首页范文能源及动力工程专业十篇能源及动力工程专业十篇

能源及动力工程专业十篇

发布时间:2024-04-25 18:06:31

能源及动力工程专业篇1

可见,战略性新兴新能源产业的发展离不开新能源科学与工程等专业,而且,新能源产业的发展同样离不开能源与动力工程专业的参与。同时,战略性新兴新能源产业的发展,为能源与动力工程专业的建设带来挑战与机遇,因此,需要加强能源与动力工程专业建设,满足新能源及常规能源发展对人才的需求。

能源动力类专业是战略性新兴的新能源相关产业及新能源科学与工程等专业的发展基础

战略性新兴产业如新能源学科与工程等专业的发展需要以传统优势学科为其基础。传统产业的基础和发展现状将影响战略性新兴产业的形成与发展,战略性新兴产业的发展也将从传统产业的发展中获取帮助。能源动力类专业涉及的多是传统产业,而新能源科学与工程专业所涉及的是战略性新兴产业,因此,能源动力类专业的发展直接影响到新能源及其新能源科学与工程专业的发展。新能源科学与工程专业涉及的学科领域广泛且属交叉学科,涉及物理学、能源与动力工程、电子科学与技术、自动控制、材料科学、机械工程、化学等多个基础学科。新能源科学与工程专业是一个典型的多学科交叉专业并强烈地依托于能源与动力工程等工程技术的发展。基础学科是催生和促进新的学科领域特别是交叉学科、新兴学科发展的源泉。战略性新兴新能源产业及新能源科学与工程专业的发展离不开孕育其出生的能源动力类专业,能源动力类专业作为其发展的基础与源泉,并为新能源科学与工程专业的发展提供强大的理论基础。

国内外高校的新能源科学与工程专业的课程设置与能源与动力工程专业的设置有共同之处,如均以流体力学、工程热力学、传热学等作为专业基础课。国内已开设的新能源科学与工程专业的人才培养课程体系可知,大部分培养方案体现了能源动力类专业的学科基础(包括流体力学、工程热力学、传热学等),这些均与教育部新修订的《普通高等学校本科专业目录(2010)》中,将新能源科学与工程专业设为能源动力类特设专业的要求是一致的。北京工业大学新能源科学与工程专业的实践教学方面,主要依托热能与动力工程北京市实验教学示范中心的实践教学平台,并借助重点实验室的科研优势和动力工程及工程热物理学科优势,进行新能源科学与工程专业的创新性实验项目研究。

综上所述可知,国内大多数高校的新能源科学与工程专业多是建立在原来的能源动力类专业基础之上的,能源动力类专业是战略性新兴的新能源相关产业及新能源科学与工程等专业的发展基础,因此,需要深入探讨能源与动力工程专业的人才建设。

战略性新兴的新能源产业发展对能源动力类专业人才培养的需求

自2010年7月教育部下文开办新能源科学与工程专业的建设已有4年时间,该专业的发展取得了很大的进步,该专业主要是学生通过学习各种类新能源的特点、利用方式和方法以及新能源应用的现状、未来发展的趋势,学习动力工程及工程热物理学科宽厚理论基础,系统掌握新能源与可再生能源转换利用过程中所涉及到的能源动力、化工、环境、材料、生物等专业知识,培养具备热学、力学、电学、机械、自动控制、能源科学、系统工程等宽厚理论基础,受到新能源转换与利用以及新能源利用技术与设备的全面训练,具备能源科学及工程知识与现代信息技术,具有良好的团队合作精神和国际视野,具有较强工程实践与创新能力的专门人才。

经过近几年的发展,新能源科学与工程专业的人才培养目标及课程体系的设置取得了很大的进步,但是,从新能源科学与工程专业的人才培养目标以及课程设置体系设置的分析,可以看出,其侧重于将风能、太阳能、地热、生物质能、核电能等各种“新能源”如何高效的转换为“中间能源”,如将将太阳能转化为热能,生物质转换为生物油,将风能转化为机械能,将潮汐能转换为势能等“中间能源”。但是,新能源要高效地为我们所利用,还需要将这些“中间能源”合理高效转换为可以利用的“二次能源”如电能以及可以直接应用的生物油等,这些“中间能源”的高效转换需要有能源与动力工程专业的参与才能够高效完成“中间能源”向“二次能源”的转换。

因此,在大力发展新能源相关产业及新能源科学与工程专业的同时,对能源与动力工程专业的发展提出了新的挑战与机遇,需要针对新能源科学与工程专业设置的不足之处,针对各种“中间能源”的特点及转换特点,制定出合理的能源动力类专业的人才培养方案,使其与新能源科学与工程等新能源相关专业形成互补,共同完成从“新能源”向“中间能源”再到“二次能源”的高效转换,将新能源的利用率发挥到极致。

基于战略性新兴的新能源产业发展背景下的能源动力类专业人才培养的探讨

国内开设有能源动力类专业的高校有100余所,通过查阅并归纳国内各个高校能源动力类专业的人才培养目标:着力培养拥有扎实的动力工程及工程热物理学科宽厚基础理论与专业知识,并具有较高的人文社会科学和管理学的知识,系统掌握热力科学、控制技术和计算机应用技术、能源高效转换、清洁利用及其自动控制与运行的专业知识、基本技能及学科发展动态,具有较强的工程意识、工程素质、工程实践能力、自我获取知识的能力、创新素质、创业精神、社会交往能力、组织管理能力和国际视野的高素质人才。

根据战略性新兴产业之新能源发展的要求以及新能源科学与工程专业人才培养的特点,结合能源与动力工程专业的人才培养目标以及当今能源动力类专业自身发展的需求,提出了能源与动力工程专业人才培养的一些建议。

针对新能源产业的发展,调整能源与动力工程专业的人才培养课程体系

针对新能源产业的发展特点,以及新能源的能源转化特点,适当调整人才培养目标及课程体系使之满足新能源后续利用对人才的需求。如太阳能的热利用过程中,可设置高效吸收、储存及释放太阳能(热能)的相关课程,以及高效利用其储能材料释放的热能的动力机械的相关课程,完成从“新能源”(太阳能)到“中间能源”(储能材料所储存的热能)再到“二次能源”(如电能)的高效转换;可以添加高效热解生物质转换为高品质的生物油(“中间能源”)的课程,以及开设特定课程来讲解如何将生物油(“中间能源”)转换为可以直接高效利用的“二次能源”或直接将生物油“中间能源”高效利用的课程等等。

构建多层次、不同规格的人才培养体系

能源动力类专业(学科)的人才培养需要分为博士、硕士、本科及专科,满足不同层的人才需求。同时,不同性质的高校在本科层次的人才培养目的是不同的,如研究型大学主要培养学术型以及研究与应用人才、教学研究型大学培养学术和应用型人才为主、教学型大学培养应用型人才为主以及高等职业院校培养应用型学生为主。

加强职业教育与培训,发展继续教育,构建终身教育体系

虽然高校有多层次、不同规格的人才培养方式,可以针对不同层次的人才需求制定相应的人才培养目标并培养出合格的人才,但是,当今科技发展日新月异,知识发展迅猛,技术更新频繁,如果企业引进的人才仅仅靠在学校所学的知识是不能满足企业的快速发展的。总书记在十六大的政治报告中指出:要“加强职业教育与培训,发展继续教育,构建终身教育体系”。因此,需要为已经毕业的能源动力类专业人才制定继续教育培训计划,构建终身教育体系,使能源动力类人才时刻具备最新知识与技能,满足企业发展的需求。

采取的措施可以是要根据不同岗位的人员,帮助其制定终身的自我学习与培训计划,使其获得并完善各种知识与技能;与高校联合制定长期的培训计划,如每年对企业的人才进行专业相关新知识的培训或是按照企业的要求进行专业知识培训;邀请能源动力类的研究院所专家定期举行学术讲座,传播能源动力类的最新技术发展,起到抛砖引玉的作用;可以与行业协会共同举办相关知识的讲习班,使热能工程师掌握相关最新的专业技术;要求企业员工进行培训考证,使他们在考证过程中学习到相关知识,同时也使其保持强烈的学习愿望;出国进行短期培训学习,学习国外最新的能源动力类知识;采取要求每位员自己工定期举办讲座,将其学习、工作或查阅中所获得的知识进行相互交流,使大家能便捷地学习到更多的知识。

建立跨产业、跨领域、跨学科合作的人才培养模式

对能源动力类专业进行教育资源的整合,在培养常规的能源动力类人才基础之上与新能源相关产业合作培养跨产业人才,并与能源动力类之外的领域如化学工程及材料学科合作培养生物质能高效利用与新能源材料相关的专业技术人才。

建立高校与企业、研究院所及国外高校学联合的人才培养模式

高校与企业联合人才的培养主要是让企业里面的既懂理论专业知识和具有丰富实践工程经验的工程师担任本科人才培养(毕业设计)的第二导师,让本科生在毕业设计阶段可以得到实际工程知识的训练,学习到如何将理论知识与实践工程联合起来解决实际工程问题的能力,学习如何将知识转换为生产力。其次,可以让企业参与硕士及博士人才的培养,由于硕士人才与博士人才培养目标不同,因此,对于硕士人才的培养主要是让学生参与企业的技术改革,解决较高难度的实际课题为主。博士人才的培养可以部分参照博士后流动站对其博士后工作人员的要求进行培养,参与企业的产品研发的研究工作。聘请国内能源动力类研究院所的知名专家院士来校进行学术交流,让学生有机会与这些学术泰斗面对面交流,学习他们的思维方式,以及他们所带来本领域的最新专业知识信息。可以聘请国外高校知名教授专家来国内短期讲课,让学生了解国外本领域的最新发展及相关知识。

注重能源动力类人才出国留学培养

选送优秀的学生在完成国内的课程以后,到国外动力类著名高校继续学习先进的能源动力类知识,使人才的培养具有国际水准,这些学生在国外完成本科、硕士或博士的学业之后回国工作,这样就可以为我国能源动力类的建设起到推波助澜的作用,加快我国能源动力类产业及新能源产业的快速发展。

能源动力类人才的后续培养

从高校毕业的博士、硕士、本科及专科具备一定理论知识,但是,这些人才要在企业做出成果,离不开企业的“二次培养”,就是按照不同层次人才的特点安排在不同的工作岗位进行专业技能、技术以及研发的后续培养锻炼,在此过程中培养出能够将知识转化为实际生产力的各个环节上的不同层次的人才,培养出如科技创新的领军人才、科学研究与技术开发人才、高技能的技术创新人才以及实际科技成果的转化人才等。

按照CDio模式及卓越工程师模式培养能源动力类人才

能源及动力工程专业篇2

1.1构建符合新能源(太阳能)行业应用型人才培养的课程体系我校能源与动力工程专业设有制冷与空调技术、制冷测试技术与自动化、太阳能利用三个专业方向。理论课程体系采用模块化设置,分为公共基础课模块、专业基础课模块、专业课模块和专业选修课模块。前三个模块构成了能源与动力工程专业的基础知识体系,为学生继续深造和进行能源动力方面的研究应用奠定了理论基础。专业选修课模块根据2014年3月德州及其周边地区对新能源类特别是太阳能应用方向的人才需求设置了相关课程[2]。结合行业企业用人对毕业生实践能力的要求,实践环节穿插于整个教学过程,着重培养学生实践动手能力。前三年,学生的实践环节主要有包括认识实习、金工实习、制图测绘在内的基本技能训练,以及把课堂教学和工程实践相结合的课内实验、课程设计等专项技能训练。学生在掌握了扎实宽厚的能源与动力工程专业基础知识后,第四年有计划地到校外实习基地进行为期一年的实习,包括专业方向实习和毕业设计、毕业实习,以提高学生综合运用所学知识分析和解决工程实际问题的能力。2012年,能源与动力工程专业获批部级“专业综合改革试点”项目,聘请中科院物理所孟庆波为教授,聘山东大学可再生能源研究中心主任韩吉田教授、天津大学“中低温热能高效利用”教育部重点实验室负责人赵军教授、国家太阳能热利用研发中心主任赵玉磊为专业建设专家委员会成员,完成了德州学院能源与动力工程专业专业规范的撰写、培养方案的修订、基础课和专业基础课课程规范的撰写工作。同时,德州学院机电工程学院与中国太阳能产业联盟联合成立能源与动力工程(太阳能热利用方向)专业卓越工程师试点班,2012年9月首届招生50人,2013级招生正在进行中。鉴于太阳能专业高校教材紧缺的现状,机电工程学院编写了7本太阳能系列高校教材,其中孙如军教授编写的《太阳能热水系统施工管理》(清华大学出版社)已于2012年11月出版,其余几本已经完稿,等待出版。

