技术管理等方面工作的高级工程技术人才。飞行器动力的重要部件对抗氧化性能和抗热腐蚀性能要求较高,要求材料和结构具有在高温下长期工作的组织结构稳定性。因此,材料在高温下的行为、性能和分析、选择方法应该是该专业“工程材料学”课程的重点。飞行器制造工程和机械工程等专业要针对现代飞行器工作条件严酷、构造复杂的特点,采用先进制造技术,实现设计要求,并为飞行器维护提供便利。该专业要求学生理解飞行器各部件的选材要求,掌握材料的制造工艺。飞行器零部件形状复杂,所用材料品种繁多,加工方法多样,工艺要求精细。很多新材料首先在航空航天领域得到应用,其制造技术具有新颖性的特征,设计、材料与制造工艺互相融合、相互促进的特点非常明显,这就要求学生在“工程材料学”课程中把材料基础打好,适应工艺和材料不断发展的要求。虽然各专业对“工程材料学”课程的要求有所不同,但课程基础一致。该课程名称为“工程材料学”,即明确其重点在于将材料科学与技术的成果运用于航空航天工程,把材料基本知识转化为生产力。“工程材料学”是相关专业材料学科的基本课程,学生要通过该课程了解金属材料、无机非金属材料、高分子材料等微观和宏观基础知识,学习材料研究、分析的基本方法,掌握材料结构与性能等基础理论,研究主要材料的制备、加工成型等技术,为更好地学习专业课程创造条件,为将来从事技术开发、工艺和设备设计等打下基础。由此可见,在明确了各专业对该课程的个性化要求的基础上,更要明确共性要求。“工程材料学”课程要培养学生材料方面的科学概念,提升材料方面的科学素质,扎实的材料科学与技术知识基础是学生学习专业课程、提高综合素质、培养创新能力的必备条件,是进一步发展的基础。因此,“工程材料学”课程采用“公共知识+方向知识”的模式比较合适,即把教学内容划分为每个专业均要求了解的材料领域知识和根据各个专业特色需要重点介绍的知识两部分,既满足了宽口径、厚基础的教学需要,又注重了后续专业课程学习和能力培养的要求,促进了基础理论和专业应用的融合渗透,较好地满足了材料、设计、制造、维护一体化发展的需要,增强了跨学科、跨专业认识问题、思考问题和研讨问题的能力。

三、多管齐下建设丰富的教学环境

作为一门学科基础课程,“工程材料学”课程要根据学校人才培养创新目标和相关专业的人才培养标准、方案,结合卓越工程师教育培养的要求,注重与专业课程体系的融合,注重与工程实践教育的结合,注重对学生创新意识、创业能力及综合运用知识能力的培养。在充分调研与分析专业人才培养对课程教学要求的基础上,要对课程的教学大纲和内容进行修订,与相关教学环节有效整合,拓展教学活动的空间,营造良好的学习环境和氛围,加强与后续课程及实践活动的联系,解决学科基础课的教学与专业人才培养需求的脱节或不衔接等问题。“工程材料学”在第四学期开设,是一门承前启后的课程。在前期开设的课程中,“大学物理”和“航空航天概论”是两门直接相关的课程。“大学物理”提供了学习“工程材料学”的科学基础,认真分析“大学物理”知识点在“工程材料学”中的应用,有助于学生更好地理解相关概念。“航空航天概论”以航空航天领域的发展为主线,介绍飞行器的组成及工作原理。如果在“工程材料学”课程讲授之初让学生重新回到机库,从材料发展的角度再次审视航空航天的进步,结合材料学的概念研究飞行器的组成及工作原理,会使得学生对该课程有比较全面的认识。在相关专业的后续课程中,有好多课程与“工程材料学”密切相关,如“飞行器总体设计”、“发动机原理”、“先进制造技术”等,如果在“工程材料学”中对有关知识点作简单介绍,可以使学生更好地综合分析相关概念,加深理解。在主机类专业培养方案中,“工程训练”是集中式的工程能力培养环节,其教学内容与“工程材料学”密切相关。“工程训练”教学内容以机械制造工艺和方法为主,包括热处理、铸造、锻造、焊接、车削加工、铣削加工、刨削加工、磨削加工、钳工、数控加工、特种加工、塑性成型等,每一种制造工艺和方法都与工程材料密切相关。在以前的教学工作中,材料是加工对象,对材料的性能等的介绍很简单,学生的认识较浅。如果在“工程训练”教学过程中,针对不同的加工工艺和方法对材料作较深入的介绍,从应用的角度分析不同材料加工工艺和方法的适应性,可以促进学生把材料理论知识的学习和工程实际联系起来。通过让学生分析研究实际材料在加工过程中的表现来认识材料的性能,通过感性认识来体会材料变化的规律,把深奥的材料科学理论知识和生动形象的加工过程结合起来。这样不仅强化了工程训练效果,还能让学生把材料的知识学活,留下更深刻的影响,更好地发挥学生的潜力。航空航天主机类专业的课程设计是重要的综合学习环节。课程设计任务一般是完成一项涉及本专业一门或多门主要课程内容的综合性、应用性的设计工作,通过一系列设计图纸、技术方案等文件体现工作成果。很多主机类专业的课程设计涉及材料的选用、处理等方面的问题。按照教学计划,“工程材料学”先行开设。因此,在相关课程设计中,有目的地提出材料问题,引导学生在更广的范围里选材,在更加深入的层面上分析材料性能,可以更好地调动学生自主探究材料科学的积极性,帮助学生把材料知识转化为初步的工作能力,克服课程知识的碎片化倾向。

