首页范文处理废水中重金属的方法十篇处理废水中重金属的方法十篇

处理废水中重金属的方法十篇

发布时间:2024-04-25 19:57:10

处理废水中重金属的方法篇1

关键词:重金属离子;净化;新型材料

Doi:10.16640/ki.37-1222/t.2017.12.047

含有重金属离子的污染物进入水体会造成水体的重金属离子污染。矿冶、机械制造、化工、电子、仪表等工业生产过程中产生的重金属工业废水对人类健康和自然生态系统都会有影响[1],因此,水中的重金属离子必须得到妥善处理。本文介绍目前国内外处理废水中重金属离子的方法,如活性炭吸附法,总结了各种方法的优缺点,最后展望了废水中重金属处理方法的发展趋势。

1水中重金属离子可采用的净化方法

1.1沉淀法

沉淀法一般是通过化学反应把水体中的重金属离子从游离态的转变为含重金属的沉淀物,再过滤和分离处理,使沉淀从水中分离,包括中和、硫化物、铁氧体共沉淀几种方法[2]。各种处理技术的操作分别如下:把碱加入到含重金属的废水中,重金属会转变为不溶于水的氢氧化物沉淀,然后将沉淀物分离,该法操作耗时少,简单;把硫化物类的沉淀剂加入废水中生成硫化物沉淀而除去重金属也常用;先将铁盐向废水中投加,然后控制工艺条件,使金属离子形成不溶性的铁氧体晶粒,最后固液分离,从而达到去除重金属离子目的。

1.2电解法

电解法用于重金属离子的净化是一种相对成熟的废水净化处理技术[3],不仅污泥的生成量能有效的减少,而且能高效地回收某些贵金属。其基本原理是电解过程中,氧化和还原反应分别在阳、阴两极上发生,有害物质在氧化还原作用下转化为无毒无害物质,实现废水的净化。电解法技术去除率高、可回收所沉淀的重金属加以资源优化,二次污染情况少、处理过程中所使用的化学试剂量少;常温常压下,操作管理简便;废水中污染物的浓度发生波动时,通过电流电压的调整,可保证出水水质的稳定;整套装置的占地面积不大,有效节省空间。

1.3氧化还原法

废水中的重金属离子在氧化还原作用下生成无毒无害的新物质,其实质是在氧化还原过程中,无机物元素的原子或离子在失去或得到电子的过程中会导致元素化合价的变化,是用于治理电镀废水的最早方法之一[4],此法原理简单、操作好掌握、λ量和高浓度废水的冲击承受大。一般根据还原剂的种类可以分为naHSo3法、FeSo4法、So2法、铁屑法等。

1.4膜分离新型处理技术

该技术可以在分子水平上,利用混合物分子具有不同粒径的特征,在通过半透膜时可实现选择性分离,包括电渗析滤膜、反渗透滤膜、萃取滤膜、超过滤滤膜等。电镀工业废水经过膜分离处理后的废水组成稳定,并可回槽使用。膜分离废水净化技术是近年来发展最迅速的高新技术,分离效率高、分离过程中不会发生相变且不会化学反应、分离器体积小、低能耗和方便操作等,广泛应用于物质的分离与浓缩,具有广阔的发展前景,在废水处理中已受到特别的青睐[5]。

1.5高效离子交换法

离子交换处理法是利用离子交换树脂、沸石等交换剂分离废水中有害金属离子的方法。离子交换树脂主要有凝胶型和大孔型两种,前者有选择换功能,后者制造很复杂、高成本、再生剂耗量大。交换剂将自身所带的能自由移动的离子通过与被处理的溶液中的离子进行交换来实现净化目的。离子间的浓度差和功能基对离子的亲和能力是离子交换的推动力,多数情况下交换剂的离子是先被吸附,再被交换,具有吸附、交换的双重作用[6]。

1.6生物净化处理技术

生物技术治理废水日益受到人们的关注,根据净化机理的不同,可分为絮凝法、吸附法、化学法以及植物修复法。利用微生物或其产生的代谢物来实现絮凝沉淀;利用生物体本身的特殊化学结构及特性成分来吸附水中的金属离子,最后通过固液两相分离去除金属离子的方法也广受关注[7]。

1.7吸附净化处理法

重金属离子可利用吸附剂的独特结构特点来除去,常用吸附剂有活性炭、腐植酸、海泡石、壳聚糖树脂等。该法要求对水进行预处理,因为吸附剂自身的价格一般较昂贵,所以主要用于微量污染物的净化处理,也常用于从高浓度的废水中吸附某些有用的特定物质以达到资源回收和治理的目的。目前,应用于工业废水处理的吸附剂主要有活性炭和生物吸附剂。一些尚处于实验室模拟阶段的吸附剂有粘土类、高分子、利用废弃物制备的吸附剂和复合吸附剂等。其中活性炭可用于净化去除大多数的重金属和有机分子,具有较强的吸附能力,但由于其使用成本相对昂贵、复杂的工艺操作和运行管理,因而很多地区难以得到广泛的应用。绝大部分吸附剂可能存在吸附效率低,产生二次污染无法解决等问题。介孔材料经过功能化处理后,特殊的功能基团对重金属的吸附能力强,还可以选择性地吸附水中重金属离子,并且在适当条件下可以进行再生,实现吸附材料的重复使用,并且吸附效果仍然非常可观[8]。

2重金属净化处理方法的缺点

化学沉淀法处理金属离子废水往往出水浓度达不到要求,沉淀剂的使用工艺和操作的环境条件等方方面面都会影响出水质量,产生的沉淀物需作进一步处理,否则容易造成二次污染。电化学法在运行过程中的电耗和电极金属会产生大的消耗量,沉淀物质分离出来后不能够直接处理利用,整体操作成本较高。氧化还原法需要加入特定的氧化剂或者还原剂,不可避免会导致处理废水的成本大大升高,不同的有害物质还必须采用特定的试剂来处理,反应后的废液的后处理也不是件简单的事情。膜分离法虽然处理金属离子的效率高,但是膜材料的生产和预处理成本也很高,特别是膜组件价格贵,膜容易受污损等等问题制约了膜分离技术在废水处理领域的广泛应用。离子交换法在处理金属离子废水的过程中难免会产生过量的再生废液,处理周期长,耗盐量也蛮大,排出大量含盐废水特别容易引起输送管道的腐蚀。离子交换树脂使用过程中容易受到多种有机物的干扰和污染,当溶液中含有多种不同元素的离子时,缺乏普遍适用性。生物吸附材料能够对重金属离子进行有效地吸附,但是目前研究发现,具备高吸附容量,而且能够选择性吸附的廉价生物材料很稀缺,真正实现市场化还需要进一步的深入研究和不断探索。

3介孔材料用于重金傥附处理的研究趋势

介孔功能吸附材料在金属离子净化处理的研究中发现,操作简单、具有吸附容量高、选择吸附性,能够反复使用等特点,对于它的研究比较多[9-20],这些优点将可望成为处理重金属离子污染的有效解决途径。介孔材料在水处理方面也有一些问题还没有解决,比如功能化介孔材料对指定的特殊重金属离子的吸附,介孔材料功能化的工艺参数,如接枝基团的种类和数量等的控制,介孔材料对重金属离子的吸附机理的研究也不透彻。介孔材料吸附重金属离子后的再生材料吸附效率也是一个研究的方向。从操作和经济可行性方面考虑,介孔材料今后的发展趋势或者目标有:1)吸附和脱附速度快;2)生产成本低,能够重复使用;3)有一定的理想粒度,形状和机械强度,能够在连续流系统中应用;4)具有对重金属离子的选择吸附性;5)脱吸附后吸附剂的损失量小,经济上可行。

参考文献:

[1]FenglianFu,LipingXie,Bingtang,Qiwang,ShuxianJiang.applicationofanovelstrategy-advancedFenton-chemicalprecipitationtothetreatmentofstrongstabilitychelatedheavymetalcontainingwastewater.ChemicalengineeringJournal,2012,283-287.

[2]Jun,D.,Bowen,L.,Qiburi,B.insitureactivezonewithmodifiedmg(oH)2forremediationofheavymetalpollutedgroundwater:immobilizationandinteractionofCr(iii),pb(ii)andCd(ii).JournalofContaminantHydrology,2017,50-57.

[3]YingX.,Zhang,C.S.,Zhao,m.H.,Rong,H.w.,Zhang,K.F.,Chen,Q.parisonofbioleachingandelectrokineticremediationprocessesforremovalofheavymetalsfromwastewater.

[4]Fontmorin,J.m.,mikaS.Bioleachingandcombinedbioleaching/Fenton-likeprocessesforthetreatmentofurbananaerobicallydigestedsludge:Removalofheavymetalsandimprovementofthesludgedewaterability.Separationandpurificationtechnology,2015,655-664.

[5]nithinart,C.,Scott,m.Husson.High-capacity,nanofiber-basedion-exchangemembranesfortheselectiverecoveryofheavymetalsfromimpairedwaters.Separationandpurificationtechnology,2017,94-103.

[6]Deepak,p.,Gaurav,S.,Rinku,t.pectin@zirconium(iV)silicophosphatenanocompositeionexchanger:photocatalysis,heavymetalseparationandantibacterialactivity,ChemicalengineeringJournal,2015,235-244.

[7]Sami,G.Biosorptionofheavymetalfromaqueoussolutionusingcellulosicwasteorangepeel,ecologicalengineering,Volume99,February2017,134-140.

[8]enshirah,D.adsorptionofheavymetalsonfunctionalized-mesoporoussilica:areview.microporousandmesoporousmaterials,2017,145-157.

[9]Jihoon,K.,Seung,Y.K.efficientandselectiveremovalofheavymetalsusingmicroporouslayeredsilicateamH-3assorbent,ChemicalengineeringJournal,2017,975-982.

[10]BingyanLan,RuihuanHuang,LaishengLiCatalyticozonationofp-chlorobenzoicacidinaqueoussolutionusingFe-mCm-41ascatalyst[J].ChemicalengineeringJournal,2013,(219):346-354.

[11]BelhadjB,CameselleC,akretcheDe.physico-chemicaleffectsofion-exchangefibersonelectrokinetictransportationofmetalions[J].Separationandpurificationtechnology,2014(135):72-79.

[12]Shiau-wuLai,Hsiu-LiLin,tLeonYu.Hydrogenreleasefromammoniaboraneembeddedinmesoporoussilicascaffolds:SBa-15andmCm-41[J].internationaljournalofhydrogenenergy,2012(37):14393-1440.

[13]LHajiaghababaei,BGhasemi,aBadiei,et,al.aminobenzenesulfonamidefunctionalizedSBa-15nanoporousmolecularsieve:asanewandpromisingadsorbentforpreconcentrationofleadandcopperions[J].JournalofenvironmentalSciences,2012,24(07):1347-1354.

[14]Shengjuwu,FengtingLi,RanXu,etal.Synthesisofthiol-functionalizedmCm-41mesoporoussilicasanditsapplicationinCu(ii),pb(ii),ag(i),andCr(iii)removal[J].JournalofnanoparticleResearch,2010(12):2111-2124.

[15]toshiyukiYokoi,YoshihiroKubota,takashitatsumi.amino-functionalizedmesoporoussilicaasbasecatalystandadsorbent[J].appliedCatalysisa:2012,421(422):14-37.

