首页范文大全集成电路设计工艺流程十篇集成电路设计工艺流程十篇

集成电路设计工艺流程十篇

发布时间:2024-04-30 00:57:09

集成电路设计工艺流程篇1

关键词:集成电路设计;版图;eDa

中图分类号:G642.0文献标识码:a文章编号:1007-0079(2014)36-0125-02

集成电路是当今信息技术产业高速发展的基础和源动力,已经高度渗透与融合到国民经济和社会发展的每个领域,其技术水平和发展规模已成为衡量一个国家产业竞争力和综合国力的重要标志之一[1],美国更将其视为未来20年从根本上改造制造业的四大技术领域之首。我国拥有全球最大、增长最快的集成电路市场,2013年规模达9166亿元,占全球市场份额的50%左右。近年来,国家大力发展集成电路,在上海浦东等地建立了集成电路产业基地,对于集成电路设计、制造、封装、测试等方面的专门技术人才需求巨大。为了适应产业需求,推进我国集成电路发展,许多高校开设了电子科学与技术专业,以培养集成电路方向的专业人才。集成电路版图设计是电路设计与集成电路工艺之间必不可少的环节。据相关统计,在从事集成电路设计工作的电子科学与技术专业的应届毕业生中,由于具有更多的电路知识储备,研究生的从业比例比本科生高出很多。而以集成电路版图为代表包括集成电路测试以及工艺等与集成电路设计相关的工作,相对而言对电路设计知识的要求低很多。因而集成电路版图设计岗位对本科生而言更具竞争力。在版图设计岗位工作若干年知识和经验的积累也将有利于从事集成电路设计工作。因此,版图设计工程师的培养也成为了上海电力学院电子科学与技术专业本科人才培养的重要方向和办学特色。本文根据上海电力学院电子科学与技术专业建设的目标,结合本校人才培养和专业建设目标,就集成电路版图设计理论和实验教学环节进行了探索和实践。

一、优化理论教学方法,丰富教学手段,突出课程特点

集成电路版图作为一门电子科学与技术专业重要的专业课程,教学内容与电子技术(模拟电路和数字电路)、半导体器件、集成电路设计基础等先修课程中的电路理论、器件基础和工艺原理等理论知识紧密联系,同时版图设计具有很强的实践特点。因此,必须从本专业学生的实际特点和整个专业课程布局出发,注重课程与其他课程承前启后,有机融合,摸索出一套实用有效的教学方法。在理论授课过程中从集成电路的设计流程入手,在CmoS集成电路和双极集成电路基本工艺进行概述的基础上,从版图基本单元到电路再到芯片循序渐进地讲授集成电路版图结构、设计原理和方法,做到与上游知识点的融会贯通。

集成电路的规模已发展到片上系统(SoC)阶段,教科书的更新速度远远落后于集成电路技术的发展速度。集成电路工艺线宽达到了纳米量级,对于集成电路版图设计在当前工艺条件下出现的新问题和新规则,通过查阅最新的文献资料,向学生介绍版图设计前沿技术与发展趋势,开拓学生视野,提升学习热情。在课堂教学中尽量减少冗长的公式和繁复的理论推导,将理论讲解和工程实践相结合,通过工程案例使学生了解版图设计是科学、技术和经验的有机结合。比如,在有关天线效应的教学过程中针对一款采用中芯国际(SmiC)0.18um1p6m工艺的雷达信号处理SoC芯片,结合跳线法和反偏二极管的天线效应消除方法,详细阐述版图设计中完全修正天线规则违例的关键步骤,极大地激发了学生的学习兴趣,收到了较好的教学效果。

集成电路版图起着承接电路设计和芯片实现的重要作用。通过版图设计,可以将立体的电路转化为二维的平面几何图形,再通过工艺加工转化为基于半导体硅材料的立体结构[2]。集成电路版图设计是集成电路流程中的重要环节,与集成电路工艺密切相关。为了让学生获得直观、准确和清楚的认识,制作了形象生动、图文并茂的多媒体教学课件,将集成电路典型的设计流程、双极和CmoS集成电路工艺流程、芯片内部结构、版图的层次等内容以图片、Flas、视频等形式进行展示。

版图包含了集成电路尺寸、各层拓扑定义等器件相关的物理信息数据[3]。掩膜上的图形决定着芯片上器件或连接物理层的尺寸。因此版图上的几何图形尺寸与芯片上物理层的尺寸直接相关。而集成电路制造厂家根据版图数据来制造掩膜,对于同种工艺各个foundry厂商所提供的版图设计规则各不相同[4]。教学实践中注意将先进的典型芯片版图设计实例引入课堂,例如举出台湾积体电路制造公司(tSmC)的45nmCmoS工艺的数模转换器的芯片版图实例,让学生从当今业界实际制造芯片的角度学习和掌握版图设计的规则,同时切实感受到模拟版图和数字版图设计的艺术。

二、利用业界主流eDa工具,构建基于完整版图设计流程的实验体系

集成电路版图设计实验采用了Cadence公司的eDa工具进行版图设计。Cadence的eDa产品涵盖了电子设计的整个流程,包括系统级设计、功能验证、集成电路(iC)综合及布局布线、物理验证、pCB设计和硬件仿真建模模拟、混合信号及射频iC设计、全定制iC设计等。全球知名半导体与电子系统公司如amD、neC、三星、飞利浦均将Cadence软件作为其全球设计的标准。将业界主流的eDa设计软件引入实验教学环节,有利于学生毕业后很快适应岗位,尽快进入角色。

专业实验室配备了多台高性能Sun服务器、工作站以及60台供学生实验用的pC机。服务器中安装的Cadence工具主要包括:VerilogHDL的仿真工具Verilog-X、电路图设计工具Composer、电路模拟工具analogartist、版图设计工具VirtuosoLayoutediting、版图验证工具Dracula和Diva、自动布局布线工具preview和Siliconensemble。

Cadence软件是按照库(Library)、单元(Cell)、和视图(View)的层次实现对文件的管理。库、单元和视图三者之间的关系为库文件是一组单元的集合,包含着各个单元的不同视图。库文件包括技术库和设计库两种,设计库是针对用户设立,不同的用户可以有不同的设计库。而技术库是针对工艺设立,不同特征尺寸的工艺、不同的芯片制造商的技术库不同。为了让学生在掌握主流eDa工具使用的同时对版图设计流程有准确、深入的理解,安排针对无锡上华公司0.6um两层多晶硅两层金属(DoublepolyDoublemetal)混合信号CmoS工艺的一系列实验让学生掌握包括从电路图的建立、版图建立与编辑、电学规则检查(eRC),设计规则检查(DRC)、到电路图-版图一致性检查(LVS)的完整的版图设计流程[5]。通过完整的基于设计流程的版图实验使学生能较好地掌握电路设计工具Composer、版图设计工具VirtuosoLayouteditor以及版图验证工具Dracula和Diva的使用,同时对版图设计的关键步骤形成清晰的认识。

以下以CmoS与非门为例,介绍基于一个完整的数字版图设计流程的教学实例。

在CmoS与非门的版图设计中,首先要求学生建立设计库和技术库,在技术库中加载CSmC0.6um的工艺的技术文件,将设计库与技术库进行关联。然后在设计库中用Composer中建立相应的电路原理图(schematic),进行eRC检查。再根据电路原理图用VirtuosoLayouteditor工具绘制对应的版图(layout)。版图绘制步骤依次为moS晶体管的有源区、多晶硅栅极、moS管源区和漏区的接触孔、p+注入、n阱、n阱接触、n+注入、衬底接触、金属连线、电源线、地线、输入及输出。基本的版图绘制完成之后,将输入、输出端口以及电源线和地线的名称标注于版图的适当位置处,再在Dracula工具中利用几何设计规则文件进行DRC验证。然后利用GDS版图数据与电路图网表进行版图与原理图一致性检查(LVS),修改其中的错误并按最小面积优化版图,最后版图全部通过检查,设计完成。图1和图2分别给出了CmoS与非门的原理图和版图。

三、结束语

集成电路版图设计教学是电子科学与技术专业和相关电类专业培养应用型集成电路人才的重要环节,使学生巩固了集成电路电路原理、工艺和器件等理论知识,掌握了集成电路版图设计流程、方法和主流的eDa版图工具的使用,提高了学生的工程实践能力,同时培养了学生分析问题、解决问题的能力。随着集成电路飞速发展到纳米工艺,版图相关的新技术和设计规则不断涌现。因此,在今后的教学改革工作中,与时俱进,围绕先进的实际设计案例将课堂教学和设计应用紧密结合,构建集成电路版图设计的教学和实践体系,具有重要的意义。

参考文献:

[1]毛剑波,汪涛,张天畅.微电子专业集成电路版图设计的教学研究[J].中国电力教育,2012,(23):52-53.

[2]陆学斌.集成电路版图设计[m].北京:北京大学出版社,2012.

[3]DanClein.CmoS集成电路版图――概念、方法与工具[m].北京:电子工业出版社,2006.

