建筑基础设计十篇

发布时间:2024-04-25 00:52:04

建筑基础设计篇1

【关键词】基础设计;概念设计;地勘报告

引言:随着经济水平的提高,人们对于建筑功能的要求也在不断提高。作为建筑物最重要部分之一的基础,要保证建筑物安全、满足使用要求。但在实际操作中,尤其对于刚步入设计师行列的毕业生们,不重视基础设计,不考虑地基-基础-上部结构的相互作用,对于各种地址情况、施工条件、周围环境不区别对待,给人民生命财产安全埋下了隐患。笔者结合自己在设计工作中的经验和发现的问题,使年轻的设计师提高设计水平,少走弯路。

一、概念设计

1.1判断关键控制点,并确定方案

在基础设计中,主要的关键控制点是基础的变形。所以设计师们首先要根据上部建筑的形式,结合地质条件,施工因素影响,选择最适宜的方案。

例如,常见的主裙楼连体建筑,主裙楼之间的不均匀沉降是主要控制点,选取方案时,不可一味增加基础刚度来抵抗不均匀沉降。相反可以提高主楼地基刚度,弱化裙楼地基刚度。笔者曾做过内蒙古科左后旗某住宅,主楼为10层住宅,裙房为二层公建,持力层为细砂,承载力只有130Kpa。为减小不均匀沉降,主楼采用CFG桩复合地基,裙楼采用天然地基,仅选用基础方案一项,就为开发商节约了大量成本,配合主裙楼之间的后浇带使用,先施工主楼后施工裙楼的施工方法,效果很好,受到好评

1.2利用概念指导计算

pKpm、盈建科等软件的应用,大大的减少了设计师们的工作量,也限制了设计师自己的思考过程。很多年轻的设计师们不完全了解软件的计算原理,对软件的参数想当然的填写,使计算结果不准确。

例如,有些建筑上部结构没有采用pKpm计算,基础部分仍采用JCCaD计算,有些设计师就简单的把上部柱底内力采用【附加荷载】输入。但JCCaD中【附加荷载】只能输入恒荷载和活荷载标准值,如果上部结构为多高层,【附加荷载】就无法将水平荷载考虑在内,可能造成安全隐患。

二、工程地质勘查报告

广东海康县7层框架结构旅馆建造在淤泥质软土地基上,设计人员在无地勘报告的情况下,盲目按照100~120kpa的承载力进行设计,造成地基失稳而倒塌的严重事故。可见地勘报告在整个设计中起举足轻重的作用,是基础设计的依据与核心。对地勘报告正确、深入、全面的理解尤为重要,年轻的设计师们,面对厚厚的地勘报告,不必感到迷茫,可以从以下几个方面理解:

2.1结论与建议

这部分内容应该是首先被翻阅的,包括持力层土质、地基承载力特征值、基础类型及基础埋深,这部分能使设计师对基础部分有了直观的初步印象。但勘察人员并不都能像设计人员一样对拟建建筑物的复杂程度、荷载分布、形变要求等条件透彻的了解。所以,在阅读完地勘报告的全部内容之后,还应结合建筑的实际情况,对结论与建议中提出的持力层选择及基础方案进行客观的分析,以此确定最优方案。

2.2判断场地稳定性和适宜性

场地稳定性、适宜性直接影响建设项目可行性中的选址为题、地基处理造价以及整个工程的费用。地勘报告中场地稳定性、适宜性应包括以下几个方面:

1)场地的地震效应

2)地质构造对场地稳定性的影响及防治措施

3)不良地质作用对场地稳定性影响及防治措施

4)各种特殊性岩土对场地稳定性的评价及建议

5)地基土的均匀性评价

6)场地的建筑条件评价

2.3地下水的评价

地下水位对埋深大、荷载小及含地下室的建筑影响较大,在此类工程中应特别注意以下几项:

1)历年来的最高水位。(一般用于地下室外墙配筋计算)

2)抗浮水位。(一般用于计算建筑物抗浮及主楼与裙楼协同变形)。

3)地下水腐蚀性评价

若地下水具有腐蚀性,应采用耐腐蚀性原材料、加大混凝土保护层厚度、对基础表面采取防护措施、加强混凝土的养护等措施加以预防。

2.4持力层土质、地基承载力特征值

持力层土质及地基承载力特征值是地勘报告的核心部分,需要着重了解。持力层的选择不仅要满足承载力要求,更要注意变形要求。设计师应根据拟建建筑上部结构的结构形式、荷载大小、荷载分布、对变形的要求,确定适宜的持力层,并且在保证安全和舒适的前提下,尽可能浅埋以降低工程造价。

三、基础结构设计

3.1基础的埋置深度,应按以下条件确定:

1)建筑物的使用用途、是否含有地下室、基础的形式和构造除岩石地基外,天然地基的箱型和筏型基础不小于建筑高度1/15;桩基(不计桩长)不小于1/18。

2)工程地质和水文地质条件基础的地基持力层应尽可能选择承载力高而压缩性小的土层并注意是否有软弱下卧层。有地下水存在时,基础尽量埋置于地下水位以上。

3)相邻建筑物的基础埋深有相邻建筑物的建筑应当注意,新基础的埋深不宜超过原有基础,否则,新老基础间应保持不小于两基础地面高差1~2倍的净距,或采用其他有效措施。

4)地基土冻融条件为避免反复冻胀、融陷使基础出现短时间的沉陷及多年积累导致的室内地面低于室外地面的现象,基础尽可能埋置于冻深以下。

5)除岩石地基外,基础埋深不宜小于0.5m

3.2基础底面面积计算

1)对于轴心荷载作用下的基础

3.3地基变形验算

根据《建筑地基基础设计规范》(GB50007-2011)规定,设计等级为甲级、乙级的建筑物,以及有规范规定需要做变形验算的丙级建筑物,均应按地基变形设计。

3.4地基稳定性验算

对经常受水平荷载作用的高层建筑、高耸结构和挡土墙等,以及建造在斜坡上或边坡附近的建筑物和构筑物,尚应验算其稳定性。验算方法可采用圆弧滑动面法。

结束语:

概念设计的思想被越来越多的结构工程师所接受,并将在结构设计中发挥越来越大的作用。概念设计必将成为今后结构设计的主流思想,设计师们应该重视概念设计,学习概念设计,发展概念设计,为提高结构设计水平贡献自己的力量。

参考文献

[1]建筑地基基础设计规范(GB50007-2011)。中国建筑工业出版社,2012

[2]刘金波主编。建筑地基基础设计禁忌及实例。中国建筑工业出版社,2013

建筑基础设计篇2

【关键词】小高层建筑;桩筏基础;基础设计

基础是房屋结构的重要组成部分,房屋所受的各种荷载都要经过基础传至地基。由于小高层建筑层数多、上部结构荷载较大,导致使其基础具有埋置深度大,材料用量多,施工周期长,工程造价高等特点。为此,小高层建筑基础设计时应满足以下几方面的要求:

(1)基础的总沉降量和差异沉降量满足规范规定的允许值;

(2)满足天然地基或复合地基承载力及桩基承载力的要求;

(3)地下结构满足建筑防水的要求;

(4)预先估计在基础施工过程中对毗邻房屋或市政设施的影响,并尽可能避免或减轻这种影响和干扰。

1基础的选型

应选用整体性好、能满足地基的承载力和建筑物容许变形要求并能调节不均匀沉降的基础形式。天然地基上的筏形基础比较经济,宜优先采用;必要时也可采用箱形基础;当地质条件好、荷载较小,且能满足地基承载力和变形的要求时,也可采用交叉梁基础或其它基础形式;当地基承载力和变形不能满足设计要求时,可采用桩基或复合地基。

基础是否发生倾斜是小高层建筑是否安全的关键因素。小高层建筑由于质心高、荷载大,对基础底面一般难免有偏心,故在沉降过程中,建筑物总重量对基础底面形心将产生新的倾覆力矩增量,而此倾覆力矩增量又产生新的倾斜增量,倾斜可能随之增长,直至地基变形稳定为止。因此,为减少基础产生倾斜,应尽量使结构竖向荷载重心与基础平面形心相重合,当偏心难以避免时,应对其偏心距加以限制。《高层规程》规定,在地基土比较均匀的条件下,箱形基础、筏形基础的基础平面形心宜与上部结构竖向永久荷载重心重合。当不能重合时,偏心距e宜符合下式要求:

――与偏心方向一致的基础地面边缘抵抗矩();

a――基础底面面积()。

对低压缩性地基或端承桩基的基础,可适当放宽偏心距的限制。按上式计算时,裙房与主楼可分开考虑。

2基础的埋置深度

小高层建筑基础必须有足够的埋置深度,这主要是考虑了以下几方面的因素:

2.1增大基础埋深可保证高层建筑在水平荷载(风和地震作用)作用下的地基稳定性,减少建筑的整体倾斜,防止倾覆和滑移,利用土的侧限形成嵌固条件,保证小高层建筑的稳定;

2.2由于基础增大埋深,可使地基的附加压力减小,且地基承载力的深度修正也加大,则可以提高地基的承载力,减少基础的沉降量;

2.3增大基础埋深,可使地下室外墙与土体之间的摩擦力和被动土压力增大,从而限制了基础在水平荷载作用下的摆动,使基础底面上反力分布趋于平缓;

2.4地震作用下结构的动力效应与基础埋置深度关系较大,增大埋深,可使阻尼增大,结构的地震反应减小,而且土质越软,埋置深度越大,地震反应减小得越多。因此增大埋深有利于建筑物抗震。实测表明,有地下室的建筑地震反应可降低(20―30)%。