[16]XinqingChen,KoonFungLam,KingLunYeung.SelectiveremovalofchromiumfromdifferentaqueoussystemsusingmagneticmCm-41nanosorbents[J].ChemicalengineeringJournal,2011(172):728-734.

[17]GGrigoropoulou,pStathi,maKarakassides.FunctionalizedSio2withn-,S-containingligandsforpb(ii)andCd(ii)adsorption[J].ColloidsandSurfacesa,2008(320):25-35.

[18]thanaponSangvanich,VichayaSukwarotwat,RobertJwiacek.Selectivecaptureofcesiumandthalliumfromnaturalwatersandsimulatedwasteswithcopperferrocyanidefunctionalizedmesoporoussilica[J].JournalofHazardousmaterials,2010,(182):225-231.

[19]HanYJ,StuckyGD,Butlera.mesoporousSilicateSequestrationandReleaseofproteins[J].JournaloftheamericanChemicalSociety,1999,121(42):9897-9898.

处理废水中重金属的方法篇2

关键词:含重金属;工业废水;离子;处理方法;回收利用

abstract:theuntreatedinindustrialwastewaterdischargeofheavymetalpollutioninincreasing,topeople'slivingenvironmentandhumanhealthcausedaseriousthreat.therefore,ofheavymetalsintheindustrialwastewatertreatmentcausedextensiveattentionofthewholesociety.thispaperexpoundsthepresentmainofheavymetalsinindustrialwastewatertreatmentmethods,includingthephysicalmethod,chemicalmethod,biologicalmethod,andpointsouttheprocessingmethodofcharacteristics,fortheindustrialwastewatertreatmentofheavymetalstoprovidethereference.

Keywords:containheavymetals;industrialwastewater;ion;processingmethods;recycling

中图分类号:X703文献标识码:a文章编号:

随着经济的快速发展,工业生产也得到了较快发展,大量含有重金属的工业废水未经处理就排放到环境中,导致了土壤和水源中重金属积累的加剧,重金属的污染也日益严重。由于重金属易通过食物链而生物富集,构成对生物和人体健康的严重威胁。如何有效地处理重金属工业废水已成为社会共同关注的问题。处理重金属工业废水的方法尽管多种多样,但大体可归纳为物理法、化学法和生物法。本文就含重金属工业废水处理方法进行介绍。

1含重金属废水处理方法

1.1物理法

(1)膜分离法

膜分离技术使用一种特殊的半透膜,在外界推动力作用下,使溶液中一种溶质和溶剂渗透出来,从而达到分离的目的。根据膜的不同,可以分为电渗析、反渗析、液膜、超滤等。目前反渗透和超滤膜在电镀废水中已广泛应用。

液膜分离技术是将萃取和膜过程结合的一种高效分离技术,萃取与反萃取同时进行,是分离和浓缩金属离子的有效方法。其中支撑液膜在处理重金属废水,提取稀有、贵重金属离子,如提取铂、镓、铟等方面具有低耗能、低成本等、效率高等特点,具有广阔的应用前景。将膜技术与其他技术工艺有机结合起来处理重金属废水将是未来的发展方向。某蓄电池材料有限公司主要从事废旧铅酸蓄电池的回收和铅基合金、电解铅的生产,其废水处理系统采用混凝沉淀/膜处理组合工艺,进一步确保出水水质达标。半年多的实际运行表明:该工艺运行稳定,出水水质达到《污水综合排放标准》(GB8978-1996)的一级排放标准,并实现了回用(回用率)70%。

(2)吸附法

吸附法是利用吸附剂吸附废水中重金属的一种方法,其中吸附法被认为是去除痕量重金属有效的方法。常用的吸附剂有活性炭、沸石、硅藻土、凹凸棒石、二氧化硅、天然高分子及离子交换树脂等。其中天然沸石吸附能力最强,也是最早用于重金属废水处理的矿物材料。

纳米Feo是一种有效的脱卤还原的纳米材料。与常规的颗粒铁粉相比,纳米Feo颗粒有粒径小、易分散、比表面积大,表面吸附能力强,反应活性强,还原效率和还原速度远高于普通铁粉的特点。纳米Feo除了可以高效还原有机氯代物以外,其对Cr6+、pb2+和aS3+等多种重金属同样表现出良好的处理效果。

负载型纳米Feo主要是利用负载物(如聚合物、硅胶、沙子和表面活性剂等)在固液表面的吸附作用,能在颗粒表面形成一层分子膜阻碍颗粒间相互接触,同时增大了颗粒之间的距离,使颗粒之间接触不再紧密。与普通纳米Feo相比,负载型纳米Feo不仅对水体中的重金属和有机污染物有更高的去除效率,而且其重复利用性和稳定性也优于一般纳米Feo。ponder等利用聚合松香负载纳米Feo去除水中的Cr6+和pb2+,结果表明:负载型纳米Feo的去除率不仅比投加量高3.5倍的普通铁粉高近5倍,而且也略高于无负载纳米Feo的去除率。

凹凸棒石又称坡缕石,是一种2∶1(tot)型层链状海泡石族的含水富镁、铝的硅酸盐黏土矿物,其晶体化学式:mg5(H2o)4[Si4o10]2(oH)2,它比表面积大、吸附性能良好、来源广、成本低、储量丰富,但是目前国内应用凹凸棒石吸附处理重金属废水还处在研究阶段,凹凸棒石黏土吸附金属离子的种类有待扩宽。黄德荣等用吸附混凝法,将凹凸棒石黏土和混凝剂连用治理含锌电镀废水,Zn2+的去除率高达99.8%以上。同时,凹凸棒石粘土含有大量的结构羟基,如Si-oH、mg-oH和a1-oH等。由于其结构中存在着a13+对Si4+及al3+,Fe2+对mg2+等类质同晶置换现象,故晶体中含有不定量的na+,Ca2+,Fe3+和a13+等,各种离子替代的综合结果是凹凸棒石常常带少量的永久性的负电荷,因此凹凸棒石具有很强的物理和化学吸附能力。

离子交换树脂法是一种应用广泛的方法,树脂中含有的氨基、羟基等活性基团可以与重金属离子进行螯合、交换反应,从而去除废水中重金属离子的方法,同时还可以用于浓缩和回收溶液中痕量的重金属,其优点是树脂具有可逆性,可通过再生重复使用,且交换选择性好,缺点是价格昂贵。因此研究和选择成本低、选择性高、交换容量大、吸附-解吸过程可逆性好的离子交换树脂,对于处理重金属废水有着重要意义。

1.2化学法

(1)化学沉淀法

化学沉淀法是指向重金属废水中投放药剂,通过化学反应使溶解状态的重金属生成沉淀而去除的方法。包括中和沉淀法、硫化物沉淀法、钡盐沉淀法等。中和沉淀法应用比较广泛,向重金属废水中投放药剂(如石灰石)使废水中重金属形成沉淀而去除。化学沉淀法处理重金属废水具有工艺简单、去除范围广、经济实用等特点,是目前应用最为广泛的处理重金属废水的方法。

(2)电化学法

电化学法是应用电解的基本原理,使废水中重金属离子在阳极和阴极上分别发生氧化还原反应,使重金属富集,从而去除废水中重金属,并且可以回收利用。

高压脉冲电凝法(HVeS)是采用高电压小电流,系运用电化学原理,将电能转为化学能,对废水中有机或无机物进行氧化还原、中和反应。通过凝聚、沉淀、浮除将污染物从水体中分离,从而有效地去除废水中的Cr6+、ni2+、Cu2+、Zn2+、Cd2+、Cn-、油、磷酸盐以及CoD、SS与色度。该方法操作方便、反应迅速,可去除的污染物广泛、无二次污染、经济实用,在国外电化学技术被称为“环境友好技术”。李宇庆等采用高压脉冲电凝-Fenton氧化工艺处理制药废水,研究表明在pH值为4左右、极板间距为20mm电流强度为10a、高压脉冲电凝反应时间为45min、H2o2投加量为4mL/L、Fenton氧化时间为60min时,对CoDCr去除率为为36.5%~39.2%,废水m(BoD5)/m(CoDCr)从0.13提高到0.37,可生化性大大提高,为后续处理达标排放奠定了基础。

微电解-生物法是利用废铁屑对电镀废水进行预处理,使大部分的Cr6+在较短时间内转化为Cr3+,同时使废水的pH值上升2~3,然后将废水加入到生物反应器中通过生物作用将废水中剩余的重金属离子去除,达到净化电镀废水的目的。通过与生物法的结合,提高了此种技术对废水净化的效率。该方法结合了氧化还原、絮凝、吸附作用,协同性强、综合效果好、操作简便,运行费用低。但是,由于电解装置经一段时间的运行后,会大大降低了处理效果,必须开发新型的处理装置以弥补这一缺陷;另外在运行过程中表面沉积物易于使电极产生钝化,降低处理效果,因此,操作条件的优化和各种助剂、催化剂的研制、选用、配比很重要。针对目前微电解法存在的问题以及工程应用的要求,可以将微电解法和化学法、生物法以及其它方法结合起来,充分利用各种方法的优点,研究出新型的工艺,来解决实际应用过程中所存在的问题。

电去离子技术(eDi,electrodeionization),是将离子交换树脂填充在电渗析器的淡水室中从而将离子交换与电渗析进行有机结合,在直流电场作用下同时实现离子的深度脱除与浓缩,以及树脂连续电再生的新型复合分离过程。该方法既保留了电渗析连续除盐和离子交换树脂深度除盐的优点,又克服了电渗析浓差极化所造成的不良影响,且避免了离子交换树脂酸碱再生所造成的环境污染。所以,无论从技术角度还是运行成本来看,eDi都比电渗析或离子交换更高效。但同时处理过程中也不同程度存在膜堆适用性差,过程运行不够稳定,易形成金属氢氧化物沉淀等问题。随着研究的不断深入,上述问题将逐步解决,eDi也将成为一种很有发展潜力的重金属废水处理技术。

1.3生物法

(1)植物修复法

植物修复法是指利用高等植物通过吸收、沉淀、富集等作用降低已有污染的土壤或地表水的重金属含量,以达到治理污染、修复环境的目的。该方法实施较简便、成本较低并且对环境扰动少。但是治理效率较低,不能治理重度污染的土壤和水体。Rai和Dwivedi等调查发现水蕹(ipomeaaquqtica)是一种很好的蓄积植物,该植物最大可以蓄积Cu:62,mo:5,Cr:13,Cd:11,aS:0.05μg/gDw。Bareen和Khilji研究表明,长苞香蒲90d后也可以去除底泥中42%Cr,38%Cu和36%Zn。

(2)生物絮凝法

生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。目前已开发出具有絮凝作用的微生物有细菌、霉菌、放线菌、酵母菌和藻类等共17个品种,而对重金属有絮凝作用的只有12个,陈天等从多种微生物中提取壳聚糖为絮凝剂回收水中pb2+、Cr3+、Cu2+等重金属离子。在离子浓度是100mg/L的200mL废水中加入10mg壳聚糖,处理后Cr3+、Cu2+浓度都小于0.1mg/L,pb2+浓度小于1mg/L,处理效果十分明显。