1.2培养适应新能源(太阳能)行业应用型人才培养的师资队伍能源与动力工程专业现有专职教师19人,其中教授3人,副教授12人,具有博士学位教师2人,均拥有丰富的教学经验和实践经验,是一支年龄、职称、学历结构合理、发展趋势良好的师资队伍。近三年来,专业教师共近120篇,其中在核心期刊发表20余篇,在外文期刊15篇,被SCi收录9篇;承担或参与国家、省科技厅、市科技局项目20余项,院级科研课题30余项,承担国家教研立项课题5项,出版专著2部,参编教材28部,获得实用新型专利20余项。

1.3能源类创新性、应用型人才培养成效显著学生实践创新能力强。近几年在大学生科技文化创新大赛中,能源与动力工程专业学生在全国大学生节能减排课外科技作品竞赛、全国大学生数学建模竞赛、全国三维数字化创新设计大赛、全国大学生电子设计竞赛、全国大学生电子商务“创新、创意及创业”挑战赛、全国大学生计算机仿真竞赛、大学生物联网创新创业大赛、山东省机电产品创新设计竞赛等各类部级和省级比赛中都获得了优异成绩,获得部级奖励20余项,省部级以上奖励200余项,教师指导学生在公开发行的杂志上发表学术论文10余篇,获得实用型新专利20余项,获奖层次和数量均居全国同类院校和省属高校前列。特别值得一提的是在教育部主办的全国大学生节能减排社会实践与科技竞赛中,参赛作品《太阳能电动车》、《太阳能服饰》、《绿色压力环保鞋》、《自切换高效太阳能干燥装置》连续四届分获部级一等奖,尤其是在2011年8月的竞赛中,学生的参赛作品《害虫自杀式太阳能灭虫器》,在全国182所参赛高校中,荣获国家特等奖,现场总决赛全国成绩排名第一,同时我校荣获优秀组织奖。学生就业率高。能源与动力工程专业2006年开始招收本科生以来,一次性就业率在95%以上,主要就业行业为省内制冷、空调、汽车、太阳能等行业,许多同学现已成为企业设计主管或现场主管。到目前为止,与皇明太阳能集团联合培养的太阳能专业的学生中已有160名进入了相应的岗位,得到了企业的一致好评。

1.4构建协同创新的新能源(太阳能)行业应用型人才培养校企合作模式2007年至今,德州学院机电工程学院先后在国家太阳能热利用工程技术研究中心、皇明太阳能集团有限公司等建立实习实践基地5个;2006年12月,机电工程学院与山东奇威特人工环境有限公司投入了30万元,校企合作共建了“太阳能中央空调实验室”。2007年3月与皇明太阳能股份有限公司合作共建,成立了“太阳能热利用工程技术实验中心”,面向全校相关专业师生、皇明太阳能股份有限公司及地方新能源企业开放。该专业分阶段安排学生到各公司进行见习和实习,并聘请高级工程师进行专业知识和专业技能的讲座和兼课,带来了大量的课程设计、毕业设计以及科研课题,并进行卓有成效的指导,开阔了学生视野,实现了理论到实践的结合,让学生了解和掌握本学科的发展动态和社会需求状况,为今后走向社会奠定了基础。自2007年与皇明联合办学以来,相继已经开设了五届“太阳能班”,实验室教学配置都相应固定且配备齐全。所用教材都是德州学院和皇明集团合作编写,共20余部。集团派相应的各部门高级技术人员到校指导教学工作,联合办学借助皇明集团国际领先的检测与研发设备,组织学生进行相关的研究与开发。借鉴与皇明太阳能集团联合培养人才的经验,2010年又先后与德州旭光太阳能集团、东营光伏太阳能有限公司等太阳能应用企业成立了相应的企业冠名班。2012年,德州学院与皇明太阳能股份有限公司联合建设“本科教学工程”大学生校外实践教育基地,已获教育部批准。在合作办学基础上,总结出了“三三六”校企合作人才培养模式,这一校企合作人才培养模式的办学经验,在2010年山东省校企合作培养人才工作电视会议上做了大会典型发言。由此构建的“强化专业技能、突出创新能力、提升人文素养”为主要内容的三位一体的校企合作人才培养体系,保证了学生综合素质的不断提高。2009年至2011年,德州学院连续三年被评为“山东省校企合作先进单位”,2011年德州学院列入首批“山东省企业专业技术人员继续教育基地”。

2建设规划

能源与动力工程专业人才培养以服务区域经济和社会发展为宗旨、以就业为导向,走产学研结合的发展道路,培养新能源行业创新性、应用型人才,建成在省内有一定影响力的能源与动力工程专业引领的能源类专业群和能源类卓越工程师培养基地,为德州及周边地区新能源行业发展起到引领和推进作用。

2.1打造能源与动力工程专业引领的“特色突出、优势显著”的能源类、机械类、自动化类专业群目前,我校已确定重点打造能源与动力工程专业(暨新能源、节能环保装备方向的机械设计制造及其自动化专业)引领的能源类、机械类、自动化类专业群,为德州市新能源产业共涉及的太阳能利用、风电装备、生物质能、热泵应用、新能源汽车和节能环保六大领域做好智力支撑。根据德州市及周边地区对新能源装备与环保机械领域人才的需求,对三个专业群教学计划及教学内容进行调整,能源类专业群主要侧重于新能源(太阳能利用、新能源汽车)技术的研究与应用,机械类专业群主要侧重于新能源装备与环保机械的设计制造,自动化类专业群主要侧重于新能源装备与环保机械的自动控制。在现有基础上,完善理论———实验———实践人才培养路径,培养满足社会需要的能源类、机械类、自动化类创新性、应用型人才。同时加强师资队伍建设,造就一支教学水平高,科研能力强、实践经验丰富的教学团队。同时对现有实验室进行升级改造,同时购进必需的教学、科研仪器设备,积极打造群内共享的公共实验教学大平台,建成山东省能源与动力工程实验教学示范中心。

2.2深化能源与动力工程专业人才培养模式改革能源与动力工程专业将围绕德州市及周边地区新能源产业,特别是太阳能利用和新能源汽车行业的发展建设,根据教育部“卓越工程师培养计划”,进一步完善“3+1”的人才培养模式,深化能源与动力工程专业人才培养模式改革。以满足专业人才培养目标为核心,修订教学计划,将创新精神、实践能力和创业能力纳入课程体系和教学内容,参照职业岗位任职要求,校企共同制订专业人才培养方案;将学校的教学活动和企业的生产过程紧密结合,灵活调整教学周期,学校和企业共同完成教学任务,突出人才培养的针对性、灵活性和开放性。

2.3打造一支满足新能源(太阳能)行业创新性、应用型人才培养的“双师型”师资队伍依据德州学院的柔性人才引进制度,引进教授、博士、企业技术骨干为学科带头人和骨干教师。聘任(聘用)一批具有行业影响力的专家学者作为专业带头人,一批新能源行业专业人才和能工巧匠作为兼职教师,建立兼职教师资源库,使专业建设紧跟产业发展,学生实践能力培养符合职业岗位要求。同时结合实际需要,兼职教师对学生的课程设计,毕业设计等实践环节进行指导。另一方面,加大在职教师培养培训力度。通过下企业、做访问学者、进修多种方式,在新能源行业造就出一批有一定影响力的专业人才,使专职教师下企业制度化,将教师参与企业技术应用、新产品开发、社会服务等作为专业技术职务和岗位聘用的重要内容。完善专业教师到对口企事业单位定期实习制度,提高专业教学水平和实践能力,提升双师素质。

2.4改革实践教学体系,加强实践基地建设在培养创新性、应用型人才,打造新能源行业卓越工程师的教学目标指导下,与校外实践基地的共同研讨,优化实验教学内容,构建“基础理论与实践技能平台设计应用能力平台综合实践能力和工程应用能力平台科技与创新能力平台”的“渐进式四平台”实验教学体系按照校企联合、共建共享、边建边用的原则,充分发挥校企合作的优势,依托皇明太阳能股份有限公司和山东奇威特人工环境有限公司等校外实验教学中心(研究所),以及东营光伏太阳能有限公司等5家实践教学科研基地,建成集研究创新、基础实训、生产实训、学工一体的综合性实训基地,创建山东省人才培养模式创新实验区、山东省实验实习示范中心、山东省工程技术研究中心,将学生的课堂教学、课程实习、专业实践及毕业设计、论文等环节与企业实际、教学研究与企业产品开发结合起来,以提高学生的培养质量和就业能力。

3结束语

能源及动力工程专业篇3

关键词:课程群;能源动力类专业;课程建设;卓越工程师计划

中图分类号:G642.3 ; ; ; ; ;文献标识码:a ; ; ; ; ;文章编号:1007-0079(2014)17-0079-03

近年来,关于高校课程建设与改革的话题受到持续关注,因为“课程”是大学整个教学活动的基础和核心,同时高校的课程建设也是一个相当复杂的系统工程,如课程内容的选择与界定、课程之间的合理组合等,都会直接受到培养目标、教育目的、教育观以及认识论等因素制约。此外,高校课程的结构是否合理、教学内容是否适当,反过来又会影响到高校人才培养质量和水平的高低。“课程群”的概念正是在这样的背景下被提出来的,它既是世界范围内科学和教育的发展之需,也是我国高等教育改革的现实要求。

一、课程群及课程群建设的发展现状

关于“课程群”是什么,教育界有着不同的看法,概括起来主要有四种。第一种认为“课程群”是由在内容上紧密相承、相互渗透、互补性较强的几门同系列课程组合而成的有机整体,各自配有相应的课程大纲,并按照大课程框架组织课程建设,以获得课程体系的整体优化,是具有学科优势的课程。第二种认为“课程群”是某一学科内多门课程的集合,通过学科来划分群与群间的界限。第三种认为“课程群”是指多门彼此互相独立但是又密切联系的课程,课程群建设的目的是为使各门课程能协调发展、齐头并进,追求整体效益,以达到最佳的效果。第四种认为“课程群”是由承担不同的任务,在课程内容上各有不同特点,但为完成同一个教育目标而形成的多个子课程组成的有机系统。

目前,一般高校倾向于第一种观点,因为它首先是将“课程群”看成是相互联系,相互渗透的有机整体,其次认为“课程群”是一个具有整体优化效果并且有一定学科优势的课程群体。总体来说,“课程群”是本学科或与之相近的学科的几门联系紧密的课程间进行有机的整合,以达到预定的教学目标和适应社会发展的需要为标准,建设出的使整体效果最大化的课程群体,是一种与单门课程相对应的课程建设方式。因此,“课程群建设”实际上就是根据高校人才培养目标及培养模式的要求,研究分析课程与课程体系间在逻辑和结构上的相互关系,通过破除课程间的壁垒,优化整个课程体系,进一步融合和更新教学内容、教学方法等的过程。随着高校专业课课程门类与学时数的压缩,“课程群”的建设显得尤为必要,它顺应了网络时代教育和人才培养的发展趋势。

“课程群建设”是近年来高等院校课程建设实践中出现的一项新的课程开发思路,其基本思想是把内容联系紧密、内在逻辑性强、属同―个培养能力范畴的同一类课程作为―个课程群组进行建设,打破课程内容原有的归属性,从学生培养目标与层次把握课程内容的分配、实施、保障和技能的实现。