基础的埋置深度对房屋造价、施工技术措施、工期以及保证房屋正常使用等都有很大的影响。基础埋置太深,还会增加房屋的造价;而埋置太浅,通常又不能保证房屋的稳定性。因此,基础设计时应根据实际情况选择一个合理的埋置深度。当基础直接搁置在基岩上时,可以不考虑埋深的要求,但一定要做好地锚,保证基础不发生滑移。

3小高层建筑常用基础形式

3.1筏形基础设计

筏形基础也称为片筏基础或筏式基础,是小高层建筑中常用的一种基础形式,它适用于小高层建筑地下部分用做商场、停车场、机房等大空间房屋。筏形基础具有整体刚度大,能有效地调整基底压力和不均匀沉降,并有较好的防渗性能;

3.1.1筏形基础尺寸的确定

筏形基础的平面尺寸应根据地基土的承载力、上部结构的布置及其荷载的分布等因素确定。在确定基础平面尺寸时,为避免基础发生过大的倾斜和改善基础受力状况,应使基础平面形心与上部结构竖向荷载重心之间的偏心距满足要求。

当满足地基承载力时,筏形基础的周边不宜向外有较大的伸挑扩大。当需要外挑时,其外挑长度一般不宜大于同一方向边跨柱距的1/4―1/3,同时宜将肋梁伸至筏板边缘;周边有墙的筏形基础,其外挑长度一般为1m左右,也可不外伸。

3.1.2筏形基础的基底反力及内力计算

筏形基础的设计方法,根据采用的假定不同可分为刚性板方法和弹性板方法两大类。弹性板方法又可分为经典解析法、数值分析法(如有限差分法、有限单元法和样条函数法)和等代交叉弹性地基梁法等;弹性板方法虽未考虑上部结构的作用,但考虑了地基与基础的相互作用,与实际情况较为符合。

当地基土比较均匀,上部结构刚度较好,平板式筏形基础的厚跨比或梁板式筏形基础的肋梁高跨比不小于1/6,柱间距及柱荷载的变化不超过20%时,小高层建筑的筏形基础可仅考虑局部弯曲作用,按倒楼盖法(即刚性板方法)进行计算。按刚性板方法计算时,假定基础底板相对于地基而言是绝对刚性的,则筏形基础的内力可按基底反力直线分布进行计算。当不符合上述条件,如地基比较复杂、上部结构刚度较差,或柱荷载及柱间距变化较大时,筏形基础的基底反力宜按弹性板方法进行计算。

梁板式筏形基础内力计算当框架的柱网在纵横两个方向上尺寸的比值小于2,且在柱网单元内不再布置次肋梁时,可将筏形基础近似地视为一倒置的楼盖,地基净反力作为荷载,筏板按双向多跨连续板计算,肋梁按多跨连续梁计算,如下图所示。由于基础与上部结构的共同作用,致使基础端部处的基底反力增加,

3.2箱形基础设计

箱形基础是由钢筋混凝土顶板、底板、外墙和内墙组成的空间整体结构,是小高层建筑中广泛采用的一种基础形式。它具有很大的刚度和整体性,能有效地调节基础的不均匀沉降,常用于上部结构荷载大,地基软弱且分布不均匀的情况;由于箱形基础的埋置深度较大,周围土体对其具有嵌固作用,因而可以增加建筑物的整体稳定性,并对结构抗震有较好的效果。

3.2.1箱形基础的一般规定

箱形基础的高度应满足结构的承载力和刚度要求,并根据建筑使用要求确定。为了使箱形基础具有一定的刚度,能适应地基的不均匀沉降,满足使用功能上的要求,减少不均匀沉降引起的上部结构附加应力,一般不宜小于箱基长度(不计墙外悬挑板部分)的1/20,且不宜小于3m。

3.2.2箱形基础基底反力计算

确定基底反力是箱形基础设计的关键问题,由于影响基底反力的因素较多,如土质、上部结构的刚度、荷载分布和大小、基础埋深、尺寸和形状等,精确地确定箱形基础基底反力是一非常复杂和困难的问题,可以按照弹性地基上的梁板理论计算,不仅工作量大,且计算结果与实测值比较差别较大,因此,至今尚没有一种可靠而实用的计算方法。

实测结果表明,在软土地区,纵向基底反力一般呈马鞍形,反力最大值离基础端部的距离约为基础长边的1/9―1/8,最大值为平均值的1.06―1.34倍(图(a));在第四纪粘性土地区,纵向基底反力分布曲线一般呈抛物线形,最大反力值约为平均值的1.25―1.37倍(图(b))

3.2.3箱形基础内力分析

箱形基础顶板和底板在地基反力和水压力及上部结构传下来的荷载作用下,上部结构刚度对基础内力有较大影响,由于上部结构参与共同作用,分担了整个体系的整体弯曲应力,基础内力将随上部结构刚度的增加而减小,但这种考虑共同作用的分析方法计算上比较复杂,距实际应用还有一定的距离。目前在实际工程中是根据具体的上部结构体系分别采用下述两种计算方法。

(1)按局部弯曲计算

考虑到整体弯曲的影响。纵横方向支座钢筋尚应有1/3至1/2的钢筋连通,且连通钢筋的配筋率分别不小于0.15%(纵向)、0.10%(横向),跨中钢筋按实际需要的配筋全部连通。

(2)同时考虑局部弯曲和整体弯曲计算

对不符合上述要求的箱形基础,应同时考虑局部弯曲和整体弯曲作用。计算整体弯曲时应考虑上部结构与箱形基础的共同作用。

3.3桩基础设计

桩基础是小高层建筑中广泛采用的一种基础形式,适用于上部结构荷载较大,地基在较深范围内为软弱土且采用人工地基无条件或不经济的情况下。桩基础由承台和桩身两部分组成,承台承受上部结构传来的荷载,并把它分布到各根桩,在通过桩传到深层土上;因此,在承受竖向荷载时,桩基础的作用是将上部结构的荷载通过桩尖传到深层较坚硬的地基中,或通过桩身传给桩身周围的地基中;对于水平荷载,主要是依靠承台侧面以及桩上段周围土体的挤压力来抵抗。

桩基承台是上部结构与桩之间相联系的结构部分,桩基承台的构造,除满足抗冲切、抗剪切、抗弯承载力和上部结构的要求外,承台的宽度不应小于500mm。边桩中心至承台边缘的距离不宜小于桩的直径或边长,且桩的外边缘至承台边缘的距离不小于150mm;对于条形承台梁,桩的外边缘至承台梁边缘的距离不小于75mm。承台的最小厚度不应小于300mm。承台的配筋,对于矩形承台其钢筋应按双向均匀通长布置(图(a)),钢筋直径不宜小于10mm,间距不宜大于200mm;对于三桩承台,钢筋应按三向板带均匀布置,且最里面的三根钢筋围成的三角形应在柱截面范围内(图(b));承台梁的主筋除满足计算要求外,尚应符合混凝土结构设计规范关于最小配筋率的规定,主筋直径不宜小于12mm,架立筋不宜小于10mm,箍筋直径不宜小于6mm(图(c))。承台混凝土强度等级不应低于C20,纵向钢筋的混凝土保护层厚度不应小于70mm,当有混凝土垫层时不应小于40mm。

4小高层基础设计实例

4.1工程概况

某住宅楼,地下一层,地上8层(其中地下一层为人防地下室;地上均为住宅)。住宅楼为框架―剪力墙结构,建筑总面积为5665。建筑物耐久年限为50年;建筑类别为一类;建筑耐火等级为一级;建筑抗震烈度为8度。

4.2基础设计

4.2.1基础选型

本设计上部结构荷载适中,但地基土软弱,持力层较深,用天然浅基础或仅作简单的人工地基加固仍不能满足要求,该上部建筑物对沉降要求严格。因此选用桩基础,又由于上部结构是框架―剪力墙结构,承受荷载的既有框架柱又有剪力墙,故优先考虑桩筏基础。本设计采用平板式桩筏基础。

4.2.2桩筏基础设计

此桩筏基础采用不考虑共同作用的计算方法,即上部结构视为柱底(墙底)固端约束的独立结构,用结构力学方法求出外荷载作用下结构内力和柱底及墙底反力,然后将求出的柱底(墙底)固端力作用于基础,假设外荷载全部由桩承担,由外荷载和单桩承载力确定桩数,再按材料力学要求或构造要求确定承台的尺寸和配筋。

4.2.3桩型选择、施工工艺和承台埋深

桩型选择端承摩擦桩,施工工艺选择钻孔灌注桩(采用泥浆护壁),承台底面埋深6.3m。

4.3初步选择桩断面及持力层,估算单桩承载力,确定桩数并进行平面布置

4.3.1选择桩端持力层,估算单桩承载力

桩基持力层宜选择在压缩性较低的土层中,且需综合考虑桩基承载力的要求以及布桩条件。分别选择第层(粉质粘土)、第层(粉质粘土)、第层(粉质粘土)作为桩端持力层,桩长分别为20m、26m、33m。按照《建筑桩基技术规范》JGJ94―94中的经验公式确定单桩承载力标准值。

然后分别计算个桩长下所需桩数

4.3.2桩数的初步确定及其平面布置

按照以下原则进行桩的平面布置①尽可能使群桩横截面的形心与长期荷载的合力作用点重合;②尽量将桩布置在靠近承台(筏板)的边缘部分,以增加桩基的惯性矩;③保持桩矩=(3~4)d左右为宜,桩在平面上的布置多采用行列式。初步选定桩长10m,桩径400mm的桩,极限承载力为629.9kn,桩数20根。

4.3.3筏板尺寸

板厚取1.4m(待冲剪验算后最终确定),纵向外伸350mm(到外柱外边缘),横向外伸取800mm(到外柱外边缘)。其下设100mm后的素混凝土垫层。

4.4桩顶作用效应验算

4.4.1上部荷载及基础自重完全由桩来承担(即不考虑底板下土的分担作用),桩顶反力按直线型分布计算

桩顶作用效应满足

4.4.2群桩中单桩竖向承载力的验算

在荷载作用下,存在群桩效应问题,群桩承载力并不等于单桩承载力之和。根据《建筑桩基技术规范》JGJ94-94的规定

(式7)