(3)生物吸附法

生物吸附法是利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法。该方法在低浓度下,选择吸附重金属能力强,处理效率高,操作的pH值和温度范围宽,易于分离回收重金属,成本低等特点。同时还可从工业发酵工厂及废水处理厂中排放出大量的微生物菌体,用于重金属的吸附处理。蒋新宇等用毛木耳(auriculariapolytricha)子实体为生物吸附材料,通过对起始pH值、反应时间、重金属浓度这3个因素对毛木耳子实体吸附Cd2+、Cu2+、pb2+、Zn2+的研究,结果表明最适起始pH值为5,pH值是影响毛木耳子实体吸附重金属离子的主要因素。其中在10mg/L重金属浓度下,毛木耳子实体对Cd2+、Cu2+、pb2+、Zn2+的最大吸附率分别为94.12%、96.22%、99.94%、99.19%,在吸附达到平衡以前,毛木耳子实体对Cd2+、Cu2+、pb2+、Zn2+最大平衡吸附量分别为10.09、8.36、23.57和3.64mg/g,而对pb2+的吸附量最大。因此毛木耳子实体是很有发展潜力的重金属废水处理技术。

2结语

综上所述,含重金属工业废水处理方法较多,各有各的优点和缺陷。但是重金属废水处理比较复杂,且水体中含有多种重金属离子,因此,在处理过程中应该考虑采用多种方法和工艺的综合运用,将处理后的重金属充分回收、废水回用,以达到最好的处理效果,实现经济效益和环境效益相统一。

参考文献

处理废水中重金属的方法篇3

关键词:重金属;离子;废水;处理;技术;研究

abstract:withthedevelopmentofindustrialmodernization,manywatersincludinggroundwaterwastewatercontainingheavymetalionpollution,removalofheavymetalionsinwastewaterinChinaandtheworld,theurgentneedtosolvetheenvironmentalproblem,butalsotherealizationofthesustainabledevelopmentstrategywillinevitablyfacetheproblem.thisarticlereviewstheheavymetalpollutionontheenvironmentandhumanhazards;specificallyintroducestreatmentofwastewatercontainingheavymetalionsbyphysicalmethod,chemicalmethod,physicalmethod,biologicalmethodingeneralchemistryandelectrochemistrytechnologyresearchprogress;discussestheelectricbiologicalcouplingintotalmetalwastewatertreatment.

Keywords:heavymetal;ion;wastewater;treatmenttechnology;research;

中图分类号:X703文献标识码:a文章编号:

1.重金属污染概述

重金属污染是当今世界三大水环境污染之一,主要包括汞、镉、铬、铅、锌、铜、钴、锰、钛、钼等,其含量和存形态随产生条件而不同,大部分重金属离子具有毒性且是致癌因子,重金属在自然环境中很难讲解,仅会在形态上发生改变,在环境水体中容易破坏生态平衡,并可通过食物链富集危害人类健康。重金属对健康的影响通常表现为对神经系统的长期损害,以及对消化系统、泌尿系统的细胞、脏器、皮肤及骨骼的破坏。而重金属离子的慢性危害,短时间内不易被发现和诊断出,一旦发生病变后果十分严重。震惊世界的日本水俣病就汞离子引起人体生理机能病变的真实病例。

重金属废水主要来源于采矿、有色金属、电解、电镀、医药、农药、颜料、油漆等工业,这些生产废水常以多种废水混合状态存在,往往包含了多种重金属离子,因此在重金属离子的处理上存在较大的困难,对环境危害程度大。处理工业废水的重金属离子一直是全世界共同的课题,在处理重金属离子的研究上许多学者都取得了相应的效果和成就,现对重金属废水处理的方法做叙述。

重金属废水处理方法

2.1物理法

2.1.1吸附法

活性炭吸附法是利用活性炭的吸附吸附能力和氧化还原作用除去废水中的毒害物质。该法投资少、效果好,但存在吸附速度慢、吸附容量小的缺点,因此不适合于处理污染物浓度较高的废水。

目前,科技工作者致力于新型廉价吸附剂的研究应用,已经取得了一定进展,用粉煤灰、沸石、落叶、蛭石、椭圆小球藻等一系列天然物质或工农业废弃物对重金属离子具有良好的吸附效果,而此类吸附剂来源丰富,使用后不必再生,具有极其广阔的应用前景。

2.1.2膜分离技术法

反渗透法:是利用特种半透膜具有溶剂水透过而溶质难以透过的特性,通过对废水施加高压,使对废水进行浓缩,减少水处理过程中的水量,进而减少工作量。该法投资少、操作方便、可回收有用材料,其关键技术是制造高效耐用的反渗透膜。为避免杂质的积累,最好与离子交换法联合使用。

超滤法:聚合物增强超滤是指通过利用超滤膜的滤过性质,能够有效截流结合有重金属离子的聚合物大分子,此法要根据不同的重金属离子选用不同水溶性聚合物,通过聚合物官能团即可选择性分离重金属离子。例如用以十二烷基苯磺胺表面活性剂增强的超滤膜处理含pb2+废水,使之形成pb/DaS、pb/十二甲基胺系统,pb2+去除率大于99%;用聚乙烯亚胺、壳聚糖等作聚合剂,采用超滤法去除水中的Cr3+去除率可达100%。

纳米过滤:纳米过滤膜分离机理包括原子筛分效应与电效应。纳米膜上的带电离子与液体中的离子形成离子对,同时后者被除去。这种膜的小孔道以及表面电荷使得尺寸小于孔道的离子能被去除。纳米过滤法比反渗透法需要的压力低,因此,操作费用也较后者低。一般说来,纳米过滤法可以处理含重金属离子浓度大于2000mg/L的无机废水。如何在多种膜分离方法中选择最合适的,主要考虑以下几个因素:废水的性质、金属离子在水中的本性与浓度、pH值与温度。除此之外,膜还要和投料溶液与清洁剂相配套,以使表面污塞最小。

2.1.3气浮法

气浮法是利用气泡的吸附作用进行固液分离,在一定条件下,可实现回收金属又消除污染的目的,杨晓玲等对某电镀厂含重金属离子废水进行气浮处理,取得了理想效果,气浮法具有占地面积小、设备简单、适宜于间歇生产等优点,适宜对重金属氢氧化物或碳酸盐过滤困难的废水处理。

2.1.4絮凝-浮选法

絮凝-浮选法是通过添加试剂使得废水中的胶体粒子稳定性变差,从而聚集沉淀下来,过程包括调节pH值和加入含铁或铝盐的絮凝剂。此法可以处理浓度小于100mg/L或高于1000mg/L的重金属废水。絮凝-浮选法能pH值为11-11.5时可以有效去除重金属离子[1]。

化学方法

3.1化学沉淀法

化学沉淀法是一种传统的水处理方法,具有技术成熟、投资少、处理成本低、自动化程度高等优点,在国内外已广泛被应用。在含重金属废水的处理中,根据沉淀类型的不同,可分为氢氧化物沉淀法、难溶盐沉淀法和铁氧体法[2]。氢氧化物沉淀法即中和沉淀法,加入碱使废水中的金属阳离子以氢氧化物或盐的形态沉淀析出。难溶盐法则是通过加入沉淀剂与废水中的金属离子形成难溶化合物的方式去除或回收金属离子。铁氧化体法是一种新型的化学沉淀法,是指向废水中投加铁盐,使废水中的重金属离子在铁氧体的包裹、夹带作用下进入铁氧体的晶格中形成复合铁氧体,然后再采用固液分离的手段,一次脱除多种重金属离子的方法。

3.2离子交换法

离子交换法是利用离子交换树脂对废水中离子进行选择换,而进行废水处理的方法,基本上所有的无机有害离子都可用离子交换法进行处理,在处理废水时,离子交换发生在固体与液相之间:不溶性的物质从电解液中除去离子,同时以相同价态释放出离子。离子交换也可从无机废水中回收有价值的重金属,再将金属浓缩后回收。该法的不足之处在于一次性投资高、占地面积较大,废水中污染物浓度不宜太高。

4电化学法

电化学法利用通电时阴阳极的电化学反应而使废水中的有毒物分解、氧化还原、沉淀。该法设备相对简单,易于自动控制;以电子作为反应剂,可避免产生二次污染。

4.1电渗析法

电渗析法是一种膜分离技术,是利用对废水通以低压直流电时,阴阳离子定向运动并的透过选择性薄膜的性质,将电解质浓缩在一定的区域内,在另一些区域内得到较纯的水,从而提高渗析效率。电渗法并不能有效去除浓度大于1000mg/L的离子,它更适用于浓度小于20mg/L的离子的去除。Smara等报道了对离子交换/电渗析处理pb2+、Cd2+、Cu2+、Zn2+等离子吸附顺序及混合液中竞争吸附的情况[3]。

4.2三维电极法

三维电极法是电化学法处理重金属废水的最新研究成果。三维电极是在传统二维电解槽电极间装填材料,并使表面带电,进而在其表面发生电化学反应。与二维电极相比,三维电极将电解槽的面积比加大、提高物质迁移速度、分离产物便捷。三维电极的缺点是床内电流电位分布不均,可能导致局部出现“盲区”,并易发生副反应[4]。

5生化法

生物膜法当今废水生物处理研究领域的主流,是在固体载体上附着微生物细胞并使其生长繁殖,而后在载体上形成膜状生物污泥。生物膜法具有污泥产量少、参与净化反应的微生物种类多及运行操作简单方便等优点。

ahluwalia等研究表明可通过利用无活性微生物体吸附重金属离子技术,且对细胞无毒化作用及突破了细胞本身生理特征、生长性质的限制;但其缺点为死细胞无法通过基因工程学提高微生物的处理潜力。

此外酵母菌吸附剂已成为环境生物技术研究的重要组成部分,有研究表明相关研究表明酵母菌可以有效吸附的金属离子包括铜、铯、钴、铀、镉、锶、锌、铅、铬、镍等重金属离子。其中,对铅、镉、锌、铬和镍等金属离子的吸附能力较强。Yakubu研究发现酵母菌吸附剂吸附铀的能力是离子交换树脂的14倍。norris等发现酵母菌对ni2+和Cu2+的吸附能力比细菌更强。而wang比较发现酿酒酵母对不同重金属离子具有不同的吸附能力,还发现酿酒酵母对Cu2+的吸附能力强于其它金属离子。如今酵母菌吸附剂的发展已成为处理重金属废水新工艺的技术基础。但酵母菌吸附工艺仍处于实验阶段,要实现大规模的工业化仍需要酵母菌深入研究和开发其它相关水处理技术。

6电-生物耦合法

利用生物法与电化学法耦合是近年来处理该类废水的一项新技术,该法能发挥双方优势,提高含重金属离子废水的处理效果。电-生物耦合法为了不影响微生物的活性,电解或电沉积电流密度较低。曹宏斌等研究表明,生物膜固定在特制填料上的生物膜可承受15a/m的直流电,耐电性是游离细菌的承受能力的3倍。利用电-生物耦合法,不但使重金属离子的定向迁移,还能能调节微生物的代谢,提高细菌有丝分裂速度和生化处理重金属离子废水的效果。李天成等研究出利用电沉积-生物膜复合工艺处理含重金属有机废水的方法;而Li等用电生物膜反应器处理含高浓度苯酚的Cr2+和pb2+废水,苯酚降解率提高了138%,Cr6+和pb2+浓度分别在12h和6h内降至1mg/L以下,达到国家标准[5]。

7结语

随着现代化工业的发展,许多水域包括地下水都已受到含重金属离子废水的污染,鉴于重金属废水的特点及处理的复杂性,在处理重金属废水时应考虑多种方法和工艺的综合运用,以期收到更好效果。随着科学技术的进一步发展,传统的处理工艺会得到进一步的改进与完善,与此同时还会不断出现更新的处理方法和技术。

参考文献:

[1]陈勇生,孙启俊,陈钧等.重金属的生物吸附技术研究.环境科学进展,1997,5(6):34-43.

