首页范文生物燃料的特点十篇生物燃料的特点十篇

生物燃料的特点十篇

发布时间:2024-04-25 18:06:46

生物燃料的特点篇1

关键词:生物质,成型燃料,热水锅炉,节能研究,经济评价

概述

能源是推动经济增长的基本动力[1],能源节约则是促进能源发展的重点。生物质能源具有来源广泛,成本低廉、用能清洁等特点,特别适合于拥有丰富生物质资源的中国,通过发展生物质能源打造节能新亮点前景可观。

我国从20世纪80年代引进螺旋推进式秸秆成型机以后[2],生物质压缩成型技术已经发展得比较成熟,但是,相应的专用生物质成型燃料燃烧设备的发展相对滞后。为燃用生物质成型燃料,出现盲目将原有的燃煤燃烧设备改为生物质成型燃料燃烧设备的现象,致使锅炉燃烧效率及热效率较低,污染物排放超标。燃烧设备成为生物质能源发展链的薄弱环节。因此,根据生物质成型燃料燃烧特性设计合理的生物质成型燃料燃烧专用设备,对能源节约有着重要的意义。

生物质成型燃料热水锅炉作为燃用生物质燃料的主要设备之一,直接燃烧固体生物质颗粒燃料,主要用于家庭、宾馆、酒店、学校、医院等场所的热水、洗浴和取暖。由于燃料为生物质燃料且结构合理,此类锅炉基本达到无烟化完全燃烧的效果,排放达到环保要求,具有较好的经济、社会和环境效益。

1、生物质成型燃料

1.1生物质成型燃料的元素特性

生物质成型燃料是指通过生物质压缩成型技术将秸秆、稻壳、锯末、木屑等农作物废弃物加工成具有一定形状、密度较大的固体成型燃料。

生物质原料经挤压成型后,密度可达1.1~1.4吨/立方米,能量密度与中质煤相当,而且便于运输和贮存。在压缩过程中以物理变化为主,其元素组成及微观结构与原生物质基本相同。各种生物质成型燃料中碳含量集中在35%~42%,氢含量较低,为3.82%~5%,而氮含量不到1%,硫的含量不到0.2%,因此,造成的污染程度极低。生物质成型燃料的挥发分均在60%~70%,因此在设计燃烧设备时应重点考虑挥发分的问题[3]。

1.2生物质成型燃料的燃烧特性

生物质成型燃料经高压形成后,密度远大于原生物质,燃烧相对稳定。虽然点火温度有所升高,点火性能变差,但比煤的点火性能好。由于生物质成型燃料是经过高压而形成的块状燃料,其结构与组织特征就决定了挥发分的逸出速度与传热速度都大大降低,但与煤相比显得更为容易[4,5]。因此,生物质成型燃料的挥发分特性指数大于煤的,其燃烧特性指数较煤的大。燃烧速度适中,能够使挥发分放出的热量及时传递给受热面,使排烟热损失降低;同时挥发分燃烧所需的氧与外界扩散的氧很好的匹配,燃烧波浪较小,减少了固体与排烟热损失[6]。

2、生物质成型燃料热水炉

2.1生物质成型燃料热水炉的结构

目前我国拥有多种型号生物质成型燃料热水锅炉,按燃料品种可分为木质颗粒锅炉和秸秆颗粒锅炉,按应用场合可分为家用型和商用型。下吸式固定双层炉排热水炉是应用较广的一种结构形式,其充分考虑生物质燃料燃烧特性,由炉门、炉排、炉膛、受热面、风室、降尘室、炉墙、排汽管、烟道、烟囱等主要部分组成,结构布置如图1所示[7]。

1.水冷炉排2.上炉门3.出灰口4.炉膛5.风室6.高温气流出口7.降尘室8.后置锅筒

9.排污口10.进水口11.引风机12.烟囱13.排气管14.对流受热面15.出水口

图1下吸式固定双层炉排热水炉示意图

2.2生物质成型燃料热水炉的工作过程

一定粒径生物质成型燃料经上炉门加在炉排上,根据生物质容易着火的燃料特性,片刻就会燃烧起来,在引风机引导下进行下吸式燃烧;上炉排漏下的燃料屑和灰渣到下炉膛底部继续燃烧并燃烬,然后经出灰口排出;燃料在上炉排上燃烧后形成的烟气和部分可燃气体透过燃料层、灰渣层进入下炉膛继续燃烧,并与下炉排上燃料产生的烟气一起经出高温气流出口流向后面的降尘室和对流受热面,在充分热交换后进入烟囱排向外界。

3、节能原理

由有关燃烧理论可知,保持燃料充分燃烧的必要条件为保持足够的炉膛温度,合适的空气量及与燃料良好的混合、足够的燃烧时间和空间。因此,本文将依据生物质成型燃料本身的特性,结合燃烧理论,针对锅炉结构进行节能分析。

3.1炉排及炉膛

生物质成型燃料热水锅炉采用双层炉排结构,即在手烧炉排一定高度另加一道水冷却的钢管式炉排,其成弯管直接插入上方锅筒中,这种设计一方面增大了水冷炉排吸热面积,另一方面加快了炉排与锅筒内回水的热传递。

燃料燃烧采用下吸式燃烧方式。成型燃料由上炉门加在上炉排上进行预热、燃烧,由于风机的引导,新燃料不会直接遇到高温过热烟气,延缓了挥发分的集中析出,从而避免了炉膛温度的波动,使燃烧趋于稳定;同时,挥发分必须通过高温氧化层,与空气充分混合,在焦炭颗粒间隙中进行着火燃烧;在完成一段燃烧过程后,上炉排形成的燃料屑和灰渣漏至下炉膛并继续燃烧,直到燃烬。

采用双层炉排,实现了秸秆成型燃料的分步燃烧,缓解秸秆燃烧速度,达到燃烧需氧与供氧的匹配,使秸秆成型燃料稳定持续完全燃烧,在提高燃料利用率的同时起到了消烟除尘作用。

3.2辐射受热面

早期的部分生物质成型燃料热水锅炉设计布置不够合理,水冷炉排直接与水箱相连,使得炉膛温度过高,特别是上炉膛,致使上炉门附近炉墙墙体过热,增加了锅炉的散热损失。在不断优化设计中,水箱被上下两个锅筒所代替,上锅筒部分置于上炉膛上方,利用锅筒里的水吸收燃料燃烧在上炉膛的热量,从而增加辐射受热面积,起到降低上炉膛温度的目的,从而减少锅炉的散热损失,提高热效率。

3.3对流受热面

生物质成型燃料热水锅炉的对流受热面分为两个部分:降尘对流受热面和降温受热面。对流受热面极易发生以下现象:高温烟气与锅筒中的水换热不均,从而引起热水部分出现沸腾,增加锅炉运行的不稳定因素;受整体外形约束,烟道长度设计偏短,导致烟气与锅筒里的水换热不够充分,使得排烟温度过高,增加了锅炉的排烟热损失。为避免上述问题出现,降温对流受热面与降尘对流受热面常常采取分开布置;降温换热面置于上锅筒内,采用烟管并联设计,增加烟气与锅筒中水的热交换,降低排烟温度,提高燃烧效率;降尘则利用锅炉后部的下锅筒及管路引起的烟气通道面积的变化达到效果。

3.4炉门设计

目前应用较多的炉门设计为双炉门。上炉门常开,作为投燃料与供应空气之用;下炉门用于清除灰渣及供给少量空气,正常运行时微开,在清渣时打开;一方面保证了燃烧所需条件,另一方面减少了由于炉门多而造成的散热损失。

4、技术经济评价

4.1技术评价

研究对象为生物质成型燃料热水锅炉,本文采用与目前应用最广的燃煤锅炉相比较的方法,来分析它们各自的优劣。评价针对锅炉的节能环保性能,主要指标有热效率、燃烧效率、出水量和污染物的排放量(主要是排烟处的nox、Co、So2和灰尘的含量),并与国家相关标准比较。

生物质成型燃料热水锅炉与燃煤锅炉的性能指标比较如表1所示[8,9]。

从表1中的数据对比可知,生物质成型燃料热水锅炉在性能上具有一定优势。节能方面,锅炉热效率和燃烧效率均高于传统燃煤锅炉,远远超过国家标准;废气排放方面,烟中nox、Co、So2及烟尘含量均低于燃煤锅炉,符合使用清洁能源的要求。

4.2经济评价

经济性评价以设备运行费用为指标,将生物质成型燃料热水锅炉与燃煤锅炉、燃油锅炉、天燃气锅炉、电锅炉、空气源热水器进行比较。各热水设备的效率及相应热源(燃料)热值、单价详见表2。

运行费用计算公式如下:

(1)

以加热1t水为基准,温度从20℃升至90℃(温升70℃),此时需要热量70000kcal。根据式(1)求得各设备在此负荷下的运行费用列于表2,可知生物质成型燃料热水锅炉在运行费用上相对较低,但是就目前而言,其固定资产投入费较同类型的其它锅炉设备要高。不过随着化石能源价格的上涨和国家对环保的要求的提高,生物质成型燃料热水锅炉在经济效益上将会越来越具有优势。

通过技术经济评价,生物质成型燃料热水锅炉在技术上是可行的,经济上是合理的。该锅炉用生物质成型块做燃料,一方面为生物质废料找到了有效的利用途径,节约化石能源,另一方面染物排放量低于同类型的燃煤锅炉,因此该锅炉具有良好的社会和环保效益。

5、结论

(1)生物质成型燃料热水锅炉依据生物质成型燃料本身的特性,结合燃烧理论,在炉排及炉膛、辐射与对流受热面、炉门等结构设计上充分挖掘节能潜力。锅炉燃烧效率可达94.84%,热效率为78.2%~81.25%。

(2)生物质成型燃料热水锅炉在技术性能上具有一定优势。节能方面,锅炉热效率和燃烧效率均高于传统燃煤锅炉,远远超过国家标准;废气排放方面,烟中nox、Co、So2及烟尘含量均低于燃煤锅炉,符合清洁能源的要求。

(3)生物质成型燃料热水锅炉在运行费用上较其它类型设备要低,尽管目前其固定资产投入费相对较高。随着节能环保要求的提高,此类锅炉在经济效益上将会越来越具有优势。

参考文献:

[1]V.斯密尔,w.e.诺兰德.发展中国家的能源问题[m].北京:农业出版社,1983

[2]刘胜勇,赵迎芳,张百良.生物质成型燃料燃烧理论分析[J].能源研究与利用,2002(6):26-28

[3]阴秀丽,吴创之,徐冰娥等.生物质气化对减少Co2排放的作用[J].太阳能学报,2000,21(1):40-44

[4]马孝琴.生物质(秸秆)成型燃料燃烧动力特性及液压秸秆成型及改进设计研究[D].郑州:河南农业大学,2002

[5]马孝琴.秸秆着火及燃烧特性的实验研究[J].河南职业技术师范学院学报,2002,16(2):69-73

[6]孙学信.燃煤锅炉燃烧试验技术与方法[m].北京:中国电力出版社,2002

[7]刘胜勇.生物质(秸秆)成型燃料燃烧设备研制及实验研究[D].郑州:河南农业大学,2003:94-99

生物燃料的特点篇2

近期,笔者跟随调研组对某市水煤浆试点和生物质能颗粒燃料开展了调研工作,了解了上述清洁能源的生产、销售、使用情况,采集了有关数据资料,分析了相关问题,形成了推行清洁能源,淘汰落后锅炉,从源头上控制污染物排放,提高空气质量,改善大气环境的一些建议。

一、水煤浆的特点、优势,以及推广应用存在的问题

(一)水煤浆的特点

水煤浆是一种相对经济、洁净、可替代石油和天然气的煤基液体燃料,它既保持了煤炭原有的物理特性,又具有象石油一样的流动性和稳定性,在运输、储存、泵送、燃烧等方面都与石油相近。