经计算10m的桩不能满足要求,改选12m长的桩满足要求。单桩承载力为735.6kn。

4.5桩筏基础沉降验算

对于桩-筏基础的整体沉降计算,现行规范没有给出明确的规定。目前主要有两类计算方法。一类是从桩-筏基础的受力机理出发得到“简易理论法”;一类是从弹性理论出发得到的半经验半理论公式。本设计采用的沉降计算的简易理论方法。首先根据外荷p与地基总抗力t的大小关系确定计算模式。一种模式为p>t的实体深基础模式;一种模式为p≤t的复合地基计算模式。经计算知本设计为p≤t的复合地基计算模式。整体最终沉降量

其中:为桩身压缩量;为桩段平面一下压缩厚度范围内的压缩量。按轴心受压构件轴力按三角形分布计算;按分层总和法计算。计算结果为7.84cm,满足规范中要求高层建筑整体沉降量不大于20cm的要求。

5结论

小高层建筑由于既能适应现代居住生活要求,又可以在一定的程度上提高土地利用率、节约土地资源,得到人们的青睐。建筑基础作为上部结构和地基之间的纽带,其质量优劣直接关系到上部结构的安全与否。设计人员在进行小高层基础设计时应当根据建筑物所处的地区、业主的要求以及地质条件,在满足国家规范及强制性条文的要求下,进行恰当的选型,科学的计算和验证分析进行基础的设计。随着人们对地基基础研究的不断深入,小高层建筑基础设计也会取得新的发展。

参考文献

[1]李红伟.浅议多高层建筑的基础设计[J].黑龙江科技信息,2011,(16).

[2]晏文锋.高层建筑基础选型与设计[J].中外建筑,2007,(01).

建筑基础设计篇3

关键字:建筑;桩基设计;结构

abstract:thispaperbrieflyintroducestheconstructionofpilefoundationandpilefoundationengineeringofcommonlyusedtypes,analyzesandexpoundsthedesignofpilefoundationlink.

Keywords:buildingpilefoundationdesign;structure;

中图分类号:tU473.1+2文献标识码:a文章编号

桩基础是工业与民用建筑工程一种常用的基础形式,一般由桩身和位于桩身顶部的承台组成。桩基础的示意图见图1

图1桩基础的组成

1—上部结构(墙或柱)2—承台(承台梁)3—桩身4—坚硬土层5—软弱土层

一、桩基础的作用

1、桩支承于坚硬的或较硬的持力层,具有很高的竖向单桩承载力或群桩承载力,足以承担高层建筑的包括偏心载荷在内的全部竖向荷载。

2、桩基础具有很大的竖向单桩刚度或者群刚度,在自重或相邻载荷影响下,不产生过大的不均匀沉降,并确保建筑物的倾斜不超过允许范围。

3、凭借巨大的单桩侧向刚度或者群桩基础的侧向刚度及其整体抗倾覆能力,抵御由于风和地震引起的水平载荷与力矩载荷,保证高层建筑的抗倾覆稳定性。

4、桩身穿过可液化土层而支承于稳定的坚实土层或者嵌固于基岩,在地震造成浅部土层液化与震陷的情况下,桩基础靠深部稳固土层仍有足够的抗压与抗拔承载力,从而保证高层建筑的稳定,且不产生过大的沉陷与倾斜。

二、工程常用的桩基础

桩基础的种类较多,在选择时要根据建筑的类型、规模及施工环境综合考虑。

1、预制桩

预制桩是指借助于各种专用机械设备将预先制作好的具有一定形状、刚度与构造的桩打入、压入或振入土中的桩型。按桩身材料分为钢筋混凝预制桩、钢桩、木桩、组合桩。

①钢筋混凝预制桩

钢筋混凝土预制桩具有制作方便,桩身强度高,耐腐蚀性能好,单桩承载能力高的优点,但价格偏高、打桩噪声大、接桩和截桩困难。

②钢桩

钢桩分为两种:钢管桩和H形桩。具有优点是:强度高、桩身表面积大,截面积小,在沉桩时贯透能力强且挤土影响小,在饱和软黏土地区可减少对领近建筑物的影响,但价格较高,耐腐蚀性较差。

2、灌注桩

灌注桩为在建筑工地现场通过机械钻孔、钢管挤土或人力挖掘等手段在地基土中形成桩孔,并在其内放置钢筋笼、灌注混凝土而制成的桩。依照成孔方法不同,灌注桩可分为泥浆护壁钻(冲)孔灌注桩、沉管灌注桩和成孔灌注桩等几大类。

①泥浆护壁钻(冲)孔灌注桩

泥浆护壁钻(冲)孔灌注桩,在成孔过程中,为防止孔壁坍塌,在孔内注入制备泥浆或利用钻削的黏土与水混合自制泥浆保护孔壁。护壁泥浆与钻孔的土削混合,边钻边排出泥浆,同时进行孔内补浆或补水。当钻孔达到规定深度后,清除孔底泥渣,然后吊放钢筋笼,在泥浆下浇筑混凝土。

②夯扩成孔灌注桩

夯扩成孔灌注桩是在桩管内增加一根与外桩管长度基本相同的内夯管以代替钢筋混凝土预制桩靴,与外管同步打入设计深度,并作为传力杆将锤击力传至桩端夯扩成大头形,增大地基的密实度,同时利用内管和桩锤的自重将外管内的现浇桩身混凝土压密成形,把水泥浆压入桩侧土体并挤密桩侧的土,使桩的承载力大幅度提高。

三、桩基础的设计

1、桩基础设计流程

设计流程:调查研究,收集设计资料选择桩的类型及其几何尺寸确定单桩

承载力设计值确定桩的数量及平面布置确定群桩或单桩基础的承载力桩身构造设计与强度计算承台设计绘制桩基础施工图

2、桩型的选择

①桩型的选择要根据工程地质状况、施工技术条件、工期情况和施工对周围环境的影响综合考虑。

②持力层应尽可能选择坚硬土层或岩层。如在一般桩长深度内没有坚硬土层,也可考虑选择中等强度的土层,如中密以上砂层或中等压缩性的一般黏性土等。考虑桩端进入持力层的深度。

③确定桩长、承台底面标高

承台底面标高,即承台埋置深度。一般情况下,应使承台顶面低于室外地面100mm以上;如有基础梁、筏板、箱基等,其厚(高)度应考虑在内;同时要考虑季节性冻土和地下水的影响。

3、单桩竖向承载力特征值

单桩承载力特征值Ra应按下式计确定:

Ra=Quk/K

式中:Quk—单桩竖向承载力特征值(kn);

K—安全系数,取K=2。

4、桩截面尺寸设计

①最小桩径

桩的类型钢筋混凝土方桩边长

泥浆护壁回转或冲击钻孔桩

人工挖孔桩

钢管桩

干作业钻孔桩和振动沉管灌注桩

最小桩径φ(mm)>250

>500

>800

>400

>300

②在桩截面的设计中要遵循以下原则:

单桩承载力的需求和布桩的构造要求;

同一建筑的桩基采用相同桩径;

当荷载分布不均匀时,可根据荷载和地基土条件采用不同直径的桩,尤其是采用灌注桩时;

端承桩的持力层强度低于桩材强度而地基土层又适宜时,应优先考虑采用扩底灌注桩;

摩擦桩宜采用细长桩,以获得较大比表面(桩侧表面积与体积之比):

5、桩数量的设计及平面布局

①桩数量计算

计算公式:

式中:n——桩数;

Fk—相应于荷载效应标准组合作用于桩基承台顶面的竖向荷载(kn);

Gk——桩基承台和承台上土自重标准值(kn);

Ra——单桩承载力特征值(kn);

μ——系数,桩基为轴心受压时μ=1;偏心受压时μ=1.1~1.2。

②桩的平面布置

桩的平面布置要满足以下原则:

尽可能使上部荷载的中心和群桩横截面的形心重合;

力求各桩的受力情况相近;

宜将桩布置在承台,而各桩应距离垂直于偏心荷载或水平力与弯矩较大方向的横截面轴线大些,以便使群桩截面对该轴具有较大的惯性矩;

箱基和带梁筏基以及墙下条形基础的桩,宜沿着墙或梁布置成单排或双排,以减小底板厚度或承台梁宽度;

为了使桩受力合理,在墙的转角及交叉处应布桩,窗门洞口下不宜布置桩。

常见的桩平面布置见图2:

图2桩的排列形式

6、桩身设计

桩身的设计主要包括混凝土强度等级计算、配筋的计算和桩顶构造。

①混凝土强度等级fc计算

预制桩fc≥C30;

灌注桩fc≥C20;

预应力桩fc≥C40

②打入式预制桩的最小配筋率宜ρ≥0.8%;

静压预制桩宜ρ≥0.6%;

灌注桩宜ρ≥0.2%~0.65%(小直径桩取大值)

③配筋长度设计原则

受水平荷载和弯矩较大的桩,配筋长度应通过计算确定;

桩基承台下存在淤泥、淤泥质土或液化土层时,配筋长度应穿过淤泥、淤泥质土层或液化土层;

坡地岸边的桩、8度及8度以上地震区的桩、抗拔桩、嵌岩端承桩应通长配筋;

桩径大于600mm的钻孔灌注桩,构造钢筋的长度不宜小于桩长的2/3。

④桩顶构造设计

桩顶嵌入承台内的长度不宜小于50mm。主筋伸人承台内的锚固长度不宜小于30d(i级钢)或35d(Ⅱ级钢和Ⅲ级钢);