我国高校以多门课程组合的方式进行课程建设,至今已有近二十年的历史。北京理工大学1990年开始,在课程建设中应以教学计划的整体优化为目标的方针指导下,首先提出要注重“课群”(课程群的早期称谓)的研究与建设。随后,一批高校相继开展了一系列虽名称相同或相似但差异较大的课程群建设和改革实践。[1-4]

二、课程群相对于“独立课程”的优势比较分析

相对于“独立式”的课程观,“课程群”在教学设计上独具特色和优势。主要体现在以下三个方面:第一,“课程群建设”与学科建设相结合,充分发挥相关学科建设力量强、基础好的优势,将学科建设与课程群建设有机结合。一些高校还把科研能力强、学术水平高的教师集中到教学一线具体参加课程群的建设工作,以“教学团队”的形式进行攻关,锻炼了高校教师教学和科研的整体协作能力。第二,以系统科学为指导,注重整体效果,将内在联系紧密的相关课程纳入“课程群”中统筹考虑,注重相互间的有机结合与互相促进,达到了整体优化的目的,同时提高了课程建设的效率和效益。第三,区别于过去的“独立式课程”,“课程群”把理论教学与相关实践环节通盘考虑,不仅对理论教学开展系统研究,对实践教学环节也进行了相应的改革,实现了全方位、多途径提高教学效果。[5,6]

三、课程群与课程体系的对比分析

国内有关学者高校课程群及课程体系进行了比较,研究指出:高校课程体系的建设主要是针对课程结构、所占比例、模块设置等进行宏观指导,明确课程的教材、大纲以及教学计划等,虽然能够较好地促进教学质量的提高、达到国家的教育目的、高校的人才培养目标,对于指导课程建设的原则、方法、目标具有重要意义,但是难以实现不同学校的办学特色、专业建设与特色课程建设。近些年来实施的重点课程建设主要是针对某一门课程的教学内容、体系结构、教学方法、评价方法等来开展的,体现在对某门课程的“点”――教学大纲、教学计划、内容结构等的建设,有力地保障了课程教学目标的实现,但高校的人才培养目标不是由一门课程就能实现的,各门课程在学生的知识传授、能力培养中只占一小部分。此外,由于每一门课程都强调其系统性和完整性,在教学实践过程中容易产生内容多与课时少的矛盾。

“课程群建设”属于中、宏观层面意义上的课程建设,主要针对某一受教育群体,将相关的课程进行整合,删减其中重复和过时内容,增加提高人才培养素质和提高竞争力的新内容,以提高教学效率及教学质量;通过对原课程群的进一步整合,可产生新的课程群,具有更新的人才培养目标,实现课程建设的规模效益,具有很强的可操作性及实用性。

通过对比分析可知,课程体系建设以整个人才培养计划中的课程体系为对象,其主要工作是调整各课程模块的比例。课程群建设则是以课程群为对象,对课程群内的有关课程教学内容进行有机融合,是对课程的重新设计,并将课程群的宏观设计与课程教学实践有效地结合起来,以提高整体教学效果。[7,8]

四、优秀课程群的建设方法及启示

课程群内相关课程的选择与设置,是当前课程群建设中的关注焦点和建设难点,同时也存在诸多争议。从专业教学角度看,目前课程群主要有两种界定方法:一是“以专业方向划分的专业课程模块组成的课程群”,对于该种模式,国内高校已有相关专业达成了共识,并已在学生专业知识、创新能力及综合素质培养等方面发挥了重要作用;另一种是综合考虑多学科的交叉与融合,培养宽口径人才,即“依托学科组建的课程群”,这种模式有助于增强学科实力,提高学科的建设水平。

对于优秀课程群的建设,方法是关键。建设过程中,要充分发挥课程群的特点与优势,一要注重群内课程内容的整合与新知识的更新。在充分融合孤立课程的内容、挖掘相关学科和领域最新知识的基础上,将相关学科的最新研究成果融入教学和科学研究过程,优化教学资源,注重学生的能力与素质培养。二是要分清群内课程建设的主次。从专业人才培养目标出发,根据专业知识在人才素质培养中的不同要求,可紧密依托专业办学特色和创新人才培养目标,在课程群内以专业主干课程为突破,抓住主要矛盾,分主次进行建设,避免因精力的均分而影响课程群的整体建设效果的提高。三是要充分考虑课程群内课程的关联性及在支撑专业人才培养上的协同作用,应在课程群建设实践中注重群内课程要彼此依托、相互促进、共同提高。这样的课程群组织建设,有利于群内教师间的交流沟通、课程与课程间的交叉融合,可及时反馈教学信息与教学效果,建立起有效的专业教学调控与响应机制,同时也可以通过对课程群规范的过程管理和质量评估,进一步促进群内课程教学质量的共同提高。[9]

五、卓越工程师培养背景下“热能与动力工程”专业的课程建设与发展

截止2010年,我国开设工科专业的本科院校有1003所,占本科院校总数的90%,高等工程教育的本科在校生达371万,研究生47万。[10,11]而目前工科专业毕业生还存在诸多问题,主要有:缺乏工程实践能力和工程创新意识、专业面狭窄、动手能力差、综合素质低下、所学知识陈旧等。[11]提高工科专业人才培养质量,对实现国家走新型工业化道路,建设创新型国家和建设人力资源强国三大战略有着十分重要的意义。

“卓越工程师教育培养计划”是高等教育针对《国家中长期教育改革和发展规划纲要(2010-2020年)》实施的重大改革项目,是提高我国高等工程教育质量、促进我国由工程教育大国迈向工程教育强国的战略举措。传统的课程体系、教学内容和教学环节已经不能适应“卓越计划”对工程人才培养的要求,必须通过重新设计课程体系、更新教学内容和重新组织教学活动来实现卓越工程师的培养。教育部日前的教高[2011]1号《教育部关于实施卓越工程师教育培养计划的若干意见》文中明确要求:大力改革课程体系和教学形式。依据本校卓越计划培养标准,遵循工程的集成与创新特征,以强化工程实践能力、工程设计能力与工程创新能力为核心,重构课程体系和教学内容。

能源动力广泛应用于各行各业,是国民经济的基础产业,也是国家科技发展的重要基础方向之一,关系到国家的根本利益和经济社会的健康持续发展。

我国能源动力类的热能与动力工程专业形成于20世纪50年代。由于受当时的历史条件限制,专业分割很细,形成了以工业产品生产引导高等学校能源动力类专业人才培养目标的基本格局,也在一定程度上适应于我国当时的经济社会发展。随着改革开放及经济社会发展,社会对能源动力类专业人才的培养提出了新的要求。为了适应社会的要求,能源动力类专业历经多次教育部的多次调整,已由原来的几十个小专业,逐步合并为一个大专业热能与动力工程专业。2003年,随着能源动力科学技术的飞速发展和能源动力领域新问题的提出,浙江大学率先将“热能与动力工程专业”改造成“能源与环境系统工程专业”,得到广大青年学子和社会各界的认同;2004年,清华大学将“热能与动力工程专业”改造成“能源动力系统及自动化专业”。国内还有一些高校也陆续地根据专业办学特色,进行了热能与动力工程专业名称的调整。在教育部新颁布的《普通高等学校本科专业目录(2012年)》中已将能源动力类专业统一整合为能源与动力工程专业。

经过一系列的专业教育改革,本专业的人才培养口径大大拓宽,体现在学生的基本知识面得到拓展,对市场需求的适应性大大加强,就业市场更为广阔。但是因各高校的专业定位、地域分布、历史继承及国家和社会需求等的不同,形成了开设本专业的高校间课程设置、专业重点及特色、培养模式多样化的态势。

由教育部启动的“卓越工程师培养计划”,旨在为我国各行各业培养优秀工程师的后备军。它要求高校转变办学理念、调整人才培养目标定位以及改革人才培养模式等。国内开设了热能与动力工程专业(现能源与动力工程专业)的相关高校,也相继加入热能与动力工程专业的“卓越工程师培养计划”行列。相关高校结合自身专业重点和办学特色,在专业课程建设及课程群建设方面进行了一些有意的探索和实践,主要体现在:面向学生综合素质的培养,开展了“能源清洁利用技术”课程群建设;[12]针对专业方向的培养特点,构建了“热能与动力工程”大专业多方向课程体系;[13]进行了热能与动力工程专业课程设计教学改革的探索与实践;[14]进行了基于精品课程建设为平台的汽轮机系列课程改革与实践;[15]进行了高职高专热能动力装置专业课程体系的改革与创新[16]等工作。这些课程改革与研究实践,尚未涉及到能源动力类专业卓越工程师培养的课程群建设,相关研究需要开展。

六、结论

第一,作为一种新形式的课程建设模式,当前开展的课程群建设不同于单门课程改革以及课程体系建设,既适应高校教学改革和人才培养的要求,也反映了课程教学改革的新趋势。

第二,热能与动力工程专业按照传统的以产品为导向的课程设置和体系建设,不太适合当前卓越工程师培养目标及要求,特别是存在一些课程的教学大纲和教材内容明显老化,课程内容呈现较多重复,导致培养出来的学生存在知识面狭窄、知识内容陈旧、动手及实践能力不强等弊端,制约了能源动力类专业卓越人才的培养。

第三,在已开展的能源动力类专业的课程建设与改革中,尚未在卓越工程师培养视角下组织实施能源与动力工程新专业的专业核心课程群的建设与改革。需要结合新专业的调整以及专业卓越人才培养要求,修订新专业人才培养计划,改革现有课程体系及结构,研究并构建适合新形势下能源动力类专业卓越人才培养要求的课程群。

参考文献:

[1]李慧仙.论高校课程群建设[J].江苏高教,2006,(6):73-75.

[2]孙存昌.论高校课程群“四级体系”建构[J].大学教育科学,

2008,(5):46-48.

[3]王嘉才,杨式毅,霍雅玲,等.课群及其质量检查评估指标体系的研究[J].高等工程教育研究,1999,(S1):71-73.

[4]赵朝会.浅谈课程群建设[J].中国科教创新导刊,2008,(14):17-18.

[5]龙春阳.课程群建设:高校课程教学改革的路径选择[J].现代教育科学,2010,(2):139-141.

[6]曹滨,王莹.后现代高校课程群建设思路及原则研究[J].中国校外教育,2009,(2):37.

[7]郭必裕.课程群建设与课程体系建设的对比分析[J].现代教育科学,2005,(4):114-116.

[8]郭必裕.对高校课程群建设中课程内容融合与分解的探讨[J].现代教育科学,2005,(2):66-68.

[9]钱云.关于质量工程背景下优秀课程群建设的思考[J].现代教育科学,2008,(6):144-145.

[10]张兄武.创新视野下的“卓越工程师教育培养计划”[J].苏州科技学院学报(社会科学版),2011,28(4):80-83.

[11]林健.高校工程人才培养的定位研究[a].第二期全国高校工程类创新型人才培养工作专题研讨会[C].2010.

[12]李志敏.面向素质培养的“能源清洁利用技术”课程群建设[J].中国电力教育,2011,196(9):191-192.

[13]宋文武,符杰,李庆刚,等.关于构建“热能与动力工程”大专业多方向课程体系的思考[J].高等教育研究,2011,28(4):44-48,71.

[14]王运民,李录平,明勇.汽轮机系列课程教学改革的研究与实践[J].中国电力教育,2011,(3):174-175.