(二)水煤浆的优势

1、在节能方面的优势

水煤浆锅炉比普通的燃煤锅炉燃烧效率高,可从80%左右提高到95%以上,热效率也可从65%提高到85%以上。水煤浆锅炉与燃煤锅炉相比,综合节能率约15%。

2、在环保方面的优势

一是制作优质水煤浆必须选用较好的煤,在原产地经过精洗剔除杂质后运出,原料煤的含硫率和灰份低,可以从源头上减少So2等污染物的排放。二是水煤浆锅炉采用喷射燃烧等先进工艺,煤浆燃烧较充分,烟气排放能够达到或优于国家规定的二类地区第二时段排放标准。与烧煤和重油相比,各种污染物排放浓度有较大幅度的降低。如果企业采用国家Ⅰ级标准的水煤浆,可不安装脱硫设施就能保证So2的达标排放。三是相对燃煤而言,可以大大减少仓储、运输和燃烧过程中的扬尘,净化周边环境,减少堆煤场,节约用地。

3、在经济效益方面的优势

水煤浆锅炉与重油或柴油锅炉相比,燃料成本可节约30~50%。

(三)推广应用水煤浆存在的问题

1、水煤浆锅炉的建设成本较高。例如,我市上xxx印刷有限公司1台2吨的水煤浆锅炉,建设费用约100万,而普通的2吨燃煤或燃油锅炉建设费用约30~40万,包括安装环保设施。企业原有的燃煤或燃油锅炉不能直接改造成水煤浆锅炉,必须拆除原锅炉后重新建设,所以初期投资成本较高。

2、与燃煤锅炉相比,水煤浆锅炉燃料成本提高15~20%。

3、与传统锅炉相比,水煤浆锅炉燃烧技术相对复杂,维护要求较高。水煤浆锅炉的喷孔、点火电极、磁棒、炉膛等部位需要经常清洗、除灰。

4、某些试点单位锅炉排放的污染物浓度仍然偏高。最近采集的监测数据显示,某试点企业20吨锅炉So2的排放浓度平均约500mg/m3,而按照总量减排的要求,须达到350mg/m3以下。所以20吨以上锅炉还须上脱硫设施,企业可能难以接受,推广较困难。

二、生物质能颗粒燃料的特点、优势,以及推广应用存在的问题

(一)生物质能颗粒燃料的特点

生物质能颗粒燃料是在燃烧应用上的一项科研成果。它是利用秸秆、水稻秆、薪材、木屑、花生壳、瓜子壳、苜蓿草、树皮等废弃的农作物和工业废物,经粉碎―混合―挤压―烘干等工艺,最后制成颗粒状燃料,生产过程不需添加助燃物质。

(二)生物质能颗粒燃料的优势

生物质能颗粒燃料是洁净燃烧技术发展的一次突破,其原料本身含硫量极低。它采用先进的气化燃烧方式,具有高效的燃烧效率,能将不完全燃烧热损失和化学未完全燃烧热损失降到较低,并且无需处理就可实现烟气、氮氧化物、二氧化硫等污染物的达标排放。据测算,每燃烧1万吨生物质能颗粒燃料可替代燃煤0.8万吨,减少So2排放150吨,烟尘排放80吨。生物质能锅炉是替代燃油、燃煤锅炉的选择之一,运行成本也比燃油、燃气锅炉低。

调研组也对部分试点企业的0.7吨生物质能锅炉进行了考察和监测,监测结果初步表明,这种锅炉在无须另行治理的情况下,烟气排放达标,烟尘、二氧化硫、氮氧化物等污染物排放浓度明显较低。

(三)推广应用生物质能颗粒燃料存在的问题

1、对生物质能颗粒燃料认识不足。由于生物质能颗粒燃料在我市是一个新兴的清洁燃料行业,大多数人对生物质能颗粒产品具有高能、环保、使用方便的特性认识不够,许多用能单位根本就不知道有生物质能颗粒产品。

2、原材料供应尚未普及。生产生物质能燃料的原材料主要是秸秆、水稻秆、薪材、木屑、花生壳、瓜子壳等废弃的农作物和工业废物。珠三角地区废弃的农作物比我国北方少,木屑、锯末等工业废物的产生量虽然不少,但绝大部分已被利用为生产锯末板或刨花板等家具板材。

3、成本价格偏高。生物质能颗粒燃料成本约1000元/吨,市场价格约1200元/吨,比优质煤高出30%以上。

三、结论和建议

推广应用水煤浆和生物质能颗粒燃料能够优化我市的能源结构,可从燃料源头确保锅炉烟气达标排放,是整治黑烟囱的有效手段之一,是替代煤、油等燃料的较佳选择。

建议:1、环保监管部门对新、改、扩建锅炉在环评审批时强制使用水煤浆、生物质能颗粒燃料等清洁能源锅炉,其中2吨以上的推荐使用水煤浆锅炉,2吨以下的推荐使用生物质能颗粒燃料锅炉;2、对高速公路和主干道路两旁的燃煤燃油锅炉以行政手段推行改造,用水煤浆或生物质能颗粒燃料锅炉逐步替代现有锅炉。

四、措施

综合分析调研情况,调研组提出以下保障措施,以确保水煤浆和生物质能颗粒燃料有序推广应用。

(一)质监、工商等部门加强监管,确保水煤浆生产、销售企业给用户稳定提供优质的水煤浆,水煤浆的标准必须符合《水煤浆技术条件国家标准》中的Ⅰ级标准。

(二)由政府培育几家水煤浆生产企业和生物质能颗粒燃料生产经销企业,形成规范有序的市场竞争环境,减轻市场垄断程度,保障燃料的充足供应。

(三)综合运用经济手段、法律手段和行政手段推广应用天然气、轻柴油、水煤浆、生物质能颗粒燃料等清洁燃料。一是落实已制定的财政资金补助措施,并增加对生物质能锅炉和其它清洁能源锅炉的改造补贴;二是对现有冒黑烟企业限期治理,治理措施推荐使用水煤浆或其它清洁能源锅炉;三是以实施《珠江三角清洁空气行动计划》为契机,由政府相关部门联手,出台相关政策文件,用行政手段强制推行使用天然气、轻柴油、水煤浆、生物质能颗粒燃料等多样性清洁燃料,从根本上减少大气污染物排,改善城市空气质量。

(四)组织有关部门对水煤浆用煤产地和生物质能颗粒燃料锅炉生产企业进一步考察,掌握水煤浆和生物质能颗粒燃料的原料来源、生产、供应、环境与经济效益等情况。

生物燃料的特点篇3

1 生物质固体成型燃料

农作物秸秆通常松散地分散在大面积范围内,且堆积密度较低,这给收集、运输、储藏和应用带来了一定的困难。在一定温度和压力作用下,将秸秆压缩成棒状、块状或颗粒状等成型燃料,提高其运输和贮存能力,改善秸秆燃烧性能,提高利用效率,不仅可以用于家庭炊事、取暖,也可以作为工业锅炉和电厂的燃料替代煤、天然气、燃料油等化石能源。

2 不同类型的生物质固体成型燃料

3 生物固体成型燃料的特点

生物质固体成型燃料是生物质能开发利用技术的发展方向之一,可为农村居民和城镇用户提供优质能源,近年来越来越受到人们的广泛关注。其体积缩小6~8倍,密度约为1.1~1.4吨/m3;能源密度相当于中质烟煤:使用时火力持久,炉膛温度高,燃烧特性明显得到了改善。

二 国外生物质固体成型燃料发展现状

1 国内外发展现状

目前,国外生物质能固体成型燃料技术及设备的研发已经趋于成熟,相关标准体系也比较完善,形成了从原料收集、预处理到生物质固体成型燃料生产、配送、应用整个产业链的成熟体系和模式。

2 生物质固体成型设备

3 热利用设备

4 发展现状

2005年,世界生物质固体成型燃料产量已经超过了420万吨,其中美洲地区110万吨,欧洲地区300万吨。预计2007年将总产量超过500万t。欧洲现有生物质固体燃料成型厂70余个。仅瑞典就有生物质颗粒加工厂10余

家,单个企业的年生产能力达到了20多万吨。国外生物质固体成型燃料技术及设备的研发已经趋于成熟,相关标准体系也比较完善,形成了从原料收集、预处理到生物质固体成型燃料生产、配送、应用的产业链成熟体系和模式。

5 欧盟标准-Cen/tC335固体生物质燃料

欧盟固体生物质燃料标准化工作始于2000年。按照欧盟的要求,由欧盟标准化委员会(cen)组织生物质固体燃料研讨会,识别并挑选了一系列需要建立的固体生物质燃料技术规范。欧盟标准化委员会准备了30个技术规范,分为术语;规格、分类和质量保证;取样和样品准备,物理(或机械)试验;化学试验等5个方面。技术规范的初始有效期限制为3年,在2年以后Cen成员国需要提交对标准的意见,特别是可否转成欧盟标准。(表2)

三 我国发展生物质固体成型燃料的有力条件

1 国内发展现状

我国生物质固体成型技术的研究开发已有二十多年的历史,20世纪90年代主要集中在螺旋挤压成型机上,但存在着成型筒及螺旋轴磨损严重、寿命较短、电耗大、成型工艺过于简单等缺点,导致综合生产成本较高,发展停滞不前。进入2000年以来,生物质固体成型技术得到明显的进展,成型设备的生产和应用已初步形成了一定的规模。

2 形成了良好的政策法规环境

国务院办公厅《关于加快推进农作物秸秆综合利用意见的通知》中指出“结合乡村环境整治,积极利用

秸秆生物气化(沼气)、热解气化、固化成型及炭化等发展生物质能,逐步改善农村能源结构。”财政部出台了《秸秆能源化利用补助资金管理暂行办法》,采取综合性补助方式,支持从事秸秆成型燃料、秸秆气化、秸秆干馏等秸秆能源化生产的企业收集秸秆、生产秸秆能源产品并向市场推广。

3 核心技术趋于成熟

目前,我国秸秆固体成型的关键技术已取得突破,特别是模辊挤压式颗粒成型技术,已经达到国际同类产品先进水平,有效地解决了功率大、生产效率低、成型部件磨损严重、寿命短等问题,并已实行商业化。全国秸秆固体成型设备的生产和应用已初步形成了一定的规模,固体成型燃料的年产量约20万吨,主要以锯末和秸秆为原料,用于农村居民生活用能、锅炉燃料和发电等。生物质炉具的开发也取得一定的进展,开放了秸秆固体成型燃料炊事炉、炊事取暖两用炉、工业锅炉等专用炉具。

(1)不同的成型技术(图5、6、7)

(3)生物质固体成型燃料示范工程案例

示范地点:北京大兴区:建设规模:年产20000吨固体成型燃料,包括:颗粒燃料生产线1条,年产10000吨:压块燃料生产线1条,年产10000吨;原料类型:各种农作物秸秆、木屑、花生壳等。

工艺技术路线:(如8所示)

执行情况:已完成秸秆固体成型设备的研究设计,形成了具有自主知识产权的成型机,产品如图9、10、11、12所示。

2008年5月通过农业部科教司组织的鉴定,鉴定结论:技术为国内领先,主要技术经济指标居国际先进水平。

(4)生物质固体成型燃料炉

根据用途的不同,生物质固体成型燃料炉具可分为炊事炉、采暖炉和炊事采暖两用炉;根据使用燃料的规格不同,可分为颗粒炉(图13)和棒状炉;根据进料方式的不同,可分为自动进料炉和手动炉;根据燃烧方式的不同,可分为燃烧炉、半气化炉(图14)和气化炉。

(5)拟引进国外先进技术

引进了瑞典GordicenvironmentaB公司的pellx生物质固体成型燃料高效燃烧器。(图15)

热输出:10~25kw;

燃烧效率:大约90%;

功率消耗:大约40w

(6)我国生物质固体成型燃料标准体系(图16)

(7)近期拟(已)制订计划(表4)

4 秸秆收储运模式初步建立

农作物秸秆通常松散地分散在大面积范围内。收购组织面广量大,涉及到千家万户,这给秸秆能源化利用带来了困难。经过探索和尝试,各地因地制宜,形成了“农户+秸秆经纪人+企业”、“农户+企业+政府”等各具特色的秸秆收储运模式。(图17)

需求分析:

生物质固体成型燃料适用于农村居民炊事和采暖用能,大中城市工业锅炉、发电和热电联产等。生物质固体成型燃料可为农村家庭提供室内取暖燃料,未来发展潜力巨大;随着国家节能减排政策的实施,大中城市取缔燃煤的工业锅炉将成为必然,将燃煤锅炉改造为燃生物质固体成型燃料锅炉则是一个可行的选择;木质颗粒燃料具有燃烧效率高、自动化程度高、清洁卫生等优点,适合于别墅壁炉等高端人群的冬季采暖,也是未来一个应用方向。