对于大直径灌注桩,当采用一柱一桩时,可设置承台或将桩和柱直接连接,柱纵筋插入桩身的长度应满足锚固长度的要求。

7、承台设计

①承台的宽度不应小于500mm,厚度不应小于300mm;

②边桩中心至承台边缘的距离不宜小于桩的直径d或边长b,且桩的外边缘至承台边缘的距离不小于150mm。对于条形承台梁,桩的外边缘至承台梁边缘的距离不小于75mm;

③承台混凝土强度等级不应小于C20,纵筋保护层厚度不应小于70mm,有垫层时,应不小于40mm;

④承台之间的连接:

单桩承台,宜在两个互相垂直的方向上设置联系梁;

两桩承台,宜在其短向设置联系梁;

有抗震要求的柱下独立承台,宜在两个主轴方向设置联系梁;

联系梁顶面宜与承台位于同一标高,联系梁的宽度不应小于250mm。

四、桩基础设计中重要技术环节

1、桩基设计中静载荷试验的重要性桩基静载荷试验在确定单桩极限承载力方面是目前最为准确、可靠的检验方法,在地基基础的设计中是极其重要的环节,试验结果直接关系到桩基形式、桩规格和桩入土深度的确定,同时也对施工的难易产生直接的影响。因此,要通过科学试验,取得准确数据,使设计方案更加合理、可行和经济。在进行静载荷试验时,要注意把控一下细节:

①试桩数量:同一条件下的试桩数量不宜少于总桩数的1%,且不应少于3根;

②间歇时间:在桩身强度达到设计要求的前提下,对于砂类土,不得少于10d;对于粉土和黏性土,不得少于15d;对于饱和软黏土,不得少于25d。

2、桩长和桩截面设计的重要性

桩长和桩截面在设计中要准确到位,否则很容易出现桩基的偏差。桩长设计出现失误会导致桩基的竖向偏差,桩截面的设计不到位会导致桩基的水平偏差。桩位的偏差都将产生很大的附加内力,而使基础设计处于不安全状态,不仅会给施工阶段造成很大的麻烦,浪费时间和资金,而且会影响到整个建筑的安全。

参考文献:

建筑基础设计篇4

关键词:房屋建筑;结构设计;基础设计;研究

随着人们生活水平的提高,人们对于房屋的要求与复杂程度也越来越高。这就使得房屋建筑结构的基础设计要求越来越高。基础设计关系到房屋建筑的安全性和耐久性,对于影响房屋的质量起着决定性的作用,所以必须重视基础设计,选择合适的设计方案来进行施工。论文就房屋建筑结构的基础设计的影响因素,存在的问题及相关的解决方案提出了相应的见解。

1影响房屋建筑基础设计的因素

1.1上部结构

房屋建筑的上层高度,墙体厚度决定着基础设计。这都是需要通过精准的计算去确定房屋建筑基础的类型、埋深和截面积,这是整个基础设计的核心,从而是影响基础设计的主要因素。房屋建筑的荷载都是由上层建筑高度,墙体厚度决定,不同的上部结构所要求的基础结构都完全不同,所以在进行基础设计时必须考虑上部结构的主要因素。

1.2地质条件

基础设计当中需要考虑到地质条件,这影响着基础设计的承载能力。当然了地质条件的范畴比较大,面也比较广,其中主要有二个关系的因素。第一就是地基持力层的特点,因为地基持力层与基础直接相接,是承受房屋建筑负荷的主要部分,必须要考虑到。第二就是桩基穿越土层的情况,主要有土层中地下水的分布特点和桩基穿越能力。

1.3施工环境

施工环境包括自然环境和人工环境。房屋建筑施工过程当中会受到环境温度、抗震等级的影响,作业时必须加以考虑。环境温度对于钢筋混凝土的施工效果有着影响,不同的天气温度需要加以不同的处理措施。另外对于不同的抗震等级,需要采取不同的施工方案。人工环境主要有:第一,在建筑施工过程当中有相当大的震动,施工前就必须在基础设计过程中加以考虑。第二,打桩过程会出现挤土效应,进一步带来相应的应力,从而影响周边的受力情况,需要加以考虑和降低影响。

2房屋建筑基础设计中存在的问题分析

房屋建筑的基础设计是整个设计中的关系环节也是关键点,影响着整体的设计质量和以后的施工质量。房地产市场的蓬勃发展使得人们忽视了房屋建筑的基础设计,从而导致了很多的房屋建筑质量事故的出现,必须加以重视。本节就房屋建筑基础设计中存在的不合理的地方进行分析总结。

2.1在基础设计过程中对于地质情况的勘查不全面

地质勘查是当前建筑工程施工设计的前提,都是必须加以完成的一项工作。房屋建筑的基础设计前也必须进行完整而全面的地质勘察。根据调查走访以及查阅相关的案卷发现当前很多房屋建筑在进行基础设计时都没有进行实地的现场勘察测定。大部份都是按以往的资料记载的施工环境和施工条件来进行设计,从而导致设计结果只是符合当时的施工环境和施工条件。如果施工环境和施工条件出现了很大的变化的话,就会出现比较大的误差,无法适应当前的施工现实条件,从而导致基础设计无法适应当地的房屋建筑,无法保证房屋建筑的质量。

2.2基础设计的制图不够完善

房屋的基础设计最终是需要通过图纸来进行结果的呈现。从而在施工过程中才能按照相关的设计图纸进行施工。图纸是基础设计当中非常重要的一个环节。在进行图纸的绘制时也会出现多个问题,主要是对平面结构图、屋顶结构图以及建筑详图三种。在房屋建筑的平面结构图中建筑结构样式、布局和建筑观念不够明显,无法打动客户让其满意。另外设计的差异还会使得无法进行相关的施工。如果图纸的设计存在着数据方面的误差更是加重了施工的难度,影响施工进度。所以必须重视基础设计当中图纸的绘制工作。

2.3设计人员的专业素质不高

基础设计过程当中都必须由专业技术人员来进行工作来实施,尽管有些工作可以由相关的仪器进行全自动化操作。但是人的影响因素还是非常大的。在基础设计过程当中,设计人员的地位非常他们,他们是设计过程中的核心,直接影响着设计质量,必须要求设计人员有非常高的专业素质。当前很多房地产行业的设计部门对于设计人员的要求都比较低,很多非专业人员都进行了这个行业,工作时专业知识不足敷衍了事,影响着整个基础设计的成败。

3加强房屋建筑结构基础设计的措施

房屋建筑基础设计的重要性不言而喻,现阶段政府相关部门也非常重视这一项工作,制定了相关的措施来加强房屋建筑结构基础设计工作,具体情况如下:

3.1加强监督进行全面的地质勘查工作

对于房屋建筑来讲,其地质勘查工作一直都是流于形式,都是做的表面工作,很少有相关的设计人员进行现场的实地的地质勘查。政府相关部门应该在这方面加强监管和监督工作,要求进行房屋建筑基础设计相关部门必须进行现场的实地的地质勘查,并设立相应的机构进行专门的负责。要求他们有详细的地质勘查研究报告,这样才能保证基础设计的正确性,才能保证房屋建筑的质量和安全性。

3.2完善房屋建筑基础设计的图纸工作

设计部门必须认真完成基础设计的图纸工作,根据客户的需求,加上设计人员的设计理念,来对房屋建筑进行设计,保障设计方案当中的格局要新颖,排除以往对其他建筑图纸的抄袭,另外在加强对设计图纸的尺寸进行多次检查,使得设计图纸的设计尺寸符合实际,保障施工工作的顺利开展。

3.3加强设计工作人员的专业素质

前面提到基础设计是一项专业性非常强的工作。必须提高设计部门的招聘门槛,招聘时要求设计人员必须有过碣的专业素质以及相当的专业技术,同时还需要有强的工作责任意识以及良好的社会道德素质。把不符合要求的人员排除出,可以有效的保障设计人员的专业素质。另外还需要对设计人员进行相应的工作技术的培训和提高,组织他们进行相关的经验交流等。只有这样才能保证房屋建设结构设计工作人员的专业素质。

4总结

从以上分析我们看到房屋建筑结构的基础设计是非常复杂的一项工作,影响着建筑结构的整体质量。只有做好了基础设计才能保障房屋建筑的安全性。做为设计人员需要从思想上加以重视,认真了解不断的探索,在基础结构的设计过程当中,充分的考虑各个影响因素,把握好关键部位,提高建筑物的设计质量。房屋建筑结构设计是一项动态的复杂工作,对于不同的地理地质条件,遇到的情况也不一样,这就需要我们在实践过程当中不断探索。

参考文献

[1]余晓阳.房屋建筑结构设计中基础设计探讨[J].江西建材,2016,03:31+35.

[2]宋雄.房屋建筑结构设计中基础设计探讨[J].建材与装饰,2016,21:119-120.

[3]廖阔.探析房屋建筑结构基础设计[J].中国新技术新产品,2013,07:175-176.

[4]周钰涵.房屋建筑结构设计中基础设计探讨[J].科技创新与应用,2015,07:156.