[2]郭燕妮,方增坤,胡杰华等.化学沉淀法处理含重金属废水的研究进展.工业水处理,2011,31(12):9-13.

[3]林海,菅小东,李天昕.活性炭纤维电化学处理染料废水.北京科技大学学报,2003,25(2):124-126.

处理废水中重金属的方法篇4

1.1重金属污染物排放特征及存在问题

排放特征废气.废气重金属主要来源于冶炼企业,主要排放含铅、镍等重金属污染物颗粒粉尘.废气监测结果表1显示,铅和镍重金属污染物均达到GB9078-1996《工业炉窑大气污染物排放标准》二级标准,符合排放标准限值要求.重金属污染物,铅排放浓度变化范围为<5×10-4~0.9880mg/m3,镍排放浓度变化范围为<3×10-5~0.0125mg/m3.主要重金属区域排放速率变化图2~图3显示,铅排放速率整体呈现下降趋势,镍排放速率变化不明显.废气排放中以铅尘的排放为主.固体废物.冶炼企业固体废物主要是冶炼废渣,该固体废物的浸出毒性监测结果表明仅铬、铅检出,铬质量浓度范围在0.13~0.50mg/L,铅质量浓度范围在0.3~0.5mg/L,其他金属铜、镉、锌、镍、总汞均未检出,检测项目均未超出GB5085.3-2007《危险废物鉴别标准浸出毒性鉴别》的标准限值,表明冶炼废渣属于一般工业固体废物.固体废物全部综合利用,不外排.废水.工业废水重金属污染物监测表2显示,浓度平均值占标率中铅最高为26.6%,其次是总铬和镍,分别为14%和8%,铜、总汞、镉和砷均未检出.各种重金属污染浓度均达到《污水综合排放标准》相应标准要求;厂区雨水沉淀池出水的总铬达不到《污水综合排放标准》第一类污染物最高允许排放浓度要求.企业废水回用,不外排.铁山矿石散货堆场污水处理系统出口的监测结果表2显示,浓度最大值占标率总铬为75.1%,其次为锌为5.2%,镍、铅、铜、总汞、镉和砷均未检出.污水经矿污水处理系统处理后,各项指标均能达《污水综合排放标准》第一类污染物最高允许排放浓度要求.散货堆场废水大部分回用,少量外排入海,排放无规律.

1.2存在的环境污染问题

废气中尘的影响范围采用环保部HJ2.2-2008《环境影响评价技术导则-大气环境》中的估算模式进行最坏情况下的模拟计算,参数选用监测最低排放高度50m,烟气流量取监测最大流量700000m3/h,烟气温度取100℃,影响距离最大约为1.0km,而铅尘在烟尘中的含量较小,企业位于工业区合理位置,所有排放源1.5km范围内均为工业用地,因此,正常达标排放的情况下对大气环境影响较小.2011年、2012年近岸海域海洋水质中枯水期重金属综合污染指数a1分别为0.04、0.14;a2分别为0.03、0.06;结果表明,2012年重金属污染水平略微上升,铁山港区工业的发展对附近海域水质影响不大.地下水现状重金属浓度监测结果表3显示,监测重金属项目均符合GB/t14848-93《地下水质量标准》三类标准要求;各监测因子监测浓度值无明显变化,对地下水的影响较小.由于工业区生产废水和港口码头的散货堆场废水均不经过地表水,故对地表水水质影响甚微.土壤污染源主要是废水、废气和固体废物污染.工业园区冶炼企业的污水经过处理后回用,不外排;港口码头的散货堆场废水收集处理后大部分回用,少量排入附近海域,故废水排放对土壤影响较小.工业固体废弃物主要为冶炼炉渣,炉渣所含的金属元素比较稳定,故一般所含重金属污染物较难浸出,浸出液的重金属污染物浓度符合《危险废物鉴别标准浸出毒性鉴别》的标准要求,浸出毒性较低,属于一般工业固体废物;固体废物综合利用,但临时堆场须加强,按《一般工业固体废物贮存、处置场污染控制标准》要求完善相应防护措施.工业废气经静电除尘或布袋除尘处理后,绝大部分重金属污染物被去除,其排放浓度不高且能达标排放,但废气含重金属的粉尘和烟尘长期沉积,对工业区及附近的土壤会造成一定影响[5].土壤监测结果表4显示,重金属监测项目均符合GB15618-1995《土壤环境质量标准》二级标准要求,重金属的监测浓度值变化不明显,工业生产重金属排放对土壤影响微小.工业区现场调查中存在的问题主要表现为清洁生产水平须提高,雨污分流、污污分流效果不理想、初期雨水收集系统不完善、应急水池不完善以及废水处理方法针对性不够强;无组织排放尘的管理、工业固体废弃物临时堆存“防风、防雨、防渗漏”措施等方面须加强.红土矿露天堆放,部分堆场的围墙不完善,导致红土镍矿向外流失;虽有完善的堆场废水收集和处理设施,但污水处理系统运行和处理效率有待加强管理.

2对策与措施

2.1实施可持续发展战略建立iSo14000环境管理体系,严格实施清洁生产,减少重金属污染物的产生和排放是最根本的措施.大力推广安全高效、低能耗低物耗、环保达标、资源综合利用效果好的先进生产工艺.根据《清洁生产促进法》要求,对工业区内所有涉及重金属污染企业生产或服务过程中的资源、能源以及废物产生情况实施强制性清洁生产审核.通过建立规范的环境管理体系和加强环境管理工作,实现全过程科学管理,最大限度地利用资源,减少污染物并达标排放,实现企业内部的物质循环和能量利用,实现企业经济与环境效益的统一.积极推动临海工业园的循环经济建设.根据区域环境污染综合防治的需要,把区域结构性污染和产业结构调整结合起来,帮助涉重企业采用清洁生产技术.对工业区内涉重企业的能流、物流、废物流以及信息流按照循环经济理论进行系统集成,推行热电联产、集中供热的资源共享,建立起企业间物质流动和循环利用、能量梯级利用的机制,实现企业“节能、降耗、减污、增效”,构建区域循环经济发展模式,推动重金属废弃物的减量化和循环利用.尤其是工业区产生大量的冶炼废渣和砷渣的综合利用,变废为宝.工业园在招商引资的同时,要有引进能推动园区循环经济建设的项目,如冶炼废渣、废耐火材料的利用项目.在规模较大的涉重企业内或具备开展循环经济条件的入园企业间通过物流、能流或废物流的相互交换,形成产业生态链[6],使工业园区及其涉重企业走上可持续发展之路.

2.2强化污染源治理废气.目前问题主要为无组织排放源尘的收集和回收利用.可有针对性的在原料运输、加工、混料等过程中,可产生尘源部位采用密闭措施,吸风除尘捕集回收利用,场所经常洒水抑制扬尘产生.废水.完善工业区环境基础设施,强化污染集中控制[7].针对厂区雨污分流、污污分流效果不理想,初期雨水收集系统不完善,应急水池不完善等问题,必须加快推进临海各工业园区环境基础设施建设,完善园区污水管网和雨水管网,实现雨污分流.加快建设并完善污水处理厂设施,确保园区污水集中处理并稳定达标排放.鼓励建设各涉重产业园工业废水集中处理厂、固体废弃物填埋场等环保基础设施,提高涉重污染物集中处理处置能力.重金属废水的治理传统方法和新技术,其中较传统的治理方法有化学沉淀法、电化学法、吸附法和膜分离法等,较新的技术有纳米技术、光催化法、新型介孔材料和基因工程等方法[8].铁山港工业区废水主要重金属污染因子为铬,浓度不高,水量不大,可考虑选择内电解法絮凝床[8],该方法中电化学反应均自发进行,无需消耗能源,以废治废,废水处理量大,出水水质好,适合处理低浓度重金属废水,同时,工艺成熟且不产生二次污染.固体废物.针对固体废物渗滤液和港口散货堆场,采用利用化学法、物理化学法和生物化学法等常见方法来分离重金属,有效处理工业废水[9].开展固体废物堆场综合整治,及时清理废渣,并严格按《一般工业固体废物贮存、处置场污染控制标准》完善临时堆渣场的“三防”措施,通过设置堤、坝、挡土墙等手段,防止一般工业固废及其渗滤液的流失,并设导流渠,将渗滤液导流排至污水处理系统进行处理.

2.3排放总量控制随着重金属企业进驻铁山港临海工业区,新增废气重金属污染物排放量将超过以往的排放水平.因此,必须严格控制铁山港临海工业区新增重金属污染物排放量的建设项目,现有重金属企业的改、扩建和技改项目,必须坚持新增产能与淘汰产能“减量置换”、“等量置换”的原则.

2.4提高管理水平加强涉重企业动态环境管理.铁山港临海工业区区内的所有涉重金属企业都应纳入重点污染源管理.环保部门应建立涉重企业以重金属污染现状数据库为主要内容的环境管理动态档案,对重金属污染实施重点监管.对通过竣工环保验收正式生产的建设项目及时纳入数据库管理.企业生产、日常环境管理、清洁生产、治理设施运行情况、监测数据、污染事故、环境应急预案、环境执法及解决历史遗留问题等情况要列入数据库进行动态管理,实施综合分析、核查监管.环保部门通过整治违法排污企业保障群众健康环保等专项行动及日常监督,限期整治污染物不能稳定达标排放的企业,停产整改造成环境危害的企业或未进行环评和“三同时”验收的各涉重企业,坚决取缔整改不到位的涉重企业.加强企业污染防治和环境管理.加强企业内部环境管理,抓好重金属污染物的日常监控,完善厂区雨水和污水系统,保证污染治理设施正常运行和污染物达标排放,完善和落实环境应急预案[10].规范涉重金属物料堆放场、废渣场、废水废气排污口的建设,应急池、初期雨水池和冲渣水池做好防渗、防漏设施,废渣场做好防雨、防渗、防流失措施.冲渣水循环回用不外排,其他含重金属生产废水应做到循环回用不外排.加强厂区生产管理,防止物料跑冒滴漏,减少重金属污染物的无组织排放.加强含重金属废弃物的管理,防止流失和扩散,禁止向没有重金属污染治理能力的单位销售或转移,杜绝二次污染.涉重金属企业必须建立重金属污染物产生和排放的详细台账.加强重金属监察执法能力建设.环保部门要配备必要的现场执法设备、重金属应急监测仪器和取证设备,配备应急执法车,加强快速反应能力建设.推进环境监察的现代化,向自动化、网络化、智能化方向发展.加大重金属污染源监管力度.对重点涉重金属排污企业排污口安装在线自动监控装置,实行联防联控、实时监控、动态管理.建立环境监测日监测、月报告制度.加强涉重金属排放企业污染源监督性监测,密切监控企业废水、废气排放口及无组织排放情况.对重点防控区域以及企业周边一定区域内的环境空气、地表水、饮用水源地、土壤、沉积物等开展定期监测.健全完善企业排污总量控制和排污许可证制度,做到持证排放、按量排污.