四 发展前景与展望

《可再生能源中长期发展规划》中明确提出“重点发展生物质固体成型燃料”到2010年,生物质固体成型燃料年利用量达到100万吨;到2020年,生物质固体成型燃料年利用量达到5000万吨。(图18)

效益分析:

拉动内需。建设1处年产3000吨秸秆固体成型燃料的示范点,需投资180万元,需要水泥100吨、砖30万块、沙子170吨、钢材70吨。

增加就业。建设秸秆固体成型燃料示范点可引导农村劳动力就地就近就业,每条生产线需要操作工30人,均来自当地农民,按照1000元/月计算,年人均收入可达1.2万元。同时,从秸秆的收集、储存和运输整个收购环节,可以间接带动当地的一部分劳动力参与到这个行业中来。按照每年收购12000吨原料计,可以吸收至少200人参与该行业。

生物燃料的特点篇4

1.1飞机内饰材料阻燃特性国内外检测标准对比国家标准GB/t17591—2006《阻燃织物》适用于装饰用、交通工具(包括飞机、火车、汽车和轮船)内饰用、阻燃防护服用的机织物和针织物的阻燃性能测试。该标准对机、轮船内饰用织物阻燃性能分级评定如下:①B1级:损毁长度≤150mm,续燃时间≤5s,燃烧滴落物未引起脱脂棉燃烧或阻燃;②B2级:损毁长度≤200mm,续燃时间≤15s,燃烧滴落物未引起脱脂棉燃烧或阻燃[1]。该标准规定其测试方法采用GB/t5455—1997《纺织品燃烧性能试验垂直法》。其原理是将一定尺寸的试样垂直置于规定的燃烧试验箱中,用规定的火源点燃12s,除去火源后测定试样的续燃时间和阴燃时间,阴燃停止后,按规定的方法测出损毁长度。目前,全世界通用的两个国际标准分别为美国航空管理条例FaR25.853和欧洲相应标准JaR25,这两个标准的要求基本相同。其中垂直阻燃特性测试根据飞机组件的不同分为点火时间60s和12s可燃性测试,评定指标如下:①60s测试:损毁长度≤152mm(平均),续燃时间≤15s(平均),有熔滴滴出的续燃时间≤3s(平均)。②12s测试:损毁长度≤203mm(平均),续燃时间≤15s(平均),有熔滴滴出的续燃时间≤5s(平均)[2]。我们研制的飞机内饰材料阻燃特性测试仪遵照的标准是美国波音公司企业标准BSS7230DeteRminationoFFLammaBiLitYpRopeRtieSoFaiRCRaFtmateRiaLS,其垂直阻燃特性测试方法及评定指标与FaR25.853和JaR25完全相同。中国标准(以下简称国标)与国外标准在具体技术参数方面的差异在于:(1)燃烧箱体尺寸:国标329mm×329mm×767mm;国外标准(349±25)mm×(349±25)mm×(762±25)mm。(2)燃烧器管口内径:国标11mm;国外标准9.5mm。(3)燃烧器点火位与试样之间相对角度:国标25°;国外标准90°。(4)燃烧器入口气体压力:国标(17196±1732.9)pa;BSS7230标准(17225±1722.5)pa;FaR25.853与JaR25没有要求。(5)火焰温度:国标与BSS7230标准没有要求;FaR25.853与JaR25为843℃。(6)火焰高度:国标(40±2)mm;国外标准38mm。(7)火焰外观:国标没有要求;FaR25.853和JaR25标准要求内焰高25mm,锥形火焰总高76mm;BSS7230标准要求明黄色内焰高22mm,锥形火焰总高38mm。

1.2检测关键技术飞机内饰材料阻燃特性检测关键技术是根据BSS7230标准要求,采用温度和高度恒定的火焰对试样下端进行点火操作,点火时间为12s或60s。点火结束后,立即将火焰撤离试样,通过观察试样续燃、阴燃、熔滴滴落情况来判定试样阻燃性能的好坏。试验的要点是:火焰高度,温度,箱体供氧量,试样固定,火焰与试样接触高度和面积等。由机内饰材料应用环境的特殊性,对这些材料的阻燃处理要求尤其严格,因此对于其垂直阻燃特性的测试除12s点火时间测试之外,还增加了60s点火时间测试。并且对于火焰内外焰的状态也有详细限定,从而限定了火焰温度。燃烧箱内部尺寸大小、通风孔大小及尺寸直接决定了试验过程中试样燃烧的供氧量,因此标准对于箱体容积也作了严格的限定。试样安装位置及火焰与试样接触高度也是标准严格限定的技术指标。主要采用以下手段实现其关键技术:(1)运用空气动力学和流体力学原理设计具有火焰温度、高度可调的负压进氧式燃气混合燃烧器。根据内饰材料的燃烧物理特性,采用可燃气体及空气流体力学等前沿技术,通过调节甲烷气体进入燃烧器喷嘴口流速,在燃烧器进氧口形成不同的负压,从而实现燃烧器进氧量的调节。经流量调定的甲烷气体、预混空气在点火装置管路系统内部产生紊流充分混合,并且结合点火装置的结构设计,以达到试验所需的特殊火焰要求。点火装置设计成遥控点火方式,使点火操作安全可靠。燃烧器本身的结构设计是决定该点火装置设计成败的关键所在。对于不同的燃料气体,燃烧器的结构要作相应的改变,否则会影响点火成功率和火焰温度。因此在仪器设计时,我们先将气源确定为热值比较高的甲烷气,燃烧器喷嘴内芯孔径与负压进氧口口径设计相匹配,实现两种气体恒定的混合比,以达到试验所需要的火焰结构。这样的设计使得点火装置产生高度可调、温度可控、重现性好的具有明亮的白色内焰和湛蓝色外焰的特殊火焰结构,满足了国际上对于内饰材料阻燃测试规定的特殊火焰需求。本文从内容到技术、方法都属于探索性和原创性研究,是气体动力学的具体应用,具有现实意义和实用价值。(2)采用精密机械传动、特殊机械结构技术,设计了稳定准确运送燃烧器到达试样底部的传动机构。基于力学效应的机械传动原理方案设计,考虑到仪器燃烧器传动低速轻载的特点,首次提出采用将连续转动转化为直线往复移动的偏心曲柄滑块传动机构,来实现燃烧器在试验起始位和试验位之间的直线往复运动,并采用开关信号控制理论实现了燃烧器的精确定位设计,满足了仪器操作自动化的需求。(3)设计了可适用多种形状内饰材料的试样定位装置,以确保与燃烧器之间形成所需要的角度和位置。

2试验装置的机械设计

2.1火焰燃烧器结构设计根据BSS7230标准所要求的火焰外观:明黄色内焰高22mm,锥形火焰总高38mm[3]。经流体动力学分析可知,该火焰应该是预混火焰。顾名思义,预混火焰代表着燃料分子和氧化物分子必须在燃烧反应之前预先混合,两者同时存在并均匀混合于预混火焰上游。因此火焰燃烧器的基本构造设计成由简易的圆管燃烧器和圆管底部的可调式空气吸入口所组成。气态燃料由圆管底部流入燃烧器,经过空气吸入口时,由于燃料气流的对流流动在空气吸入口形成局部压力低于外界大气压,带动外界空气吸入并且相互混合。燃料和空气的预混流随之喷出燃烧器,经点火而在管口产生锥形预混火焰。根据上述预混火焰形成的原理,将火焰燃烧器结构设计成由混合腔、预混腔、负压进氧口、燃烧器芯、可燃气体进口、燃烧器座组成(见图1)。考虑到火焰分层要求,将燃烧器的负压进氧口设计成大小可调式。通过旋转燃烧器混合腔圆管,实现燃烧器底部均布的三个方形负压进氧口的大小调节。由于仪器所用气源为甲烷气体,因此根据甲烷气体的燃烧热值及其物理特性,为满足标准对于火焰的特殊要求———明黄色内焰高22mm,火焰总高38mm,燃烧器芯开口直径大小的设计与负压进氧口可调区间范围相匹配。试验过程中通过微调负压进氧口大小,即可实现火焰分层的特殊要求。燃烧器所有活动连接部件均采用螺纹密封结构,确保在一定试验压力下供气管路系统无泄漏。

2.2燃烧器运动系统设计测试标准要求,在试验之前燃烧器距试样至少76mm远,因此在设计时要考虑到燃烧器试验起始位应该在距样架76mm外。另外应客户使用要求,在试验前需在起始位将燃烧器点燃,并且调整好火焰高度、内外焰状态,做好火焰温度测试等预先准备工作。正式试验时,燃烧器处于试样样架正下方中心位置,因此需要设计一套往复运动机构,将燃烧器从试验起始位平稳而准确地运送到试验点火位,试验结束再运回起始位。机械运动系统通常由动力系统、传动系统、执行系统和控制系统组成。从仪器操作方便和试验安全性方面考虑,燃烧器的动力系统即电机驱动部分需安装在仪器下部的控制箱内,而执行系统燃烧器必须安装在仪器上部的燃烧箱内,这样电机轴与燃烧器往复运动驱动点就存在偏距。鉴于该驱动机构需实现将电机的转动转变为燃烧器的双向间歇直线往复运动,因此选择采用偏置的曲柄滑块机构作为传动系统来实现(见图2)。燃烧器通过燃烧器安装板与线性往复滑动导向机构(线性滑动轴承、线性往复滑轨座、滑块连接板)组成了曲柄滑块机构中的滑块部分。电机带动曲柄旋转,通过连杆和滑块连接板带动上述滑块部分实现了燃烧器的往复运动,整个系统导向灵活安静。控制系统通过在燃烧器起始位和点火位安装行程开关,实现燃烧器往复行程的控制以及燃烧器点火位的精确定位控制。

2.3试样定位装置结构设计为保证试样安装到位后始终处于燃烧室的中心位置,将试样前夹片设计成带有4根支腿的结构。支腿安装在燃烧箱后墙板上,支腿长度的设计刚好能满足试样测试面处于燃烧室中心的要求(见图3)。在试样定位装置结构设计上,考虑到飞机内饰材料的特殊性,试样厚度从零点几毫米到十几毫米的大跨度。为保证试样在实际使用时朝向机舱内部的表面始终处于燃烧室中心位置,因此将前夹片设计成定夹片,以前夹片为基准面,后夹片设计成带有推拉手柄的结构。前后夹片四角各设计一个导向耳朵,在后夹片耳朵上钻有螺丝孔,通过螺母将导向螺柱与后夹片连接成一体,导向螺柱上安装夹紧压簧。前夹片导向耳朵配钻与导向螺柱直径滑动配合的光孔(见图4)。试样安装时,只需推动推拉手柄向后推动后夹片,将试样试验面朝向试验者塞进两夹片之间,即可靠夹紧压簧的压紧力牢固夹住试样。这样既方便了试验人员对试样燃烧情况的观察,又满足了标准BSS7230规定———燃烧器到点火位时,燃烧器口中心线与试样重合[3]。前后夹片中心部位开有51mm×305mm的矩形孔,孔中露出的为试样的试验面积。另外,由于试验过程中需要测量38mm的火焰高度,因此在前夹片下端距夹片底边19mm处焊有焰高标杆。当燃烧器到达样夹下点火位置时,燃烧器口距焰高标杆刚好38mm,因此试验时只需调整火焰高度,使得火焰尖端刚好到标杆即可。

2.4供气管路系统设计供气管路的路线为:气源瓶口减压器二级减压器压力表供气控制电磁阀火焰高度调节阀火焰燃烧器。鉴于仪器所用气源为具有一定腐蚀性的甲烷气体,因此供气管路系统选用的气动元件均为黄铜材质,所有密封件均采用耐蚀性良好的氟胶圈。另外为保证试验过程中点火安全,供气控制电磁阀选用了可燃气体专用防爆型。火焰高度调节阀选用了可精密调节型,通过旋转阀头旋钮可精密控制火焰燃烧器的供气流量,满足了标准对火焰的特殊要求。

3试验结果分析选取3种做过阻燃处理的不同材质飞机内饰材料:纯棉织物、普通化纤织物、阻燃纤维织物,在飞机内饰材料阻燃性能测试仪上分别进行了相同火焰温度下的试验测试以及相同试样在不同火焰温度下的试验。以下试验火焰高度与标准规定相同。

生物燃料的特点篇5

关键词:生物质;发电;比较;展望

abstract:thispaperpresentsacomparativeanalysisonthreekindsofbiomasspowergenerationtechnologies,includingcofiringofbiomasswithcoalinexistingpowerboilers,Biomassgasificationandpowergenerationtechnology,Biomassdirectcombustionandpowergenerationtechnology.pointouttheobstacleofthedevelopmentofbiomasspowergeneration,thenlookingtothefutureofbiomasspowergeneration.