集成电路设计工艺流程篇2

关键词:集成电路工艺;立体化教学;探索与实践

微电子技术是高科技和信息产业的核心技术,是伴随着集成电路(iC)发展起来的高新技术,对国民经济和国家安全有着举足轻重的战略作用。集成电路工艺作为电子科学与技术相关专业的专业课程,其任务是使学生掌握集成电路的主要工艺技术及相关原理,培养其自主解决工艺问题的能力。课程具有实践性强、理论与实践密切结合的特点,目前的教学存在强调理论、忽视实践的问题,学生害怕硬件,缺乏动手能力,不能扎实系统地掌握课程知识。本文对集成电路工艺的教学方法和教学内容进行了探讨,搭建了“理论―模拟―实践”的立体化教学平台,为大学教学改革提供参考。

一、目前课程存在的问题

1.教学模式的限制

在课程教学中,教学模式主要以理论授课为主,但是高等院校对微电子及集成电路专业的人才培养方式越来越强调对学生实践能力的培养,传统板书和多媒体ppt演示的教学方法已经无法满足与实验教学有机的结合。

2.教学资源的缺乏

要培养学生具备较好的动手能力及基本的科研素质,在集成电路工艺实验教学中,必须使用各种工艺设备,如扩散炉、退火炉、光刻机、刻蚀机等,这些设备仪器价格昂贵,购置和维护这些设备的费用远远超出了学校的承受能力,导致其中部分实验无法开设,降低了教学效果。

3.课程设置僵化

目前集成电路工艺的课程设置一般是采用理论教学和实验教学结合、理论教学和计算机模拟结合的形式,或者单独进行相关的课程设计,整个知识面不够系统,并且考核形式比较单一,不利于学生集成电路工艺设计和分析能力的提高。

二、立体化教学在课程中的实践

1.理论教学设计

集成电路工艺的基础知识所涉及的面较广,理论性较强,要求学生能够扎实掌握半导体原理和器件的相关知识,能够从前期的课程基础上解释工艺中出现的问题,如外延层构造及缺陷与器件性能间的联系、扩散参数与掺杂离子分布的联系等。所以,在教学内容的选择上突出交叉课程的相关性,将半导体原理和器件的内容融入工艺的教学内容中,有利于电子科学与技术专业学生对课程体系的整体掌握。

2.模拟仿真设计

tCaD(technologyCaD)即工艺计算机辅助设计已经在集成电路工艺中有着举足轻重的作用,广泛运用于工艺优化、控制以及设计优化中,不但可以通过模拟芯片制备的整个工艺流程节省实验成本,在实验前后以及进行过程中,可以随时观察各项数据,对实验过程和结果进行直观分析,从而使学生得到及时全面的认知,改善教学效果。对理论教学中的案例进行验证性和探究性模拟实验设计,可以进一步加强学生对知识的掌握程度。基于南通大学的SiLVaCo―tCaD的教学软件,同样以热扩散工艺为例,如下图所示,扩散深度随着扩散时间的增加而增加,可见在模拟实验中可以便捷地修改各项参数,灵活设计教学内容。

3.实验教学设计

实验作为教学的重要组成部分必须与理论教学相辅相成,必须能有效地促进学生对理论的理解,又要能在实验中应用相关理论,为学生获得新的理论知识打下良好的基础。目前集成电路工艺课程存在实验仪器贵重、精密、量少与实验人数多、实验时间短的供需矛盾,因此对于现有的设备一定要对实验参数进行正交设计,从全面实验中挑选出部分有代表性的点进行实验,注重高效率、快速、经济。

综上所述,在集成电路工艺课程中,建立理论授课―tCaD工艺模拟―工艺实验密切结合的立体化实验平台,不但能丰富课程的教学内容,而且能激发学生的学习兴趣,也能使学生更为扎实地掌握集成电路制备的整个流程和设计方式,增强动手能力,提升教学效果。

参考文献:

集成电路设计工艺流程篇3

 

1CDio工程教育理念

 

CDio工程教育模式,是由美国麻省理工学院、瑞典皇家工学院等四所大学共同创立的工程教育改革模式。是近年来国际工程教育改革的最新成果,CDio是构思(Conceive)、设计(Design)、实施(implement)、运作(operate)4个英文单词的缩写,以产品从研发到运行的生命周期为载体让学生以主动的、实践的、与课程之间有机联系的方式学习掌握知识&-4。迄今已有几十所世界著名大学加入了CDio国际组织,这些学校采用CDio工程教育理念和教学大纲开展教学实践,取得了良好的效果。

 

2存在的问题与课程建设思想

 

微电子技术研究的中心问题是集成电路的设计与制造,将数以亿计的晶体管集成在一个芯片上。微电子技术是信息技术的基础和支柱,是21世纪发展最活跃和技术增长最快的高新科技,其产业已超过汽车工业,成为全球第一大产业。微电子工艺课程主要介绍微电子器件和集成电路制造的工艺流程,平面工艺中各种工艺技术的基本原理、方法和主要特点。其课程建设思想是使学生对半导体器件和半导体集成电路制造工艺及原理有一个较为完整和系统的概念,掌握当前微电子芯片制作的工艺流程、主要设备、检测方法及其发展趋势^7]。

 

但目前该课程教学中存在较多问题,教学效果不佳,主要有如下几点:(1)教材陈旧,没有较适合的双语教材,难以适应跨国际的微电子制造工艺新技术的快速发展;(2)教学内容信息量大,在教学时间短、内容多的情况下,教师难以合理安排教学进度;(3)在课程设置上重理论轻实践,技术性和实践性的内容较少,与迅速发展的工业实际脱节;(4)教学方法单一,理论联系实际不紧密,不利于学生课堂积极性的提高与创造性的发挥“5)实践教学环境较差,由于微电子工艺设备十分昂贵,有待加强高校精密贵重仪器设备和优质实验教学资源共享平台和运行机制的建设;(6)教评形式单一,忽略了实践教学与考核,致使大多数学生只是死记硬背书本知识的学习方式来应付考试。

 

3微电子工艺的课程建设

 

3.1教材选取及教学内容改革

 

本课程教材选用经历了《芯片制造一半导体工艺制程实用教程》、《现代集成电路制造工艺原理》到目前的首选教材:国外电子与通信教材系列中,美国michaelQiurk和JulianSerda著《半导体制造技术》韩郑生的中文翻译本。该书不仅详细介绍芯片制造中的每一关键工艺,而且介绍了支持这些工艺的设备以及每一道工艺的质量检测和故障排除;并吸收了当今最新技术资料,如用于亚0.25pm工艺的最新技术:化学机械抛光、浅槽隔离以及双大马士革等工艺;内容丰富、全面、深入浅出、直观形象、思考习题量大,并附有大量的结构示意图、设备图和Sem图片,学生很容易理解,最主要的相对前两本教材,它更加突出实际工艺,弱化了较抽象的原理。

 

教学内容上采取调整部分章节,突出教学重点,并适当增减部分教学内容。本课程的目的是使学生掌握半导体芯片制造的工艺和基本原理,并具有一定的工艺设计和分析能力,课程仅32学时,而教材分20章,600页,所以教师需要精选课堂授课内容。从衬底制备、薄膜淀积、掺杂技术到图形加工光刻技术以及布线与组装,所涉及的概念比较多,要突出重点:薄膜淀积(氧化、蒸发、溅射、moCVD和外延等),光刻与刻蚀技术、掺杂技术,需章节调整系统整合;对非关键工艺的5~8章(介绍半导体制造中的化学药品、污染及缺陷等内容)只作为学生课后自学阅读。第2章的半导体材料特性已在“固体物理”课程中详细介绍,第3章的器件技术已在‘‘半导体物理“晶体管原理”课程中介绍,第20章装配与封装会在“集成电路封装与测试”课程中介绍,故无需重复讲解。将第9章集成电路制造工艺概况放在后面串通整过工艺讲解,即通过联系单项工艺流程,具体分析讲解典型的CmoS芯片制造工艺流程,如由n-moS和p-moS两个晶体管构成的CmoS反相器,这样能够加深对离子注入、化学气相淀积、光刻关键技术、集成电路的隔离技术以及VLSi的接触与互连技术等内容的理解。

 

另一方面,指导学生查阅相关资料,对教材内容作必要的补充,微电子工艺技术的发展迅速,因此需要随时跟踪微电子工艺的发展动态、技术前沿以及遇到的挑战。特征尺寸为45nm的集成电路已批量生产,高K介质/金属栅层叠结构、应变硅技术已采用。而现有的集成电路工艺教材很少能涉及到这些新技术,为了防止知识陈旧,应多关注集成电路工艺的最新进展,尤其是已经投入批量生产的工艺技术,及时将目前主流的工艺技术融入课程教学中。

 

3.2教学方法的改革

 

(1)开发多媒体工艺教学软件,利用多媒体技术,将动画、声音、图形、图像、文字、视频等进行合理的处理,利用大量二维和三维的多媒体图片、视频来展示和讲解复杂的工艺构造过程。开发图文声像并茂的微电子工艺多媒体计算机辅助教学软件,给学生以直观、清楚的认识,有助于提高教学质量。

 

(2)微电子工艺综合共享实验平台建设,集成电路的制造设备价格昂贵,环境条件要求苛刻,运转与维护费用很大,国内仅部分高校拥有集成电路工艺试验线或部分实验分析设备。按照有偿服务或互惠互利原则共享设备仪器资源,创建各院校之间和与企业之间的“微电子工艺综合共享实验平台”可极大的提高集成电路工艺及其实验课程教学效果,即解决了一些院校资金短缺问题,同时也部分补偿了大型设备的日常使用和维护费用问题。其综合共享实验平台包括金属有机化合物moCVD沉积技术、分子束外延、RF射频磁控溅射、XpS、XRD及aFm分析测试、光刻、离子注入等涉及投资巨大的仪器设备实验项目。

 