[15]姚寿广,路诗奎,陆金明,等.热能与动力工程专业课程设计教学改革的探索与实践[J].华东船舶工业学院学报(社会科学版),2003,

能源及动力工程专业篇4

第四桶金:交通运输

交通运输类专业

重点大学推荐:上海交大、西安交大、北京交大、西南交大、同济大学、清华大学、华中科技大学、天津大学、大连理工大学、华南理工大学、东南大学、武汉理工大学、河海大学、长安大学等。

二本院校推荐:重庆交通大学、河南理工大学、辽宁工业大学、山东建筑大学、石家庄铁道大学、山东理工大学、西安建筑科技大学、上海海事大学等。

打开谷歌地球。在我国辽阔的版图上依稀可见无数公路、铁路及航海线路的痕迹,它们贯穿于每座城市之间,是连接你我、沟通彼此的桥梁与纽带。“十二五”规划纲要指出,到2015年末。基本建成国家快速铁路网和国家高速公路网,完善环渤海、长江三角洲、东南沿海、珠江三角洲和西南沿海港口群布局,加快内河航道网、民用机场、油气管道和城市交通设施建设,推进综合交通枢纽发展,形成以“五纵五横”为主骨架的综合交通运输网络,总里程达489万公里,不愧是大手笔。

如果让你列举几种交通运输工具,相信每个人都能毫不费力地说出n多种,汽车、火车、飞机、轮船等都是信口拈来。确实,近年来我国交通运输事业就像坐上了“和谐号”动车组一样――日行千里,现已初步形成了以铁路、公路、水运、空运和管道五种形式有序结合的交通运输系统,交通运输业正以“神八”速度向前奔跑着,这也给交通运输类专业带来了千载难逢的发展机遇。

【金牌专业】交通运输类

谈及交通运输,旗下“艺人”不仅众多,且星光璀璨,不乏交通工程、交通运输这些每年都炙手可热的“大牌”专业,也有航海技术、轮机工程、物流工程、飞行技术、交通设备与控制工程、救助与打捞工程等深藏不漏的实力派专业。交通运输类专业口径宽、内容涵盖广等。也就是说。无论是天上飞的、地上跑的,还是海里游的,统统都在它的麾下。

“大牌”最有范儿,先说“大牌”吧。交通运输专业是一门研究旅客货物运输线路、站港土木建筑及相关技术设备组成,交通运输发生、构成和运动规律的理论及其应用的综合性学科。在课程设置上,各个学校略有不同,但一般都会开设交通运筹学、交通工程学、交通管理与控制、路基路面工程、交通工程设施设计、交通环境污染与控制、交通运输组织学等主干课程。打住,别嫌累,之所以这么做,为的就是同学们将来到交通运输管理部门、交通运输企事业单位等从事交通运输工作时能够游刃有余,挣足面子。

“大牌”固然耀眼,“小牌”也可圈可点。随着我国经济一体化和计算机通讯技术的迅猛发展,极大地促进了物流业的发展,使物流业迅速成为拥有巨大市场潜力和发展空间的新兴产业。物流工程专业每年的报考热度也跟着水涨船高,该专业以物流系统为研究对象,研究物流系统的规划设计与资源优化配置、物流运作过程的计划与控制以及经营管理的工程领域。它与交通工程、管理科学与工程、工业工程、计算机技术、机械工程、环境工程、建筑与土木工程等领域关系密切。现代物流被企业界称之为“尚未开发的新大陆”和“促进经济增长的加速器”,有“第三利润源泉”之说。目前,该类专业人才已被列为我国12类紧缺人才之一。特别是物流规划咨询、物流外向型国际、物流科研这三种人才在业内最为缺乏。可以预见,随着“十二五”时期物流相关产业发展逐步进入快车道,该专业的毕业生们一定会“钱”途远大的。

【金刊提示】

交通运输类对学生有着严格的要求,如数学、物理成绩要好,处理繁琐的计算、复杂的图纸时要有足够的耐心,还要具备一定的绘画基础及较强的形象思维能力和图形表达能力等。同学们选择院校时应注意,行业院校如石家庄铁道大学、大连海事大学等主要面向行业内就业,就业很有优势;综合通大学和理工科院校,由于学校的历史背景不同,培养方向和就业定位有一定的行业取向,报考时要注意区分。

第五桶金:能源产业

能源类专业

重点院校推荐:清华大学、北京科技大学、北京交通大学、北京理工大学、北京航空航天大学、中国农业大学等。

二本院校推荐:天津理工大学、天津商学院、天津城市建设学院、北京工业大学、河北工业大学、沈阳航空工业学院、大连水产学院、辽宁科技大学、河北工业大学、沈阳工业大学、哈尔滨理工大学、佳木斯大学、西安理工大学、兰州交通大学等。

“非化石能源占一次能源消费比重达到11.4%”作为一项约束性指标已被列入国家“十二五”规划,这表明未来几年国家将更加重视资源节约和环境保护,在清洁能源产业方面定会加大力度。新能源研发之路其修远兮,高校们并没有“袖手旁观”,在今年新增专业中,能源类专业成为一大亮点,浙江大学、西安交通大学、东北大学、河海大学、重庆大学、江苏大学等高校纷纷开设了新能源科学与工程专业,“节能”“新能源”等俨然成了时下的“热词”。在国际油价持续上涨的大背景下,太阳能、风能、生物质能等新能源的横空出世正引领世人进入一个崭新而辉煌的时代,冲破能源枯竭的桎梏,能源动力类、核工程类专业毕业生的金光大道已经悄然铺就。

【金牌专业】能源动力类、核工程类

动画片《怪物电力公司》讲述了一个变收集人类世界小孩的惊叫声来为怪物世界提供能源,化解能源危机的有趣故事。事实上,人类也正经历着与怪物世界同样的能源变革,而为这场变革提供人才支撑的正是能源动力类旗下的能源与动力工程、风能与动力工程、新能源科学与工程等专业,以及核工程类旗下的核工程与核技术、核安全工程、工程物理、核化工与核燃料工程等专业。

先侃侃能源与动力工程这个专业吧,它最早是由动力机械衍生而来的,目前拥有热能工程、流体工程、低温与制冷工程、热动力工程、汽车工程、热能动力及控制工程等多个研究方向,大学阶段主要接受热能工程、传热学、流体力学、动力机械、动力工程等方面课程的学习。对于这个专业可能有些人存在不少误解,以前有个讽刺的说法是说能源系培养出来的毕业生都是烧锅炉的,又脏又累。事实上能源与动力工程专业有一个重要的研究方向确实是锅炉,但这个方向的真正目的是设计、制造出更加完美的锅炉。这些锅炉主要用于大型炼钢厂炼钢或者作为大型核电站的核燃料发生器。

提起核能,可能很多人谈“核”色变,会立刻联想到前苏联切尔诺贝利核电站、日本福岛核电站发生核泄漏所造成的灾难性后果。其实,核并没有人们想象中的那般恐怖,人类完全可以安全有效地利用核能,为人类造福。当然,前提必须是

“有艺在身”,核工程与核技术就是这样一门由基础学科、技术科学及工程科学组成的综合性学科,它涵盖的知识面宽、知识密集、技术超前,自动化程度也比较高。选择该专业的同学除了需要具备扎实的物理、数学基础以外,还要有敏锐的逻辑思维能力。此外,计算机作为现代科学的一门辅工具,也是必须掌握的。大学期间,同学们不仅要学习核工程、核技术的理论知识,还要具备工程实践的技能和本领。据不完全统计,当今世界几乎16%的电能是由441座核反应堆生产的,而其中有9个国家的40%多的能源生产来自核能。可以说,在当今能源稀缺的情况下,作为一种清洁无污染的高效能源,核能是人类最具希望的未来能源。

【金刊提示】

能源与动力工程、核工程与核技术等都属于工学类专业,录取时有的院校会参考考生的物理和数学成绩。

第六桶金:海洋经济

海洋类专业

重点院校推荐:中国海洋大学、厦门大学、河海大学、大连海事大学、同济大学、南京大学、海南大学、上海海洋大学等。

二本院校推荐:青岛海洋大学、河北工业大学、淮海工学院、盐城工学院、浙江海洋学院、广东海洋大学、天津科技大学等。

21世纪是海洋的世纪。海洋占全球总面积的71%,实施海洋战略是强国的必由之路。国家“十二五”规划提出:要制定和实施海洋发展战略,提高海洋开发、控制、综合管理能力。从辽宁的“五点一线”沿海经济带、天津滨海新区、山东半岛蓝色经济区,到江苏的沿海开发战略、浙江的海洋经济发展示范区,再到福建的海西经济区、广西的北部湾经济区,沿海省份虚位以待,它们或借海洋经济实现转型,或发展科技进行产业升级,在保护海洋生态的同时实现经济增长,共同拼接海洋经济的蓝色版图。

海洋经济因海而生,目前主要包括海洋运输业、海洋工程装备制造业、海洋造船业、海洋新材料业、海洋石油化工业、海水综合利用业、海洋矿业、海洋生物医药业、海洋渔业、海水养殖与农业、滨海旅游业、海洋服务业等产业。中肯地说,海洋经济蓬勃发展正当时,不断拓展的经济发展空间正日渐成为国家新的经济增长极。

【金牌专业】海洋工程类、海洋科学类

瓦良格号航母的改造点燃了中国的航母梦,加之,近来愈炒愈热的南海问题,相信很多同学心中都有一个梦,那就是强我国防,壮我国威,而海洋工程类专业,特别是船舶与海洋工程专业将是你实现梦想的阶梯。船舶与海洋工程专业侧重于船舶与海洋结构物的设计,强调制图和建造。大学期间,要学习物理、数学、力学、船舶及海洋工程原理的知识,掌握船舶与海洋结构物的设计及船体制图方法,熟知船舶与海洋结构物的建造法规。开设该专业的高校大多位于沿海、沿江地区,为学生们提供了较为便利的实践机会。

海洋科学类专业主要包括海洋科学、海洋技术、海洋管理、军事海洋学等专业。这些专业主要研究海洋的自然现象、性质及其变化规律,以及如何开发利用海洋。研究主要分为对海洋中的物理、化学、生物和地质过程的基础研究,海洋资源的开发利用以及海上军事活动等应用研究。现代海洋科学的研究体系大体可分为基础性学科研究和应用性技术研究两部分。四个基础分支学科有海洋物理学、海洋化学、海洋地质学、海洋生物学。应用性的学科有海洋工程、海洋水文气象预报、航海海洋学、渔场海洋学、军事海洋学等。近年来,随着海洋事业的发展,海洋科学类专业的毕业生就业状况较好。报考此类专业的同学除了数学、物理基础知识需要较扎实外,还要有良好的身体素质。

毋庸置疑,海洋是国家发展战略中不可忽略的重要资源,是国家“十二五”时期的一个重要命题。海洋经济发展之船已经抛锚起航,唯缺舵手扬帆远航,亲爱的同学们,你们愿意成为一名肩负光荣与使命的神圣舵手吗?