Keywords:biomass;powergeneration;comparation;looking

中图分类号:tm6文献标识码:a文章编号:

我国是农业大国,生物质资源种类多,数量非常巨大,全国每年可利用的生物质能资源总量估计可达7亿吨标准煤以上。生物质能属于清洁能源,其利用可实现Co2零排放,是替代煤、石油和天然气等矿物燃料的重要能源,开发利用生物质能,对于国家能源安全、Co2减排和社会可持续发展都具有重要意义。

一.几种主要的生物质发电技术及其比较

生物质发电技术主要包括生物质直燃发电、气化发电以及与煤混合燃烧发电等技术。

1.1生物质直燃发电

生物质直接燃烧发电是指把生物质原料送入适合生物质燃烧的特定锅炉中直接燃烧,产生蒸汽带动蒸汽轮机及发电机发电。

国内生物质直接燃烧发电的锅炉主要有两种:炉排炉、循环流化床锅炉。

炉排炉主要是国能生物质发电公司引进丹麦Bwe公司研发的生物质燃烧发电技术以及国内锅炉厂家根据丹麦技术进行的改进技术。在国内,浙江大学循环流化床燃烧技术方案已经在中节能投资的宿迁生物质发电厂实施应用,这是世界上第一台具有自主知识产权的纯烧秸秆的循环流化床锅炉。除了浙江大学以外,国内还有多家机构进行生物质循环流化床锅炉的研发。

炉排炉燃烧对生物质原料的预处理要求较低,生物质经过简单处理甚至无须处理就可投入炉排炉内燃烧。流化床燃烧要求将大块的生物质原料预先粉碎至易于流化的粒度,其燃烧效率和强度都比炉排炉高。和流化床锅炉相比,炉排炉更适合燃烧单一稳定的燃料,在燃料适应性方面较差,燃料品种和性质的改变可能造成锅炉效率的下降。燃料适应性好是循环流化床锅炉的一个特点。对低质量的燃料,循环流化床锅炉都能够很好的适应。另外,循环流化床锅炉更能适应变负荷情况下运行,并能够保持较高的效率。

1.2生物质气化发电

生物质气化发电是指生物质在气化炉中气化生成可燃气体,经过净化后驱动内燃机或小型燃气轮机发电。气化炉对不同种类的生物质原料有较强的适应性。内燃机一般由柴油机或天然气机改造而成,以适应生物质燃气热值较低的要求;燃气轮机要求容量小,适于燃烧高杂质、低热值的生物质燃气。生物质气化发电包括小型气化发电和中型气化发电两种模式。小型气化发电采用简单的气化-内燃机发电工艺,发电效率一般在14%~20%,规模一般小于3mw。中型气化发电除了采用气化-内燃机(或燃气轮机)发电工艺外,同时增加余热回收和发电系统,气化发电系统的总效率可达到25%~35%。

我国对生物质气化技术的深入研究始于上世纪80年代,经过20多年的努力,我国生物质气化技术日趋完善。但与发达国家生物质气化技术相比,国内生物质气化装置基本上是以空气为气化剂的常压固定床气化技术,如河北的nD系列、山东的XFL系列、广州的GSQ系列和云南QL系列。这些固定床气化炉应用在不同场合取得了一定的社会、环保和经济效益。但在技术上存在着一些问题,如气化得到的生物质燃气热值和利用率低、燃气中焦油含量高等,制约了生物质气化技术在我国的商业化推广。

1.3生物质混合燃烧发电

生物质混合燃烧发电是指将生物质原料应用于燃煤电厂中,和煤一起作为燃料发电。生物质与煤有两种混合燃烧方式:①生物质直接与煤混合燃烧。生物质预先与煤混合后再经磨煤机粉碎或生物质与煤分别计量、粉碎。生物质直接与煤混合燃烧要求较高,并非适用于所有燃煤发电厂,而且生物质与煤直接混合燃烧可能会降低原发电厂的效率。②将生物质在气化炉中气化产生的燃气与煤混合燃烧,即在小型燃煤电厂的基础上增加一套生物质气化设备,将生物质燃气直接通到锅炉中燃烧。这种混合燃烧方式通用性较好,对原燃煤系统影响较小。

由于计量、监管和落实生物质发电补贴政策的困难,国家对生物质混烧发电的政策扶持较少,导致国内生物质混烧发电厂较少。一般来说,混烧发电具有建设周期短,投资少的特点。另外混烧发电的燃料组织比较自由,可以根据燃料的成本以及供求状况进行调整,这也从一定程度上保证了燃料供应的可靠性。与煤相比,生物质氮、硫含量低,和煤混合燃烧后能够有效降低污染气体排放量。

对以上三类生物质发电技术进行分析比较,可以得出:

生物质直接燃烧发电技术比较成熟,但在小规模发电系统中蒸汽参数难以提高,只有在大规模利用时才具有较好的经济性,比较适合于10mw以上的发电系统。

由于低热值燃气轮机技术尚未成熟,因此生物质气化发电技术仅适用于10mw以下中小规模发电系统,气化—余热发电系统效率较高,特别适用于5~6mw的发电系统。

生物质混烧发电技术在已有燃煤电站的基础上将生物质与煤混烧发电,混烧发电对原有电站的影响比直接混烧发电对原有电站的影响小,通用性较强。投资成本是三类技术中最少的,但可能降低原燃煤电站效率。

二.生物质发电产业发展障碍及展望

2.1生物质发电产业发展存在的障碍

(1)技术障碍。以秸秆直燃锅炉为例,国内没有专门秸秆直燃锅炉的设计生产经验,已建和拟建的秸秆直燃发电项目主要引进丹麦Bwe技术。由于对引进的技术和设备不能完全吸收及高效使用,使机组无法安全稳发、满发,缺乏核心技术及备品配件,投产后的生物质发电企业也有可能长时间受制于国外企业。

生物燃料的特点篇6

关键词工业锅炉;燃烧;建议

中图分类号tK22文献标识码a文章编号1674-6708(2013)100-0167-02

随着经济生产的发展,锅炉设备广泛的应用于现代工业的各个部门,,作为特种设备安全监管的设备之一,其安全性也尤为重要。笔者根据几年来的工作经验和同行之间的经验交流来简单阐述一下对锅炉燃烧方面的见解。

1锅炉概述

锅炉是将燃料的化学能(或电能)转变成热能(具有一定参数的蒸汽和热水)的能量转化设备,同时是直接受火和高温烟气(受热)、承受工作压力载荷、具有爆炸危险的特种设备。《特种设备安全监察条例》中定义的锅炉是指利用各种燃料、电或者其他能源,将所盛装的液体加热到一定的参数,并对外输出热能的设备。

锅炉按使用形式分为:工业锅炉、小型锅炉和电站锅炉。锅炉使用的燃料按物态分为固体燃料、液体燃料和气体燃料三类。在我国常用的固体燃料是煤,液体燃料有重油、渣油和柴油,气体燃料按其获取的方式分为天然气和人工煤气。本文以燃煤工业锅炉为例。

2锅炉的燃烧

对于锅炉来说,其工作包括着三个同时进行的过程:燃料的燃烧过程、烟气向水的传热过程和水的受热汽化过程。在锅炉整个循环体系中,整体来说燃烧过程即燃料在加煤斗中借自重下落到炉排面上,炉排借电动机通过变速齿轮箱减速后由链轮来带动,犹如皮带运输机,将燃料带入炉内。燃料一面燃烧一面向后移动;燃烧需要的空气是由风机送入炉排腹中风仓后,向上穿过炉排到达燃料层,进行燃烧反应形成高温烟气。燃料最后烧尽成灰渣,在炉排末端被除渣板铲除于灰渣斗后排出。

针对我们的燃料煤,煤的燃烧过程可以更加细化的来看,可以说是经历以下四个阶段:1)水分蒸发阶段,也称煤的预热干燥和干馏阶段,煤进入炉膛受热后,水分即开始汽化析出,当温度达到100℃~105℃时,蒸发完所有水分;2)挥发物析出阶段,煤在持续吸收热量后,温度不断上升,当煤被加热至130℃~140℃时,开始分解出可燃性挥发物,形成焦炭;3)挥发物和焦炭的着火燃烧阶段,随着燃料温度的持续升高,达到一定浓度的气态挥发物(主要是氢、一氧化碳及多种碳氢化合物)在遇到氧气时便开始着火燃烧,放出热量,同时使焦炭继续加热升温,当挥发物快燃尽时,焦炭已经达到炽热发红状态(约600℃~700℃),即进入焦炭的猛烈燃烧阶段,4)焦炭的燃尽阶段,随着挥发物及焦炭的燃烧,灰渣也逐步形成。经历一定时间燃烧后,焦炭外面已被一层灰渣所包裹,并在高温作用下熔化后形成一层硬壳,阻止没有燃烧残留的炭核与空气的接触,使燃烧进行的异常缓慢。这一阶段将焦炭尽量燃烧完,以降低锅炉热损失,节约燃料。

3燃烧的基本要素

燃烧是可燃物跟助燃物(氧化剂)发生的一种剧烈的、发光、发热的化学反应。前面已经提到锅炉使用的燃料按物态分为固体燃料、液体燃料和气体燃料三类。常用的固体燃料是煤。

煤的种类繁多,分类方法也各有不同。新的煤炭分类国家标准按煤的煤化程度由高到低分为无烟煤、烟煤和褐煤,分为14大类和17小类。其中无烟煤的挥发分由低到高分为3个小类;烟煤按其挥发分、粘结性指标等分为12大类;褐煤又分为年轻褐煤和年老褐煤2个小类。作为燃料煤本身,不同的燃料煤也具备其自身的特性,选择适合的燃料也是锅炉安全经济运行的保障性条件。

我们工业锅炉常用煤来说,其特点有以下几点:1)要使燃料燃烧得快,必须要有较高的炉膛温度,炉膛温度越高,碳和氧的化合速度越快,燃烧就越快。一般要求层燃炉的炉膛温度在1100℃~1300℃,悬浮炉的炉膛温度在1300℃以上,沸腾炉的沸腾段温度在1000℃左右;2)利用空气中的氧来助燃,空气冲刷碳的速度越快,碳和氧的接触越好,燃烧就越充分,尤其是机械炉排,要根据煤在炉排上的燃烧阶段,来配合给适量的空气(鼓风);3)固体燃料灰分较多,残留碳被灰壳包裹,影响碳的燃尽,且灰熔点低时,易结焦影响燃烧。为此,一般在运行中要拨火或除渣;4)固体燃料在燃烧中飞灰量较大,随着烟气排至大气中,影响环保。为此,要对燃烧后的烟气进行除尘。

为使锅炉达到经济运行指标,必须解决好燃料的完全燃烧问题。这主要受以下四个条件的影响:1)供给完全燃烧所必须的空气量;2)维持适当高的炉膛温度;3)空气与燃料具有良好的混合;4)有足够的燃烧时间,尤其是层燃炉,燃料燃烧必须需要足够的时间,燃料颗粒越大燃烧时间越长。若燃烧时间不够,燃料燃烧就不完全。

4建议

通过对锅炉的常用燃料煤的了解,在其煤质本身、燃烧过程、燃烧特点和燃烧条件等方面都给我们重要提示,笔者结合文章中所阐述的情况,给予以下几点意见,希望在实际应用中能够起到一定的作用。

1)选择适当的煤质,不同的煤有其不同的特性,密度、热稳定性、可磨性、粘结性、结焦性、结渣性和灰的熔融性等。在使用过程中,这些煤的特性会根据使用过程中的不同工况显现出来。因此,选择一种合适的煤种是非常重要的;

2)给予足够高的炉膛温度,燃烧的一个重要条件就是温度,足够高的炉膛温度是不可缺少的助燃首要条件。为煤的连续燃烧持续燃烧提供充足的温度保障;

3)给予燃料煤适量的空气。煤与氧气的结合充分与否直接影响到燃烧状况,因此,在保证空气足量的条件下还要尽量避免不影响炉膛温度的降低。

4)给予燃料煤充足的燃烧空间和燃烧时间。燃料煤的燃烧需要空间也需要时间,因此炉膛内的结焦结渣的清理、煤层的厚度与链条炉排的输送速度的合理搭配方面都会对煤的燃烧空间和时间造成影响。

参考文献

[1]泰,等.锅炉原理.中国电力出版社.