(3)拓展实践能力的校企合作,让学生带着理论知识走进企业的真实工程环境,探索利用企业先进的工艺线资源进行工艺实验教学与参观实习6-9]。参观实习能够使学生对集成电路的生产场地,超净环境要求具有深刻的感性认识,对单晶硅制造流程、芯片制造工艺过程以及芯片的测试和封装的了解也更加系统和全面。同时利用假期安排学生去企业实习,让学生参与企业的部分生产环节,亲身感受实际工艺生产过程,增加学生对企业的了解,也利于企业选拔优秀学生。

 

(4)工艺视频与工艺实验辅助教学,由于微电子工艺内容与生产密切结合,不能单靠抽象的书本知识教学,对于学生无法了解到的一些工艺实验与设备,可通过录像教学来补充。本学院购置了清华大学微电子所的集成电路工艺设备录像与多媒体教学系统,结合国外英文原版的工艺流程视频,通过工艺视频把实际工艺流程、设备和设备操作等形象地展示在课堂。多媒体教学系统提供了氧化、扩散和离子注入三项工艺设备操作模拟,可使学生身临其境地对所学的基本工艺进行简单的模拟。同时结合课堂教学开设半导体平面工艺实验,主要包括以:氧化、光刻、扩散、蒸铝、反刻、划片、装架、烧结、封装。实验以教师讲解与学生动手相结合,既培养了学生的实际动手能力,又使学生掌握了科学分析问题的方法,激发了学生的学习兴趣,加深学生对课堂理论知识的理解。

 

3.3多元化的考核评价体系

 

对学生的考核是对其具体学习成果的度量,也是检验教学改革成效的重要手段,为了更科学合理的考核学生,我们建立了多元化的更加注重过程参与的考试评价体系,降低了期末考试在总成绩中所占比例,最大限度避免学生靠死记硬背来应付考试和学生创新思维被抑制、高分低能现象产生。这种多元化、过程性的成绩评定方法,强调知识的积累与构建过程,消除了学生重理论轻实践,考前死记硬背应付考试的弊病。总评成绩由平时成绩和期末考试成绩两部分构成。但加大平时成绩的权重,平时成绩即包括了作业与考勤,还包括综合性实验成绩、设计仿真、国外工艺视频翻译、专题小论文和专题ppt论坛团队成绩等。同时在期末考题中增加openanswerquestion型、工艺过程设计型题目110-11。

 

4结语

集成电路设计工艺流程篇4

关键词:电路版图设计;电路分割设计;厚膜混合集成电路;厚膜工艺

中图分类号:tn710?34文献标识码:a文章编号:1004?373X(2014)04?0118?03

Circuitlayoutdesignbasedonthick?filmprocess

pUYa?fang

(ShaanxiHuaJingmicroelectronicsCo.,Ltd,Xi’an710065,China)

abstract:theprintedcircuitboard(pCB)technologyisappliedtocircuitdesigngenerally.ifitiscombinedwiththick?filmprocess,thecircuitlayoutdesign,inwhichthecomplicatedconnectionandmanydevicesaremountedinitslimitedroom,canbeimplemented.theoutstandingadvantagesofthethick?filmhybridcircuitweredemonstratedbytheoreticalanalysisofthreedefferentdesignschemesofcircuitlayoutdesign.itistheuniqueonewhichcanmeettherequirementofthecircuitdesignscheme.accordingtotheboundarydimensionrequirementofthecircuit,thecircuitperformanceanddeviceencapsulationmodewereconsideredthoroughly,andtherationalityandrealizabilityofthedesignschemewerevalidatedbyreasonablecircuitsegmentingdesignandlayoutdesign.theoutstandingsuperiorityofthick?filmprocesswasreflectedinthecircuitlayoutdesign.thedifficultythattheconventionalmethodsforcircuitlayoutdesigncouldnotovercomewassolvedeasily.

Keywords:circuitlayoutdesign;circuitsegmentingdesign;thick?filmhybridcircuit;thick?filmprocess

0引言

随着电子技术的飞速发展,对电子设备、系统的组装密度的要求越来越高,对电路功能的集成度、可靠性等都提出了更高的要求。电子产品不断地小型化、轻量化、多功能化。除了集成电路芯片的集成度越来越高外,电路结构合理的版图设计在体积小型化方面也起着举足轻重的作用。

1厚膜工艺技术简述

厚膜工艺技术是将导电带和电阻通过丝网漏印、烧结到陶瓷基板上的一种工艺技术[1]。

厚膜混合集成电路是在厚膜工艺技术的基础上,将电阻通过激光精调后,再将贴片元器件或裸芯片装配到陶瓷基板上的混合集成电路[2]。

厚膜混合集成电路基本工艺流程图见图1。

图1厚膜工艺流程图

厚膜工艺与印制板工艺比较见表1。

2电路版图设计

2.1设计要求

将电路原理图(图2,图3)平面化设计在直径为34mm的pCB板上(对电路进行分析后无需考虑相互干扰),外形尺寸图见图4。其中:序列号及电源为需要引出的引脚。

表1厚膜工艺与印制板工艺比较

图2原理图(1)

图3原理图(2)

图4外形尺寸图

2.2设计步骤

2.2.1分类清点电路中的元器件数量

分类清点电路中的元器件数量见表2。

表2元器件数量

2.2.2确定电路设计方案

根据电路原理图,对以下3个方案逐一进行分析:

(1)方案1:在印制板上双面布线

简单计算一下各种元器件所占面积:贴片电阻电容:4.8×46=220.8mm2;贴片二三极管:8.9×5=44.5mm2;

贴片集成电路:77×3+72=303mm2;贴片运算放大器:33.44×11=367.84mm2;电位器:38×4=152mm2;晶振:16mm2。

元器件的总面积:220.8+44.5+303+367.84+152+16=1104.14mm2≈11cm2。

印制板的可利用面积(单面):3.14×14.52=660.185mm2≈6.6cm2。

很显然,利用双面布局布线,印制板的面积远远满足不了设计的需要。另外,印制板为圆形,元件布局时面积的利用率更低。所以仅仅利用印制板的面积来进行平面化设计,理论上不可行。

(2)方案2:印制板上安装双列直插式厚膜电路模块

采用厚膜工艺和印制板工艺相结合的方法进行布局布线。首先将电路原理图进行合理分割,确定要利用厚膜工艺进行设计的那部分电路,剩余部分电路则布线到印制板上。用厚膜工艺的电路,在陶瓷基板上采用双面布线,组装贴片元器件,可以增大布线的面积。然而,为了和印制板结合起来,双列直插式厚膜电路模块的引出端数目需求较多,采用最多的引出脚数量,也满足不了印制板与厚膜电路电连接的需要。

若采用裸芯片元件进行布线,则必须采用金属全密封封装。由于金属外壳的存在,导致基片的面积变得更小,模块的引出端数目随之减少。另外,裸芯片的电路只能采用单面布线,这样不能满足元件放置的需要,更不可能实现布线的需求。

所以该方案也不可行。

(3)方案3:印制板上安装2个单列直插式厚膜电路模块

由方案1和方案2得知:

(1)必须在印制板上安装厚膜电路模块;

(2)采用2个单列直插式厚膜电路模块,且均采用双面布线。

2个单列直插式厚膜电路模块和1个双列直插式模块进行比较,虽然引出脚数目相等,但2个单列直插式电路比1个双列直插式电路的布线面积增大了1倍。对于圆形的印制板,将2个厚膜电路模块平行放置在直径上和与直径平行的最近位置,就可以保证厚膜电路模块和印制板之间的过渡线数目最多,且高度不会超过允许高度。经验证,这样的布局达到了厚膜电路模块和印制板上电路连接的需要,而且所有元件达到合理放置。

所以,方案3是可行的。

2.2.3电路版图设计过程[3?4]

根据印制板外形尺寸的要求,2个单列直插式厚膜电路模块的陶瓷基片分别选用32mm×16.5mm×0.8mm和30mm×16.5mm×0.8mm两种,根据电路的工作原理,对2个电路原理图进行合理分割,可调元器件和大体积元件放置在印制板上,不可调部分分别放置在两个陶瓷基片上,经过合理布图,陶瓷基板上pCB图分别见图5,图6。

图5厚膜电路1(正面和反面)

图6厚膜电路2(正面和反面)

红色为一次导体,浅绿色为介质,深蓝色,红色为一次导体,湖蓝色为介质,为二次导体,其余颜色为厚膜电阻,紫色为二次导体,其余颜色为厚膜电阻,共有13个引出脚。共有12个引出脚。

将两个厚膜电路模块按照厚膜电路的工艺进行封装完成后,作为印制板上的两个元器件,将其与厚膜电路模块外的元件在印制板上进行布局布线设计,即可完成整个电路的版图设计,并达到了设计要求。整个产品的印制板装配图见图7。

图7中,w1~w4为电位器,X为晶振,J1和J2分别为两块单列直插式厚膜电路模块。C2为片式钽电容,U7为So?8集成电路,R*为片电容,其余为引出脚。

图7印制板装配图

3结语

在电路版图的设计过程中,充分考虑到调试的需要,将需调试的元件和体积较大的元件放置在印制板上,无需调试的小体积元件放置在厚膜电路模块里,使得仅利用印制板难以完成的布图任务因巧妙利用厚膜工艺集成而大大缩小了产品的体积,从而实现了复杂电路体积小型化的目的,而且使产品美观,调试方便。

厚膜技术从早期应用在航空航天、卫星通信等领域,发展到现在的汽车、家用电器、音响设备等工业领域,无不说明厚膜工艺技术有着很好的发展前景和实用价值。

参考文献

[1]郑福元,周立飞,虎轩东.厚薄膜混合集成电路:设计、制造和应用[m].北京:科学出版社,1984.