能源及动力工程专业篇5

关键词:新能源科学与工程;风力发电;太阳能发电;人才需求;课程体系

中图分类号:G642.3文献标识码:a文章编号:1007-0079(2014)26-0046-02

新能源属于我国战略性新兴产业,也是国民经济发展的基础性产业。面对环境污染与能源危机的双重压力,全球都在加快推进新能源产业发展。规模化开发与利用太阳能、风能、生物质能、地热能等为代表的新能源,实现我国传统化石能源过渡为清洁、可再生能源为主的能源结构是必然之举。中国将大力推动新能源产业的发展,在加大水电、核电、太阳能和风能设施建设的同时,计划在2020年前使新能源消费比例达到15%。特别是近年来风力发电和太阳能发电作为新能源电力的两支主力军迅猛发展,出现并驾齐驱的局面,新能源电力产业的蓬勃发展对新能源专业人才提出迫切需求。在这种形势下,怎样培养适应新能源产业需求的人才,既有巨大的机遇,也有很大的挑战性。

为适应我国战略性新兴产业的需要,自2006年以来我国相继有华北电力大学、河海大学、长沙理工大学等多所高等院校开办风能与动力工程本科专业;2010年教育部紧急下达《关于战略性新兴产业相关专业申报和审批工作的通知》,自2011年开始,我国部分高等院校设置了新能源科学与工程、新能源材料与器件等新能源产业相关的本科专业。但怎么样才能更好地为国家发展新能源产业起到人才培养的支撑作用,培养什么样的新能源产业人才以及如何培养,怎么样结合学校自身的特色与资源优势开设专业方向和课程体系,是当前面临的主要课题。

一、我国新能源电力产业的发展形势

自2007年,我国风电装机容量呈高速增长趋势。2010年,我国(不包括台湾地区)新增风电装机1893万千瓦,累计风电装机容量4473万Kw,超过美国跃居世界第一位。至2012年底,全国新增安装风电机组7872台,装机容量1296万Kw;累计安装风电机组53764台,装机容量达到7532万Kw;风电并网总量达到6083万Kw,发电量达到1004亿千瓦时,风电已超过核电成为继煤电和水电之后的第三大主力电源。2013年我国风电又新增风电并网容量1492万千瓦。2014年我国风电发展目标为1800万千瓦。根据2014年国家能源局印发“十二五”第四批风电项目计划显示,列入“十二五”第四批风电核准计划的项目总装机容量为2760万千瓦(27.6Gw)。从2011年开始,我国为把握风电发展节奏,促进产业健康有序发展,国家能源局开始制定风电项目核准计划,前三批风电核准规模分别为2683万千瓦、1676万千瓦(后又增补852万千瓦)和2797万千瓦。至此,“十二五”以来拟核准的风电项目规模累计已超过1亿千瓦。

在风电大规模发展的同时,自2009年以来我国太阳能光伏发电也迅速扩张。截至2012年底,我国累计光伏装机容量达到7.5Gwp;截至2013年底,中国光伏发电新增装机容量达到10.66Gwp,光伏发电累计装机容量达到18.16Gwp。2013年全球光伏新增装机39Gwp,比2012年增长28%。2013年,就新增光伏装机而言,中国、日本和美国成为世界上最大的三个市场,而德国则退居第四。中国2014年光伏发电的发展目标是全年新增光伏装机14Gwp。根据《太阳能发电“十二五”规划》,中国光伏发电装机容量与发展目标如表1所示。

在太阳能光伏发电快速成长的过程中,全球太阳能光热发电也正以惊人的速度发展。截至2013年底为止,美国已有5座大型太阳能光热发电站投入运行,规模都在100mw以上。其中美国nRG能源公司联合Google、Brightsource公司投资22亿美元在加州莫哈维沙漠建设的太阳能发电站于2013年成功发电,装机规模为392mw,这是目前世界上规模最大的塔式电站。美国能源部SunShot计划光热发电的研发目标是到2020年实现75%的成本削减,在不依赖政策补贴的前提下将光热发电推至每千瓦时6美分甚至更低的水平。欧洲早在2009年12家跨国公司在德国慕尼黑签署协议,计划投资4000亿欧元在北非建立太阳能热发电厂,10年后开始供电,据估计到2050年,该项目在北非的发电厂将满足欧洲15%的用电需求,这也是目前世界上拟建中太阳能发电厂同类中最大的太阳能项目。此外,西班牙、南非、印度、智利、摩洛哥、以色列、沙特、阿联酋、科威特以及澳大利亚都已经开始了大规模光热发电的兴建,印度已有50mw规模的电站并网运行。中国在北京延庆县八达岭建设了首个规模为1mw的太阳能热发电示范电站,于2012年8月成功发电,但还没有商业化规模电站。可以预见,随着国外太阳能光热发电公司进入中国和国内太阳能光热发电技术的研究进展,中国未来十年将在太阳能光热发电方向上大有作为。

二、新能源科学与工程专业人才培养的定位

2012年,教育部将原风能与动力工程和新能源科学与工程合并统一改为新能源科学与工程。相应地,风动专业也将面向更宽广意义的新能源产业需求,需要对专业培养方案进行调整;特别是更名为新能源科学与工程,就业的主战场不能较好地定位,致使专业课程体系达不到市场的期望值,对该专业课程体系怎样设计仍需继续研究探讨。从用人单位和学生自身需求上来看,专业课程设置和职业能力培养占有很重要的位置。其主要原因有两个:一是我国经济水平还欠发达,从读大学所付出的成本上来看,大多数学生期望接受到职业技能方面的训练;二是用人单位企盼招收到适合于工程技术需要的、能够尽快进入工作角色的应用型、技能型、复合型人才。

对于专业设置,国内其它专业的普遍做法是根据就业渠道下设专业方向。专业必须有支撑产业为基础才会有生命力。因此,本文提出“以学科为基础设置大类专业,以产业为支撑开设专业方向”的观点。新能源科学与工程专业应该在强化“工程实践能力培养”的基础上,必须以风力发电、太阳能发电作为就业主战场,分别面向风电机组设计与制造、风电场工程、太阳能发电工程三个主要领域,设置各具特色的专业方向的课程体系。

三、新能源科学与工程专业课程体系的优化

新能源科学与工程专业自2010年教育部批准开设以来,全国已有34所高校开设此专业。2013年5月19日,“首届全国新能源科学与工程专业建设研讨会”在华北电力大学召开,指出课程体系是否合理、课程内容是否先进直接关系到人才培养的质量。现阶段我国系统培养新能源科学与工程专业本科生、研究生的工作才刚刚起步,对于相应课程体系的构建正处于探索阶段。

根据国内部分高校新能源科学与工程专业公布的培养方案,其课程体系设置与专业定位(如表2所示)。总体上来看,各高校的课程体系呈现自由发展、特色发展的局面,这有利于各学科交叉融合,促进新能源产业发展,但同时应注意一些专业基础课程的共性、相通性问题。课程体系可以大致分为两大类:一类是遵循厚基础、宽口径的原则,强调能源类基础理论课程教学(a类),但专业核心课程各高校有所偏重;另一类则是专业方向针对性较强,更强调职业能力培养(B类)。例如风动方向加强了力学、机械、电气方面的课程模块,太阳能方向则强调了半导体物理、材料科学的课程模块,但缺少光学、热学、电气工程方面的教学。

表2国内部分高校新能源科学与工程专业的课程设置与专业定位

学校专业课程体系专业定位

a类:

浙江大学、华中科技大学、西安交通大学、中南大学、重庆大学、上海理工大学等专业基础课程:工程热力学、工程流体力学、传热学、应用电化学、固体与半导体物理、材料科学基础、工程制图、机械设计基础、电工电子技术、自动控制原理等

专业核心课程:可再生能源和新能源概论、太阳能电池原理与制造技术、太阳能光伏发电系统与应用、太阳能热利用原理与技术、风力发电原理、生物质能转化原理与技术、核能发电概论、氢气大规模制取的原理和方法、能源与环境、燃料电池概论、薄膜材料与器件、半导体材料、新能源材料、热泵技术、能源低碳利用技术、matlab及其工程应用、CFD软件应用等具备热学、力学、电学、机械、自动控制、能源科学、系统工程等理论基础,掌握可再生能源与新能源专业知识

B类1:

华北电力大学、河海大学、长沙理工大学、沈阳工业大学等专业基础课程:理论力学、风力机空气动力学、材料力学、机械设计基础与CaD、、画法几何与机械制图、电机学、电路原理、模拟电子技术、数字电子技术、电机学、电力电子技术、自动控制原理、微机原理与接口技术等

专业核心课程:新能源与可再生能源概论、风力发电原理、风资源测量与评估、风电机组设计与制造、液压与气压传动、风电场电气工程、风电机组控制与优化运行、风力机组状态监测与故障诊断、风电机组测试与认证、风电场施工与管理、风电场建模与仿真、风力机设备材料、新能源材料、近海风力发电、风能与其它能源互补发电系统、风电场并网、风力发电机组计算机辅助设计、风电场规划与设计等面向风电机组设计与制造、风电场工程等

B类2:

福建师范大学理论物理基础、材料科学基础、固体物理学、材料分析方法与技术、材料热力学、单片机技术、电工电子技术、工程制图、磁性材料与器件、光电子材料与技术、太阳电池物理、光伏工程与技术、光热工程与技术、固体发光材料、半导体材料、电化学基础、磁熵变材料与磁制冷技术、传感材料及其传感技术、X射线分析技术、储能材料与技术、先进功能材料、光电薄膜与器件、锂离子电池原理与技术、材料设计与模拟计算、纳米材料与应用、新型能源材料与技术、太阳能光热转换理论及设备、太阳能热利用、薄膜材料与技术、光源设计与应用技术等面向太阳电池及其它新能源材料技术研发

应当指出,大学的专业课程体系不可能完全为企业的需求而量身定做;即使课程体系相同,但由于学校资源的差别和培养方式、途径及方法的不同,人才培养的类型、质量与层次也会存在很大的差别。因此新能源本科专业教育主要考虑人才质量的基础性、技能型、创新型、复合型与可拓展性。专业基础课应该以能源科学为基础,兼顾高校各自的资源优势,设定各具特色的专业课程。

以长沙理工大学(以下简称“我校”)新能源科学与工程专业为例,应针对风机制造、风电场、太阳能发电站三个就业领域,结合学校现有学科与专业优势,培养目标定位于既具有较宽广、厚实的专业基础,又有专业方向的特长。为此,针对新能源产业的发展需求和我校的学科优势,新能源科学与工程专业可增设太阳能发电工程方向。主要面向太阳能光伏、光热发电站及并网工程,同时兼顾太阳能领域的技术研发,为太阳能光热发电储备人才,开设材料科学、光学、热学、电气工程等模块的课程,主干学科为材料科学、电气工程,使学生具有材料科学、光学、热学理论基础,具备电气工程的职业能力。目前我校已有的材料科学与工程、光电信息科学与工程、热能与动力工程、电气工程及自动化专业为太阳能方向的开设奠定了基础。

四、结论

当前,我国风电、光伏发电呈规模化发展的趋势,太阳能光热发电也未雨绸缪。为适应新能源电力产业蓬勃发展的需要,新能源科学与工程专业应该“以学科为基础设置大类专业,以产业为支撑开设专业方向”。在风力发电、太阳能发电专业方向上,遵循厚基础、宽口径的原则,在强化“工程实践能力培养”的基础上,分别面向风机制造、风电场工程、太阳能发电工程三个主要领域,专业基础课应以能源科学为基础,兼顾高校各自的资源优势,设定各具特色的专业课程体系。新能源产业属于国家战略性新兴产业,也是国民经济发展的基础性产业;面对环境污染与能源危机的双重压力,全球都在加速发展新能源产业。应当抓住这一有利时机,整合各校相关的资源优势,推动新能源科学与工程专业人才培养的发展,打造新能源专业品牌。

参考文献:

[1]熊怡.论道学科学专业建设,共话新能源人才培养――首届全国新能源科学与工程专业建设研讨会综述[J].中国电力教育,2013,

(21):26-28.

[2]熊怡.我国新能源人才培养的道与术[J].中国电力教育,2013,

(21):38-41.

[3]陈建林,陈荐.新能源科学与工程本科专业人才培养模式探究[J].中国电力教育,2013,(22):20-25.

[4]杨晴,陈汉平,杨海平,等.华中科技大学:新能源科学与工程专业建设探索与实践[J].中国电力教育,2013,(21):29-31.