建筑基础设计篇5

关键词:建筑结构设计基础设计

中图分类号:tU318文献标识码:a

正文:

1地基基础设计的重要性

一个工程都要建立在一个地基之上,如果地基建设的不合理就会影响整个建筑的稳定性,会建造一个失败的工程。所以地基的设计相当重要。但是,地基是人们所不能决定的一个自然因素。地基的土质问题,地下水的问题,还有很多其他的因素都会影响到工程的施工。曾经有资料显示,地基的造价在整个建筑的造价中占有相当大的比重,所以对于地基的问题一定要认真的考虑和设计。如果地基不需要后期的土质处理,造价还比较低,但是,如果还需要一系列的处理工作,造价就会大大提升。所以,在地基的设计选择时一定要特别注意。在地基基础设计时,也要多方面的考虑,来选择最优的方案,降低成本,赢得最大利益。

2建筑在基础设计中应考虑的主要因素

建筑的基础设计是建筑结构设计的重要内容,它对保证建筑物的正常使用和安全至关重要。因此,基础设计时必须做到以下五个方面的要求。(1)基底附加压力不超过地基承载力或桩基承载力;(2)基础总沉降量和差异沉降量控制在允许限值以内;(3)适当考虑桩基的运用;(4)预先估计到基础在施工过程中对毗邻房屋可能造成的影响;(5)应当考虑综合经济效果,不仅考虑基础本身的用料和造价,还应考虑使用、施工条件和施工工期等因素对经济效果的影响。

3地基基础设计的依据———工程地质勘察

对于建筑场地的勘察布孔,一般应由设计单位根据拟建建筑物上部结构及基础设计要求提供。对于一般场地,可按勘察规范规定提供,遇地质条件复杂时,勘察部门应结合具体情况加密布孔。基坑、基槽开挖后,一般要进行验坑、验槽,遇地质条件复杂时还要补钻;勘察、设计要密切合作,使地基基础设计同实际地质条件相吻合。工程地质勘察不但为设计提供必要的、正确的、可靠的依据,而且还可根据勘察资料对地基基础设计和施工中存在的及可能出现的问题进行探讨、论证、分析,并提出解决问题的措施和建议。

4房屋建筑结构基础设计过程中经常采用的几种形式

4.1墙下条形基础设计形式

一般而言,大多数的房屋建筑工程在进行基础结构设计时,都会采用墙下条形基础设计的形式,而在墙下条形基础形式当中,混凝土刚性基础和钢筋混凝土柔性基础更为常见一些,混凝土刚性基础的抗压性能较好、但是在抗拉性及抗剪性方面的性能就稍微差了一些,比较适用于低层的房屋建筑工程;而钢筋混凝土柔性基础在抗拉性、抗压性、抗弯性及抗剪性方面的性能就比较平均和优秀一些,比较适用于地基承载能力较差、上部荷载较大以及基础埋深较大的房屋建筑工程。

4.2独立基础设计形式

独立基础一般分为刚性独立基础和柔性独立基础两种,通常独立基础设计形式别广泛的应用在柱下基础使用当中,以柱荷载偏心距为参考依据,决定基础断面是方形还是矩形。根据科学的调查分析表明,目前在我国,大多数的工民建工程施工中都采用了独立基础的设计形式,并且取得了十分优异和可喜的成绩,发展前景十分不错。

5.地基基础设计中应注意的几个问题

设计人员在对房屋建筑工程的基础进行设计的过程中,需要结合房屋建筑工程的实际情况进行设计,做到具体问题、具体分析,保证基础设计的科学性和合理性,在对混凝土的选用方面,还需要注意考虑到结构的适用性和耐久性,以荷载为参考依据对基础的宽度进行及时的、适当的调整,为房屋建筑工程整体的结构的合理性提供保障

5.1片筏基础底板不宜悬挑过大。在基础设计中,当采用条形基础不能满足地基的容许承载力时,常设计成片筏基础。有时碰到地基强度还不足,往往把片筏基础底板沿外墙轴线向外悬挑,这种单纯为满足地基强度的作法是欠妥的,特别住房屋的山墙和外纵墙相交的转角处,纵横两个方向均有较宽的悬臂板挑出,该板的刚度远较其它部位小,使悬臂板变形过大,再加上建筑物地基的不均匀沉降等因素,很容易造成转角处邻近纵墙的墙体强度受到削弱,至使其底层的窗台下产生严重的开裂现象,直接影响建筑物的质量和使用。对于片筏基础的悬臂最好设置在建筑物的宽度方向。如不能满足上述要求时,通常可适当加深筏基的埋置深度,再在上面加铺预制板,将板底架空,以减少基础自重,做补偿式基础;或用短桩加固地基,考虑土与桩体的共同作用。当短桩支撑在下部的砂质粉土、粉砂土上时,效果更为显著。

5.2地基基础设计中的地基土与结构共同作用问题分析。共同作用概念源于高层建筑与地基基础共同作用,即是把高层建筑、基础和地基三者看成一个整体,并要满足地基、基础与上部结构三者在接触部位的变形协调条件。而地基基础的共同作用是指:地基土与基础(各种类型的桩,包括:柔性桩、半柔性桩、刚性桩等)共同承担上部结构荷载。地基与基础之间的荷载分担比是根据基础变形协调条件确定的。由此可以看出:用沉降控制来设计地基基础正是地基基础共同作用概念的具体运用,地基处理或基础加固就是视基础沉陷量大小的控制要求确定地基补强的程度和发挥原地基土承载力的程度。影响地基土与基础的荷载分担比因素主要有:基础(包括加固体)刚度的大小、地基土的土性、基础型式等。

5.3桩端进入持力层的最小深度问题。(1)应选择较硬上层或岩层作为桩端持力层。桩端进入持力层深度,对于粘性土、粉土不宜小于2d(d为桩径);砂土及强风化软质岩不宜小于1.5d;对于碎石土及强风化硬质岩不宜小于1d且不小于0.5m。(2)桩端进入中、微风化岩的嵌岩桩,桩全断面进入岩层的深度不宜小于0.5m,嵌入灰岩或其他未风化硬质岩时,嵌岩深度可适当减少,但不宜小于0.2m。(3)当场地有液化土层时,桩身应穿过液化土层进入液化土层以下的稳定土层,进入深度应由计算确定,对碎石土、砾、粗中砂、坚硬粘性土和密实粉土不应小于0.5m,对其他非岩石土不宜小于1.5m。(4)当场地有季节性冻土或膨胀土层时,桩身进入上述土层以下的深度应通过抗拔稳定性验算确定,其深度不应小于4倍桩径。

5.4对软弱地基基础设计的探讨。

局部软弱地基的基础设计,采用不同的处理方式时应在满足地基承载力及土层不发生整体破坏的前提下,以基础的沉降量为控制条件,满足使用要求和地基规范允许的沉降量是可以做到经济合理的。在改变地基条件的情况下,还需配合改变基础的设计,一般情况下,变更基础的尺寸,可以有效地调整基底附加压力的分布和大小从而改变地基变形值。当基底附加压力相同时地基的变形是随基底尺寸的增大而增大,而在确定的荷载下若增大基底面积,将会使地基的变形量减小。当然在验算地基变形,调整基底尺寸时还应考虑其它因素的影响。在软弱粘性土中采用卵石桩可以提高地基承载力,加速固结沉降,改善地基的整体稳定性。有关软弱土地基,处理的方式方法也有多种,同样又受各种诸多因素的影响很难用一种固定模式确定某种处理形式好,因此在场地条件不同的情况下,须经过分析研究再做决定。

结束语

我国建筑行业的发展,国家很多相关部门特别重视,很多商人也将目光转移到房地产等建筑行业。为了让建筑行业的不断顺利发展,也是为了国家以及经济利益的不断增加,就要对建筑中的问题特别重视。基础设计可以影响整个建筑的稳定性,也会对建筑的造价成本有很大的影响,要加强重视,优化设计。

参考文献

建筑基础设计篇6

摘要:随着国民经济的不断发展,我国建筑业也得到了快速发展,取得了巨大的成就,但同时也存在一些问题。实际设计工作中,常常发生住宅结构设计的种种概念和方法上的差错,这些差错的产生,有的是由于设计人员没有对一般住宅尤其是多层住宅设计引起高度重视,盲目参照或套用其他的设计的结果;有的则是由于设计对设计规范和设计方法缺乏理解;还有的是由于设计者的力学概念模糊,不能建立正确的计算模式,对结构电算结果也缺乏判断正确与否的经验。通过对房屋建筑结构设计进行分析,浅述了目前房屋结构设计中存在的问题,提出了相关的评述和建议。

关键词:高层建筑 基础设计 问题

1、房屋建筑结构基础设计应注意的问题

1.1承重柱截面高度设计过小

这种情况多发生于六度抗震设防区。一些结构设计者误认为六度设防就是不设防,为图受力分析方便,他们故意把柱子的截面高度设计得过小,使梁柱的线刚度比加大,把梁简化为铰支梁,柱按轴心受压计算。这种做法虽然易于进行结构受力分析,但却给房屋结构埋下了隐患。因为这样做忽略了梁柱问的刚结作用,即忽略了柱对梁的约束弯矩,加之柱截面和配筋都较小,结构一旦受力后,柱顶抗弯强度必然不足,从而柱子及梁底附近将会出现一条或多条水平裂缝,形成塑性铰。这样,在正常使用情况下,柱子已开始带铰工作。这不但影响了房屋的耐久性,而且也常常引起用户的恐惧心理。更为严重的是,这样的结构一旦遭遇地震作用时,将会倒塌,这违背了现行抗震规范中“强柱弱梁”的设计原则。

1.2砖混结构中房屋构造柱与承重柱混淆不清

在砖混结构中,构造柱不但能够提高墙体的抗剪能力,而且构造柱与圄梁联结在一起,形成对砌体的约束,这对于限制墙体裂缝的开展,维持竖向承载力,提高结构的抗震性能有着重要的作用。在当前结构设计中,构造柱经常被作为承重柱使用,这种作法将引起以下几个问题:

1.2.1构造柱作为承重柱使用后,使得构造柱提前受力,这不但会降低构造柱对砌体的拉结和约束作用,而且结构一旦遭遇地震作用时,在构造柱位置必然形成应力集中,首先破坏。这样,构造柱不但起不到其应有的作用,反而成为房屋结构中的一个薄弱的部位。