[2]夏喜英主编.锅炉与锅炉房设备.哈尔滨工业大学出版社.

[3]奚光士等主编.锅炉及锅炉房设备.中国建筑工业出版社.

生物燃料的特点篇7

(关键词)生物质锅炉稳定燃烧床温床压剩余氧量负压

中图分类号:tK223文献标识码:a文章编号:

(正文)

1.前言

生物质锅炉的稳定燃烧是影响生物质发电的重要环节,做好这一环节过程中的调节,监控,事故处理及分析是对稳定燃烧的保障。广东粤电湛江生物质发电有限公司的生物质燃烧锅炉是华西能源工业股份有限公司制造的型号为HX220-9.8-Ⅳ1型的高温高压,单汽包,汽水自然循环,平衡通风,露天布置的循环硫化床锅炉,它额定负荷50mw,额定气温540℃,额定压力9.8mp。额定流量220t/H,其特点是有较好的适应燃料变化性的能力,锅炉燃烧温度低,负压运行,采用了分级送风,三级给料的方式,可以有效降低燃烧过程中氮氧化合物和硫化物的排放。针对上述特点,采取相应措施即是做好生物质锅炉稳定燃烧的方法。

2.循环流化床锅炉燃烧机理

循环流化床锅炉采用流态化的燃烧方式,是介于煤粉炉悬浮燃烧和链条炉固定燃烧之间的燃烧方式,即通常所讲的半悬浮燃烧方式。在循环流化床锅炉中,存有大量床料,首次启动时人为添加床料,在锅炉运行时床料既有启动床料,又有新添加的燃料。床料在从布风板下送入的一次风的作用下处于流化状态,料粒被烟气夹带在炉膛内向上运动,在炉膛的不同高度部分大颗粒将沿着炉膛边壁下落,形成物料的内循环;较小固体颗粒被烟气夹带进入分离器,进行分离,绝大多数颗粒被分离下来,一部分通过回料阀直接返回炉膛,另一部分通过外置式换热器后返回炉膛,形成物料的外循环;飞灰随烟气进入尾部烟道。通过炉膛的内循环和炉外的外循环,从而实现燃料不断的往复循环燃烧;循环流化床根据物料浓度的不同将炉膛分为密相区、过渡区和稀相区三部分,密相区中固体颗粒浓度较大,具有很大的热容量,因此在给料进入密相区后,可以顺利实现着火;与密相区相比,稀相区的物料浓度很小,稀相区是燃料的燃烧、燃尽段,同时完成炉内气固两相介质与蒸发受热面的换热,以保证锅炉的出力及炉内温度的控制

3.生物质燃料与燃煤燃料的区别

火力发电的燃煤一般热值较高,密度大,水分少,燃烧较稳定,而生物质燃料的特点是热值相对于燃煤较低,发电单耗多,密度小,颗粒大,水分多,含挥发分多,其中夹杂的石头,泥土等杂物多,燃料一旦被淋湿,易结团,因其需量和供应的特点,它在燃烧中品种变化大,对锅炉稳定燃烧影响大。

4生物质循环流化床锅炉燃烧与燃煤循环流化床锅炉燃烧区别

上述生物质燃料的特点决定了生物质循环流化床的燃烧与燃煤循环流化床锅炉燃烧的不同在于其所需上料量多,参数变化大,反应更迅速,燃烧更不稳定等。

5.生物质循环流化床锅炉稳定燃烧的因素

5.1床温床压

床温床压是反映锅炉燃烧情况的直接表现。正常运行时,湛江生物质锅炉燃烧把床温规定在650-850℃,床压规定在7.5-9.5Kp。对于床温床压的调节多是对锅炉风料的配比,其中的风量调节多是一二次风的调节,而燃料的调节多是给料速度的控制。一次风热风分两路,一路从锅炉底部送入炉膛,起流化作用,第二路作为回料器的密封风;二次风热风也分分两路,一路从炉膛前后墙不同高度送入炉膛,起供氧助燃作用,另一路作为给料口的密封风和输送风。

循环流化床锅炉燃烧基本要求是循环和流化,在建立良好循环的情况下,很好的流化是加强锅炉燃烧的途径。正常情况下,加大一次风能提高床温,提高燃烧效率,特别在燃料适度明显加大的时候,更应加大一次风来保持流化,在锅炉启动初期及有需要压火减负荷是应适当减少;二次风的调节主要看炉膛剩余氧量的多少来调节,在燃料品质变化不是很大的情况下,其风量不应时常变动;床压的变化大致可分为三个因素,一是燃料中泥沙石子的含量,二是锅炉排渣系统的运行,三是一次风量的流化,对应的情况是当燃料泥沙多,床压高的时候可加大排渣量,反之相反。上诉的调节方法不是单一的操作,所涉及的参数都有关联,监控调节时要全盘考虑。

5.2剩余氧量

氧气是燃烧所必需的,而充足的氧量更是稳定燃烧的基础。湛江生物质锅炉的燃烧,一般规定炉膛剩余氧量控制在1%-3%,在对其控制时,应该与其他参数放在一起考虑,针对燃料的干湿程度以及风量和料量的配比进行调节,可适当调节。在锅炉刚启停过程中以及其他原因对负荷调节时,因考虑到燃料的燃烧程度,可使剩余氧量控制在6%左右。在正常燃烧时,对于剩余氧量的突升,在其他参数不变的情况下,一般可判断是燃料不足,可适当增加料量:对于剩余氧量的突降,在其他参数不变的情况下,一般可判断是炉膛内发生爆燃,这时应该适当减少料量。在燃烧中剩余氧量的变化属于正常现象,在锅炉产生蒸汽量,压力,温度不变的情况下,对于其的控制不可急于求成,应视情况调节,以防误判。

5.3负压

负压运行是指在锅炉尾部加装引风机,借助引风机的作用使炉膛保持负压运行的方式。保持炉膛负压运行是循环流化床锅炉运行良好的标志之一,它标示了锅炉燃烧系统,风烟系统顺畅与否,进而影响了锅炉受热面的热效率,它能有效地减少炉膛燃烧对于锅炉内部结构的侵磨和腐蚀,对于有画面监控的料仓有很大的帮组作用,还可以减少炉膛燃烧产生灰尘对外界的环境影响。

5.4事故处理

事故处理也是锅炉稳定燃烧所必不可少。生物质循环流化床锅炉的燃烧因其特点,要求了集控监盘人员的反应要快,操作要正确,但也不能慌张出错,其事故发生的种类除去燃烧锅炉多见的锅炉满水,缺水;四管爆裂;辅机故障;厂用电中断,尾部炉膛再燃烧等原因外,常见的多是因为烧料湿度大所引起的锅炉床温快速下降和燃料大范围爆燃所引起的锅炉超温超压两大类型。

5.4.1燃料被淋湿,湿度高的燃料进入炉膛时,床温可能会快速下降,负压增大剩余氧量上升,炉膛出口烟温下降,床压上升,机组负荷,气温气压下降,说明进入炉膛的燃料没有燃烧,此刻应采取以下措施:1.减少或暂停给料,2.减少或暂停返料风机,减少返料量以提高床压,3.加大一次风保持流化,4.改换干燥的燃料,5.视情况及时投油枪,6.适当降低二次风,7视情况关闭减温水,8密切监控炉膛燃烧情况,发现有床温有所上升应及时回调,并防止燃料爆燃。

5.4.2燃料挥发分高,灰尘多,热值突增易引起炉膛大范围爆燃而可能导致超温超压,此刻应采取以下措施:1.减少或暂停给料,2.减少一次风,3.加大或全开减温水,4.视情况开启对空排泄压,5密切监控炉膛燃烧情况,发现有回落趋势应及时回调,防止气温气压降低过快的事故发生。

以上两大类型亦可能连续发生,监控调节时要综合考虑及时造作并防止在处理事故时将事故扩大造成锅炉非计划停运的发生。

6总结

对于单机发电容量较大的生物质燃烧是新技术,做好锅炉燃烧更是技术的核心,在此过程中努力学习是对每一个电厂员工的要求,在相互学习探讨中搞清各参数的联系,各设配的性能,各状态的分析是工作的内容也是企业员工的责任。生物质燃烧利国利民,生物质员工更会奉献一生。

参考文献蔡永祥蔡宏伟陈俊《流化床生物质燃烧技术的应用和发展》

生物燃料的特点篇8

【关键词】氢能源;制备;储存;输运;应用

0.引言

氢具有高挥发性、高能量,是能源载体和燃料,同时氢在工业生产中也有广泛应用。现在工业每年用氢量为5500亿立方米,氢气与其它物质一起用来制造氨水和化肥,同时也应用到汽油精炼工艺、玻璃磨光、黄金焊接、气象气球探测及食品工业中。液态氢可以作为火箭燃料,因为氢的液化温度在-253℃。

氢能被提上人类未来能源的议程是大势所趋。众所周知,当今世界,为了解决能源短缺、环境污染日益严重和经济持续发展等问题,洁净的新能源和可再生能源的开发已是迫在眉睫。对我国来说,交通运输的能耗所占比重愈来愈大,与此同时,汽车尾气污染已经成为大气污染特别是城市大气污染的最重要因素。

1.氢能的优势和特点

1.1氢能的优势

氢能作为一种清洁的新型能源,具有以下优势:(1)燃烧放出的热量多;(2)燃烧产物是水,不污染环境;(3)制备的原料是水,资源不受限制。

由于具有上述优点,而且目前电能存在着难以储存、远程输运时损耗大的缺点,故在未来能源体系中,氢能将成为各种能量形式之间转化的最优良载体。

1.2氢能的特点

作为能源,氢能具有无可比拟的潜在开发价值:

(1)安全环保:氢气分子量为2,比空气轻1/14,因此,氢气泄漏于空气中会自动逃离地面,不会形成聚集。而其他燃油燃气均会聚集地面而构成易燃易爆危险。无味无毒,不会造成人体中毒,燃烧产物仅为水,不污染环境。

(2)高温高能:1kg氢气的热值为34000Kcal,是汽油的三倍。氢氧焰温度高达2800度,高于常规液气。

(3)热能集中:氢氧焰火焰挺直,热损失小,利用效率高。

(4)自动再生:氢能来源于水,燃烧后又还原成水。

(5)催化特性:氢气是活性气体催化剂,可以与空气混合方式加入催化燃烧所有固体,液体、气体燃料。加速反应过程,促进完全燃烧,达到提高焰温、节能减排之功效。

(6)还原特性:各种原料加氢精炼。

(7)变温特性:可根据加热物体的熔点实现焰温的调节。

(8)来源广泛:氢气可由水电解制取,水取之不尽,而且每kg水可制备1860升氢氧燃气。

(9)即产即用:利用先进的自动控制技术,由氢氧机按照用户设定的按需供气,不贮存气体。

(10)应用范围广:适合于一切需要燃气的地方。

2.氢能的制备

2.1从含烃的化石燃料中制氢

这是过去以及现在采用最多的方法,它是以煤、石油或天然气等化石燃料作原料来制取氢气。自从天然气大规模开采后,传统制氢的工业中有96%都是以天然气为原料,天然气和煤都是宝贵的燃料和化工原料,其储量有限,且制氢过程会对环境造成污染,用它们来制氢显然摆脱不了人们对常规能源的依赖和对自然环境的破坏。