能源及动力工程专业篇6

关键词:新能源汽车产业;人才培养;课程体系;改革

中图分类号:G642.0文献标志码:a文章编号:1674-9324(2016)41-0067-02

一、改革背景与培养目标

(一)改革背景

发展战略性新兴产业是我国立足当前、着眼长远的重大战略选择。2010年,国家确立了重点发展包括新能源汽车在内的七大战略性新兴产业。湖北是我国重要的汽车产业基地之一,为适应国家新能源汽车产业发展对高校人才需求的新期望、新要求,湖北省教育厅于2010年首批批准武汉科技大学等3所本科院校设立新能源汽车产业车辆工程专业(简称“车产”专业),并于次年秋季招生。

混合动力电动汽车、纯电动汽车、燃料电池电动汽车是目前世界汽车行业重点发展的新能源汽车类型。根据汽车行业的这一发展方向,我国确定的新能源汽车的产业目标是:着力突破电动汽车领域内动力电池、驱动电机和电子控制等重要部件的关键核心技术,推进插电式混合动力汽车、纯电动汽车推广应用和产业化;同时开展燃料电池汽车相关前沿技术研发,大力推进高能效、低排放节能汽车发展。

(二)培养目标

立足社会发展需求、紧跟时代科技发展潮流是确立高校人才培养目标的基本要求。武汉科技大学“车产”专业在专业知识和专业技能方面的培养目标是:学生应具备机械工程、汽车工程、信息科学与技术等方面的专门知识,能在汽车、新能源、机械工程等领域从事产品开发、制造、试验、技术运用与管理等工作的高素质应用型人才,具有新能源汽车产品开发、制造、试验、技术运用与管理等的能力。

二、课程体系改革思路与主要特点

课程体系改革一直都是高等教育改革的重点、难点。为使“车产”专业课程体系改革达到预期效果,在突出“新能源汽车”本色的前提下,课程体系改革坚持以社会需求作为课程的重要来源,以学生作为课程的最根本的服务对象,以知识作为课程基本来源的课程配置导向,合理规划课程体系以实现课程之间有机融合,努力把社会需求、学生个人发展,学科进步贯穿于课程体系设置之中,构建体现“厚基础、宽口径、强能力”的课程体系。

(一)改革思路

1.固机强电。即在巩固普通车辆工程专业机类工程知识的基础上,增加信息科学与技术知识即增加电类课程,以增强学生机电融合的工程能力。

2.优化组合通识教育平台课程。主要是对通识教育平台中英语、体育等多学时、多学期授课课程及其内容进行重组优化。

3.校企联合,强化实践。在学生学习专业课期间,将专业生产实习时间延伸、内容扩展,即鼓励学生利用暑假结合生产实习任务与要求到相关新能源汽车企业实习基地实习2―3个月,且实习单位安排企业导师指导。

4.导师制。“车产”专业班的每名学生从进校开始配备专业课老师担任导师。大一、大二期间,导师定期就专业学术问题开展专题讲座,以培养学生热爱专业、探索专业问题的积极性和对学科前沿发展的关注力。

(二)“车产”专业课程体系的构成

为保证教学过程有序进行,武汉科技大学“车产”专业课程体系的构成形式及其学分要求与其他专业完全相同:课程体系构成仍然采取模块化结构形式,本科阶段学习需修满的总学分为174学分,整个课程体系分为通识教育平台、学科基础平台、专业课程模块,实践教学模块、素质拓展模块。

1.“强电”安排。课程体系改革的核心是实现高素质人才的培养。鉴于电子技术在汽车上的应用比例越来越高及电动汽车对电类知识的高要求,从“强电”的要求出发,在原有“电工技术、电子技术”等课程的基础上,“车产”专业在专业核心课程、专业方向课程模块中新增加了“微机原理与单片机”、“电动汽车电机拖动基础”、“动力电池技术”、“电力电子技术”4门课程(共计152学时),并在实践教学模块中安排了一周的“电气电子工艺实习”对相关知识予以巩固强化。

2.重组优化通识教育平台中相关课程。根据新能源汽车的产业目标及“车产”专业学生专业技能方面的培养要求,在对普通车辆工程专业课程体系进行深入分析的基础上,“车产”专业的课程体系对其理论教学部分的相关课程与内容配置进行了重组优化。具体就是在通识教育平台中重点对的英语、体育、政治理论课等多学时、多学期授课课程及其内容进行了重组优化,

3.突显“新能源汽车”的专业本色。新能源汽车专门知识既是“车产”专业与普通车辆工程专业的重要区别,也是“车产”专业的本色特征,为突显“车产”专业的“新能源汽车”的专业本色,“车产”专业的课程体系在专业课程模块构建方面,除了保持普通车辆工程专业配置的汽车构造、汽车理论、汽车设计、汽车试验学等专业主干课程外,特别新增设了“新能源汽车原理与应用”课程(32学时),同时配套安排了二周的“新能源汽车原理与应用课程设计”,旨在增强与强化学生的新能源汽车专业知识。

能源及动力工程专业篇7

经前期广泛调研发现,随着我国现阶段加快能源建设的力度,国内目前需要更多的是能源动力行业运行、维护与管理方面的技术人才[3],对于高端人才如设计研究类人才虽然稀缺,但由于能动专业实践性强的特性,一般难以由高校直接培养此类人才,即高端技术人才亦需要从工程实践中磨砺而出。所以作为地方院校,尤其新开设能动专业的地方高校,不能一味照搬985、211高校以及部分经过几十年专业建设已经具备自己鲜明特色和专业实力的高校的人才培养模式,必须紧跟行业需求,以培养应用型人才为主线,并充分利用和发挥高校自身的特色和优势。

2三峡大学能动专业人才培养模式改革

三峡大学的能动专业于2010年底才开始立项建设,并于当年从我校2010级机械设计制造及其自动化专业中分流出53位学生按照能源与动力专业人才进行培养,2011年开始以能源与动力工程专业独立招生,故截至目前实际上已有一届学生毕业(2010级),且2015年度即将毕业的学生目前绝大部分已经签订了就业协议。近五年来,学校在专业本专业建设过程中积极探索,对兄弟高校及能动相关的企事业单位进行了广泛调研,并紧密结合我校能动专业“新开设、新起点”的现实情况,培养和提炼自己的专业特色,并对本专业的人才定位和培养进行了以下改革:(1)在人才培养与定位方面,以培养“高素质、强能力、应用型”人才为指导,制定了专业人才培养方案,着重提炼专业所覆盖知识体系的共性,拓宽专业口径、增厚专业基础、突出方向共性、弱化专业方向、提升就业能力,扩大就业口径。具体为:1)以流体机械动力学为基础,设置适用于水力发电、热力发电、风力发电中能量转换动力装备的动力学相关系列必修基础课程,突出水力发电专业课,并辅以风力发电等专业课程;2)以热-力转换原理为基础,设置适用于火力发电、生物质能发电、核电等热动力学、热交换、热传输相关的系列必修基础课程,专业课设置方面突出火电、核电,辅以生物质能相关课程。即将动力工程专业分为流体机械和热力机械两个方向,但在培养过程中,大大拓宽了专业基础必修课的范围,增加学生后续就业时行业选择的范围。(2)在实验/时间教学方面,以厚基础、宽口径、应用型人才培养为指导,建设和整合实验、实践教学条件。取消零散的课程实验/实践,开设系列综合实验/实践课程,使实验/实践教学具有层次性、连贯性、交叉性、系统性和良好的可操作性。避免以课程为单位开设实验时的连续性差、重复度高、综合性不强、效果差的缺点,同时在一定程度上降低建设成本。此外,学校还积极开发校外实践基地,挖掘学校所在地区及周边区域广泛的能源动力行业/企业资源,作为本专业有效的实践基地。(3)以校外实践基地建设为抓手,开发专业初期就业资源。任何一个高校新专业就业时其情况都或多或少存在不确定性,其原因主要在于社会和行业对于特定高校新专业的认识度不高。因而打开就业工作局面难度大,故无论从短期还是长远来看,都需要充分利用所建立的校外实践基地作为就业渠道,使基地发挥更大作用,这需要在基地建设过程中同时做好基地管理制度建设,以协议的形式为本新专业向基地输送人才提供保证。

3改革效果

近五年来,学校在建设能动专业过程中不断探索,最终形成以上建设意见和改革措施,并取得了显著成效:(1)制定了科学合理的能动专业人才培养方案,确定以掌握能源转换装备运行及转换机理为基础,在传统的专业基础课程中,将《流体机械原理》、《水轮机及调节器》、《汽轮机》等增设为专业公共基础课,在专业拓展模块课程中按水电、热电、流体机械、新能源发电等设置小学分模块供学生选修,但不限制选择模块数量。目前学生就业反馈情况表明,在弱化专业方向、增厚专业基础课程后,学生在择业过程中即使不在个人专业方向上就业,只要未跨出能动行业,就能很快适应新领域的工作。(2)整合实验/实践教学计划和条件。如将以往随理论课程开设的《流体机械原理》、《流体力学》、《液压传动与控制》、《泵站工程》、《水轮机及调节器》等的课程实验进行专门设计,整合成32学时的《流体综合实验》课程;将《热力学》、《传热学》、《汽轮机》、《热电厂动力工程》、《锅炉原理》等课程的实验内容整合成32学时的《热工综合实验》;将《测试技术》、《控制工程》、《电厂自动化》等课程实验整合成16学时的《测控综合实验》等,并根据相关理论课开设时间将综合实验课内容分为两个学期开设。这样学生能够得到更为系统的、连贯的实践训练,相比随理论课程开设的零散实验,综合实验教学效果更好随(3)目前已在学校所在地区及周边能动企业建立本专业的实践/实习基地,且已经有效运行,如安能(宜昌)热电(生物质能发电)、长江电力(葛洲坝)、安能(襄阳)火电、三峡电厂、清江的隔河岩电站、高坝洲电站、向家坝电站、黄龙滩(十堰)电站、湖北宜化集团、宜昌安琪酵母、黑旋风工程机械等20多家能源企业和流体机械设计制造企业,可完全满足学生毕业实习、生产实习及其他培训的接待需求,极大地缓解了专业实践条件建设需要大投入的困难。(4)专业就业情况良好,第一届毕业生(2010级,共53人)就业率达100%,其中除4人继续攻读硕士研究生外,15人进入水力发电厂,17人进入火电、生物质能电厂,6人进入电力部门事业单位,11人进入与流体机械及能源装备设计、制造相关企业。其中17人(32.1%)在本专业校外实践基地相关企业就职。截止2015年3月中旬,第二届毕业生(2011级,共81人)已签就业协议的达72人,已确定攻读硕士研究生5人。学校以专业调研、毕业生就业企业回访等多种形式,进一步拓宽和加深了与行业内相关企事业单位的联系,并就用人单位对我校毕业生在生产实践过程中的综合素质和表现进行跟踪回访,结果表明学生的综合能力水平总体较高。

4结语

能源及动力工程专业篇8

随着高等教育的国际化,为了使我国工程专业教育体系与国际接轨,国家层面开启了工程教育专业认证。目前,已进入第二阶段,为了保证高等工程专业教育的质量,构建符合国际化的专业认证体系,通过资源整合,实现高等工程教育资源的优化配置,提高教育资源的使用效率,提高办学效益,提高人才培养质量,意义重大深远。

关键词:

高等工程教育;资源整合;整合机制;配置模式、专业认证

20世纪50年代开始,全球发达国家的高等教育在“大众教育化”浪潮的推动下,高等教育规模迅速扩大;各国政府、跨国公司、学生家庭都从不同角度对高等学校的教育质量提出质疑,迫使高等学校建立质量保证体系,推进质量保证活动。由于工程类专业的国际通用性和可比性强,工程教育国际化步伐较其他学科领域更快,以及我国已经加入wto等原因,我国的工程教育必须尽快适应国际工程教育发展趋势,建立具有国际可比性的中国工程教育标准和认证制度,保持我国工业和工程教育在世界上的应有国际地位和声誉。随着高等教育的国际化,为了使我国工程教育专业体系与国际接轨,国家层面开启了工程教育专业认证,全国工程教育专业认证试点第一阶段已经结束,第二阶段已经开始,第一阶段五年间内完成了300多个,第二阶段计划再用5年时间开展180个专业认证试点。工程专业认证是保证理工科教育体系与国际化接轨,培养具有国际化视角的工程技术人才。高等工程教育的资源整合是保证工程教育专业认证专业建设、整合办学资源,为高等工程教育专业提供良好的硬件基础和支撑。我国的高等教育从精英化到大众化,高等院校实现了规模性的扩张,我国的高等工程教育资源,由于地域经济发展的不平衡加之扩招,2015年高等教育在校生达到4400万,出现了高等教育资源的不足与分布不均衡特征。加之政府投入不足,高校的资金筹措能力有限,如何有效的整合高等工程教育资源及配置模式,最大限度的发挥现有资源的使用效益、效率是摆在我们面前的一个重要的任务。