2.5健全重金属污染预警应急体系沿海各地市以及涉重金属企业结合自治区突发公共事件总体应急预案,要建立和完善重金属污染突发事件的应急预案和群发性环境污染健康危害事件的应急预案,并定期开展重金属污染事件的应急演练.建立技术、物资和人员保障系统,落实值班、报告、处理制度,明确应急响应处置工作职责,健全重金属污染事故的快速反应机制.

3结语

处理废水中重金属的方法篇5

关键词:电镀废水传统方法CZB矿物法新流程

前言

电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机器制造、轻工、电子等行业。

电镀废水的成分非常复杂,除含氰(Cn-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(au)废水、含银(ag)废水等。电镀废水的治理在国内外普遍受到重视,研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重金属、水循环使用等措施消除和减少重金属的排放量。随着电镀工业的快速发展和环保要求的日益提高,目前,电镀废水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环是发展的主流方向。

1电镀重金属废水治理技术的现状

针对我国家目前电镀行业废水的处理现状的统计和调查,广泛采用的主要有7不同分类的方法:(1)化学沉淀法,又分为中和沉淀法和硫化物沉淀法。(2)氧化还原处理,分为化学还原法、铁氧体法和电解法。(3)溶剂萃取分离法。(4)吸附法。(5)膜分离技术。(6)离子交换法。(7)生物处理技术,包括生物絮凝法、生物吸附法、生物化学法、植物修复法。但目前都存在一定的弊端或严重的不合理性。

2传统电镀废水处理方法的弊端

目前电镀废水的处理方法一般采用物化法之分流—综合两段处理。前段处理多分三支水:铬水、氰水和综合水(铜镍锌水)。铬水用还原剂使之变价还原,氰水用两级氧化破氰,铜镍锌水直接与前两股水汇合而成为综合水。后段处理综合水,基本上是用碱(烧碱或石灰)、聚合氯化铝(paC)和有机絮凝剂(pam),具体操作是:把综合水的pH值提到10~13,碱浓度大而迫使碱与重金属的反应向生成氢氧化物的方向进行。由于pH>9,排放口又得用酸中和使pH值降到9以下。

上述乃传统的处理工艺,存在许多严重的理论与实践上的错误:1、前处理三支污水的划分,不符合生产实际,因为不论那支水中都是你中有我、我中有你,只不过是铬水以铬为主、氰水以氰为主、铜镍锌三合水以3元素居多。这些实际情况,我们是在废水处理的实践中发现的,几乎所有企业的电镀废水都是如此。我们询问过电镀厂的有关人员,其实他们能把这一现象的成因说得非常清楚,奇怪的是污水管理部门竟把分流—综合两段处理作为不能违反的规范性模式。由于第二段处理的污水中各种污染物都存在,怎么可能用简单的处理药剂和方法就可使终端水达标排放呢?2、许多专门论述中都会提到,氰水要分开处理是因为氰在酸液中会生成毒性极强的HCn(氰酸),它的挥发势必造成人的中毒。这在理论上是成立的,确实要十分注意。不过,我们发现多数氰水本身就是pH<6的液体,如果要挥发就可能在车间,而不会流到污水池再挥发。再说氰酸本身是液体,只不过是挥发温度低(26℃),那么外界温度<26℃时就不存在挥发问题了。3、人工强制以超碱使重金属生成氢氧化物沉淀在污泥中,这有不科学之处:(1)从化学反应原理上说,勿论在什么样的酸碱度条件下,都有个反应平衡,也就是说永远都不可达到水中不存在一定数量的重金属。(2)不同的重金属形成氢氧化物的最佳酸碱度(pH值)不尽相同,对某种重金属最适合的pH值范围,对另一些金属可能已是重新溶解的pH值条件。(3)由于二段处理是超碱除重金,最后的排放水也必然超碱,这就势必要在排放口向水中加酸,以求pH值达到排放标准。加酸的结果,那些尚未沉淀的微细的氢氧化物迅速发生分解,重金属又回到水中。4、由于分流—汇合两道污水处理,工程装置自然就比较复杂,从而造成工程建设投资大、时间长。

3CZB矿物法处理电镀废水

3.1CZB矿物法的概念

CZB矿物法是采用以纯天然矿物为原料,经过一定特殊工艺该性加工生产而成的专利产品nmSta天然矿物污水治理和矿粉CC,在再辅加某些助剂对电镀废水进行混合处理的一种方法。

3.2CZB矿物法的主要作用机理

由于该方法主要采用的是纯天然的矿物为主体原料,其所具有的特性有离子交换性、吸附性、化学转化性、催化性等。

3.3CZB矿物法的主要优势

该方法的主要优势如下:

1、彻底改变长期以来分流处理的传统工艺,把?水、氰水、综合水等混合起来进行处理,纠正了分流处理所存在的某些严重错误,弥补了传统工艺所存在的弊端。

2、经一段处理即可完全解决问题,改变了传统的两段处理模式。

3、由于上述两点,污水处理的工程装置大大简化,基建投资和工程建设时间大幅度减少。

4、传统的处理方法,从理论上分析是不可能达标的,大量的实践也证明了该工艺的确不能达到排放标准。若用矿物法处理电镀废水,从原理和实用上都表明了可以稳定地达标排放。

5、传统工艺处理电镀废水的药剂费用,主要被用于烧碱中和酸水,一般情况处理一吨

污水烧碱费就要10~15元,加上其他药剂,总药剂费多在15元以上。诚然,如果只求把废水澄清,那费用就很难有个标准了。应用矿物法,前提是达标排放。处理一吨废水药剂费大约4~9元之间。

3.4电镀废水处理流程示意图

3.4.1流程示意图

3.4.2流程说明

从车间出来的各种类型的废水在同一调节池进行混合调节,然后泵入第一反应池,还原剂用硫酸亚铁或其他还原剂均可,其用量比分流处理少1/3~1/2,具体用量视水质情况而定,反应完成后进入第二反应池,加nmSta天然矿物污水治理剂和CC矿粉(一部分起中和作用,可以节约大部分的碱,另外有去除重金属的作用)综合反应,可将废水的pH调节到5~6,该阶段一般要求不少于20min,再进入第三反应池,用碱将废水的pH调节到8~8.5,同时加入漂白水等氧化剂破氰,最后经沉淀池沉淀后排放。

4结论

经过长时间来的研究和实践,以及对理论上的探讨,结合目前的实际,我们在对各种工艺进行完全的比较(包括药剂的性价比、工程建设的投资、运营及管理等)之后,认为采用CZB矿物法处理电镀可以保证出水的水质达到国家一级排放标准。

该工艺目前还在进行更深入的研究和不断的完善之中。

5参考文献

[1]何升霞,姬相艳。利用废铁屑处理含铬废水试验研究[J]。油气田环境保护,2002,10(2):36—37。

[2]苏海佳,贺小进,谭天伟。球形壳聚糖树脂对含重金属离子废水的吸附性能研究[J]。北京大学学报,2003,30(2):19—22。

[3]翁国坚,李湘祁,烫德平,等。铝锆柱撑蒙脱石处理Cr6+废水的应用研究[J]。福州大学学报,2003,31(1):116—119。

处理废水中重金属的方法篇6

abstract:inrecentyears,variousregionshavewidespreadconcernaboutheavymetalwastewatertreatment.withadvancesintechnology,heavymetalwastewatertreatmenttechnologyhasmadegreatprogressfromthetraditionalprecipitation,chemical,microbialadsorptiontomodernprocessingtechnology,reverseosmosistechnology.thetraditionaltreatmentmethodofwastewaterjusttransferredheavymetalstootheragents,butfailtoputanendtoheavymetalpollution.thisarticlemainlyresearchesanddiscussestheprincipleofheavymetaltreatmentprocess,advantages,disadvantagesandapplicationdirection.

关键词:重金属;废水处理工艺;分析与应用

Keywords:heavymetal;wastewatertreatmentprocess;analysisandapplications

中图分类号:X703文献标识码:a文章编号:1006-4311(2010)15-0167-01

1传统的重金属处理方法

1.1沉淀法沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合液中加入适当的沉淀剂制备前驱体沉淀物,再将沉淀物进行干燥或锻烧,从而制得相应的粉体颗粒。其优点去除范围广、效率高、经济简便。赵如金[1]采用铁氧体法处理重金属废水,磁性产物中金属的回收率、磁性产物的稳定性及饱和磁化率越大,处理后的废水中各种金属离子的质量浓度达到污水综合排放指标。但是沉淀法沉淀剂的加入容易造成二次污染。

1.2化学法化学法是利用化学反应的作用来去除废水中的溶解物质或胶体物质。常用的硫酸亚铁-石灰法,但也存在着投药量、污泥产生量大、处理后水质色度高等缺点。李宾[2]采用钡盐―氢氧化钠法处理含重金属废水,具有出水水质清澈透明、设备简单、容易自制、操作维修方便的特点。但其也有易产生二次污染的缺点。

1.3吸附法吸附法是利用吸附剂吸附溶存于废水中重金属离子的一种方法。吸附法因其材料便宜易得,成本低,去除效果好等到优点。胡艳海等[3]用naoH处理活化沸石,对废水中的pb2+、Cd2+、Cr2+去除率达到97.90%以上。李国清等人[4]用海藻酸钠-腐殖酸钠吸附法处理重金属废水,对Cu(Ⅱ)去除率达99.6%,Cd(Ⅱ)去除率达95.6%,其中铜离子已经达到国家一级排放标准。

2重金属废水处理新工艺

2.1微生物处理技术生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。具有无机絮凝剂和合成有机絮凝法无法比拟的优点,处理废水安全方便无毒、不产生二次污染,但当前也存在着生产成本较高、活体絮凝剂保存困难等难题,大部分生物絮凝剂还处于探索研究阶段[5]。

2.2反渗透技术反渗透是渗透作用的逆过程。在实际应用中主要有微滤膜、纳滤膜、超滤膜、电生物膜等。且有去除率高,选择性强;在常温下操作无相态变化;能耗低、污染小;自动化程度高,可作为重金属废水终端处理,可使废水中的重金属离子完全去除,处理后的水质优良,并可循环再利用[6]等优点。反渗透法由于其本身对生产工艺要求很高,所以其在应用推广中受到了限制。

2.3meUF去除废水中的金属离子胶团强化超滤(meUF)是一种表面活性剂和超滤相结合的技术,用于处理低浓度的金属离子。meUF技术中还有待解决的问题:①meUF在表面活性剂浓度高于CmC以上时才能去除污染物,表面活性剂用量较大;②meUF的渗透液中含有一定浓度(低于CmC)的表面活性剂单体,造成浪费。如何从浓缩液中回收有价值的金属和有机物也是meUF技术的重要研究方向[7]。

2.4植物修复法植物修复法是指利用植物通过吸收、沉淀和富集等作用降低被污染土壤或地表水的重金属含量,以达到治理污染、修复环境的目的。植物修复法与其他的方法相比具有技术和经济上的双重优势,实施较简便、成本较低[8]和对环境扰动少。缺点是治理效率较低,不能治理重污染土壤。由于一种植物只吸收一种或两种重金属,难以全面清除土壤中的所有污染物[9]。另外施加有机螯合剂虽能增强对重金属的富集能力,却可能会造成有毒元素地下的渗漏,形成潜在的污染风险[10],且增加了运行成本。

2.5化学品替代法目前有此使用重金属化学品企业,利用替代法解决重金属污染,效果较好。举例吉林省汪清东光电子有限公司化成箔腐蚀工序从传通的铬酸法生产铝箔改为希硫酸法生产铝箔,彻底解决了重金属六价铬的污染问题。

3结论

目前,对重金属废水的处理工艺还处存在技术、运行成本、产生二次污染等问题,在实际应用时应根据重金属的种类、技术、工程成本、等方面综合考虑,选择最优的技术方案。根据实际情况将两种或多种工艺组合,达到最优的效果。

目前我们应该致力于新工艺的开发与传统工艺的改造,努力开发出既降低成本、不产生二次污染又能够达标排放,使重金属得到有效回收利用,同时注重考虑替代重金属化学品的工艺,从源头上杜绝重金属污染,这是我们今后应该努力与探讨的方向。

参考文献:

[1]赵如金,吴春笃.常温铁氧体处理金属离子废水研究[J].化工环保,2005,25(4):263-266.