2.2电解水制氢

这种方法是基于氢氧可逆反应分解水来实现的。为了提高制氢效率,电解通常在高压下进行,采用的压力多为3.0~5.0mpa。目前电解效率为50%~70%。由于电解水的效率不高且需消耗大量的电能,因此利用常规能源生产的电能来进行大规模的电解水制氢显然是不合算的。

2.3生物制氢

生物制氢以生物活性酶为催化剂,利用含氢有机物和水将生物能和太阳能转化为高能量密度的氢气。与传统制氢工业相比,生物制氢技术的优越性体现在:所使用的原料极为广泛且成本低廉,完全脱离了常规的化石燃料,可实现零排放。发展生物制氢技术符合国家对环保和能源发展的中、长期政策,前景光明。

3.氢的储存与输运

氢能的储存与输运是氢能应用的前提。但氢气无论以气态还是液态形式存在,密度都非常低,气态时为0.08988g·L-1(约为空气的7%),液态(-253℃)时为70.8g·L-1(约为水的7%)。

总体说来,氢气储存可分为物理法和化学法两大类。物理储存方法主要包括液氢储存、高压氢气储存、活性炭吸附储存、碳纤维和碳纳米管储存、玻璃微球储存、地下岩洞储存等。化学储存方法有金属氢化物储存、有机液态氢化物储存、无机物储存、铁磁性材料储存等。

氢气的输运与氢气储存技术的发展息息相关,目前氢气的运输方式主要包括压缩氢气和液氢两种,金属氢化物储氢、配位氢化物储氢等技术尚有待成熟。

3.1金属氢化物储氢

把氢以金属氢化物的形式储存在合金中,是近30年来新发展的技术。原则上说,这类合金大都属于金属间化合物,制备方法一直沿用制造普通合金的技术。这类技术有一种特性,当把它们在一定温度和压力下曝置在氢气氛中时,就可以吸收大量的氢气,生成金属氢化物。生成的金属氢化物加热后释放出氢气,利用这一特性就可以有效地储氢。

金属氢化物储氢比液氢和高压氢安全,并且有很高的储存容量。但由于成本问题,金属氢化物储氢仅适用于少量气体储存。

3.2氢的输运

运输液态氢气最大的优点是能量密度高(1辆拖车运载的液氢相当于20辆拖车运输的压缩氢气),适合于远距离运输(在不适合铺设管道的情况下)。若氢气产量达到450kgh-1、储存时间为1天、运输距离超过160km,则采用液氢的方式运输成本最低,金属氢化物运输方式也很有竞争力。但运输距离若达到1,600km,液氢运输的成本可比金属氢化物低4倍,比压缩氢气低7倍。

4.氢能的应用

氢能主要在以下几个方面得到了比较广泛的应用:(1)氢气燃烧放热(如液态氢作为火箭燃料);(2)用高压氢气,氧气制作氢氧燃料电池;(3)利用氢的热核反应释放的核能(氢弹)。下面重点介绍氢气在燃气轮机中的应用。

由于空气质量不断下降,各国均认识到必需降低Cox、nox、烟尘等污染物的排放量。在现代社会中,很大一部分能源通过火力发电、被转化成电能,因此发电厂是最大的污染源之一,必须对发电设备加以必要的改进。

出于降低nox排放量的目的,目前氢主要是以富氢燃气(富氢天然气或合成气)的形式应用于燃气轮机发电系统,关于纯氢作为燃料气的报道很少。

5.小结

氢能作为一种洁净的可再生能源,同时又具有可储可输的特点,从长远上看,它的发展可能带来能源结构的重大改变,而在目前它是一种理想的低污染或零污染的车用能源,国际上公认在不远的将来氢燃料汽车将是解决城市大气污染的最重要途径之一。因此,氢能作为解决当前人类所面临困境的新能源,具有广阔的应用前景。 [科]

【参考文献】

[1]任南琪.生物制氢技术的研究与发展[J].能源工程,2001,(2):18~20.

[2]刘江华,方新湘,周华.我国氢能源开发与生物制氢研究现状[J].新疆农业科学,2004,41:85~87.

生物燃料的特点篇9

据估计,植物每年贮存的能量约相当于世界主要燃料消耗的10倍;而作为能源利用量还不到其总量的l%。高效利用生物质能源,生产各种清洁燃料,替代煤炭,石油和天然气等燃料,生产电力。而减少对矿物能源的依赖,保护国家能源资源,减轻能源消费给环境造成的污染。专家认为,生物质能源将成为未来持续能源重要部分,到2015年,全球总能耗将有40%来自生物质能源。

生物质能采用高新技术将秸秆、禽畜粪便和有机废水等生物质转化为高品位能源,开发生物质能源将涉及农村发展、能源开发、环境保护、资源保护、国家安全和生态平衡等诸多利益。发展生物能源的初衷就是保护生态环境,在实际应用中也是以此为基点。这也是我国超前发展的一次很好机会,发展生物质能是一件利国利民的好事情。

生物质能源不仅是安全、稳定的能源,而且通过一系列转换技术,可以生产出不同品种的能源,如固化和炭化可以生产因体燃料,气化可以生产气体燃料,液化和植物油可以获得液体燃料,如果需要还可以生产电力等。

目前,世界各国,尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,保护本国的矿物能源资源,为实现国家经济的可持续发展提供根本保障。

6mw生物质颗粒与煤混烧发电技术

成果简介:该项目是通对不同比例的生物质成型颗粒与煤在循环流化床中进行混合燃烧,混合后的燃料可大大改变原煤的燃烧特性,包括降低着火温度、改善着火性能、提高了循环流化床锅炉的热利用率等。生物质原料与煤之间燃烧特性的优势互补。该技术可用于电厂、工业锅炉等各种利用循环流化床锅炉的行业。该技术对生物质的燃烧特性,燃烧过程以及其结渣特性、碱金属腐蚀、气体燃烧不完全等难题进行了研究,并找出了解决方案。生物质颗粒混烧量可达到80%,在此工况下热效率可提高15%以上,二氧化硫排放量减少50%。氮的氧化物排放量可减少30%;完成了由输送带、给料仓、给料绞龙组成的颗粒燃料输送给料系统;为适应生物质燃料高挥发分的特性,在生物质颗粒燃料进料口上方1.2m处增设了一个二次风进口;可根据生物质颗粒与煤的不同混烧比例,自动调整一、二次进风量。

成果类型:应用技术

所处阶段:中期阶段

生物质气化燃气中焦油催化转化研究

成果简介:该项目研究采用在生物质气化装置的出口处,建一催化净化装置有催化保护床和催化转化床构成,直接处理热的生物质气体,保护床吸收粗燃气中的硫化氢等有毒物质及催化裂化脱除部分重焦油;第二催化反应床催化转化剩余的焦油。碳氢化合物的焦油被催化转化为小分子气体如Co等,增加燃气热值。结果表明,对空气流化床气化的粗燃气的催化干法除焦油,实验方案是行之有效的和成功的。筛选出工业镍基蒸汽转化催化剂和氧化铈添加的镁橄榄石负载型镍基催化剂可作为焦油的催化转化催化剂,氧化铈可促进催化剂的活性和提高抗积炭能力,对气化燃气的重焦油的去除率达99%,按干气计算燃气中氢气的浓度增加6~11%。通过催化净化系统直接处理气化燃气,一方面焦油的催化转化增加了气化气中有价值的气体成分;另一方面又克服了湿法除焦油所带来的不易解决的环境污染问题。

所处阶段:成熟应用阶段

2Kg/hr生物质流化床气化/热解实验装置研制

成果简介:气化是缺氧的反应过程,热解是隔绝氧气的反应过程;气化的反应温度为750-850℃,而热解的反应温度为400-700℃;热解必须采用快速进料,气化对供料速度则无严格要求;两者产物的净化处理过程则基本相同。分析两者的相同点及不同点,该课题组认为建一套气化及热解的双功能系统是可行的。为此该课题组采用了以下特殊设计:独立的氧气及氮气供入系统,共用一套流量计量及预热装置;流化段及悬浮段分别采用独立的电加热及控制装置;流化段及悬浮段分别采用独立的电加热及控制装置用双级供料系统,且均可无级调速;共用一套旋风分离、冷凝、过滤、排气及计量系统。运行及试验结果表明:该系统可分别进行气化及热解试验,且运行良好,达到了设计要求。

所处阶段:初期阶段

生物质经催化热分解技术

成果简介:该研究是以植物系生物质为原料通过催化热解的方法生产高附加值的轻质芳烃苯、甲苯和二甲苯等化学品以及合成燃料。使用了热解温度控制容易,升温速度快,焦炭便于回收,且可连续操作的双颗粒流化床,建立了一套可以定量操作的热解反应系统,开发了连续催化热解过程。充分利用生物质热解温度低挥发物多的特性,选择合适的催化剂,控制生物质热解过程的二次气相反应,使产物向有利于轻质芳烃苯、甲苯和二甲苯等化学品转化,在Como-B催化剂的作用下,863K时可得到6.29wt%的收率。这一收率在同类研究中,是常压下热解过程中得到的最高收率。在实验研究过程中还可发现,nimo类催化剂有利于生物质低温制氢,为生物质低温制氢提出了新的研究课题。生物质连续催化热解装置的研发,实现了连续化操作的热解过程,为未来大规模的工业化生产提供了必要的前期研究成果。

所处阶段:初期阶段

锥形流化床生物质气化技术

成果简介:该专题针对目前国内生物质气化发电、供热、供气存在的原料适应范围窄、燃气焦油含量高、自动化程度低、适用松散型物料的气化发电设备和系统等问题,开发锥形流化床生物质气化发电供热、供气机技术产业化为目标,研制生物质气化装置与气体发电机组成的系列生物质气化发电系统;降低燃气中的焦油含量;生物质气化系统的操作弹性试验;提高生物质气燃气热值。

所处阶段:成熟应用阶段

利用藻类热解制备生物质液体燃料

成果简介:该课题应用能源科学、环境科学和生命科学等交叉学科的理论和技术,以藻类为原料,通过细胞工程和生物质转化等技术,产生生物油和烃类等可再生生物能源,为开发新能源提供新的生物技术途径。用异养转化技术和基因改造技术获得高脂肪含量的藻细胞来热解制备液体燃料,实现异养转化技术、细胞培养技术、基因改造技术与热解技术的整合集成,获得原创性、新颖性的研究成果;同时为后继能源的开发应用提供技术储备;并且通过最前沿的生物技术与能源技术相互结合、交叉与渗透,推动学科的发展。该研究成果应用前景良好。

生物质气气化合成二甲醚液体燃料

成果简介:在固定床或循环流化床中将生物质气化,变成H2,Co,Co2等组分,然后经过气体净化,在重整反应器中和沼气一起在催化剂的作用下进行重整来调整H2和Co的比例,同时降低二氧化碳的比例,使之适合于合成二甲醚。然后气体经过压缩进入二甲醚反应器。在催化剂的作用下合成二甲醚。该套技术已经申请了国家发明专利。

二甲醚(简称Dme,CH3oCH3)是一种清洁的燃料与化工产品,有很大的市场。液化二甲醚可以完全替代液化石油气(LpG),与LpG相比具有无毒无臭、不易爆炸、热效率高、燃烧彻底、无污染等特点,因此,Dme作为LpG的替代品在中国特别是农村有巨大的潜在市场。作为清洁燃料Dme可以替代柴油用作发动机燃料,十六烷值达55,与柴油热效率相同,Dme不会产生黑烟和固体颗粒,nox排出量大大减少,是很有前途的绿色环保型发动机燃料。

该项目采用的以生物质废弃物(包括木粉、秸秆、谷壳等)作为原料,通过催化裂解造气作为气头的新工艺,目前还未见报道。Dme的合成也采用先进的一步法合成工艺,该方法作为应用基础研究最近几年才在国际上展开。广州能源研究所在世界上首先实现了在小型装置上由生物质一步法合成绿色燃料二甲醚的连续运行。将该技术进行产业化推广可以解决缓解广东省液化气日益紧张的形势。