1国内外研究现状

20世纪60年代,美国的知名专家、学者舒尔茨从人力资本论的角度,全面系统的研究了教育经济效益。提出人力资本投资是高等教育的重要组成部分。80年代,英国的阿特金教授在《教育经济学引论》一书中,阐述了教育效率问题,认为“分析教育效率时,最困难的莫过于度量和估计教育的产出”。90年代,国外的教育经济学得到了快速发展,在教育资源的利用、教育成本分担、教育的收益以及教育的产学研经济面进行了大量的研究,取得了丰硕的成果。目前,国外在高等教育国际化、区域化、经营化等方面进行了深入的研究,哥伦比亚大学校长李•C•伯林格,斯坦福大学教授马丁•卡诺依在教育的国际化方面进行了深入的研究;美国得州大学奥斯汀分校校长拉里•R•福克纳教授,日本早稻田大学校长白井克彦教授,对高等教育区域化进行了深入研究,认为高等教育区域化是动态的过程,大学传统是其发展的源泉。我国的高等教育资源的研究起步较晚,20世纪90年代初期,从政府层面出台了《关于加快发展第三产业的决定》明确提出教育是社会生产力,教育属于第三产业。90年代后期,由于受到经济和资源、经费的限制,提出“高等教育产业化”意在引入市场机制,推动高等教育的资源整合和使用效益。2001年,学者赵利,提出利用市场资源的有效配置模式,进行教育“产学研”一体化经营模式,推动知识资本市场化,拓展办学资源和规模。2004年,李钢等人提出在校企合作的基础上尝试办“校中校”也就是现在的独立学院模式。高等教育市场化、产业化,弥补了高等教育办学资源的不足,高等院校的合并与重组,在一定程度上实现了资源共享、盘活资源,促进了资源的合理配置,提高了教育资源的使用效率,提高办学效益,提高了人才培养质量,有助于推动当地的经济发展。2006年,杨占江提出,利用网络平台,通过网络技术,实现高等工程教育资源共享。2009年,刘华等人提出全面整合实验教学资源,推动工程教育中心建设,以专业认证为载体,提高人才培养质量。2011年,陈文松提出以专业认证为契机,以提高人才培养质量为宗旨,全面整合课程体系、师资队伍以及产学研合作整合高等工程教育资源。2015年,赵旭丽构建了工程教育认证背景下的人才培养体系。

2高等工程教育资源的整合机制与配置模式

随着高等教育的快速发展,高等教育经历了深刻的变革,由计划体制向市场机制的转变,引入市场机制,拓宽了高校的办学自,但由于种种原因,高等教育整合的机制还有待进一步改革与探索。厉以宁讲高等教育资源分为两个层次:宏观、微观。宏观上,政府和各级智能部门将教育资源配置给效益好、最需求的高校;微观上在高等学校现有的条件下,如何发挥资源的最大效益。

2.1完善政府主导的资源配置模式

我国的高等学校办学的主体为政府,政府层面通过顶层设计,实现高等教育资源的优化配置,在一定程度上由于高校所处地域以及经济发展因素,导致了资源配置的不平衡,高等学校是人才培养的阵地,完善政府主导的资源配置模式,按照国家经济的对口资源模式,高校与高校间开展协作,强势学校在学科、人才、课程、专业等建设上为地方普通高等学校提供支持。政府作为高等教育资源配置的主体,在政策、资金等方面,统筹安排,给予高校办学自,拓展资金来源途径,确保高校经费充足。同时,建立健全各种评价机制与措施,尝试通过第三方对学校现有资源进行评估,找准差距。力求在政府层面为大学提供更多的优质教育资源。

2.2完善大学教育资源配置模式

1998年,《高等教育法》颁布实施,确立了高校以党委领导下的校长负责制,赋予校长法人地位以及行政管理权力,高等工程院校,逐步完善大学制度,建立完善的大学治理结构,发挥教授治学的作用。在学科、专业、课程体系建设上,发挥学科平台的优势,集中优势资源打造特色学科、特色专业、以及特色实验室,课程体系着力打造精品课程,发挥教师的主观能动性,平衡学校利益相关者。同时,高等工程院校找准自己的定位,发展目标借鉴同类院校,并加强特色和区域辐射作用。在基础设施方面,整合教学科研仪器设备,教育用房、实验室用房、图书资料建设。教学仪器设备尤其是大型仪器设备通过国家、省市的资源共享平台,对外开放。教学仪器设备整合的重点是以学科为单元建立学科群平台,整合现有的房产资源、为教学、实验室提供优质的教学资源,丰富图书资料建设,为科研做好知识储备。

2.3引入市场机制丰富大学资源配置模式

引入市场机制,建立高校、科研院所、企业的合作模式,实现产学研一体化。通过校际、校企、科研院所的耦合联动效应,打破传统的资源整合模式,通过市场资源的有效配置,如校企联合,高校借助企业的硬件资源,通过校企共建,低价购买或企业赠送的形式建立校企联合实验室,高校为企业提供人才和技术支持,企业为高校提供硬件资源平台。同时,企业引入高校大学生到企业工程实习实践,促进高校人才培养的工程实践能力,也为企业做好相应人力资源储备。校际、科研院所可通过共同解决某一领域科学、技术问题,进行联合,实现优势资源的互补。

3以工程专业认证为目标,构建课程资源体系案例

机械工程学院是佳木斯大学设立本科专业较早、办学规模较大、专业数量最多的学院。学院设有机械设计制造及其自动化、机械电子工程、农业电气化、车辆工程、交通工程、能源与动力工程、工业设计、农业机械化及自动化、包装工程9个本科专业,一个卓越工程师教育本科专业———机械设计制造及其自动化。其中,机械设计制造及其自动化与农业机械化及自动化两个专业均为省级重点专业。学院拥有一个现代加工技术实训中心、一个农业工程省级实验教学示范中心,一个机械工程校级实验教学示范中心,一个农业工程博士后工作站。机械工程学院整合课程资源增设和加强实践教学环节、职业技能培训、通用技术课程和工学综合性、创新性实验等课程,使学生掌握科学方法、获得终身学习能力;精减学时,合理设置选修课程,周学时保持在24学时,给学生更大的学习空间和更多的学习时间;每学期开设约30个科技文化讲座,开拓学生的视野,扩大知识面,为继续学习和深造奠定基础。横向课程整合:各门课程逐渐融合成为工程教育系统模块,以工程案例为引导进行教学纵向课程整合。机械工学院建立现代加工技能实训中心,购置现代化、智能化的设备,设立技能训练模块。培养学生的实践能力。改革考试模式,建立标准化考试模式,通过虚拟仿真、工程教育资料阅读等列入考站,增强学生分析与解决工程问题能力、工程思维能力、工程实践能力、沟通交流能力、科学伦理等方面的内容。总之,高等工程教育课程资源体系,要与时俱进,适应工业发展的需要;以工程教育资源定规模,实现可持续发展;完善制度,规范管理,保证质量;顺应高等工程教育趋势,整合高等教育资源,建立现代高等工程教育课程体系。

作者:马晓君张则单位:佳木斯大学

参考文献

1马晓君,苏贵章,李春江,等.基于专业认证体系的高等工程教育资源整合[J].中国科技信息,2015(8)

2张志刚.高等教育区域优化研究[D].山东师范大学,2009

3杨占江.加强高等工程教育资源共享的构想[J].高等工程教育研究,2006(3)

4陈文松.工程教育专业认证及其对高等工程教育的影响[J].高教论坛,2011(7)

5刘华,吴波,隋金玲,等.全面整合实践教学资源,创建工程教育中心[J].实验技术与管理,2009(6)

6赵旭丽.工程教育认证背景下的人才培养体系[J].教书育人(高教论坛),2015

7王强,李雷鹏,朱立明.高等工程教育资源整合依据及模式构建研究[J].黑龙江高教研究,2014(2)

能源及动力工程专业篇9

关键词能源与动力工程专业;实践能力;在线学习

中图分类号:G642.44文献标识码:B

文章编号:1671-489X(2016)03-0159-02

1引言

本科工程教育作为高等教育体系的一部分,为推动我国经济建设快速发展和社会进步培养一大批高素质人才。随着我国高等素质教育发展、经济结构不断调整以及科学技术的发展,工程科技人才的就业形势发生巨大转变,传统的人才培养模式和人才培养结构难以适应社会发展对专业人才的需求。在新的历史环境中,必须对我国工程教育进行改革,这样才能适应社会的发展需求。传统的人才培养模式下,学生的实践能力、可持续发展能力以及跨学科解决实际问题的能力明显不足。实践教学是工程教学的有机组成部分,但是在传统教学过程中,实践教学并没有引起应有的关注,构成传统教学中的薄弱环节,成为制约人才培养质量的主要因素之一。在高等院校进行工程教育过程中强化实践教学环节,可以提高学生解决实际问题能力。

2教学现状分析

在人才培养目标上,加强高校各专业学生的专业实践能力培养是我国现阶段人才培养目标的一个重要改革方向。随着我国素质教育的不断发展以及现代教育技术手段在工程技术教学中的广泛应用,高校教学环境和教学条件得到很大改善,改变着大学生的学习方式,运用信息化教育手段强化学生的学习效果更加受到重视,传统的课堂教学和在线学习等结合更为紧密。但相对而言,教学理念和教学模式、方法与手段都偏重于对知识型人才的培养,对工科高校学生的专业实践能力培养有所忽视。因此,加强学生专业实践能力培养,迫切需要教学环境和教学手段的革新,以发挥新的技术手段对学生专业实践能力培养的支持作用。

学生的实践能力培养一般开始于大学三年级接触专业基础知识阶段。此时学生也逐渐开始专业基础课和专业课的教学,在该阶段开始着手培养与其专业相关的系统的初步认知能力和专业兴趣,主要体现在强化学生的专业学习兴趣,从而也强化其专业理论知识的学习效果。在理论知识与专业实践能力培养方面,目前的信息化教学较为普及,在线学习具有教学资源多样化、集成度高、交互性强、强调学习的自主性、能够激发学生学习的动机等优势,同时学生可以在网上进行更为透彻的专业学习。相比枯燥的文字性的理论知识,学生更喜欢数字化的教学模式,应增强这方面的资源建设与教学应用。

北京建筑大学能源与动力工程专业已经开设多年,在教学设备和师资力量配置上也日趋完善,现有的教学资源包括中法实践基地在内也相当丰富,目前应着力于在提高学生专业实践能力方面下功夫,尤其是在学生的专业课学习阶段,适时加强实践能力的培养。

3措施分析

提升专业认识能力在专业课教学过程中,如果学生对所学的专业知识缺乏,包括感官上对专业现场的设备及系统缺乏专业认识,学习思路上就会相对混乱,学习过程了解不够、不清晰,因而也不利于专业课的课堂讲授学习。因此应在专业课开始前,让学生进入施工现场或既有的工程系统,对本专业初步了解,形成初步认知。目前,对于能源与动力工程专业的认识类实习,中法平台是学生认识实习的一个选择。该平台中包含有供热锅炉、供热管网、散热器系统、制冷机组、空调末端系统、冰蓄冷系统、冷却塔系统等,并且该系统不是模型展示,而是可以进行实际运行的,是可以实际操作的系统,学生进行认识实习能够起到与在工程现场同样的实习效果。该实习基地就在校内,学生实习的时间相对灵活,同时可以保证充足的时间对系统进行认真学习。另外,校内大兴校区的供暖用锅炉房、西城本部小区的换热站等都可以接纳学生进行参观实习。校外的一些企业,比如燃气集团的燃气门站,热力集团的供热热源、换热站、管网等,太阳能生产企业、空调加工基地、地源热泵系统等,都是提高学生对本专业认识的很好的实践锻炼基地。

注重在线学习和工程案例学习在线学习可以为学生提供更多的学习资源,交互性也很强,集成度高,可以激发学生的学习兴趣。通过多媒体在线演示,可以让学生对设备的运行及系统的整体构成有生动形象的认识。通过在线学习,锻炼学生自学能力,提升学生网上学习的基本技能,更好完成学习过程中的预习、讨论、提交作品等,引发深度思考,增强学习效果。工程案例环节可以让学生了解更多的实际工程,感受到学习基础知识的应用目的,从而更深层次地理解本专业的发展方向及对社会的价值,提高学习动力。对所学知识融会贯通,增强系统性,强化学习的目的性。

注重专业课学习过程的实验教学实验教学可以提高学生实践能动性,在实验过程中加强学生的参与度,更好地加入实验环节,发现实验现象,激发学习兴趣和对实验的探究。实验环节是对教学过程的有效补充,有些内容仅凭课堂教学无法实现教学目的,尤其是关于一些实验现象的了解及现象产生机理的研究等,必须通过实验环节才能让学生真正明白个中原理。因此,实验教学在课程教学中占有重要位置。优化安排实验教学,组织学生探讨开展实验的方式、步骤、达到的效果等。

注重专业课末期的实践环节在专业课授课结束后,应该安排至少2个学时让学生到现场进行本门课程的针对性实践,参观实践对知识的梳理和深度认识尤为重要。基于某个专业课开设的实践环节,其实是该门课程在实践中的一个总体应用,通过实践课程,学生会把课堂教学中那些已经分解的教学内容全部汇集起来,重新整理,形成总体框架。针对课堂中讲授的难点知识,也可以有针对性地在实践现场进行解决。为增强学习效果,应该避免将实践课移到学期末的总的实践周中进行。

针对专业课的课程设计应强化工程特性课程设计的学时数应适时延长,实现工程设计的精细化,提高工程图纸的专业性。工程设计培养了学生运用所学知识的能力,也给将来更好地工作打下很好的基础。

参考文献

[1]刘全忠,王洪杰.能源与动力工程专业卓越工程师培养模式研究与实践[J].黑龙江教育学院学报,2013(12).