四、结语

航空航天是现代科学技术的集大成者,该领域发展很大程度上取决于材料科学技术的进步。材料学是航空航天工程技术人员知识结构的重要组成部分。“工程材料学”要按照现代大工程观的要求组织教学,才能实现教学目标,提高培养质量。航空航天领域和材料科学技术发展,极大地丰富了“工程材料学”的教学内容。要根据学科领域的发展需要选择教学内容,按照理论实践结合、突出工程应用的要求构建知识体系。在教学工作中,应根据不同专业的培养要求,深入研究材料学的基本要求和各专业的发展方向,形成“公共知识+方向知识”的“工程材料学”课程结构,提高教学效率。统筹考虑专业教学与其他课程的联系,以及课程设计、工程训练、毕业设计等教学环节,以“工程材料学”课程为中心,注重课程的纵向推进和知识的横向联系,不断加深对材料学的理解和掌握,培养多角度研究分析、跨专业交流合作、多学科解决问题的能力。

作者:汪涛周克印单位:南京航空航天大学材料科学与技术学院

参考文献:

[1]朱张校,姚可夫.工程材料[m].北京:清华大学出版社,2011.

[2]周风云.工程材料及应用[m].武汉:华中科技大学出版社,2002.

[3]王少刚,郑勇,汪涛.工程材料与成形技术基础[m].国防科技出版社,2016.

航空航天的技术领域篇10

e=pauleremenko

票价、航空公司、机型,影响你买机票的因素越来越多。而飞机制造商在努力让更多人坐上自家飞机的同时,还在思考怎么结合市场上的新趋势把业务扩展到更多领域。在空中客车的Ctopauleremenko看来,航空公司要向其他行业里的技术主导型公司学习,进入那些正在研究创新的全球创新热点区域,以保持自身的领先地位。

C:两年前你从Google加入空中客车,成为空中客车的Cto。在这个时候加入航空业,是出于什么样的考虑?

e:其实我很小的时候就是一个航空航天迷,甚至在学会开车之前就拿到了飞行员执照。我曾为DaRpa工作,也就是美国国防部的国防高级研究项目局,主要负责研究所有的X系列飞机,包括实验型飞机、宇宙飞船、卫星和火箭。这次加入空中客车,应该说是我回到了航空领域。选择这个时刻回到航空业,是很正确的,我认为,我们正在经历航空业的第三次革命。第一次革命是20世纪早期莱特兄弟的第一架飞机成功升天,第二次革命是1950年代喷气式飞机的到来,现在可以说我们将再次进入一个全新的时代,迎来第三次革命。具体来说,就是电气化和数字化,而且是由别的行业主导的。它们的发展速度比航空业快得多,它们的迅速发展正在全方位地影响航空业。电气化以及数字化的门槛较低,航空业的准入门槛也随之降低,很多新的参与者进入了这个历来由少数几个公司垄断的行业。

C:这两年航空市场上的技术更新速度都在不断地提升。在这种环境当中,空中客车怎么保持自己的技术领先地位?

e:应该说现在技术的发展速度都呈指数级。其中一个衡量变化速度的指数轨迹是倍增时间,就是衡量某一项技术实现性能加倍所需要的时间,或其成本减半所需要的时间。从莱特兄弟那个时代开始,航空业的倍增时间一直维持在30年,这意味着飞机的性能每30年会加倍。在电子技术领域,包括电池、马达以及电池电源,它的倍增时间是5年。数码技术领域的倍增时间是18个月,而软件的倍增时间更短。空中客车除了降低内部机构的臃肿程度,还要和一些外部发展非常迅速的参与者合作,因为它们很多时候是这些技术的重要驱动者。比如说在电气化方面,目前电池和电池技术主要由汽车行业引领,而不是航空业。这意味着空中客车要学会和这些技术主导公司合作,也意味着我们必须进入那些正在研究创新的全球热点区域。