适用范围和条件:适用于生物质资源丰富的地区

3mw生物质气化高效发电系统关键技术

成果简介:该项目发展了6mw生物质气化及余热蒸汽联合发电系统、500kw生物质燃气发电机组和焦油污水生化处理新工艺等关键技术,在江苏兴化建立的示范电站装机容量为6mw,气化效率最高达78%,燃气机组发电效率为29.8%,系统发电效率27.8%,电站总投资约3200万元,系统运行成本0.40元/kw,具有较高的性价比和显著的社会效益。示范电站建设严格按国家电力行业的规范进行,并形成了市场化运作机制,为生物质气化发电技术的产业化积累了有益的经验。

所处阶段:成熟应用阶段

自热式生物质热解液化装置

成果简介:中国科学技术大学研制的“自热式生物质热解液化装置”通过了安徽省科技厅组织的专家鉴定,达到国际国内先进水平,是生物质洁净能源研究取得的重要进展。该装置是在安徽省“十五”科技攻关计划、教育部“211”工程和中国科学院知识创新工程等项目资助下研制完成的,专家认为:自热式生物质热解液化装置采用两级螺旋进料器有效解决了生物质进料系统的进料速率定量控制、密封和堵塞问题,其中自热式生物质热解液化装置在热解热源供给和生物油冷凝收集等方面具有创新性。

所处阶段:初期阶段

稻壳生物质中型气化发电系统

成果简介:该电技术的基本原理为利用生物质气化高新技术,经中温裂解气化,转换为可燃气体。气化炉内的化学反应过程主要是燃烧反应,热分解反应和还原反应。稻壳进入气化炉后,部分遇氧燃烧,提供热分解所需热量,大部分稻壳在缺氧条件下发生热分解反应,折出挥发份和焦炭,挥发份在中温反应区内发生二次反应,使焦油裂解为气体,同时气体和焦炭之间,气体和气体之间发生还原反应,产生气相焦油和气体。这些气体携带部分细颗粒焦炭、灰尘进入燃气净化系统。部分焦炭通过惯性除尘器回流进入气化炉参加反应,气相焦油冷凝通过水洗除去。燃气经净化后,再送到自吸式燃气内燃机进行热功转换产生动力,带动发电机发电。

所处阶段:成熟应用阶段

JZS家用生物质燃气灶

成果简介:该项目灶具的心脏阀体独创了大铜芯、大阀体,阀芯不凝滞、焦油不堵塞、维修方便,使用寿命特长;面壳采用进口加厚不锈钢板锻压成型,美观大方,优质耐用;高压脉冲点火器,使用寿命达10万次以上,着火率达100%,绝缘性能好;燃烧器炉头选用直径120mm和100mm标准铸铁双管和单管气道炉头;燃烧器火盖选用内旋火条形火孔,火盖材质选用全铜锻压成型,火孔加工精确,热效率高,高温不变型,高效更节能。JZS家用生物质燃气灶是秸秆气化集中供气系统的配套设备,是开发农村绿色能源的新产品。

所处阶段:成熟应用阶段

生物质联产技术及成套设备研究

成果简介:该项技术以干馏炭化工艺为中心,以生产产品为主,实现了炭、气、油联产的工业化生产,大大提高了经济效益;该设备系统热效率高。国内同类技术的设备系统热效率为56%,本项技术的系统热效率达到73.64%,比普通冷煤气发生炉的热效率高出10个百分点左右;生产的生物质炭热值和固定炭含量高,无烟、无味。经深加工可制成橡胶炭黑,优于木炭,木焦油可以提炼出多种化工原料,优于煤焦油,经济效益显著,市场前景很好;生产的生物质燃气热值达到17.7mJ/nm^3,高于城市煤气的热值,大大超过4.6mJ/nm^3的行业标准;燃气中焦油和灰尘含量小于10mg/nm^3,大大低于50mg/nm^3的行业标准。

所处阶段:成熟应用阶段

生物质气化发电优化系统及其示范工程

成果简介:该成果采用循环流化床气化炉和多级气体净化装置,配置多台500kw的单气体燃料内燃发电机组,发电系统可在2000-6000kw之间根据需要设计,发电原料可用谷壳、木屑、稻草等多种生物质废弃物。气化发电系统发电效率达20%~28%。由于系统设计合理,单位投资约4500~6500元/kw,运行成本约0.35~0.45元/kwh,能满足农村处理农业废弃物的需要,电力符合工厂企业用电或上网要求,有显著的经济和社会效益。

所处阶段:成熟应用阶段

生物质制取合成气技术研究

成果简介:气化炉内的生物质由高温Co_2在水蒸汽氛围下进行碳化直接还原为Co。高温Co_2由助燃的水蒸汽和系统循环的可燃气生成。整个工艺系统实现了热量自给平衡。可获得较高热值的合成气。通过控制Co_2和H_2o的比例和气化温度,在高温常压下,Co_2与碳反应还原为Co,同时H_2o的分解、重整产生H_2,保证了Co+H_2>50%的出口气浓度及其合适的比例。自主研制的固流复合床生物质气化炉,抑制了焦油的产生,降低气体净化的难度,提高生物质原料的利用率。独特的加料排渣系统,适应多元化原料的处理。本项目研究合成气制取机理及其气化过程有关特性,找出生物质制取合成气工艺中的某些关键参数,作为未来工业化系统优化设计的重要依据。

所处阶段:成熟应用阶段

生物质干馏气炭油联产技术及设备

成果简介:该项目针对不同类型的生物质原料,开发了两种不同的致密成型及干馏工艺,使生物质的热转换具有较高的能源利用率与换率。该项技术以成型后的生物质干馏工艺为中心,燃气中氮气含量低,燃气热值达到15mJ/m^3以上,是较好的化工原料,生物质炭、焦油及木醋液也有较好的市场。设备采用隧道连续干馏工艺,具有创新性,结构合理,操作、维护简单易行。

成果类型:应用技术

所处阶段:中期阶段

生物质颗粒燃料冷态致密成型技术及成套设备

成果简介:该项目通过研究确定不同种类农林废弃物原料的高效粉碎工艺、生物质冷态致密成型机理及不同农林废弃物冷成型条件。建立农林废弃物冷态致密成型过程的数理模型与开发生物质冷态成型过程计算模拟系统。设计出能适用于各类生物质原料的高效粉碎设备、冷态成型模具及成型设备。进而设计出完整的生物质颗粒燃料冷压成型成套设备、生产工艺流程及相关辅助设备,充分保证成套设备运行的稳定性、可靠性和经济性。

成果类型:应用技术

所处阶段:中期阶段

生物质材料甲醛释放量检测环境跟踪控制技术

成果简介:该成果涉及生物质材料(人造板等)挥发物检测环境的动态精确控制方法,应用范围为人造板、建筑材料、化工等产品中含挥发性有害气体的检测,为控制人造板产品及其含甲醛等有害挥发物产品的质量,提供可靠的技术与检测设备。同时为林产工业及全社会的环境保护、安全检测与监测技术、环境工程与技术、环境保护与管理、环境质量评价与环境检测等科学研究提供的新的成果、进展及方法。产品已应用在国家人造板质量监督检验中心、家具质检站、人造板检测机构、理化测试中心、疾病控制中心、大学等单位,负责我国生物质材料甲醛释放量的检测与监督工作。

成果类型:应用技术

所处阶段:成熟应用阶段

SLQ-300型空气鼓风常压流化床生物质气化成套设备

成果简介:该项目研制开发的新型生物质气化系统,即空气鼓风常压流化床生物质气化系统,可生产低热值生物质燃气,用于乡镇居民炊事与生活、工副业生产及发电。技术原理为:鼓入气化器的适量空气经布风系统均匀分布后,将床料流化,合适粒度的生物质原料送入气化器并与高温庆料迅速混合,在布风器以上的一定空间内激烈翻滚,在常压条件下迅速完成干燥、热解、燃烧及气化反应过程,从而生产出低热值燃气。排出气化器的热燃气再依次通过由干式旋负除尘器、冲击式水除尘器、旋风水膜净化器、多级水喷淋净化器、焦油分离器和过滤器等组成的净化系统,被冷却净化为符合使用要求的干净冷燃气以供不同用户使用。

成果类型:应用技术

所处阶段:成熟应用阶段

下吸式固定炉排生物质成型燃料热水锅炉设计与研究

成果简介:该项目属河南省自然科学基金项目(项目编号:0311050400;0411052000)。技术原理:一定粒径生物质成型燃料经上炉门加在炉排上下吸燃烧,上炉排漏下的生物质屑和灰渣到下炉排上继续燃烧和燃烬。生物质成型燃料在上炉排上燃烧后形成的烟气和部分可燃气体透过燃料层、灰渣层进入上、下炉排间的炉膛进行燃烧,并与下炉排上燃料产生的烟气一起,经两炉排间的出烟口流向降尘室和后面的对流受热面。这种燃烧方式,实现了生物质成型燃料的分步燃烧,缓解生物质燃烧速度,达到燃烧需氧与供氧的匹配,使生物质成型燃料稳定持续完全燃烧,起到了消烟除尘作用。

成果类型:应用技术

所处阶段:初期阶段

SmG-3型生物质型煤高压干式成型机研究

成果简介:该产品成型原理是在高压的条件下,经过对滚滚压的工艺方法,将干燥后的煤粉、生物质粉、固硫剂粉等原料压制成长椭球形状型煤的。所生产的生物质型煤具有洁净化、环保化的特点。性能指标:液压系统工作压力:20~25mpa;对滚转数:0~11r/min;螺旋推进预压机构转数:0~40r/min;成型机产量:3t/h;压制生物质型煤的原料:含水≤3%的煤粉、生物质粉、固硫剂粉;生物质型煤压碎力:300~350n。成型机的特点:高压干式滚压成型;液压、油气系统保压、恒压;园柱型螺旋预压、推进;主机传动为单轴与减速机连接;主传动与推进预压机构实现了无级变速。该产品填补了国内成型机生产的空白,达到了国际当代同类产品的水平。

成果类型:应用技术

所处阶段:中期阶段

生物质经催化热分解向轻质芳烃的转化

成果简介:该研究是以植物系生物质为原料通过催化热解的方法生产高附加值的轻质芳烃苯、甲苯和二甲苯等化学品以及合成燃料。使用了热解温度控制容易,升温速度快,焦炭便于回收,且可连续操作的双颗粒流化床,建立了一套可以定量操作的热解反应系统,开发了连续催化热解过程。充分利用生物质热解温度低挥发物多的特性,选择合适的催化剂,控制生物质热解过程的二次气相反应,使产物向有利于轻质芳烃苯、甲苯和二甲苯等化学品转化,在Como-B催化剂的作用下,863K时可得到6.29wt%的收率。这一收率在同类研究中,是常压下热解过程中得到的最高收率。在实验研究过程中还可发现,nimo类催化剂有利于生物质低温制氢,为生物质低温制氢提出了新的研究课题。生物质连续催化热解装置的研发,实现了连续化操作的热解过程,为未来大规模的工业化生产提供了必要的前期研究成果。

成果类型:应用技术

所处阶段:初期阶段

生物质能开发利用示范工程研究

成果简介:该产品生物质成型燃料以农作物废弃物为原料,供暖、供热,燃烧时无黑烟,几乎没有二氧化硫的排放,氮化物排放极低,二氧化碳排放量接近植物生长所需要量,可以称得上是零排放。原料加工,可以使农业废弃物变废为宝实现增值,所以该项目是有利于社会,有利于农民,有利于消费者的事业,具有一定的推广应用前景。

成果类型:应用技术

所处阶段:成熟应用阶段

生物质复合型煤制备及燃烧性能研究

成果简介:该课题对生物质型煤的制备工艺、燃烧过程、燃烧机理、固硫性能等进行了研究。当生物质添加量为20%、成型压力为40mpa时,生物质型煤的抗压强度可以达到400n/个;生物质型煤的着火温度一般低于350℃,燃烧过程可以分为4个阶段;当Ca/S比为2.0,燃烧温度为900℃时,生物质型煤的固硫率可以达到90%以上,远远高于普通型煤的固硫率,生物质型煤燃烧过程的So2排放浓度明显低于传统型煤。因此,生物质型煤比普通型煤有更好的燃烧特性,更高的固硫率。