[2]吕乃康,樊百昌.厚膜混合集成电路[m].西安:西安交通大学出版社,1990.

[3]崔玮.protel99Se电路原理图与电路板设计教程[m].北京:北京海洋出版社,2007.

[4]黄智伟.印制电路板(pCB)设计技术与实践[m].北京:中国工业出版社,2012.

集成电路设计工艺流程篇5

 

―、构建课程体系的总体思路

 

构建微电子技术专业课程体系的总体思路是以微电子行业职业岗位需求为依据,以素质培养为基础,以技术应用能力为核心,构建基于工作过程的课程体系。实施学院“四环相扣”的工学结合人才培养模式,将“能力标准、模块课程、工学交替、职场鉴定”的四个环节完整统一,环环相扣,充分体现了高职教育工学结合的人才培养思想,努力为社会培养优秀高端技能型人才。

 

1.行业、企业等用人单位调研。通过调研国内“成渝经济区”为主)微电子技术行业、企业等用人需求和要求,了解现有高职微电子技术专业学生就业情况、用人单位反馈意见及人才供需中存在的问题。电子信息产业是重庆市国民经济的第一支柱产业。重庆市“十二五”规划建议提出,培育发展战略性新兴产业。把新一代信息产业建设为重要支柱产业,建设全球最大的笔记本电脑加工基地、建设通信设备、高性能集成电路、光伏组件及系统、新材料等重点产业链(集群),建成国家重要的战略性新兴产业基地。以集成电路产业的重点项目为牵引,建成包括芯片制造、封装、测试、模拟及混合集成电路设计和制造等项目的产业集群,形成较为完善的集成电路产业链;四川电子信息产业未来5年将迈万亿元,成渝经济区将打造成西部集成电路的产业高地。随着惠普、富士康、英业达、广达集团等世界级的it巨头进入成渝,未来几年it人才需求在20万以上,而现在成渝地区每年培养的相关人才不过2万人左右,远远不能满足社会需求。市场需求的调查表明,近年来成渝地区iC制造、iC封装及测试、iC版图设计等岗位的微电子技术应用型人才紧缺。同时调研表明半导体行业企业却难以招到满意的人才,学生在校学非所用,用非所学,实践动手能力、社会适应能力、责任意识、职业素养难以满足企业要求。

 

2.基于工作过程的课程体系的理论基础。基于工作过程的课程体系的理论基础,主要从德国“双元制”职业教育学习论和教学论的角度阐述构建基于工作过程的课程体系的理论依据。工作过程系统化的课程体系必须针对职业岗位进行分析,整理出具体的、能够涵盖职业岗位全部工作任务的若干典型工作过程,按照人的职业能力的形成规律进行序列化,从中找出符合职业岗位要求的技术知识和破译出隐性的工作过程知识,并以工作任务为核心,组织技术知识和工作过程知识[2]。通过完全打破原有学科体系,按照企业实际的工作任务、工作过程和工作情境组织课程,形成围绕工作过程的新型教学项目的“综合性”课程开发。

 

3.形成专业定位,确定培养目标。根据存在的问题及半导体产业链过程:集成电路设计—裸芯片精细加工^封装测试—芯片应用—pCB设计制造,充分掌握现有微电子技术专业课程体系建设的基础及存在的问题,形成重庆电子工程职业学院微电子技术专业定位,确定培养目标:培养德、智、体、美全面发展;掌握微电子技术专业领域必备的基础知识、专业知识;有较强的岗位职业技能和职业能力;面向集成电路设计、芯片制造及其相关电子行业企业,满足生产、建设、服务和管理第一线的优秀高端技能型专门人才。毕业生应该既掌握微电子方面的基本技术,又具有很强的实际操作能力。具体可从事岗位:集成电路版图设计;半导体器件制造;iC制造、测试、封装;电子工艺(半导体)设备运行、维护与管理;简单电子产品的设计与开发;电子产品的销售与售后服务,并为技术负责人、项目经理等后续提升岗位奠定良好基础。

 

二、构建基于工作过程的学习领域课程体系

 

对专业核心课程的构建采用“微电子行业专家确定典型工作任务—学校专家归并行动领域—微电子行业专家论证行动领域—学校专家开发学习领域—校企专家论证课程体系”的“五步工作机制”,实现校企专家共同参与课程体系设计。通过工作任务归并法,实现典型工作任务到行动领域转换,通过工作过程分析法,实现从行动领域到学习领域转换,通过工作任务还原法,实现从学习领域到学习情境转换的“三阶段分析法”,构建基于工作过程的微电子技术专业课程体系和教学内容,获得人才培养目标、课程体系、课程教学方案“三项主要成果”。即“533”课程设计方法。

 

1.确定行动领域。工作过程系统化课程是按照工作过程要求序化知识、能力和素质,是以工作过程为参照物,将陈述性知识与过程知识整合、理论知识与实践知识整合,在陈述性知识总量没有变化的情况下,增加经验以及策略方面的“过程性知识”3]。对典型工作任务进行归纳,确定行动领域。将本专业52个典型工作任务归纳为6个行动领域,即集成电路版图设计、晶圆制造、集成电路芯片制造技术、芯片封装、芯片测试、Smt技术。

 

2.确定典型工作任务。所谓典型工作任务是指一个复杂的职业活动中具有结构完整的工作过程,它是职业工作中同类工作任务的归类,能表现出职业工作的内容和形式,并具有该职业的典型意义。我院召集企业专家和工作在一线的工程师、技术员,与学院的微电子技术专业教师一起,召开课程开发座谈会,进行微电子技术课程体系开发:以“集成电路(版图)设计—晶圆制造—封装测试—表面贴装”工作过程为主线,与行业企业一线技术骨干、专家解析微电子技术专业岗位中版图设计师、半导体芯片制造工、iC测试助理工程师、Smt工程师、FpGa助理工程师等典型岗位,得出行动领域所具有的专业素质、知识与能力。

 

3.将行动领域转化成学习领域。对完成典型工作任务必须具备的基本职业能力(包括社会能力、方法能力、专业能力)进行分析。通过归纳形成专业职业能力一览表。这些职业能力就是学习领域(即课程)中学习目标制定的依据。打破原有16门专业理论课程和9门实践课程组成的课程体系,按照以工作过程为导向,进行课程的解构与重构,将6个行动领域转换为9个学习领域,即集成电路版图设计、集成电路芯片制造技术、微电子封装与测试、表面贴装工艺与实施、电子线路板实用技术、电子测量仪器使用与维护、语言、单片机应用技术、FpGa应用技术及实践。根据微电子技术专业岗位群的职业能力和工作过程要求,重新构建基于工作过程的课程体系。第一、二学期:电路分析、电子技术等基础课程;第三、四、五学期:集成电路制造技术、电子测量仪器使用与维护、FpGa应用开发实用技术、微电子封装与测试、Smt技术、集成电路版图设计等专业核心课程。

 

4.形成学习情境模式。学习情境是实施基于工作过程系统化的行动导向课程的教学设计,由教师根据学校教学计划,结合学校的教学设施条件、教师执教能力和专长,由教师按照“资讯、计划、决策、实施、检查、评估”的行动方式来组织教学,从而促进学生对职业实践的整体性把握4]。微电子技术专业核心课程形成的学习情境模式为:①集成电路版图设计课程以任务为载体形成6个学习情境:n/pm0S晶体管版图设计、反相器、与非门、或非门版图设计、触发器版图设计、电压取样电路版图设计、比较器版图设计、DC-DC版图设计;②集成电路芯片制造技术课程以设备为载体形成8个学习情境:集成电路芯片制造技术工艺流程、硅晶圆制程、硅晶薄膜制备、氧化工艺、掺杂技术、光刻工艺、刻蚀工艺、集成电路芯片品检;③微电子封装与测试课程以工艺为载体形成4个学习情境:Dp封装、BGa封装、CSp封装、mCm封装;④表面贴装工艺与实施课程以工艺流程为载体形成5个学习情境:Smt工艺流程的基本认知、表面贴装生产准备、表面贴装设备操作与编程、表面贴装品质控制、Smt生产线运行及工艺优化5个学习情境;⑤电子线路板实用技术课程以项目为载体形成3个学习情境:单面板的制图与制板、简单双面板的制图与制板、复杂双面板的制图与制板;⑥电子测量仪器使用与维护课程以电路设备为载体形成9个学习情境:收音机元件准备、收音机电路测试、收音机电路工作状态检测、收音机整机调整、收音机装调使用仪器的保养与维护、电视机元件检测、电视机电路检测、电视机的质量检查、电视机装调使用仪器的保养与维护;⑦C语言课程以项目为载体形成6个学习情境:编程的基本概念、C语言上机步骤C语言上机步骤、算法的概念、基本数据类型、结构化程序设计、函数的概念;⑧单片机技术及应用课程以任务为载体形成6个学习情境““跑马灯”电路分析与实践、单片机做算术、逻辑运算并显示、开关信号状态读取与显示电路的制作、交通信号灯电路的设计与制作、产品数量统计电路的设计与制作、两台单片机数据互传;⑨FpGa应用技术及实践课程以项目为载体形成6个学习情境:课程概述、基于Qualusii的原理图输入设计、宏功能模块应用、基于Quarusii软件的VHDL文本输入设计、VHDL设计、实用状态机设计。

 

三、试点实施效果分析

 

在教学实施上,重点是加强教师执教能力:教师在教学中的角色应由主宰者转化为引导者。教师应该主动地引导、疏导和指导学生,学生可以根据自己的兴趣爱好,在教师的指导下,充分利用各种资源,相互协作开展对某一问题的学习探讨,从而获得新知识,得到探索的体验及情感,促进能力全面发展。经过我院近3年的教学实践,课程教学效果得到显著提高,学生专业核心能力、岗位适应能力、社会能力显著提高,“双证书”提高到100%,专业对口率从原来的48%上升到92%,用人单位满意度达90%以上。

 

高职院校在办学过程中要形成特色鲜明的高职办学模式,课程体系是重要的载体。办学特色正是通过课

 

程体系的实施来实现的。基于工作过程系统化的课程体系,跟随产业的发展,调整专业的课程设置,符合职业岗位要求,学生技能显著提升,同时结合我院的办学特色,努力探索基于工作过程的高职微电子技术专业课程体系的构建思路和构建策略。

 

参考文献:

 

[1]姜大源.关于工作过程系统化课程结构的理论基础〇].职教通讯,2006,(1).