[2]李宾.化学法处理含重金属废水的应用介绍[J].材料保护,2000,33(10):18-19.

[3]胡艳海.活性沸石对重金属离子的吸附及再生性研究[J].无机盐工业,1997,2:5-6.

[4]李国清,罗生全.海藻酸钠-腐殖酸钠吸附法处理重金属废水的研究[J].集美大学学报,2007,12(3):226-231.

[5]马前,张小龙.国内外重金属废水处理新技术的研究进展[J].环境工程学报,2007,1(7):10-13.

[6]袁建军,卢英华.高选择性重组基因工程菌治理含汞废水的研究[J].泉州师范学院学报,2003,21(6):71-75.

[7]周正立.反渗透水处理应用技术及膜水处理剂[m].北京:化学工业出版社,2005:1-86.

[8]menchm.,VangronsveldJ.,Leppn.w.,eta.physi-cochemicalaspectsandefficiencyoftraceelementimmo-bilizationbysoilamendments.in:VangronsveldJ.,Cun-inghamS.,eds.metalcontaminatedSoils:inSituinacti-vationandphytoremediation[m].newYork:LandesBiosci-ences,Springer,2000.

处理废水中重金属的方法篇7

abstract:emissionsofwastewaterwithheavymetalsofmodernindustryhaveaseriousnegativeimpactontheenvironment.Bio-adsorption,asanewtechnologyforheavymetalremoval,hasbroadapplicationprospects.thispapersummarizesthemechanismofbio-adsorption,introducesthenewtechniquesofdealingwiththeheavymetalpollutionathomeandabroadandreviewstheproblemsinheavymetalwastewatertreatmentbyusingbio-adsorptionandthedevelopmentdirection.

关键词:重金属离子;生物吸附;吸附机理

Keywords:heavymetalions;bio-adsorption;adsorptionmechanism

中图分类号:X703文献标识码:a文章编号:1006-4311(2014)19-0324-03

0引言

所谓重金属就是比重超过4或5的金属,据统计目前已知的重金属约有45种。对于重金属污染,通常情况下主要是指环境受到汞、铅、镉等重金属的污染,对于这种污染来说,最显著的特征就是具有生物毒性,另外,在重金属中还涉及锌、铜、钴、镍等具有一定毒性的金属。当前,受各种因素的影响和制约,难以通过有效的方式对重金属污染物进行治理,当重金属在水体中积累到一定限度后,将会直接危害到水体生态系统,最终通过食物链影响人类的健康。在全球环境污染中,由重金属构成的水体污染逐渐成为最严重的环境问题。在重金属废水方面,化学沉淀法、离子交换法、蒸发浓缩法等是常规的处理方法,通过这些方法对重金属废水进行处理时,一方面处理不彻底,费用高,另一方面产生有毒污泥或其他废料等。为了避免出现二次污染,人们对高效环保型的重金属废水处理技术、处理工艺等加大了研究、开发的力度。本文通过对生物吸附法处理重金属废水的机理和处理工艺进行阐述,进而推动国内对重金属废水治理的研究。

1生物吸附机理

通过生物吸附法对重金属废水进行处理的过程中,借助生物体对金属离子进行吸收的过程,通常情况下,主要包括:第一将金属离子吸附在细胞表面,借助细胞外的多聚物、细胞壁上的官能团等,进一步实现与重金属离子之间的结合,通常情况下这是一种被动式吸附;第二对于重金属离子通过活体细胞进行主动吸附,对细胞表面的某些酶进行充分的利用,进而将金属离子吸附在细胞表面,在传输和积累的作用下,进一步将细胞表面的重金属离子转移到细胞内。受科学技术的影响和制约,并且细胞结构的复杂性,进而在吸附机理方面,没有完整的吸附理论。

1.1离子交换机理借助离子交换机理对污水中的重金属离子进行处理。对于离子交换机理来说,就是细胞壁与金属离子实现交换,在交换过程中,细胞一方面吸附重金属离子,另一方面释放其它阳离子。通过研究分析改性后的橘子皮吸附水溶液中的重金属离子情况,Dhakal等发现:水溶液经改性后的橘子皮吸附处理后,进一步降低了水溶液的pH值,说明橘子皮高分子表面的H+与水溶液中的重金属离子发生交换。通过采用交联木质素对重金属离子进行吸附,parajuli等经研究发现,水溶液的pH值对吸附过程产生一定的影响,并且吸附机理符合阳离子的交换机理。通过对藻酸钙吸附水溶液中的铜离子进行试验,Crist发现,被吸附的铜离子与藻酸钙释放的钙离子具有相等的当量,进而充分证明吸附过程符合离子交换。但是,释放的离子与被吸附的离子在一般情况下其当量并不相等,在生物吸附机理中离子交换机理只是其中的一种。通过对黄孢原毛平革菌吸附铅离子进行研究,在试验过程中,吴涓、李清彪发现:Ca2+、mg2+的浓度进行吸附试验前,在铅溶液中根本测不出,但是,吸附试验后,溶液中Ca2+、mg2+的浓度分别达到0.13mg/L、0.21mg/L,但是,Ca2+、mg2+与pb2+之间并不符合1:1的离子交换关系,在整个吸附量中,pb2+仅占10%,同时结合离子交换,充分说明吸附中确实存在离子交换。

1.2表面配合机理利用生物体对污水中的重金属离子进行处理,主要是利用细胞的表面存在的羧基、磷酰基等官能团,这些官能团中的氮、氧、磷、硫等作为配位原子与金属离子相互配合。利用HLS溶液吸附ni2+,通过研究分析吸附过程,panda等发现:一方面试验过程符合离子交换机理,另一方面HLS表面的o、n等与ni2+相互作用,形成相应的配合物。对菌群胞外的聚合物(epS)利用硫酸盐进行还原,同时对Cu2+进行吸附,潘响亮等通过试验进一步发现:对Cu2+epS中的蛋白质酰胺基团、羧基等具有较强的配合力。

1.3氧化还原及无机微沉淀机理通过生物吸附机理处理污水中的重金属离子,在处理过程中经常会涉及到氧化还原反应,某些菌株的分泌酶在一定程度上影响着这种机理。通过试验Furukawa等发现:某些抗汞的假单孢杆菌能够产生金属汞的离释酶,在naDpH的作用下,对于二价汞离子可以通过此酶进行还原,使其成为单质金属汞。对于au3+通过利用金霉素链霉菌废菌丝体进行吸附处理,在处理过程中刘月英等发现:随着菌体与au3+溶液彼此之间接触时间增加,电子不透明的金颗粒出现在细胞壁租接触液中,经还原au3+成为单质au。另外,在生物体上,如果具有还原能力,可以吸附变价金属离子,进而有可能发生氧化还原反应。菌(SRB)在厌氧条件下,被酸还原同时产生H2S,产生的H2S能够与金属离子发生反应,同时生成金属硫化物沉淀,废水中Zn2+、Cd2+等中金属离子可以除去。

1.4酶促机理在治理污水中重金属离子的过程中,活性和非活性的生物对重金属离子都有不同程度的吸附能力,金属离子通过活性生物细胞可以进行吸附,吸附能力的强弱通常情况下与细胞某种酶的活性有关。例如:在啤酒酵母中,在磷酸酶的作用下,可以将溶液中的重金属离子运输到细胞内,而细胞内的液泡作为主要的场所能够对金属进行积累。在培养细胞的过程中,为了产生磷酸酶,通常需要引入甘油磷酸酯等“磷酸供体”。通过对白腐真菌吸附铅进行研究,吴涓、李清彪等发现:与未经碱处理的菌体相比,经碱处理后的菌体,明显提高了其吸附能力,处理菌体的碱液存在最佳的浓度,当碱浓度为0.1mol/L时,在这种情况下,菌体的吸附达到最大。

2生物处理技术

在处理重金属废水的过程中,由于传统处理方法存在步骤复杂、成本高等缺点,并且难以处理低浓度的有害污染物,同时存在二次污染等。通过生物处理技术对溶液中的重金属离子进行处理,在一定程度上可以有效地克服传统处理技术存在的弊端。经过多年研究发现:通过生物处理方法对重金属离子进行处理,其优点主要表现为:可以处理浓度较低的污染物,并且处理效率高,温度、pH值等对处理过程的影响程度比较小,另外还可以对重金属进行回收。

2.1生物絮凝法在污水中的重金属离子进行处理的过程中,通常会用到生物絮凝法,所谓生物絮凝法就是通过微生物或植物产生的代谢物对污水中的重金属离子进行絮凝沉淀。目前,生物絮凝剂主要分为淀粉类、半乳甘露聚糖类、纤维素衍生物类、微生物多糖类和复合型生物混凝剂五大类。在处理污水的过程中,生物絮凝剂凭借自身的安全无毒、无二次污染、絮凝剂效果好等优势,进而决定了其应用前景的广泛性。其中约有12种生物絮凝剂对重金属有絮凝作用,汪士新从多种微生物中通过提取壳聚糖作为絮凝剂,进一步回收废水中存在的pb2+、Cu2+等重金属离子。此外,对于处理重金属离子的特殊微生物菌株,通常情况下借助遗传工程,可以进行驯化和构造。王国惠在活性污泥中发现一种wJ2100絮凝剂菌株,在pH=6.5时,对污水中的Fe3+、na+、Ca2+等金属离子,该菌株絮凝剂具有理想的絮凝作用,在絮凝过程中,菌株对Ca2+的絮凝作用最为理想。pullulan通过研究絮凝剂对pb2+絮凝的实验,得到了上述结果。另外,康建雄对溶液的pH值、pb2+初始浓度等因素产生的影响进行了讨论。与无机絮凝剂、合成有机絮凝法相比,处理废水更安全、方便,并且无毒,同时不产生二次污染这是生物絮凝法的优点所在,但是该处理方法也存在不足,主要表现为:生产成本高、保存活体絮凝剂的难度大,并且难以实现工业化生产,对于大部分生物絮凝剂来说,目前依然处于探索阶段。