能源及动力工程专业篇10

>>基于产业链的高职专业群构建研究电力营销队伍的政工建设路径研究“专业群对接产业链”模式下的营销专业建设探索基于国际贸易产业链的商务英语经贸专业群的构建基于产业链的专业群管理体系构建对接高铁产业链建设轨道类专业群的实践探索基于epon技术的电力物联网的建设路径初探电动汽车电能需求引致的电力产业链碳排放计量研究电力安全生产保障下的行为建设路径研究葛根资源能源化生态产业链的研究基于Dea模型的新疆旅游产业链优化路径研究围绕产业链构建专业群管理体系研究文科高职专业群建设路径探析基于网络的现代绿色农业产业链示范区建设的研究基于产业链下的村镇空间联动建设规划研究基于产业链视角的农产品品牌建设研究电力勘测设计企业全产业链发展战略研究基于生态位的移动商务产业链研究基于跨境电商产业链的外贸电商人才培养路径研究电力设备安全运行的保障制度建设路径探究常见问题解答当前所在位置:中国>教育>基于电力产业链的能源电力专业群建设路径研究基于电力产业链的能源电力专业群建设路径研究杂志之家、写作服务和杂志订阅支持对公帐户付款!安全又可靠!document.write("作者:王钊")

申明:本网站内容仅用于学术交流,如有侵犯您的权益,请及时告知我们,本站将立即删除有关内容。【摘要】能源电力专业群建设要以区域经济发展和电力产业结构升级转型为导向,以重点建设专业为核心,加强专业教学资源的优化整合,以课程体系构建、实践教学体系建设、教师团队建设、数字化教学资源建设为重点,积极探索工学结合的人才培养模式,适应湖南区域经济和电力行业未来发展趋势。【关键词】能源电力专业群电力产业链建设路径【中图分类号】G642.0【文献标识码】a【文章编号】1674-4810(2015)15-0056-03

为了进一步调整改造专业布局,实现专业建设资源集聚和优化,提高专业服务产业能力,2014年长沙电力职业技术学院根据电力行业特点,面向电力生产、电力供应产业链,选择以火电厂集控运行专业为核心,重点投入优先建设能源电力特色专业群,对接提升电力产业,服务区域经济发展。本文以能源动力专业群建设路径为例对专业群建设路径进行探讨分析。

一结合区域经济和电力行业背景进行专业群人才需求分析

自2008年全球金融危机爆发以来,湖南区域经济虽然受到一定影响,但全省GDp总量仍保持10%以上的增速,人均GDp排名位于全国第19位。“十二五”期间湖南省省委、省政府大力实施区域经济发展总体战略,全面推进“四化两型”、“四个湖南”、长株潭(3+5)城市群建设、加速崛起湘南、扶植发展大湘西、加快新型城镇化建设。随着湖南经济的快速发展,全省电力工业迎来了重大的发展机遇。

电力工业的迅速发展和产业转型升级极大地带动了电力工业产业链(发、输、配、供、用)的人才需求。据推算,“十三五”期间湖南发电企业至少需补充火电厂集控运行、热工检测及控制技术专业人才3000人左右。据湖南省电力公司人才招聘战略计划,“十三五”期间湖南电网将补充高压输配电线路专业技能人才1000人左右,供用电技术专业技能人才1500人。

二完善“学拟实操、场厂交替”工学结合的复合型人才培养模式

坚持“依托行业、服务行业;对接企业、提升企业”的办学定位,依托电力行业,扩大电力企业参与学院人才培养的深度与广度,开展与省内电力企业的战略合作,实施专业共建、基地共享、人才共育,拓展专业教学空间和学生学习空间,创新并完善“学拟实操、场厂交替”工学结合的复合型人才培养模式结合专业群特点,充分利用校建的校内外实训基地,推行“学习情境与工作情景、学习任务与工作任务相融合”的教、学、做一体化教学模式。利用校内实训基地,通过“移植”电力企业电力设备检修、运行、施工、维护工作场景,引入行业标准、岗位职责、工作任务,“模拟”岗位工作全过程,采用项目导向、任务驱动式教学,实现“做中教、做中学”,培养学生职业核心能力;利用省内各电力企业实习基地,开展企业认识实习、生产实习和顶岗实习,让学生了解工作任务,熟悉岗位职责,对接行业标准,感受真实工作环境,提高学生职业适应能力。采用校内学训一体与企业实际工作交替进行的分段教学组织模式,让学生边学边工作,能力螺旋式上升。

基于能力本位的职业教育理念,建立“三元主体”(学院、企业、职教机构)的评价工作机制,从职业能力标准、职业能力实现载体和职业能力判断方法三个维度,按照岗位对接性、职业阶段性、能力发展性、评价开放性的原则,在本专业群按学年开展对学生职业能力的评价实践,确定学生各阶段的能力水平。通过职业能力评价实践,推动职业教育课程改革和创新,指导学生合理规划职业生涯,促进学生在专业能力、方法能力和社会能力等全面发展,不断提升学生就业的核心竞争力。

三优化“基础模块+专业模块”的模块化课程体系

以重点专业为龙头、相关专业为支撑,采用“基础模块+专业模块”的模式构建能源电力类专业群课程体系,推动人才培养模式的改革和课程群的建设,以实现专业群内各专业建设目标的统一性、课程结构的优化性、资源利用的共享性、资源配置的集成性、教学管理的功能性,提升学院整体办学实力、教学质量、管理水平和办学效益。

1.基于学生可持续发展构建“基础模块”

针对能源电力特色专业群,按照培养社会人的要求,突出培养现代社会对人的基本要求,基于社会的适应性和可持续发展性,围绕电力产品的特点,整合电力生产各环节共同必须的基本素质,建立“基础模块”。

2.围绕专业群岗位核心能力构建“专业模块”

围绕专业群对应的岗位群核心能力要求,根据各专业技术领域的不同特点,针对不同的专业(或专门化方向),以工作任务或工作过程为依据,围绕工作任务或工作过程必须、够用的专业理论与专业技能,综合本专业(或专门化方向)的专业能力、方法能力和社会能力,构建“专业模块1”,“专业模块1”的课程全部实行行动导向教学,促进学生职业核心能力的培养。

另外,学生可根据专业要求、个人兴趣特长和就业需要构建在“专业模块2”内的清洁能源包和电力新技术包中对课程进行限选,主要实现按不同职业方向进行人才分流培养,以解决专业群内各专业的岗位迁移能力问题。

3.大力推进群内共享型和专业内特色型优质核心课程建设

按照“核心课程建设促进专业建设、专业建设推动群体发展、群体发展拉动人才成长、人才成长带动产业提升”的原则,在“专业模块”中选取泵与风机运行与维护、汽轮机设备及检修、单元机组运行、输配电装置安装与调试、输配电装置继电保护、输配电线路运行与维护等6门课程作为群内共享型优质核心课程建设。另外,群内每个专业根据自身专业特色在“专业模块”中选择四门核心课程加以建设,引领带动专业群课程建设。

4.基于专业群建立“分级管理、开放共享”的课程开发与管理机制

依据专业群的建设理念,专业建设与课程管理模式的调整是必须的。首先要打破以专业划分教研室的禁锢,建立专业间的联系与沟通,实现共享型课程的师资共享、课程资源共享、场地资源的共享。其次要建立课程分级开发、分级管理机制,建立学院、教务处、系部、教研室对专业基础、专业核心、专业方向的四级管理机制。

四大力推进开放共享型数字化教学培训资源建设

依托职教新干线,在专业群内建立20门主干课程的教学资源库,以图片、视频、音频、动画等形式供师生共享;建立10门优质核心课程的虚拟实训室;建立对接现场的培训资源平台;开设双向互动型的能源电力类专业论坛。

1.建立共享的教学资源库

建立群内20门优质核心课程的课程标准、教学设计、多媒体课件库、网络试题库、案例库,完善教学素材,包括图片、视频、音频、动画等,供教师学生共享。

2.加强微课程和mooC课程建设

配合学院学分制建设,在专业群基础模块中选择3门课程开展mooC课程建设,在核心模块或方向模块内,每个专业选择3门课程开展微课课程建设,将其建成含学生参与、反馈、作业、讨论和评价于一体的网络课程。

3.建立培训资源服务平台

建立能源电力群各岗位及职业鉴定相关工种的职业资格标准、技能鉴定和培训考核题库以及标准化作业指导书等资源,并根据企业现场要求及时更新;建立培训师资信息库。

五强化“内外轮训,分层递进”实践教学体系

1.“内外轮训,分层递进”的三阶段实践教学体系框架

职业基本技能实训。以电厂、变电站、供电所等企业认识实习(识岗),促进学生认识电力系统主要设备、岗位职责;以钳工、电工等职业技本技能训练学生培养学生刻苦、细致的劳动态度和工作作风。

职业专项技能实训。专项能力的培养分为两层:第一层,校内拟岗实训(拟岗),在校内实训基地,模拟岗位的工作情景,采用项目导向、任务驱动教学模式培养学生的专项技能;第二层,学生在校内完成拟岗实习后,到校外实训基地进行跟班实习(跟岗),进一步了解真实的工作环境、工作内容和标准,提高专业技能。

职业综合技能实训。在校内完成毕业设计,通过考试获取职业资格证书,再到校外顶岗实习,进一步培养和提高学生的综合技能,为就业奠定基础。

2.确定各阶段的实训项目及内容

实训项目源于岗位的典型工作任务,通过现场调研,设置各阶段实训内容,构建或模拟现场工作环境,体现现场作业流程和岗位标准,对综合实训项目应强调工作过程的完整性。

3.构建“提升产业、互利共赢”的校内外实训基地

采用校企合作共建方式,在现有的37个实训室基础

上,新建、改扩建11个实训室,建成对接发电、输电、供电企业生产一线的“五化”(设备现场化、生产真实化、作业标准化、功能多样化、场地开放化)综合性大型校内实训基地,构筑能源电力类专业群学生职业能力培养平台,并确保校内实训开出率达100%。

六打造一支“行家带头、专家施教”的电力职教团队

以热能动力设备及应用核心专业带头人为引领,实行“双专业带头人”制,发挥专业互补、校企人才互补优势,由6名专业带头人及具有行业影响的5名现场专家组成能源电力专业群带头人队伍。

核心专业带头人通过培养,进一步掌握能源电力产业发展趋势、专业群建设方向,具有协调各专业发展方向、调动校内合作资源的能力,并具备正高级专业技术职务,达到省级专业带头人的要求。