 

[2]余国庆职业教育项目课程的几个关键问题ffl.中国职业技术教育,2007,(4).

 

[3]首珩,周虹基于工作过程的课程体系开发与实施m职教论坛,2008,(9).

 

[4]姜大源,吴全全当代德国职业教育主流教学思想研究[m].北京:清华大学出版社,2007.

集成电路设计工艺流程篇6

【关键词】电子工艺pRoteL软件pCB板Smt技术

电子工艺技能包括传统手工电子产品制作和利用计算机软件进行电子产品制作两大类。我校自1999年开始招收电子、电气专业的高职学生,至今已有10届毕业生。现有多名毕业生工作在电子行业的企业中,而且人才市场上很多企业对此具备电子工艺技能的毕业生需求量越来越大。我们的学生很受用人单位的欢迎,他们到企业后能很快担当起专业和技术管理工作。电子工艺实训作为重要的实训内容,对培养学生严谨的工作作风,很强的动手能力起到了极大的推动作用。

总结这几年来教学改革,特别是在加强实践性教学改革方面有很多好的经验,主要体现在以下几个方面:

1在注重理论学习的基础上,加强实践能力培养

电子工艺实习中焊接技术训练是一项重要的内容,以前的实习时间安排为两周,除了其他课题训练,焊接训练只有三四天的时间,很多学生手工焊接技术只达到一般水平,为了实现以市场为导向培养人才的目的,只有狠抓基础技能训练,将以前的电子工艺实习由两周改为三周,加长焊接技术训练时间,在训练内容上进行了调整,每人进行完基础焊接训练后,增加了一些焊接训练考核,并结合每年的学院科技艺术节,学生自己设计艺术图形后参加焊接比赛,比赛成绩由作品艺术性和焊接工艺两部分组成,评出奖项。增强了学生积极参与电子工艺技能训练方面的积极性,效果很好。

2通过参加大赛促进教学,检验教学效果

力求以职业技能大赛引领实践教学。自2009年以来,我校非常重视组织和参加省市各级大赛。学院每年通过选拔选手参加山东省和淄博市组织的各种职业院校技能大赛等活动,激发了学生的参与技能训练的积极性。2009年、2010年和2013年在山东省职业院校技能大赛高职组“嵌入式电子产品设计与制作大赛”中均取得了良好的成绩。

3将课程设计与电子工艺实训相结合,缩短理论与实践的距离

3.1与课程设计相结合

以往的课程设计是在学习完《模拟电子技术》和《数字电路》之后进行,与电子工艺实训是无任何关系的,教师出设计课题,学生进行设计。很多学生认为电子课程设计没有什么用,经常出现互相抄袭的现象。为调动同学们设计的积极性,我们将教学计划进行了调整,将电子课程设计与电子工艺实训相结合,即学生根据自己的兴趣选择课题进行课程设计,然后紧接着进行电子工艺实习,要求学生将设计的内容能通过实习后做出成品,这样就能大大调动了学生课程设计和电子实习的积极性。从课程设计开始同学们就积极选课题,设计完成后,再利用所学的计算机辅助设计软件protel和印制板快速制作系统制作出印刷板图,然后焊接安装、调试。经过三个年级的教学试验,取得了非常好的效果。

3.2与理论课程相结合

《电力电子技术》课程中,在“交流-交流变流电路”一章中讲解交流可控整流电路时,同学们对理解晶闸管的交流可控整流原理理解有一定的难度。我们选用了“调光台灯电路的制作”内容,此电路具有电路简单、实用性强的特点。同学们在电子工艺实训中,经过自己设计、制作pCB板,安装、焊接,调试等工序,不但掌握了晶闸管的交流可控整流原理,而且极大地调动了学习的积极性、主动性,收到了良好的教学效果。

4引进先进实习设备工艺,使电子实训更趋向专业化

学院近几年来投入大量资金,改善校内实训条件,近几年电子工艺实训室新上了线路板制作机、返修台、转印机、视频钻等先进设备,为教学创造了更好地条件。

毋庸置疑,以高可靠、高性能、高集成、微型化、轻型化为特点的电子产品,正在不断改变着人们的生活。电子产品的集成化和微型化是当代电子科学技术革命的重要标志,也是未来发展的方向。而这一切归因于元器件安装工艺的改革。表面贴装技术(Smt),是实现电子产品微型化和集成化的关键。学院为了提高电子实习的水平,学校在考察了此技术的可行性后,从清华大学教学仪器厂购买了一套Smt表面贴装实习系统和一套印制板快速制作系统。通过Smt实习使学生了解了Smt的特点,熟悉了它的基本工艺过程,在较短的几天时间内掌握了基本的操作技能,并利用该系统亲手完成了Fm收音机的制作。被同学们称赞为“复杂设备简单化,神秘工艺表面化”。通过实习使学生基本掌握了此项技术。

5校企联合,培养应用型人才

在进行校内电子工艺实习改革的同时,我们从01级开始每年选拔一批优秀学生到清华大学电子实习基地进行三个月实习,许多同学因成绩优异被清华大学教学仪器厂录用。其他同学也被各大电子企业录用。

通过几年来以上几各方面的不断改革,使学生的专业水平有了一个质的提高,使我们的毕业学生更加贴近当前用人市场,由于这几年来电子工艺的新技术、新产品层出不穷,就要求我们教学要紧跟专业发展,实时更新知识,在教学方法和手段上也要实时更新,探索新的教学模式。我们今后仍应继续努力,为社会培养出具有更多更好高素质高技能的专业人才。

参考文献:

集成电路设计工艺流程篇7

摘要:复旦大学微电子学专业拥有悠久的历史,形成了“基础与专业结合,研究与应用并重,创新人才培养国际化”特色。在教育部第二批高等学校特色专业建设中,通过课程体系的完善、课程建设及培养方法的改进和创新两方面的努力,复旦大学微电子学专业的特色得到挖掘和拓展。

关键词:特色专业建设;复旦大学;微电子学;创新人才培养

复旦大学“微电子学与固体电子学”学科有半个多世纪的深厚积累。20世纪50年代,谢希德教授领导组建了全国第一个半导体学科,培养了我国首批微电子行业的中坚力量。60年代研制成功我国第一个锗集成电路。1984年,经国务院批准设立微电子与固体电子学学科博士点,1988年、2001年、2006年被评为国家重点学科。所在一级学科于1998年获首批一级博士学位授予权,设有独立设置的博士后流动站和长江特聘教授岗位,建有“专用集成电路与系统”国家重点实验室,1998年和2003年被列入“211”工程建设学科,2000年被定为“复旦三年行动计划”重中之重学科得到学校重点支持,2005年获“985工程”二期支持,建设“微纳电子科技创新平台”。

长期以来复旦大学微电子学教学形成了“基础与专业结合,研究与应用并重,创新人才培养国际化”特色。近年来,在教育部第二批高等学校特色专业建设中,我们根据国家和工业界对集成电路人才的要求,贯彻“国际接轨、应用牵引、注重质量”的教学理念,制定了复旦大学“微电子教学工作三年计划大纲”并加以实施,在高端创新人才培养方面对专业教学的特色开展了深层的挖掘和拓展。

一、课程体系的完善和课程建设

微电子技术的高速发展要求微电子专业课程体系在相对固定的框架下不断加以更新和完善。

我们设计了“复旦大学微电子学专业本科课程设置调查表”,根据对于目前工作在企业、大学和研究机构的专业人士的调查结果,制定了新的微电子学本科培养方案。主要修改包括:

(1)加强物理基础、电路理论和通信系统课程。微电子学科,特别是系统芯片集成技术,是融合物理、数学、电路理论和信息系统的综合性应用学科。因此,在原有课程基础上,增加了有关近代物理、信号与通信系统、数字信号处理等课程,使微电子学生的知识覆盖面更宽。

(2)面向研究、应用和学科交叉的需要,增加专业选修课程。如增加了电子材料薄膜测试表征方法、射频微电子学、铁电材料与器件、perl语言、计算微电子学、实验设计及数据分析等课程,为本科生将来进一步从事研究和应用开发打下基础。

(3)强调能力和素质训练,高度重视实验教学。开设了集成电路工艺实验、集成电路器件测试实验、集成电路可测性设计分析实验及专用集成电路设计实验等从专业基础到专业的多门实验课。