2.2生物化学在对污水中的重金属离子进行处理的过程中,往往也会用到生物化学法,这种处理方法主要是对生物自身的氧化还原能力进行充分的利用,这种处理方式主要是改变重金属离子的价态,通过改变重金属离子的价态,进一步改变重金属离子的化学性质,将可溶性离子转化为不溶性化合物,进而除去重金属离子。硫酸盐生物还原法在生物还原法中是一种比较典型处理方式,硫酸盐在该方法的作用下,被还原成H2S,生成的H2S进一步与金属离子反应,生成金属硫化物沉淀,除去溶液中的重金属离子。从废水中成都生物研究所分离出多种菌株,在净化方面有些菌株表现的非常突出,例如:对au+普通小球藻具有很强的亲和力,通过硫脲可以解吸被吸附的重金属离子,并且硫脲通常只与au+结合。普通小球藻上的au3+经过一系列的处理,首先被还原成au+,然后进一步还原成金单质。通过高选择型基因工程进一步构建菌体,通过生物富集袁建军等对电解废水中的汞离子进行一些列模拟,在模拟过程中发现:电解废水中其他组分影响菌富集汞离子的作用速率,在很宽的pH范围内,该基因工程菌能对汞进行有效地富集。但是,由于浓度较高的重金属废水对微生物具有较大的毒害作用,因此该方法的应用存在一定的局限性。但是,利用遗传工程、驯化或构造出特殊的菌株,从这一角度来说,通过微生物对重金属废水进行处理有着美好的前景。

2.3植物修复法利用植物发达的根须和微生物,富集、积累处理重金属离子,这一过程就是所谓植物修复。对于含有重金属离子的污水来说,通过植物修复法可以将重金属转化为较低毒性的物质,进一步实现污染治理、环境修复的目的。采用植物修复法对含有重金属离子的污水进行处理,其处理过程主要包括:①吸取、沉淀或富集废水中的有毒金属离子;②降低有毒金属离子的活性,采取措施防止重金属离子扩散到地下,形成二次污染;③对土壤中、水中的重金属离子采取萃取的方式进行分离,进而将重金属离子转移到植物的根部或者植物可收割的部分,以及植物的地上枝条部分,通过收获或而移去植物枝条的方式,将积累和富集的重金属转移,进而在一定程度上降低了土壤或水体中的重金属浓度。对于重金属离子来说,通过质体流动、扩散两种途径进入植物的根部。

在技术、经济方面,与其他污水重金属离子的处理方法相比,植物修复法的优势主要体现在:具有双重优势,便于实施、成本低廉,对环境造成较小的扰动。另外,通过植物修复法对污水进行处理,一般需要种植大量的植物,在这种情况下,一方面净化和美化环境,另一方面对土壤中含有的重金属污染物进行清除。另外,通过对富含金属的植物残体进行处理,可以回收贵重金属,进而取得经济效益。该方法的不足主要表现为:治理效率低,对于重度污染的土壤难以进行处理。对于种植的植物来说,由于植物吸收的重金属具有单一性,进而对土壤中的所有污染物难以进行全面清除。通过施加有机整合剂,在一定程度可以强化富集重金属的能力,但是会导致有毒元素渗漏到地下,进而对土地形成二次污染,同时增加了运行成本。

3其他新工艺

3.1反渗透技术对于渗透膜来说,由于自身具较高的去除率,较强的选择性,并且常温条件下,不存在相态变化,以及能耗低、污染小,自动化程度高等优势,因此利用渗透膜技术对含有重金属离子的废水进行处理,这种污水处理技术受到人们的认可和重视,其经济效益非常可观。对于反渗透来说,其实就是渗透作用的逆过程,在外界压力的作用下,透过半透膜,进而阻留溶液中溶剂的某种或某些溶质。通常情况下,实现反渗透的条件主要包括:①与溶液的渗透压相比,操作压力要大;②半透膜必须具有较高的选择性和较强的透水性。在对重金属废水进行处理的过程中,对于反渗透来说,其截留机理主要涉及筛分机理、静电排斥。

3.2meUF去除废水中的金属离子利用胶团强化超滤meUF技术对含有重金属离子的污水进行处理,该处理技术融合了表面活性剂和超滤技术。对于这种处理技术来说,在金属离子浓度较低的污水中得到广泛应用。目前,国内对于该技术的深入报道比较少,而国外也是处于试验阶段。利用meUF技术对污水进行处理的过程中,使用的表面活性剂与去除的物质有关。通常情况下,根据实际情况确定活性剂。按照静电作用原理的相关要求,要用阴离子表面活性剂(阳离子表面活性剂)去除金属阳离子(金属阴离子)。通过疏水性作用、静电作用、氢键及酸碱类作用等,膜与表面活性剂去除废水中的重金属离子,污水处理效果受表面活性剂的浓度、压力、pH值等因素的影响和制约。

对于meUF技术来说,一些问题需要有待进一步解决:①与CmC相比,当meUF的表面活性剂浓度较高时,才能去除污染物,在这种情况下,需要较大用量的表面活性剂;②在meUF的渗透液中,与CmC相比,如果表面活性剂单体浓度低,那么就会造成浪费。

4结语

在重金属废水处理方面,生物吸附提供了一条新的解决途径,这种处理方式具有较高的经济可行性,其原料比较丰富,而且价钱比较低廉,实现了以废治废的目的。国内外对于生物吸附的研究,目前依然是处在实验阶段,并且研究的重点依然侧重于影响因素,对处理机理缺乏深入、透彻的研究。在实践生活中,为了广泛应用生物吸附技术,今后需要调整研究的重点:①在重金属吸附、沉淀作用机理等方面,对微生物加大研究的力度,进一步实现基础领域的突破;②对于生物吸附剂,其研究开发重点应该朝着价格低廉、吸附容量大、可再生方向发展;③研究开发基因重组技术、原生质体融合技术,积极构建“超级工程菌”,以及新型菌种;④对于高效、固定化生物反应器加大开发的力度,以微生物技术为基础,创新处理工艺,提高处理效率。

参考文献:

[1]梁莎.橘子皮生物吸附剂化学改性合成及其对重金属离子吸附研究[D].中南大学,2010(06).

[2]梁莎.化学改性生物吸附剂合成及其对重金属离子吸附行为研究[D].中南大学,2012(10).

[3]李玉文,郭军,尤铁学.重金属废水处理工艺的研究[J].内蒙古科技与经济,2008(06).

[4]鲁栋梁,夏璐.重金属废水处理方法与进展[J].化工技术与开发,2008(12).

处理废水中重金属的方法篇8

关键词:电镀污泥;危害;重金属;固化稳定化;生物技术

abstract:electroplatingsludgecontaininghighchromium,cadmium,zincandotherheavymetals,tothepollutionoftheenvironment,athomeandabroadinrecentyearsonelectroplatingsludgetreatmenttechnologyofsolidificationstabilizationtechnology,alandfillandstacking,heavymetals,recyclingtechnology.themainprocessingtechnologyundertookananalysis,thinkbiologytechnologywillmakethefuturetreatmentofelectroplatingsludgewithinthefieldofanimportantresearchdirection.

Keywords:electroplatingsludge;harm;heavymetal;solidificationstabilization;Biotechnology

中图分类号:V261.93+1文献标识码:a文章编号:

电镀污泥是指电镀行业中废水处理后产生的含重金属污泥废弃物,被列入国家危险废物名单中的第十七类危险废物。作为电镀废水的“终态物”,虽然其量比废水要少得多,但由于废水中的铜、镍、铬、锌、铁等重金属都转移到污泥中,电镀污泥对环境的危害要比电镀废水严重。如果对这种危害性极大的电镀污泥不作任何处置,其对生态环境的破坏是不言而喻的,另一方面,如果对电镀污泥中品位极高的重金属物质不加以回收利用,也意味着资源的巨大浪费。因此,对电镀重金属污泥进行无害化处置和资源化综合利用具有重大意义。

1来源

电镀生产工艺如下图

在整个电镀生产过程中,在清洗过程中产生大量废水,去油除锈产生大量酸碱废水,电镀后的清洗废水中含有金属元素如:铜、铬、镍、锌、镉和有机金属光亮剂等。

电镀废水处理工艺主要采用化学法,而此办法处理电镀废水后形成许多的沉淀物,统称为电镀污泥。由于电镀废水自身含有Cr、Zn、Cu、ni等重金属离子,在处理过程中又加入naClo、na2S、FeSo4、naoH、Ca(oH)2等各种化学药剂,因此电镀污泥的成分十分复杂。

2危害

电镀污泥是一种废渣,属于危险废物,因此,必须按照国家有关危险废物管理办法,进行妥善处置,否则将造成二次污染。电镀废水处理过程中产生的污泥含有有害重金属,它具有易积累、不稳定、易流失等特点,如不加以妥善处理,任意堆放,其直接后果是污泥中的铜、镍、锌、铬等这些重金属在雨水淋溶作用下.将沿着污泥一土壤一农作物一人体的路径迁移,并可能引起地表水、土壤、地下水的次生污染,危及生物链和人体健康,造成严重的环境破坏。

3电镀污泥处置技术

尽管污泥的总量比废水小,但要处理好污泥却比处理废水还困难难。针对电镀污泥的特点及其危害性.从环境污染防治和资源循环利用的角度考虑,电镀污泥的处理有以下两个原则:一是经过处理后,污泥不会引起二次污染,即无害化处置;二是对污泥中的重金属资源进行综合回收,即资源化利用。

3.1固化稳定化技术

固化过程是利用添加剂改变废物的工程特性(例如渗透性、可压缩性和强度等)的过程,主要包括:水泥固化、石灰固化、热塑性固化、熔融固化、自胶结固化。常用的固化剂有水泥、沥青、玻璃、石灰和热塑料物质等。其中水泥固化[1]是最常用的固化技术,水泥固化具有对电镀污泥等重金属废物处理十分有效、投资和运行费用低、原料廉价易得,操作简单,固化体稳定等优点。但它也存在占地面积大。固化体内重金属不稳定等缺点。针对这一问题,近年来提出了用高效稳定剂进行无害化处理的概念[2]。

3.2填埋和堆放

填海曾经是电镀污泥处置的一条途径[3],但为了保护海洋,美国和欧美都相继禁止了固体废物填海处置,因此目前电镀污泥等固体废物的主要处置办法为安全填埋。电镀污泥的主要污染成分Cr(oH)3,当暴露于空气中,能在碱性条件下,被空气中的o2氧化,使Cr3+可逆性转变成Cr6+,电镀污泥若不加处理而任意堆放填埋,受到风吹雨淋,会致使污染扩散,给环境带来更加严重的后果。

3.3回收电镀污泥中的重金属

在电镀污泥中回收重金属的方法主要有[4-6]:浸出-沉淀法、电解法、熔炼法、氢还原分离法等。

浸出-沉淀法主要有酸浸和氨浸两种工艺。酸浸法的主要特点是对铜、锌、镍等有价金属有较好的浸出效果,但对杂质的选择性较低;氨浸法则对铬、铁等杂质有较高的选择性,但对铜、锌、镍的浸出率较低。目前国内外主要采用氨浸。氨浸法主要利用在弱酸条件下nH3-(nH4)2So4体系中金属元素生产的不同的产物将其分离[7]。采用氨络合分组浸出-蒸氨-水解渣硫酸浸出-溶剂萃取-金属盐结晶回收工艺,可从电镀污泥中回收绝大部分有价金属,铜、锌、镍、铬、铁的总回收率分别大于93%,91%,88%,98%,99%[8]。