1.2.2构造柱一般生根于地圈梁中,没有另设基础,构造柱兼作承重柱使用后,柱底基础的抗冲切、抗弯及局部承压强度必然不能满足要求。柱底基础一旦发生冲切或局部承压破坏,将导致构造柱下沉,引起其周围的墙体出现裂缝。建议承重大梁下的柱子应按承重柱设计。若梁上荷载和跨度都比较小时,构造柱也可布置于梁下,但此时必须按不考虑构造柱作用来验算梁下墙体的局部承压和抗弯强度。经验算满足后,方可在梁下布置构造柱。

1.2.3悬挑梁的梁高选用过小

设计者往往只注意了对梁的强度和倾覆进行验算,而忽略了对梁手挠度的验算。梁高选用过小,引起梁截面的受压区应力过高,在正常使用状态下,梁截面受压区产生非线性徐变,梁挠度随时间的推移不断加大。挑梁的变形引起梁上板出现裂缝,裂缝宽度随着挑梁变形的加大而加宽,影响了房屋的正常使用。据观察,这种挑梁的变形发展到后期,梁支座截面上部受拉区常常出现较宽的竖向裂缝。受支座附近上部受拉区常常出现较宽的竖向裂缝。受支座附近剪弯作用的影响,竖向裂缝向下延伸发展为斜裂缝,此时梁已接近破坏。当为托墙挑梁时,梁过大的挠度会引起梁上墙体在梁支座附近出现裂缝。裂缝在梁支座处沿竖直方向向上发展,当到一定高度时沿斜向延伸,缝愈靠上愈宽。挑梁的截面过小对结构的抗震也很不利。悬挑结构对竖向地震的作用最为敏感。梁高小时,截面的相对受压区高度较大,梁的延性减小,在竖向地震作用下易发生脆性破坏,失去承载力。

1.2.4连续梁按单梁进行设计存在潜在危险

这种情况多发生在阳台边梁的设计中。由于边梁上的荷重一般较小,没有引起设计者的重视,为图受力分析方便,设计者把实际应为连续梁的梁按单简支梁进行设计,致使梁在支座处上部负筋配置量过少。这样必然引起梁在支座附近上部受拉区出现竖向裂缝,进而引起梁上部拦板出现竖向裂缝。如果该边梁长度较长时,问题将会变得更加严重。因为该梁一般直接暴露在室外,受环境温度影响较大。当环境温度变化时,梁的伸缩受到梁端柱或挑梁的约束,在梁内产生收缩应力,该收缩应力作用于原已产生的梁上裂缝处,引起梁在支座附近沿整个梁截面四周裂缝贯通,梁承载力降低,直接影响了使用安全。在实际工作中,多次发现类似情况出现,因此应引起设计者的重视。

2、对房屋建筑结构基础设计的评述及建议

目前可行的方法考虑地基、基础、上部结构的相互作用。然而这种考虑上部结构与地基基础共同作用的分析方法也不是完美无缺的。它同样需要采用种种假定,也不能避免各种地基模型的固有误差,并且上部结构的刚度形成存在滞后,因为上部结构的刚度在建造过程中是逐层形成的,在考虑上部结构边界刚度对基础的影响时,这一滞后过程能否被真实模拟也会对分析结果的准确性产生影响。

对于一般的基础设计而言,采用的仍然是基于经典结构力学和弹性力学的常规设计方法。这种方法简便快捷,对于单层排架结构一类的上部柔性结构以及地基较好的独立基础,能够得到较满意的结果。对于高层剪力墙结构下箱形基础置于一般上质天然地基这种情况,简化计算结果也能满足要求。但是,对于钢筋混凝土框架这类对地基沉降较敏感的结构,计算结果与实际不同,对于软弱地基上的条形基础,按这种方法计算与实际差别也较大。对于高层建筑框架结构,随着层数的增加,作用在基础上的柱荷载也将增大。在竖向荷载作用下,基础产生碟形沉降,由于上部结构具有一定刚度,边柱沉降小,与基础紧密接触而加载,内柱沉降大,受到拉伸而卸载。各楼层柱尤其是底层柱内力重分配的结果势必将引起上部结构和基础内力的变化,这一现象只有在共同作用分析中才能被适当考虑。在高层框架结构基础设计时,基础宜柔不宜刚,若地基土为高缩性,则基础宜当采用桩基时,可考虑采用变刚度布桩的方式,如改变基础中部桩径或桩径加密中部布桩以调整地基或桩基的竖向支承刚度,使差异沉降减到最小,从而减小基础或承台的内力。

建筑基础设计篇7

关键词:高低层连体建筑地基设计

随着社会经济的不断发展,建设步伐的不断加快,国家用于建设的土地越来越紧张,在这样的情况下,为了节约利用土地资源,在建设方面出现了越来越多的高层,土地资源相对比较紧张的大城市高层相对较多,基于建筑功能的需要,很多高层建筑的主体部分周围有裙房或者地下车库等相连,为了避免高低层建筑由于差异沉降而造成主体建筑与周围相对较低层建筑物之间产生裂缝,甚至是遭受严重的破坏,就要在设计的过程中要采取措施实施地基变形设计。我们结合一个工程案例讨论一下有关的问题。

一、工程案例

本文结合的工程案例是某医院的门诊大楼,这栋大楼属于一类高层,结构方面是采用了钢筋混凝土剪力墙结构,整个建筑在抗震的要求方面要达到7度。整个建筑的建筑面积为71210平方米,这个工程共投资三亿多元。这栋医院的门诊楼高度为43米,建筑物主体为十二层,其中地下室两层,主体建筑的高度不等,地面以上有的部分为一层,有的部分为九层,有的部分为十层,建筑物层高除首层为4.8米外其余的均为4.2米,地下车库两层的层高均为4.5米,按照设计规范,此建筑的地基基础设计等级应该为甲级,在设计的过程中要进行建筑物沉降分析,在平均沉降量、差异沉降和倾斜等方面应满足相关规范的要求。

二、地基基础设计策略

为了对主楼和地下室部分之间的差异沉降进行控制,在设计的过程中,采用了筏板基础,主要技术参数为基础梁高为1.4米,筏板厚度为0.7米,对车库下的地基采用独立基础设计,基础底标高在-10.6m,持力层为细砂,基底未到持力层时,局部用级配砂石换填处理。

(一)、地基设计的可行性分析

我们主要从沉降估算根据和差异沉降的比较两个方面来对建筑的基础设计的可行性进行分析,根据《建筑地基基础设计规范》建筑物多在地的车库独立基础下各层土的压缩情况均符合要求,独立基础下土层压缩量乘以经验系数后,独立基础下沉降约为35毫米,如果在施工期间完成其中的四分之一沉降量,那么剩下的沉降为:35×(1-25%)=26.25毫米,当采我们采用天然地基的时候,通过计算可以得到主楼筏板平均沉降量大约为80毫米。在差异沉降方面,主楼与车库间相邻柱基差异沉降为:55.6-26.25=29.35>13.2mm(0.002L=0.002×6600)。结论:通过以上分析,我们发现这种设计是不满足规范沉降控制要求的,因此,我们建议主楼下做复合地基处理以减小其沉降量。

(二)、复合地基的设计方案分析

我们在设计的过程中,对施工现场的地质状况进行勘察,对地基的物理力学性质进行了分析,认为采用当地比较传统的、普遍的素混凝土桩复合地基比较妥当,在分析中,我们进行了大胆的假设,如果处理后的复合地基承载力特征值应达到240千帕,用复合模量法估算筏板下平均沉降量的时候,天然地基承载力特征值的取值为180千帕,平均沉降约120毫米,后压缩模量为16兆帕,沉降经验系数为0.36,地基处理后平均沉降量是32.4毫米。与车库的独立地基下沉量35相比,差异沉降为0.0004,远远小于0.002,这是符合相关要求的。

(三)、地基设计中变刚度的调平优化问题

建筑物地基基础的设计中,变刚度的调平优化是非常重要的一个环节,其原则是通过改变刚度实现差异沉降量的最小化,达到优化目标的效果,在本工程中,少的优化目标。应用到本工程中高低层有较大沉降差,根据地基反力分布的有关情况,我们通过分区域将素混凝土桩的间距进行调整,并通过改变复合地基的置换率调整复合地基的复合压缩模量,也就是我们通常所说的刚度,进而达到对基础工程设计终沉降量进行合理控制的目的,使筏板下各区域沉降量都趋于相等,以减小基础梁及筏板由于抵抗差异沉降造成的附加应力,从而降低基础的用钢量。这样做的好处是节省了对地基沉降进行处理的费用,同时,也可以减少筏板基础的造价。

(四)、地基基础设计中后浇带的设置

就该工程而言,地上建筑物主体的总长度为112米,其宽度为47米,地下室的长度是144米,地下室的宽度为71米,这些长度是不符合相关规范所给出的建议数值的,也不能满足剪力墙结构不设伸缩缝的最大间距限值的相关要求,我们依据工作实践经验,在这个工程中,我们不设置永久性伸缩缝,而采用构造措施,并采用合理的施工工艺,在施工中设置施工后浇带,加强楼板配筋,加厚保温等措施,以减小超长结构不设缝条件下混凝土变形的影响。

三、结束语

结合以上分析,并依据我们的工作经验,在高层连体建筑物中,我们应采取措施尽量减少主楼和裙房之间的差异沉降量,同时,适当增加裙房的沉降量。最主要的方法有以下几个方面:一是在设计过程中,主体结构要尽可能地采用轻质材料;二是主体结构要坐落在压缩性比较低的地基土层上,裙房要坐落在压缩性较高的地基土层上;三是主楼采用筏形基础,裙房采用独立基础或条形基础;四是充分利用建筑物施工期间的沉降量,并设沉降后浇带,先对主楼进行施工,然后再施工裙房。

参考文献:

建筑基础设计篇8

关键词:结构设计 高层建筑基础设计概念设计

前言

概念设计一般指不经数值计算,尤其在一些难以作出精确理性分析或在规范中难以规定的问题中,根据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体角度来确定建筑结构总体布置和抗震细部措施的宏观控制。它要求在设计过程中始终贯穿和应用结构概念,是一种定性而非定量的分析,是整体宏观控制和细部构造措施,设计原理和工程实践经验相结合的设计思想。在方案设计阶段就运用概念设计的思想是非常必要和及时的,而且要将它贯穿应用于整个设计过程,才能为建筑结构的安全性、可靠性、适用性和经济性提供有力的保证。本文论述了概念设计在高层建筑基础设计中的应用。

一、筏型基础的设计理论

随着城市的发展,高层建筑的地下室一般都被用作地下车库的使用空间。所以设计人员往往倾向于采用筏型基础,而不愿意选择纵横内隔墙较多的箱型基础。筏型基础又可分为梁板式筏基和平板式筏基。

计算筏板基础时,常用的方法有“倒楼盖”法、静定法(截面法)、弹性地基梁板方法和有限元分析方法。“倒楼盖”法和静定法都是一种简化计算方法。按“倒楼盖”法进行基础设计时,要求地基土比较均匀、筏板基础的刚度较大、上部结构刚度较大、柱轴力及柱距相差不大、荷载分布比较均匀;按静定法计算的要求与“倒楼盖”法大部分相同,只是静定法适用于上部结构刚度较小、柱轴力及柱距相差较大的情况。用上述两种方法计算的缺点是不能考虑基础的整体作用,也无法计算挠曲变形,“倒楼盖”法夸大上部结构刚度的影响,静定法则完全忽略了上部结构刚度的影响。当不满足上述要求时应按弹性地基梁板计算。近年来,随着计算软件的进步,上部结构、基础和地基共同作用分析法在筏板基础内力计算中得到广泛运用,该分析法基础按弹性地基上板考虑,地基模型一般采用文克尔地基、弹性半空间地基和压缩层地基等地基模型,常用数值分析方法为有限元法、有限差分法等,其中有限元法较为常用。

二、桩筏复合基础的设计理论

《建筑地基基础设计规范》第8.5.14条规定,桩基设计时,应结合地区经验考虑桩、土、承台的共同工作。相关规范对桩筏复合基础的计算方法并未做出统一规定,采用的计算方法也不尽相同,多根据当地情况和经验确定,大致有以下两种计算方法。

1、假定整个建筑物和重量全部由桩传到地基中去,而承台板只起连接桩顶和传递上部荷载的构造作用。在群桩布置中使桩的受力均匀,桩群形心与上部结构传给基础的荷载重心尽量重合。当群桩数量较多时,采用了“外密内疏”的内桩方法,即适当减少群桩中部的桩数而增加桩数。应该说,这种方法主要以桩受力为主,这种情况下,没有考虑承台板基础的支承力,将会增加桩的数量,造成浪费。

2、发挥桩土的共同承载作用,利用天然地基的承载力,采用控制沉降的方法将上部荷载由桩和筏板共同互补承担,使桩的数量及筏板厚度得以减少。

建筑物的沉降一般分为沉降量和沉降差。减沉设计是控制沉降而设置桩基的方法。也即是在设计时由基础的沉降控制值来确定桩数和桩长。减沉设计概念主要应用于软土地基上多层或小高层建筑的基础设计中,桩在基础中除承担部分荷载外主要起减少和控制沉降的作用,桩可视为减少沉降的措施,或作为减少沉降的构件来使用。同时,承台或筏板也能分担部分荷载,与按桩承担全部荷载设计的桩基相比,根据不同的容许沉降量要求,用桩量有可能减少,桩的长度也可能减短,因而可达到降低工程造价的效果。

3、减沉设计的内容

(1)桩长及桩身断面选择。选择桩长应尽可能穿过压缩性高的土层,桩端置于相对较好的持力层。在承台产生一定沉降时桩仍可充分发挥并能继续保持其全部极限承载力:选择桩身断面应使桩身结构强度确定的单桩容许承载力与地基土对桩的极限承载力二者匹配,以充分发挥桩身材料的承载能力。

(2)承台埋深及其地面尺寸的初步确定。首先按外荷载,全部由承台承担时其极限承载力仍有一定安全储备的原则,先初步确定承台的埋深及其底面尺寸,然后确定减沉设计的用桩量,再验算承台的初步尺寸,并给予调整。

(3)不同用桩数量时桩基沉降计算。根据初定的承台埋深及其底面尺寸,原定若干种不同的用桩数量方案,分别计算相应的沉降量,从而得到沉降s与桩数n的关系曲线图,减少沉降桩基础的桩距一般应大于6d,桩的分布与建筑物竖向荷载相对应。

4、减沉设计的基本原则

(1)设计用桩数量可以根据沉降控制条件,即允许沉降量计算确定。根据沉降s与桩数n关系曲线,按建筑物容许沉降量确定桩基实际所需的用桩数量。在用桩数量确定后,再按已经选定的桩数和初步确定的承台埋深及底面尺寸计算其极限荷载,验算安全系数或调整承台埋深及底面尺寸,以确保合理的安全度。减沉桩基础桩距较常规桩筏基础布桩要大,一般至少大于4倍~6倍桩径,故其介于天然地基浅基础与桩基础之间。

(2)基础总安全度不能降低,应按桩、土和承台共同作用的实际状态来验算。因而减沉桩基础也称之为控制变形疏桩基础。对于减沉桩筏基础的沉降计算则应结合当地经验考虑桩同作用。

(3)为保证桩、土、和承台共同工作,应采用摩擦型桩,使桩基产生可以容许的沉降,承台不致脱空,在桩基沉降过程中充分发挥桩端持力层的抗力。在上部土层为松软土质、次固结土以及承载力太低土组成时,桩与桩间同作用得不到保证时,就不能考虑桩与桩间同作用,而应该按现行桩基设计。

在共同工作分析中要重视的问题是如何根据共同工作分析的成果优化设计,而优化设计的关键乃是尽量减小沉降差,从而降低筏板内力和上部结构次应力,减小筏板厚度和配筋,提高桩筏基础的可靠性。为此,提出变刚度调平设计的概念和方法。这也是发展控制变形设计的一个重要内容。

三、变刚度调平设计

1、变刚度调平设计的内容

建筑基础设计篇9

【关键词】建筑工程;结构设计;基础设计;桩基设计

1建筑工程结构设计常用的几种基础设计

1.1桩基础。桩基础具有承载力高、沉降量小的特点。一般建筑物应尽量采用浅基础,若地基变形和强度方面都无法满足要求时,则可采用此种形式的深基础。下列情况可考虑采用桩基础:(1)建筑物上部结构荷载较大,而地基上部软弱,下部有可作为桩端持力层的坚实土层时;(2)天然地基上的浅基础沉降量过大,即使进行地基处理也不能满足建筑物要求时;(3)对较为重要的建筑物,虽然地基承载力尚好,但由于对控制沉降有较高要求,不允许有过大沉降,也可考虑采用;(4)对土层不很厚,土质又较差,如做条形基础,土方量较大,可考虑采用钻孔,灌注短桩。

1.2墙下条形基础。当上部结构荷载较大,地基承载力又较低,且地基又不很均匀,采用刚性基础往往会使基础断面过大,如果要保持浅基础,则基础露出地面,如果加深基础又要增加土方量基础造价。即使采用刚性基础,也难避免在基础产生较大的抗拉、抗剪应力时,出现基础裂缝、不均匀下沉,以致引起上部结构墙体裂缝。这时一般采用钢筋混凝土条形基础,它可以承受较大的弯矩和剪力,用基础断面大小和配筋量来满足受力要求。如果地基不均匀,还可加肋梁,以增强抗弯能力,调整不均匀沉降。

1.3钢筋混凝土筏板基础。当地基承载力较低,且地基土质不均匀,而上部结构荷载却很大,采用十字交叉基础,有的基础之间的空隙所剩无几,有的基础底面积重叠,已不能提供足够的基础底面积时,这时可采用筏板基础。对于有地下室的结构,它本身不要求防水或防潮,筏板基础恰好就是地下室的底板结构。当荷载不太大时,常采用平板式筏板;当荷载较大时,可采用梁板式筏板。由于筏板基础的整体刚度较大,故能将各柱或墙体的不均匀沉降调整得较为均匀。

1.4独立基础。刚性或柔性独立基础一般多用于柱下基础,根据柱荷载偏心距大小,基础断面可为方形或矩形。当柱距较大时,常为独立基础,这样较为经济。为增强基础整体性,也可采用拉梁适当拉结,以增强适应地基变形和抗震能力。多层建筑上部结构为框架体系时,如地基承载力较高,地基变形较小,荷载及柱网分布较均匀,宜选用独立基础,但在纵横两个方向宜拉梁适当拉接。拉梁断面选择要适当,不宜过大,可通过计算确定。一般民用建筑中的内柱,多数可考虑采用独立基础,而不用条形基础,在满足承载力及变形要求下,其经济效果是较好的。

1.5柱下条形基础及十字交叉基础。当地基承载力较低而柱荷载又较大时,或地基变形和柱荷载的分布在两个方向都不均匀时,一方面要求扩大基础底面积,以满足承载和地基变形的要求,同时又要求基础具有较大刚度,来调整不均匀沉降,这时可考虑设置十字交叉基础。十字交叉基础具有较大的空问刚度,是一种较好的基础形式,但它有自己的适用范围,不可任意滥用,只有当条形基础不能满足要求时,才采用十字交叉基础。