在课程体系调整完善的同时,还对于微电子专业基础课和专业必修课开展了新一轮的课程建设。包括:

(1)精品课程的建设。几年来,半导体物理、集成电路工艺原理、数字集成电路设计经过建设已经获得复旦大学校级精品课程。其中半导体物理和集成电路工艺原理课程获得学校的重点资助,正在建设上海市精品课程。另有半导体器件原理和模拟集成电路设计正在复旦大学校级精品课程建设之中,有望明年获得称号。

(2)增加全英语教学和双语教学课程。为了满足微电子技术的高速发展和学生尽快吸收、学习最新知识的需求,贯彻落实教育部“为适应经济全球化和科技革命的挑战,本科教育要创造条件使用英语等外语进行公共课和专业课教学”的要求,在本科生专业课的教学中新增全英语教学课程3门,双语教学课程4门。该类专业课程的开设也为微电子专业的国际交流学生提供了选课机会。

(3)教材建设。为了配合课程体系的完善和补充更新专业知识,除了选用一些国际顶级高校的教材之外,还依据我们的课程体系组织编写了一系列专业教材和论著。有已经出版的《深亚微米FpGa结构与CaD设计》、《modernthermodynamics》、《现代热力学-基于扩展卡诺定理》,列入出版计划的《半导体器件原理》、《超大规模集成电路工艺技术》和《计算机软件技术基础》。另外根据课程体系的要求对实验用书也进行了更新。

为了传承复旦微电子学的丰富教学经验和保证教学质量,建立了完备的教学辅导制度,如课前试讲、课中听课及聘请经验丰富的退休老教师与青年教师结对子辅导等。每学期听课总量和被听课教师分别均超过所授课程和任课教师人数的50%以上。对所有听课结果进行了数据分析,并反馈给任课教师,为教师改进教学提供了有益的帮助。在保证教学内容的情况下,鼓励教师尝试新的教学手段,实现所有必修课程的电子化,建立主要必修课程的网页,完全公开提供所有课件信息,部分课件获得超过15000次的下载量。青年教师还独创了“移动课堂”的授课新方法,该方法能够完整复制课堂教学,既能高清晰展示教学课件的内容,又能把教师课上讲解的声音、动作及临时板书全部包含在内,能够使用大众化的多媒体终端进行播放,随时随地完美重现课堂讲解全过程。

通过国际合作的研究生项目及教师出国交流,复旦大学微电子学专业教师的教学水平得到进一步提升。在研究生的联合培养项目(如复旦-tUDelft硕士生项目、复旦-KtH硕士生/博士生项目等)中海外高校教师来到复旦全程教授所有课程,复旦配备青年教师跟班听课和担任课程辅导。这使得青年教师的授课理念、授课方式及授课水平都有大幅提高。同时,由于联合培养项目及其他合作项目,复旦的青年教师也被邀请参与海外高校的教学,担任对方课程的主讲,青年教师利用交流的机会,引进海外高校的一些课程用于补充复旦微电子的培养方案。这些都为集成电路专业特色的挖掘和拓展起到重要的作用。

经过几年的努力,微电子专业的教学水平普遍得到提升,在教学评估中得到各个方面的好评。

二、培养方法的改进和创新

培养适应时代要求的微电子专业创新人才也需要在培养方法上加以改进和创新。

针对微电子工程的特点,在坚持扎实的理论的基础上,强调理论联系实际,开展实践能力训练。在学校的支持下,教学实验室环境得到及时更新,几个方面的实验教学在国内形成特色。

(1)本科的集成电路工艺实验可以在学校自己的工艺线上完成芯片的清洗、氧化、扩散、光刻、蒸发、腐蚀等基本工艺制作步骤,为学生完整掌握集成电路制造的基本能力提供了很好的实际训练。

(2)在集成电路测试方面,结合自动化测试机台(安捷伦SoC93000ate),开设了可测性设计课程,附带实验。

(3)集成电路设计课程都附带课程项目实践,培养了学生实际设计能力和素质,取得很好效果。

通过课程教学训练学生创新思维和分析问题的能力。尝试开设了部分本科生和研究生同时共同选修的研讨型课程。在课程学习的过程中,本科生不仅可以得到研究生的指导,在课堂上就某些课程内容进行探究,还可以在开展课程设计时在小组内和研究生同学共同开展小型项目研究,对于提高本科生进一步学习微电子专业的兴趣和培养他们发现问题解决问题的能力有很大的帮助。

参加科研无疑是培养学生创新能力的一个最为有效的途径。配合复旦大学的要求,微电子学专业在本科阶段,持续设置多种科研计划,给予本科生进实验室开展科研以支持。

(1)大一的“启航”学术体验计划。计划鼓励大一学生在感兴趣的领域进行探究式学习和实践,为学生打造一个培养创新意识,锻炼学术能力的资源平台。“启航”学术体验计划的所有学术实践项目均来自各个微电子专业的导师,学生通过对感兴趣的项目进行申报与自荐的形式申请加入各学术实践小组。引导学生领略学科前沿,体验研究乐趣。

(2)二、三年级曦源项目。项目建立在学生自主学习和创新思想的基础上,鼓励志同道合的同学组成研究团队,独立提出研究方向,寻找合适的指导教师。加入自己感兴趣的研究方向的团队。在开放课题列表中寻找合适的课题方向,并向该课题指导教师进行申请。还有更多的学生在大三甚至更早就进入各个研究小组,参与教授领导的各类部级、省部级项目及来自企业、海外等的合作项目的研究。在完成的计划和项目成果之外,学生们还在收集文献资料、获取信息的能力,发现问题、独立思考的能力,运用理论知识解决实际问题的能力,设计和推导论证、分析与综合的能力,科学实验、发明创造的能力,写作和表说的能力等方面,都有不同的收获。

通过学生参加国际交流活动及外籍教师讲授课程给学生提供国际化的培养,提供层次更高、路径多元的培养方案,培养了学生的国际化眼光,开拓了学生的培养渠道。

几年来,微电子学专业学生的出国交流人数逐年增长,从2008年起,共有20位本科生赴国外多个高校交流学习。交流的项目包括双学位、长学期和暑期项目等,交流时间从3个月到2年不等,交流学校包括美国(耶鲁、UCLa等)、欧洲(伯明翰、赫尔辛基等)、日本(早稻田、庆应等)及我国港台高校。大多数同学在交流期间的学习成绩达到交流学校的优秀等级,同时积极参加交流学校教授小组的科研工作,得到了很好的评价。个别同学由于表现优异在交流结束回国后被对方教授邀请再次前去完成毕业论文;也有同学交流期间)参加国际级大师的科研小组工作,获益匪浅,直研后表现出强于一般研究生的科研能力。可以看到,国际交流不仅为同学们提供了专业知识和研究能力的不同培养模式,也为他们提供了更加广阔的视野和体验多种文化的机会,为他们今后的发展和进步打下了很好的基础。自特色专业建设以来,每学期均新开设“前沿讲座”课程,课程内容不固定,授课人为聘请的海外教师,有的来自海外高校,有的来自海外企业,课程均为全英语课程或双语教学课程。这类课程直接引进了海外高校的课程和教学方式,不仅学生受益,同时也培养了复旦微电子专业的青年教师。企业还提供与课程内容直接相关的软件,在改善教学环境的同时,还为学生参加科研提供了培训。

经过2年多特色专业项目的建设,复旦微电子学专业在巩固已有教学特色基础上,在高端创新人才培养方面进行了深层的挖掘和拓展,取得了一系列的成果。

通过以上各方面的努力,集成电路特色专业方向的本科生培养体系更加完善,成为培养具备集成电路研发能力的高端人才与工程师的优质基地,正在努力实现为学术界和产业界培养具有前瞻性、综合素质高、创新能力强、实现能力强和具有国际竞争力的高层次集成电路研发人才与产业工程师的目标。

集成电路设计工艺流程篇8

【关键词】版图;集成电路;反向设计

1反向设计流程

反向设计流程见图1所示,主要就是把待分析芯片转换成电路图和版图的过程。

1.1芯片解剖拍照

我们所看到的照片图形是氧化层刻蚀形成的轨迹。每个物理层看到的图形就是芯片通过解剖、染色、去层后得到逆向设计所需的图形信息,然后用光学显微镜摄取芯片图形信息再进行拼接对准。国内外有多家能够提供完整解剖和电路提取的反向设计服务的公司。图2所示就是某反向设计服务公司将芯片解剖拍照后的数据。

图1图2

1.2芯片网表提取

因为反向设计是一种自底向上的设计方法,所以芯片网表数据的提取质量显得尤其重要,初始数据的正确率直接影响电路整理、分析、物理验证。为了得到高准确率的网表,一般会安排两组工程师分别独立对网表数据进行提取。在两组工程师完成网表提取后分别进行电学规则检查以提高正确率,最后再进行网表对比验证(SVS)。图3为已经提取完成的部分芯片网表

1.3芯片电路分析整理

将通过验证的网表通过eDiF、VeRiLoG、SpiCe等格式导入eDa设计工具进行电路图的分析整理。图3左边为网表通过eDiF格式导入,我们得到的是一个平层的网表数据,电路整理是把平层的电路进行层次化整理,形成一个电路的层次化结构,以便理解设计者的思路与技巧。图3右边所示为经过整理的电路图。