成果类型:应用技术

所处阶段:中期阶段

双循环流化床生物质气化装

成果简介:“双循环流化床生物质气化装置”是在教育部“211”工程和中国科学院知识创新工程等项目资助下研制完成的,主要研究内容包括:(1)掌握了锯末和稻壳等生物质的流化特性。(2)研制了每小时可处理80公斤物料的双循环流化床生物质气化装置。该装置结构简单、设计合理,采用特殊结构的两级螺旋进料器可以实现连续式的密封进料;合理的流化床层和返料结构,可以保证床层温度均匀分布,以及实现焦油蒸汽在炉内二次裂解,从而使气化效率、碳转化率和燃气质量等得到显著提高;采用鼓风运行方式可以实现热煤气的直接利用,从而可以避免高温燃气的显热损失和焦油能量的损失,以及水洗焦油造成的二次污染等。(3)掌握了常见秸秆的气化方法和气化效率、碳转化率和燃气成分及热值等气化参数,对热煤气的燃烧利用进行了试验研究,研发了预混式燃气燃烧器。

成果类型:应用技术

所处阶段:中期阶段

板式生物质干燥机

成果简介:“板式生物质干燥机”是河南省科学院能源研究所研制开发的新产品,本产品能较好地适应粉碎后的蓬松多孔状生物质物料的干燥。在充分研究了生物质物理化学特性的基础上,把空气调节技术与传热学相结合设计出高效节能型干燥机。本产品具有独特的换热排湿结构,热利用率达到60%以上,以无级调速电机为动力,通过链条刮杆等传动机构带动物料在干燥机内移动,通过调节调速电机的转速(0~1440r/min)改变物料的干燥时间,以适应不同含水率的生物质物料的干燥;圆柱形刮杆带动物料在加热板上移动,同时完成了物料的翻动,使含水物料的不均匀度大大减小;空气调节技术与传热学相结合,通过等压分流的稳压箱和板式射流加热板组成高效的气流组织结构,能使热风等速均匀地射向物料,提高了烘干效率,同时减少了物料中灰分的带出,降低了废气中灰分的含量,减少了环境污染;射流板的上表面为平板,做为物料床,同时进行传导换热,下表面为多孔板,可使热空气等速均匀地射向物料,可完成对流换热与湿气的带出,高温多孔板发射出远红外线,以辐射形式加热了物料,综合利用了传导、对流与辐射三种热的传播形式,热利用率达60%以上;实现了干燥机的模块化设计,每两层为一基本模块,可根据处理量的大小随意增减换热板的数量,从而减少不同型号的干燥机设计工作量。缩短了设计周期,加工更加简单。

成果类型:应用技术

所处阶段:初期阶段

生物质锅炉型煤的开发研究

该项目开发出“水泡-氢氧化钙溶液蒸煮”的生物质型煤粘结剂及生产工艺,“有机-无机复合粘结剂”及型煤生产工艺,该粘结剂及型煤生产工艺可以利用国内现有生产设备进行生产。采用红外光谱分析研究了生物质经“水泡-氢氧化钙溶液蒸煮”处理前后组成变化,证明该处理工艺可以使生物质有效降解。提出了新颖的生物质型煤粘结机理和防水机理。认为生物质中可降解成分降解后的固体纤维素、半纤维素和木质素等在型煤中形成“网络结构”将煤粒包裹起来,液体粘稠物充填于煤粒与生物质固体之间。生物质固体与液体部分共同型煤强度。粘结剂加工中过剩的氢氧化钙在型煤干燥中将转化成碳酸钙,对型煤防水强度具有一定的作用。

成果类型:应用技术

所处阶段:中期阶段

生物质切揉制粉机

成果简介:该成果在充分研究国内外粉碎机的基础上,试验分析了生物质秸秆的粉碎特性,针对生物质秸秆含水率高、具有长纤维的特点,研究设计出适合各种含水率高达25%以下生物质秸秆粉碎的生物质切揉制粉机,采用锤片、刀片相结合的方式,秸秆经高速旋转的刀片切断后,再经锤片击打粉碎,提高了粉碎效率。经河南省节能及燃气具产品质量监督检验站检测,系统的各项技术性能符合河南省科学院能源研究所企业标准Q/HKn001-2005《生物质切揉制粉机》的要求。该机即可用于农村,也可用于工业,即环保又经济,节约能源,具有良好的经济和社会效益。

成果类型:应用技术

所处阶段:中期阶段

低能耗生物质热裂解装置

成果简介:该实用新型的目的是为了能将低品位的生物质能转换成高品位的液体燃料和高附加值产品,提供一种基于流化床的低能耗生物热裂解装置。低能耗生物热裂解采用以下工艺流程:连续送料至反应器,使其在高温下气化,分离,含生物的气体经热交换冷凝成油,升温后的非凝结气体再循环。本实用新型采用流化床作为反应器,由给料器、调速电机及减速器、进料套筒及螺旋进料棒、流化床反应器、螺旋风分离器、作为能源回收的气-气热交换器、气-水热交换器、集油器、茨循环风机、主电加热器、辅助电加热器等组成。主电加热器、辅助电加热器;流化床反应器竖直放置,底部置有多孔板,并放入石英砂作为中间载体;主电加热器置于反应器入口前端,辅助电加热器置于反应器外壁面。

成果类型:应用技术

所处阶段:初期阶段

生物质经催化热分解向轻质芳烃的转化

成果简介:该研究是以植物系生物质为原料通过催化热解的方法生产高附加值的轻质芳烃苯、甲苯和二甲苯等化学品以及合成燃料。使用了热解温度控制容易,升温速度快,焦炭便于回收,且可连续操作的双颗粒流化床,建立了一套可以定量操作的热解反应系统,开发了连续催化热解过程。充分利用生物质热解温度低挥发物多的特性,选择合适的催化剂,控制生物质热解过程的二次气相反应,使产物向有利于轻质芳烃苯、甲苯和二甲苯等化学品转化,在Como-B催化剂的作用下,863K时可得到6.29wt%的收率。这一收率在同类研究中,是常压下热解过程中得到的最高收率。在实验研究过程中还可发现,nimo类催化剂有利于生物质低温制氢,为生物质低温制氢提出了新的研究课题。生物质连续催化热解装置的研发,实现了连续化操作的热解过程,为未来大规模的工业化生产提供了必要的前期研究成果。

成果类型:应用技术

所处阶段:初期阶段

超低焦油秸秆高效制气技术

成果简介:该技术是以秸秆为主要原料,采用先进的低倍率低速循环流化床气化技术和双层催化裂化炉,通过特定的流场组织和多级进料、组合进气方式,在气化介质和特殊催化剂(钙镁复合催化剂)作用下,在特殊的工艺流程内进行催化气化反应制取超低焦油燃气,其净化过程具有用水量极少,并从生活垃圾中获得的高活性焦炭基材料作为过滤干燥介质等特点。该技术在国内处于领先水平,提高了传统气化炉产气效率和燃气品质,大大降低了燃气中焦油含量,减少了废水的排放和焦油对环境的污染,充分利用农村农林废弃物,避免了其露天放置对环境的污染,解决了部分劳动力就业。

成果类型:应用技术

所处阶段:初期阶段

强化热解生物质气化技术的研究

成果简介:该课题研究以各种农作物秸秆为原料的低焦油燃气发生器,及与之配套的燃气净化技术,采用新式强化裂解气化反应器,充分降低燃气中焦油含量,简化净化工艺,保证燃气质量,使秸秆气化机组的各项指标达到或超过国家相关的行业标准,提高已有的生物质气化技术水平和燃气质量,形成配套合理,运行方便,安全可靠的气化机组,实现气化机组的更新换代。应用此技术,将解决目前设备中存在的焦油清理难、劳动强度大的问题,提高使用寿命,实用性更强,不仅可以应用于农村,在工业有机废料处理和燃气发电方面,也将有良好的推广前景。

成果类型:应用技术

所处阶段:中期阶段

生物质锅炉型煤的开发研究

该项目开发出“水泡-氢氧化钙溶液蒸煮”的生物质型煤粘结剂及生产工艺,“有机-无机复合粘结剂”及型煤生产工艺,该粘结剂及型煤生产工艺可以利用国内现有生产设备进行生产。采用红外光谱分析研究了生物质经“水泡-氢氧化钙溶液蒸煮”处理前后组成变化,证明该处理工艺可以使生物质有效降解。提出了新颖的生物质型煤粘结机理和防水机理。认为生物质中可降解成分降解后的固体纤维素、半纤维素和木质素等在型煤中形成“网络结构”将煤粒包裹起来,液体粘稠物充填于煤粒与生物质固体之间。生物质固体与液体部分共同型煤强度。粘结剂加工中过剩的氢氧化钙在型煤干燥中将转化成碳酸钙,对型煤防水强度具有一定的作用。

生物燃料的特点篇10

关键词:pLC;生物颗粒燃料;控制原理

1生物质颗粒燃烧炉的pLC控制原理

此生物颗粒燃烧炉,是一种主要利用生物颗粒为燃料,为工厂等大型锅炉、烘干设备加热恒温的装置。因为其具有节能环保等特点,因此可广泛应用于喷涂、锅炉、取暖等设备上。本文就该系统应用于工厂喷涂车间的烘干设备进行论述。

此套燃烧炉分为加热炉和pLC控制系统,加热炉的电机分为送料电机和通风机,送料电机将料斗内的生物颗粒送到燃烧炉内燃烧,通风机将热量吹入加热管道。因此选择pLC驱动变频器带动电机运转,从而通过加热体内部温度测定,实时控制送料电机、通风机的转速,从而达到较精确控制加热体内部温度的目的。

加热炉炉体外形及配件:

(1)自制1米*1米的方形料斗,容量约为1立方米。(2)自制r=0.5米、h=1.5米的圆形燃烧炉体。(3)oLYmpiaVSC63a5220V点火器。(4)wanSHSin1.1kw三项异步电动机。(5)江南特风4kw多翼离心通风机。

pLC控制系统主要配件为:

(1)余姚龙达Xmta-8038温控器。(2)pt100温度传感器。(3)三菱fX3Ga-24mR型pLC。(4)50瓦24V开关电源。(5)威纶通6070ip触摸屏。

控制原理:生物颗粒燃烧炉启动后,Xmta-8038温度控制器采集传感器温度,控制pLC的运行状态,此状态分为“大火状态”和“小火状态”。当温度控制器采集的温度低于设定温度时,温度控制器输出数字量“低温”信号给pLC,pLC程序自动运行“大火状态”,当温度控制器采集的温度高于设定温度时,温度控制器不输出信号,此时pLC采取默认程序,执行“小火状态”。大火状态和小火状态的送料频率与通风机频率均可分别设定,继而经过试运行实时调整,从而维持自动运行时火焰温度的恒定。

2控制柜电气图纸及pLC实现方式

pLC主电路图如图1。

主程序如图2。

3试运行结果

对于该套pLC生物质颗粒燃烧炉控制系统进行了30天的涂装线试运行,每天平均运行8小时,期间进行过70℃和170℃的涂装产品烘干。经现场调整,设定“大火状态”采用通风机20Hz频率与送料电机15Hz频率;设定“小火状态”采用通风机15Hz频率与送料电机8Hz频率,生物颗粒燃料燃烧得较为充分。

结果:基于pLC的生物质颗粒燃烧炉控制系统在运行过程中,达到预设值温度的速度较快,达到70℃低温烘干温度用时30分钟左右(环境温度10℃),达到170度高温烘干温度用时为90分钟左右(环境温度10℃)。同时经该套系统加热的涂装线温度较为恒定,高温涂装温度控制在163℃-175℃;低温涂装温度控制在68℃-73℃之间,对于涂装线温度的控制维持在5%以内的波幅,烘干的产品表面干燥,无起皱、剥落现象,也无油漆集聚现象。

4结论

基于pLC的生物颗粒燃烧炉控制系统能很好的维持烘干炉内温度恒定,对于喷涂、电镀烘干行业有着开创性的作用,同时生物颗粒的使用使机械加工行业有了更加环保节能的选择,可成为广泛推广的新型自动化节能设备。

参考文献:

[1]曲直.基于pLC的生物质燃料压缩伺服系统的研究[D].内蒙古农业大学,2012.

[2]郭瑞国.基于pLC的垃圾焚烧炉控制系统的设计[D].河海大学,2006.