2建筑工程结构设计中桩基设计的具体分析

2.1对桩基竖向承载力的计算。当遇到计算竖向承载力时,如果桩基承担轴心荷载,就要保证基桩或复合基桩的竖向力满足要求,如果承担偏心竖向荷载时,那就应该提高其标准;当考虑地震荷载情况时,那么对其竖向承载力的计算就应做到更加严格、仔细。

2.2计算单桩竖向极限承载力。(1)极限承载力的计算属于桩基设计的重要内容,在设计的时候,竖向承载力应满足以下规定:①如果建筑桩基设计是甲级,就应该利用单桩静载试验来确定极限承载力;②当桩基设计为乙级,并且具有简单的地质条件,就可以参照类似的工程条件进行桩基设计,同时还应该结合相应的原位试验等加以综合确定;③如果桩基为丙级时,就可以根据经验参数及原位测试等方式来进行确定。(2)极限端阻力、极限侧阻力、单桩竖向极限承载力标准值应按下列规定确定:①例如一般的桩基承载力可根据规范来确定;②然而那些大直径端承型桩,就可以利用深层平板载荷试验确定极限端阻力;如果是嵌岩桩,还可以根据岩基平板载荷试验确定;③通常情况下,桩的极限侧阻力及阻力可通过预埋测试元件的方式通过静载试验确定。与此同时还可以建立标准值与参数之间的经验曲线,最终根据这些经验参数法确定单桩竖向极限承载力。

2.3选择桩长、桩型选择。桩型和桩长是桩基设计中必不可少的重要内容,当进行选择时,首先应该对建筑施工现场的环境条件进行勘察,对成桩的桩基对环境可能造成的影响、成桩的可行性、施工工艺、施工工期以及桩基成本等多角度,和对桩基类型和长度进行优化、调整,使其能够在节约投资的基础上对建筑物安全效果有良好的保证。

2.4桩项作用效应计算。如果是普通建筑物或是较小荷载的高层建筑,在进行桩基设计时就应考虑到柱、墙等在基桩的桩顶所产生的作用效应,对竖向力及水平力所产生的影响进行考虑;然而如果是需要承担地震荷载的低承台桩基,就更应该进行严格规范的验算了,如果当建筑物位于抗震有利的地段时就可以不考虑地震带来的影响;若是有可能发生8度及8度以上的建筑物区域或受水平力较大的桩基设计的话,那就要考虑承台与桩基的共同效果以及与土体间的弹性抗力作用,最终达到设计准确、科学的设计目的。

2.5位移计算与桩基水平承载力。对于保证桩基的安全性,位移的计算及桩基水平承载力起到重要意义,可分为两种类型:单桩基础、群桩基础。(1)群桩基础。当遇到力矩较大或水平力的情况时,首先应考虑由承台、桩群、土相互作用产生的群桩效应,然后对基桩水平承载力特征值进行计算,土体类型与承台底部与地基土之间的摩擦系数有较大关系,所以在选取时应该小心谨慎。(2)单桩基础。它在承担水平力时应满足其特征值的要求。

2.6承台的计算、(1)对于桩下桩基承台,首先应分别对桩边连线、柱边、变阶处所形成的贯通承台的受剪承载力和斜截面进行验算。如果承台悬挑边形成多个剪切截面时,那么就应该对每个斜截面的受剪承载力进行验算。(2)关于条形承台梁的弯矩可按照弹性地基梁进行分析计算;如果遇到桩端持力层较为深厚岩体坚硬且桩柱轴线不重合时,首先可以将桩视为不动的铰支座,其次再按连续梁进行计算。(3)对于桩基承台,则应该对其进行正截面受弯承载力的计算,配筋和受弯承载力可根据规范规定进行。

3结束语

随着建筑工程的蓬勃发展、建筑工程数量的日趋增多,很多工程项目在基础设计过程中没有经过科学的论证就草率完成,这样往往在施工过程当中造成各种问题,导致工程频繁变更,不仅仅增加了施工时间,也增加了施工困难度,还对工程造价有一定影响,同样为建筑的安全埋下了隐患。所以广大设计人员一定要做好基础工程的设计工作,做到小心设计、仔细论证。让我们在中国建筑事业的浩瀚大船中,划动自己的那一份船桨,为大船的前行作出努力、作出贡献!

参考文献:

建筑基础设计篇10

关键词:桩筏基础;沉降计算;弹性地基梁板

一、工程概况

本工程位于某市,为一栋集商业、写字楼、公寓于一体的高层建筑综合大楼,其地下4层,用作车库、超市及设备房;地上裙房6层,主要用作商场;两栋塔楼(分缝后)分别为商务公寓和商务写字楼,总层数为25层,基本层高3.3m和3.6m,建筑总高度为98.50m。

二、基础设计

(一)地质条件及基础选型

本区大地构造属于雷一琼喜山沉降带北部某区。场区内第四纪地层发育,厚度达数百米,区域稳定性较好。勘察发现场区及附近均为第四系松散沉积层覆盖,地表未发现有明显的构造形迹出露,场地地形平坦,不存在高陡边坡、崩塌等不良工程地质现象本次钻探最大深度为85.0m,揭露土层上部为填土,全新统沼泽相沉积淤泥质黏土及中更新统北海组粉土,下部为下更新统湛江组海陆交互沉积地层,按成因类型及岩土工程特性划分为16个主要单元层。

据钻探资料揭示,场地⑧中砂及其以下土层中⑨,⑩,⑩黏土强度相对较低,其余土层的承载力特征值在250kpa以上;其中⑥粉质黏土及⑩中砂层分布稳定,厚度较大,为硬塑~坚硬或中密~密实状,承载力特征值在280kpa以上,其下无软弱下卧层分布,是理想的桩基础桩端持力层。根据湛江地区经验,桩的类型可考虑选择预应力管桩或钻孔灌注桩。结合本工程特点,采用钻孔灌注桩基础的桩筏基础结构形式。

(二)基础设计

桩基的布置:根据主楼与裙楼基础的受力特点,主楼采用长桩基,裙房则采用天然地基加短桩基的设计思路,采用不同桩长的形式进行布桩。主楼桩基主要以承受上部竖向荷载为主,柱下布置群桩,桩径有800∶1,1000∶1两种,大部分有效桩长为40m,桩端持力层为粉质黏土层;核心筒下布置群桩,桩径1500FD./ti,有效桩长50m,桩端持力层为中砂层;裙楼则主要以抵抗水浮力为主,柱下布置单桩,桩径1000FD./ti,有效桩长25m,桩端持力层为中砂层。由于本工程地下室比较深,地下水埋深较浅,水浮力相当大,为了平衡水浮力的作用,在部分跨度较大的筏板跨中布置了抗拔桩。这样,既解决了抗浮的问题,又有利于减小筏板的受力及配筋,节约工程造价。

筏板布置,考虑到主楼与裙楼荷载相差较大,基础筏板采用两种不同厚度的筏板。主楼筏板厚1500FD./ti,裙楼筏板厚800FD./ti.对个别荷载较大抗冲切验算不满足的柱位进行局部加厚至1400FD./ti。

三、沉降计算

(一)重点与难点

目前解决大底盘高层建筑不均匀沉降的办法一是设置沉降缝,二是设置施工“后浇带”,待沉降基本稳定后再浇筑“后浇带”混凝土。设置沉降缝影响地下空间的使用功能,一般已不采用;采用施工“后浇带”技术,在中、低压缩性土层中,一般在主体结构封顶后浇筑“后浇带”混凝土,但一般需一年或一年半时间,施工“后浇带”的保护以及在有地下水的地区,降水周期很长,费用开支可观,并增加施工难度。本工程地下室不设沉降缝及后浇带,为此,沉降计算及控制就变得尤为重要。

(二)计算模型选择及基本思路

本工程沉降计算的计算软件是中国建筑科学研究院开发的pKpm系列JCCaD模块,采用桩筏筏板有限元计算方法中的winKLeR(文克尔)弹性地基梁板模型来计算的。根据本工程地质条件的特点,采用为控制沉降而设置桩基的方法设计基础。这种方法是考虑桩、土、承台共同作用时,基础的承载力可以满足要求,而下卧层变形过大,此时采用摩擦桩旨在减少沉降,以满足建筑物的使用要求。以控制沉降为目的设置桩基是指直接用沉降量指标来确定用桩的数量。基本原则有以下3点:

1.设计用桩数量可以根据沉降控制条件,即允许沉降量计算确定。

2.基础安全度不能降低,应按桩、土和承台共同作用的实际状态来验算。桩同作用是一个复杂的过程,随着沉降的发展,桩、土的荷载分担不断变化,作为一种最不利状态的控制,桩顶荷载可能接近或等于单桩极限承载力。为了保证桩基的安全度,规定按承载力特征值计算的群桩承载力特征值与土承载力特征值之和,应大于等于荷载效应标准组合作用于桩基承台顶面的竖向力与承台及其上土自重之和。

3.为保证桩、土和承台的共同作用,应采用摩擦型桩,使桩基产生可以允许的变形,承台底不致脱空,在桩基沉降过程中允许发挥桩端持力层的抗力。同时桩端还要置于相对较好的土层中,防止沉降过大,达到预期控制沉降的目的。

结合本工程的特点,这条思路贯穿于基础设计的全过程。而且,在布桩过程中,考虑了部分水浮力的有利作用。建筑场区位于湛江港湾北西部,湛江港湾潮汐为不规则半日潮,历年最高潮位(风暴潮)5.28m(黄海高程),历年最低潮位一2.49m。地下室底板的抗浮计算采用最高潮位,考虑水浮力的有利作用时采用最低潮位。

(三)沉降计算结果

沉降计算时将工程按大底盘多塔结构考虑,真实地反映了基础的受力情况。经过反复的计算,并通过调整桩径及桩长,使主楼及裙房的沉降量达到比较理想的结果,沉降变化趋于平缓。其中主楼最大沉降为36mm,裙房最小沉降为10mm。