图3图4

1.4芯片电路仿真

根据新的工艺调整电路器件参数,将已经层次化的电路图,通过仿真工具例如Hspice、Spectre、Hsim等eDa工具对电路模块功能进行仿真验证。

1.5芯片版图绘制

根据新的工艺文件绘制通过功能仿真验证的电路版图,使用Dracula、assura、Calibre(图5)等软件进行DRC、LVS、eRC验证。

图5

1.6系统后仿真

完成版图总体布局布线后,用eDa工具进行寄生参数提取把提取的网表进行仿真验证,并将结果与前仿真结果做对比。对影响电路性能的寄生参数进行电路或者版图的调整。最后优化版图及数据tapeoUt。

2总结

本文浅析了集成电路反向设计流程,从实例中列举说明反向设计流程,介绍每一个步骤主要的实现方法。不少人认为集成电路反向设计已经严重影响微电子产业的发展,其实不然,不同工艺的设计规则要使其兼容需要花大量的时间修改。反向并不只意味着抄袭,在原有的电路结构上理解分析以及优化后最终实现相同的或更优的功能电路。

集成电路设计工艺流程篇9

预计在未来10到20年,微电子器件抗辐射加固的重点发展技术是:抗辐射加固新技术和新方法研究;新材料和先进器件结构辐射效应;多器件相互作用模型和模拟研究;理解和研究复杂3-D结构、系统封装的抗辐射加固;开发能够降低测试要求的先进模拟技术;开发应用加固设计的各种技术。本文分析研究了微电子器件抗辐射加固设计技术和工艺制造技术的发展态势。

2辐射效应和损伤机理研究

微电子器件中的数字和模拟集成电路的辐射效应一般分为总剂量效应(tiD)、单粒子效应(See)和剂量率(DoesRate)效应。总剂量效应源于由γ光子、质子和中子照射所引发的氧化层电荷陷阱或位移破坏,包括漏电流增加、moSFet阈值漂移,以及双极晶体管的增益衰减。See是由辐射环境中的高能粒子(质子、中子、α粒子和其他重离子)轰击微电子电路的敏感区引发的。在p-n结两端产生电荷的单粒子效应,可引发软误差、电路闭锁或元件烧毁。See中的单粒子翻转(SeU)会导致电路节点的逻辑状态发生翻转。剂量率效应是由甚高速率的γ或X射线,在极短时间内作用于电路,并在整个电路内产生光电流引发的,可导致闭锁、烧毁和轨电压坍塌等破坏[1]。辐射效应和损伤机理研究是抗辐射加固技术的基础,航空航天应用的SiGe,inp,集成光电子等高速高性能新型器件的辐射效应和损伤机理是研究重点。研究新型器件的辐射效应和损伤机理的重要作用是:1)对新的微电子技术和光电子技术进行分析评价,推动其应用到航空航天等任务中;2)研究辐射环境应用技术的指导方法学;3)研究抗辐射保证问题,以增加系统可靠性,减少成本,简化供应渠道。研究的目的是保证带宽/速度不断提升的微电子和光(如光纤数据链接)电子电路在辐射环境中可靠地工作。图1所示为辐射效应和损伤机理的重点研究对象。研究领域可分为:1)新微电子器件辐射效应和损伤机理;2)先进微电子技术辐射评估;3)航空航天抗辐射保障;4)光电子器件的辐射效应和损伤机理;5)辐射测试、放射量测定及相关问题;6)飞行工程和异常数据分析;7)提供及时的前期工程支持;8)航空辐射效应评估;9)辐射数据维护和传送。

3抗辐射加固设计技术

3.1抗辐射加固系统设计方法

开展抗辐射加固设计需要一个完整的设计和验证体系,包括技术支持开发、建立空间环境模型及环境监视系统、具备系统设计概念和在轨实验的数据库等。图2所示为空间抗辐射加固设计的验证体系。本文讨论的设计技术范围主要是关于系统、结构、电路、器件级的设计技术。可以通过图2所示设计体系进行抗辐射加固设计:1)采用多级别冗余的方法减轻辐射破坏,这些级别分为元件级、板级、系统级和飞行器级。2)采用冗余或加倍结构元件(如三模块冗余)的逻辑电路设计方法,即投票电路根据最少两位的投票确定输出逻辑。3)采用电路设计和版图设计以减轻电离辐射破坏的方法。即采用隔离、补偿或校正、去耦等电路技术,以及掺杂阱和隔离槽芯片布局设计;4)加入误差检测和校正电路,或者自修复和自重构功能;5)器件间距和去耦。这些加固设计器件可以采用专用工艺,也可采用标准工艺制造。

3.2加固模拟/混合信号ip技术

最近的发展趋势表明,为了提高卫星的智能水平和降低成本,推动了模拟和混合信号ip需求不断增加[2]。抗辐射加固模拟ip的数量也不断增加。其混合信号ip也是相似的,在高、低压中均有应用,只是需在不同的代工厂加工。比利时imeC,iCsense等公司在设计抗辐射加固方案中提供了大量的模拟ip内容。模拟ip包括抗辐射加固的pLL和a/D转换器模块,正逐步向软件控制型混合信号SoCaSiC方向发展。该抗辐射加固库基于XFab公司180nm工艺,与台积电180nm设计加固ip库参数相当。tiD加固水平可以达到1kGy,并且对单粒子闭锁和漏电流增加都可以进行有效加固。

3.3SiGe加固设计技术

SiGeHBt晶体管在空间应用并作模拟器件时,对总剂量辐射效应具有较为充分和固有的鲁棒性,具备大部分空间应用(如卫星)所要求的总剂量和位移效应的耐受能力[3]。目前,SiGeBiCmoS设计加固的热点主要集中在数字逻辑电路上。See/SeU会对SiGeHBt数字逻辑电路造成较大破坏。因此,这方面的抗加设计技术发展较快。对先进SiGeBiCmoS工艺的逻辑电路进行See/SeU加固时,在器件级,可采用特殊的C-B-eSiGeHBt器件、反模级联结构器件、适当的版图结构设计等来进行See/SeU加固。在电路级,可使用双交替、栅反馈和三模冗余等方法进行加固设计。三模冗余法除了在电路级上应用外,还可作为一种系统级加固方法使用。各种抗辐射设计获得的加固效果各不相同。例如,移相器使用器件级和电路级并用的加固设计方案,经过Let值为75meV•cm2/mg的重粒子试验和标准位误差试验后,结果显示,该移相器整体抗SeU能力得到有效提高,对SeU具有明显的免疫力。

4抗辐射加固工艺技术

目前,加固专用工艺线仍然是战略级加固的强有力工具,将来会越来越多地与加固设计结合使用。因为抗辐射加固工艺技术具有非常高的专业化属性和高复杂性,因此只有少数几个厂家能够掌握该项技术。例如,单粒子加固的Soi工艺和SoS工艺,总剂量加固的小几何尺寸CmoS工艺,iBm的45nmSoi工艺,Honeywe1l的50nm工艺,以及Bae外延CmoS工艺等。主要的抗辐射加固产品供应商之一atmel于2006年左右达到0.18μm技术节点,上一期的工艺节点为3μm。atmel的RtCmoS,RtpCmoS,RHCmoS抗辐射加固专用工艺不需改变设计和版图,只用工艺加固即可制造出满足抗辐射要求的军用集成电路。0.18μm是atmel当前主要的抗辐射加固工艺,目前正在开发0.15μm技术,下一步将发展90nm和65nm工艺。atmel采用0.18μm专用工艺制造的iC有加固aSiC、加固通信iC、加固FpGa、加固存储器、加固处理器等,如图3所示。

5重点发展技术态势

5.1美国的抗辐射加固技术

5.1.1加固设计重点技术

美国商务部2009年国防工业评估报告《美国集成电路设计和制造能力》,详细地研究了美国抗辐射加固设计和制造能力[4]。拥有抗辐射加固制造能力的美国厂商同时拥有抗单粒子效应、辐射容错、抗辐射加固和中子加固的设计能力。其中,拥有抗单粒子效应能力的18家、辐射容错14家、辐射加固10家,中子加固9家。iDm公司是抗辐射加固设计的主力军,2006年就已达到从10μm到65nm的15个技术节点的产品设计能力。15家公司具备10μm~1μm的设计能力,22家公司具备1μm~250nm的设计能力,24家公司具备250nm~65nm设计能力,7家公司的技术节点在65nm以下,如图5所示。纯设计公司的抗辐射加固设计能力较弱。美国iDm在设计抗辐射产品时所用的材料包括体硅、Soi,SiGe等Si标准材料,和蓝宝石上硅、SiC,Gan,Gaas,inp,锑化物、非结晶硅等非标准材料两大类。标准材料中使用体硅的有23家,使用Soi的有13家,使用SiGe的有10家。使用非标准材料的公司数量在明显下降。非标材料中,Gan是热点,有7家公司(4个小规模公司和3个中等规模公司)在开发。SiC则最弱,只有两家中小公司在研发。没有大制造公司从事非标材料的开发。

5.1.2重点工艺和制造能力

美国有51家公司从事辐射容错、辐射加固、中子加固、单粒子瞬态加固iC产品研制。其中抗单粒子效应16家,辐射容错15家,抗辐射加固12家,中子加固8家。制造公司加固iC工艺节点从10μm到32nm。使用的材料有标准Si材料和非标准两大类。前一类有体硅、Soi和SiGe,非标准材料则包括蓝宝石上硅,SiC,Gan,Gaas,inp,锑化物和非晶硅(amorphous)。晶圆的尺寸有50,100,150,200,300mm这几类。抗辐射加固产品制造可分为专用集成电路(aSiC)、栅阵列、存储器和其他产品。aSiC制造能力最为强大,定制aSiC的厂商达到21家,标准aSiC达到13家,结构化aSiC有12家。栅阵列有:现场可编程阵列(FpGa)、掩膜现场可编程阵列(mpGa)、一次性现场可编程阵列(epGa),共19家。RF/模拟/混合信号iC制造商达到18家,制造处理器/协处理器有11家。5.1.3RF和混合信号SiGeBiCmoS据美国航空航天局(naSa),SiGe技术发展的下一目标是深空极端环境应用的技术和产品,例如月球表面应用。这主要包括抗多种辐射和辐射免疫能力。例如,器件在+120℃~-180℃温度范围内正常工作的能力。具有更多的SiGe模拟/混合信号产品,微波/毫米波混合信号集成电路。系统能够取消各种屏蔽和专用电缆,以减小重量和体积。德国iHp公司为空间应用提供高性能的250nmSiGeBiCmoS工艺SGB25RH[5],其工作频率达到20GHz。包括专用抗辐射加固库辐射试验、aSiC开发和可用ip。采用SGB13RH加固的130nmSiGeBiCmoS工艺可达到250GHz/300GHz的ft/fmax。采用该技术,可实现SiGeBiCmoS抗辐射加固库。

5.2混合信号的抗辐射加固设计技术

如果半导体发展趋势不发生变化,则当iC特征尺寸向90nm及更小尺寸发展时,混合信号加固设计技术的重要性就会增加[6]。设计加固可以使用商用工艺,与特征尺寸落后于商用工艺的专用工艺相比,能够在更小的芯片面积上提高iC速度和优化iC性能。此外,设计加固能够帮助设计者扩大减小单粒子效应的可选技术范围。在20~30年长的时期内,加固设计方法学的未来并不十分清晰。最终数字元件将缩小到分子或原子的尺度。单个的质子、中子或粒子碰撞导致的后果可能不是退化,而是整个晶体管或子电路毁坏。除了引入新的屏蔽和/或封装技术,一些复杂数字电路还需要具备一些动态的自修复和自重构功能。此外,提高产量和防止工作失效的力量或许会推动商用制造商在解决这些问题方面起到引领的作用。当前,没有迹象表明模拟和RF电路会最终使用与数字电路相同的元件和工艺。因此,加固混合信号电路设计者需要在模拟和数字两个完全不同的方向开展工作,即需要同时使用两种基本不同的iC技术,并应用两种基本不同的加固设计方法。

6结束语

集成电路设计工艺流程篇10

关键词:大飞机;线缆检测;自动化;LRU

1概述

在国外,随着计算机控制技术和集成检测技术的飞速发展,将飞机制造数字化装配、自动化检测推向了一个新的高度。空客、波音、洛克希德・马丁等领先的航空制造企业,在全机线缆检测方面已经没有采用人工方式完成的方法。高效、快捷、更为可靠的全机线缆自动化集成检测技术被广泛采用。军用飞机方面欧洲的a400m、美国的F-22、F-35飞机,民机方面波音的787飞机、空客的a-350、a-380等飞机在总装配检测站位都采用自动化手段完成全机机线缆的导通、绝缘检查。

在国内,线缆集成检测技术在aRJ21等型号上陆续开始使用,因这些机型都属于中、小型飞机,测试点数相对较少,采用的整机线缆检测是基于全部使用工艺转接电缆的方法,工作量和工作效率相对能够接受。

国内正在开展的大飞机研制因为检测点数多、分散等特点,如果采用传统的主要基于转接电缆的线缆集成检测方法,工作效率低下。通过对大飞机全机线缆自动化集成检测技术的研究,在总装配检测环节上实现适用于大飞机特点的数字化、自动化检测技术,能够极大地缩短飞机的总装配周期并提升产品质量。

2线缆检测的工作原理

两线测试法原理:两线测试法是将电压表接到测试产品的两端,同时测试通过电压表的电流大小,通过欧姆定律计算出测试产品的电阻值。在使用三用表进行电缆导通时,即采用此原理,将三用表置于欧姆档,通过导通线直接测电缆的电阻值。目前国内几种机型采用的线缆集成检测技术均使用二线法进行测试。

四线测试法原理:四线测试法是将电流表和电压表分别接到测试产品的两端,这样得出来的电压值及电流值更接近产品本身的相对应的值,然后用测出的电压值与系统提供的电压进行比较从而得出产品的电阻值,相对于两线测试法来说,它的测试精度更高,测试结果更可靠。

线缆集成检测的工作原理:从接线图、电缆制造图中梳理出线缆检测的针脚关系(导通表)并输入系统检测数据库。使用工艺设备(工艺LRU、工艺转接电缆、电缆插头转接器)将全机线缆与检测设备连接起来,通过程序自动控制实现线缆导通、绝缘检查、耐压检查、总线检查并对故障智能定位。

3目前国内各机型线缆集成检测的方法及问题

在国内和国外的中、小型飞机上,全机线缆测试点数相对较少(2万点以内),采用的全机线缆检测是基于全部使用工艺转接电缆的方法,工作量和工作效率相对能够接受。

例如,欧洲台风战斗机的全机线缆集成检测现场布置大量的工艺转接电缆(该型机的测试点数不超过10000点)。但对于大飞机来说,如果测试点数是台风战斗机的三倍,测试方案仍然采用传统的全部为工艺转接电缆连接各测试点的方案是不可取的,转接电缆的存取管理和设计制造成本以及准备阶段的工作量都非常巨大。据统计,3万点的转接电缆(拿取、上机、连接)至少需要三天时间,工作量和工作效率均无法接受。

我国正在研制的大飞机(如C919飞机)线缆检测工作的特点可概括如下:

(1)全机检测点数多,检测周期长:采用自动化检测可以对全机线缆的导通、断路、短路、串接进行集成检测,判断线缆网络连接的正确性和全机线缆故障,如短路、断路、错接、漏接、多接、不正确等信息,可以加快检测速度,提高检测可靠性,避免人为差错。

(2)整机检测点分布极为广且分散,检测难度大:全机检测点数分布范围遍布整个机身段和机翼,尾翼部位、发动机短舱也有覆盖。检测过程中距离较远,易造成检测错位,全部采用转接电缆连接测试点的方法费时费力。

(3)电子设备集中放置、可实现LRU检测模块代替转接电缆完成线缆检测:如果全部采用转接电缆造成会局部检测电缆数量非常大,极易造成电缆连接错误和电缆的损坏,同时给工艺转接电缆安装、分解造成困难。

4大飞机全机线缆自动化集成检测技术的思路和核心技术

为了解决大飞机点数多、分布广、工作量大、检测难度大的问题,与国内普遍采用的全部基于工艺转接电缆的线缆集成检测方法不同,大飞机全机线缆自动化集成检测技术的设计思路是:通过工艺LRU转接,实现LRU线缆集成检测,最大程度做到工艺转接电缆的通用性,大大减少工艺转接电缆的数量和体积。通过电缆插头转接器的大量使用,大大减少工艺转接电缆的数量,提高工作效率和质量。

核心技术有如下几点:

4.1在设备集中放置的区域采用工艺LRU进行转接进行测试

现在航空机载电子成品大多采用标准机箱(如atR系列),使用与机载成品外形及接口相同的检测LRU单元安装在原有成品的位置,一端与机上真实电缆完成对接,一端与工艺转接电缆对接(可以实现工艺转接电缆标准化),完成线缆的导通和绝缘检查,从而实现工艺转接电缆的标准化和盲插功能并增加了检测设备的使用寿命。

4.2在末端成品插头处采用工艺插头转接器

工艺插头转接器采用二极管、电阻为核心原件将相邻、相近的线束连通,在进行电缆自动化测试时,通过正反两次导通即可验证连通的两段线路的通断性能。

对机分散在末端的成品,如作动器、传感器、天线、活门等,可采用工艺插头转接器与相关电缆插头连接,达到大量节省工艺转接电缆、减轻工作强度、加快检测效率的目的。

4.3采用分布式测试架构

对于某型机全机线缆测试点数多、分散的情况,将全机按部件、段位划分为八组测试单元,采用分布式测试架构。分别在驾驶舱左、驾驶舱右、货舱前、货舱后、左机翼下、右机翼下左右主起设备舱、尾翼下布置测试终端,就近与机上电缆对接。

4.4工艺转接电缆的智能管理

对于工艺转接电缆的存放、拿取工作要采用智能化管理的方法(RFiD)。每一束工艺转接电缆中均有唯一的身份识别芯片(电缆iD),通过电缆iD查找转接电缆存储位置,智能存取柜上的LeD指示目标电缆存储位置,通过测试程序自动检索指示电缆存储位置。在与飞机上的工艺LRU对接时,同等规格的电缆可以实现盲插拔(可互换),通过电缆iD自动识别连接的工艺LRU,大大提高检测准备阶段的效率和工作质量。

5结束语

通过对大飞机全机线缆自动化集成检测技术的研究,从系统原理分析、国内外机型检测方法的现状和存在的问题、大飞机线缆检测工作的特点、技术的核心四个方面进行分析并提出新的适用于大飞机的全机线缆自动化集成检测技术。对于加快我国大飞机生产效率、提高检测质量有深远的意义。

参考文献

[1]徐小龙,杨庆华.民用飞机全机电缆自动化测试系统研究[J].电子技术与软件工程,2014,no.3812:91-92.