电解法主要针对含Fe(oH)3和Cr(oH)3组分的污泥,武汉冶炼厂将一定量的水和H2So4加入到污泥中,沸腾后静止、过滤,滤液移至冷却槽,在滤液中加入1~2.5倍的硫酸铵,生成Cr2(So4)3和Fe2(So4)3,根据铬矾和铁矾溶解度的不同而达到铬、铁的分离,可回收90%以上的铬。

熔炼法主要以回收电镀污泥中的铜、镍为目的[9],以煤炭、焦炭为燃料和还原物,辅料有铁矿石、铜矿石、石灰石等。熔炼以铜为主的污泥,炉温在1300℃以上;熔炼以镍为主的污泥,炉温在1455℃以上。

3.4材料化技术

电镀污泥的材料化技术是指利用电镀污泥为原料或辅料生产建筑材料,制作肥料,或者其它材料的过程。

烧砖法是真正能够大量消纳污泥的电镀污泥处置和利用方法。龙军等人[10]将电镀污泥与黏土按一定比例制成红砖和青砖并对样品进行浸出实验,结果表明青砖浸出液中午Cr6+检出,是安全可行的,但要采用合适的配比,否则其它金属的浓度可能超过国家标准。

含锌、铜的氢氧化物污泥可以加工制成锌、铜复合肥[11].研究表明,锌、铜复合肥能促进早稻的前期生长,而且能够提高水稻叶片中叶绿素含量,对减轻早稻僵苗,有明显作用。

4分析与展望

电镀污泥的成分和性质十分复杂,其有效处理一直是研究的重点和难点,目前通行的固化污泥的做法,存在着再次污染环境的危险。因此,开发适应可持续发展的电镀污泥处理方法是迫切的,而电镀污泥资源化利用是进展最为迅速的。其中生物技术在环境污染治理方面已显现强大的优势,生物方法将为电镀污泥处理提供新的发展方向。

参考文献:

[1]贾金平,杨骥.电镀重金属污泥的水泥固化/稳定化处理[J].上海环境科学,1999,,1(5):229-232.

[2]赵由才等.危险废物处理技术[m].北京:化学工业出版社,2003

[3]王伟等.我国的固体废物处理处置现状与发展[J].环境工程,2003,21(4):44~47

[4]梁俊兰.从电镀污泥中回收镍[J].有色冶炼,1999,28(6):46-48.

[5]陈凡植,张岸飞等.含铜镍电镀污泥的综合利用[J].环境与开发,2001,16(1):20-25.

[6]陈凡植,陈庆邦.从铜镍电镀污泥中回收金属铜和硫酸镍[J].化学工程,2001,29(4):28-33.

[7]祝万鹏,杨志华,关晶等.多组分电镀污泥酸浸出液中铁的分离[J].化工环保,1997,17(1):6~11

[8]祝万鹏,杨志华,李力佟.溶剂萃取法提取电镀污泥浸出液中的铜[J].环境污染于防治,1996,18(4):12~15

[9]李红艺,刘伟京,陈勇.电镀污泥中铜和镍的回收和资源化技术[J].中国资源综合利用,2005,3(12):7~10

[10]贾金平等.富铁电镀污泥合成磁性探伤粉的研究[J].上海环境科学,1996,15(4):31~33

[11]张锡明.浅谈电镀污泥的金属回收和无害化处理[J].资源节约和综合利用,1990,(3):41~44

作者简介:

处理废水中重金属的方法篇9

【关键词】电镀废水;分系统处理;重金属离子;酸碱废水

1电镀废水的概况

电镀是将金属通过电解方法镀到制品表面的过程。电镀是当今全球三大污染工业之一,随着科学技术的发展电镀工业的规模亦发展,排放的废水量越来越大,据不完全统计,1999年全国工业和城市生活污水排放总量为401亿m3,电镀厂排放出废水达40亿m3。由此可见,电镀废水的排放量约占工业废水排放量的10%。目前,绝大多数电镀分散在各有关企业,例如:自行车厂、家具厂、汽车厂等等,都附设有电镀车间,实为厂多面广,较为分散,大多数直接排放,给环境造成严重污染。为了解决这一问题,在一个城市或一个地区集中建立电镀工业,使电镀工业由分散转向集中,则有利于电镀废水的处理。

电镀废水主要来源有:(1)镀件清洗废水;(2)电镀废液;(3)其他废水(包括冲刷车间、刷洗地板以及通风设备冷凝水和由于镀槽渗漏或者操作管理不当造成跑、冒、滴、漏的各种槽液和排水);(4)设备冷却水。其废水的水质、水量与电镀生产的工艺条件、生产负荷、操作管理以及用水方式等因素有关,其成分复杂,水质变化较大,其中含有铬、铜、镍、镉、锌等重金属离子和氰化物等,具有毒性,有的属“三致”物质,对人类危害极大。如随意排放或处理不当,会造成严重的环境污染。为此,对电镀废水进行有效处理已成为每个生产企业的艰巨任务。电镀品种较多,主要有:镀铬、镀锌、镀铜、镀镍、镀银等,有金属电镀,也有塑料电镀。废水主要来自镀件镀前的酸、碱处理以及镀后的漂洗。镀件镀前的酸、碱处理液对各种电镀是相同的,但是,镀件的漂洗液的组成则完全不同,处理方法也完全不同,所以要把各种电镀按车间分开,使整体布局合理化,给电镀废水的处理集中提供好的基础。通过对该类废水的处理试验研究并进行工艺比较,确定了适合该废水水质水量变化特点的处理方法。即将各类废水单独收集,并进行必要的预处理,然后再进行适当合并综合处理。该工艺技术已在多家电镀废水处理项目中得到成功应用。

2电镀废水的处理方法

电镀废水可以分为四个系统,含氰废水;含铬废水;其他重金属废水以及酸碱废水。实践证明分系统处理各种废水非常合理。

2.1含氰废水处理

常见的含氰废水处理方法有离子交换法、蒸发法、电解氯化法、臭氧法和碱性氯化法。氰化钠和氰化钾是优良的电镀络合剂,采用氰化物电镀的有金、银、铜、锌及铬等,可获得很高质量的镀层,但是氰化物有剧毒,对人的致死量为0.3mg/kg。我国政府在大力提倡用无氰电镀工艺替代含氰电镀工艺。目前除少量有特殊要求的产品保留含氰电镀工艺外,其余大量产品都已改为无氰电镀工艺。

采用二级氧化法进行处理。氧化破氰可用的药剂有naCio、Ca(Cio)2、液氯、臭氧等。液氯和臭氧由于价格高等原因不常用。用较便宜的Ca(Cio)2又会产生Ca(oH)2和CaSo4沉淀,增加了污泥量,故采用naCio是合适的破氰氧化药剂。该方法是在碱性条件下,用氧化剂naCio把游离氰离子以及与金属离子络合的氰离子氧化成氮气和二氧化碳[6]。氰离子的氧化破坏分两个阶段:第一阶段,在碱性条件(pH≥10)下,氧化剂把氰离子氧化成氰酸盐;第二阶段,在pH为7~8的条件下,氰酸盐进一步被氧化成氮气和二氧化碳。

第一阶段氧化成不完全氧化反应,反应如式(1)、(2)、(3):

naCn+naCio+H2o=CnCi+2naoH(1)

2naCu(Cn)2+5naCio+naoH+H2o=4naCno+5naCi+2Cu(oH)2(2)(式中的铜元素也可能是其他金属如银、锌等)

CnCi+2naoH=naCno+naC+H2o(3)

操作时次氯酸钠与氰氢根的投加比为:Cn-:naCio=1:2.85,控制废水的pH值为12~13,反应温度为15℃~90℃,反应时间为30min。废水经第一阶段氧化处理后,氰化物转化为氰酸盐,其毒性降低为naCn的千分之一,故必须进行第二阶段的氧化物处理,才能达标排放。

第二阶段氧化为完全氧化反应,反应如式(4)、(5):

2naCno+3HoCi=2naCi+H2o+2Co2+n2(4)

4naCno+3naCio+2H2o=4Co2+2n2+4naoH+6naCi(5)

操作时次氯酸钠与氰氢根的投加比为:Cn:naCio=1:3.42。用稀硫酸把废水pH值调整为8.5~9.0,温度15~40℃,反应时间约为30min,第二阶段氧化处理是把氰酸盐连同第一阶段氧化反应后留下的残存的氯化物一起氧化成无毒的Co2和n2。

2.2含铬废水中铬的回收处理

常见的含铬废水处理方法有离子交换法、电解法、铁氧体法、活性炭吸附法和化学还原法。废水中六价铬是有害和有毒物资,成为工业废水的一个重要污染源,一旦摄入人体内达到一定数量会引起癌症。废水中六价铬党因镀件表面附着而带入漂洗水中,据资料报道80%的铬酐损耗于镀件带出的附着液。它在废水中的一般含量为25~100mg/L。处理电镀铬废水的传统工艺是将废水中六价铬变成三价铬排放,使用最多的是铁痒体法。该法只是把毒性大的六价铬变成毒性较小的三价铬,没有从根本上消除铬对环境的污染,必须对其实施回收处理。理论上有下列几种回收方法:

(1)铬酸盐沉淀法这种方法是在碱性条件下投加沉淀剂氧化钡溶液,使Cro42-与Ba2+形成难溶的BaCro4沉淀(BaCro4的Ksp=1*10-10),因此习惯上也称为钡盐法。该方法的优点是处理后的水清澈透明,工艺简单,但是引入了Ba2+,造成新的污染。

(2)以氢氧化铬或三氧化二铬形式回收该法首先是把六价铬还原成三价铬,再把三价铬沉淀为氢氧化铬,进一步把氢氧化铬加热脱水,则变成三氧化二铬。含铬废水中的六价铬在酸性条件下是以Cr2o72-形式存在,而在碱性条件下是以Cro42-形式存在。在酸性条件下六价铬的还原反应速度较快,故要求还原反应pH

Cr2o72-+3So32-+8H+=2Cr3++3So42-+4H2o(6)

6Fe2++Cr2o72-+14H+=6Fe3++2Cr3++7H2o(7)

Cr2o72-+8H++3H2S=2Cr3++7H2o+3S(8)

(3)阴离子交换法当选用大孔弱碱性阴树脂370填充阴离子交换柱时,对阴离子Cro42-的亲和力最强,同时,在离子交换过程中,能自行将So42-、no3-、Cl-有效的排出树脂层。使含铬废水通过该阴离子交换柱,发生如式(9)的交换反应:2RoH+Cro42-=R2Cro4+2oH-(9)吸附Cro42后的阴离子交换树脂,用12%(m/n)KoH溶液可以将Cro42-交换出来,使阴离子交换树脂再生,反应如式(10):2R2Cro4+4KoH=2RoH+2K2Cro4+2oH-(9)再生液中含有少量Fe3+和ai3+阳离子杂质,用调节再生液pH值的方法除去,得到只含K2Cr2o7的再生液,进行蒸发浓缩,将K2Cr2o7晶体分离出来[7]。

2.3含其他重金属离子的废水处理

电镀废水中的其他重金属离子一般是指铜、锌、镍、镉等,他们有一种共性,在碱性条件下可形成氢氧化物沉淀;若加入硫化钠,则形成硫化物沉淀。酸碱重金属废水处理方法[8];改法利用金属离子的氢氧化物溶度积低的特点,在碱性条件下,将这些重金属离子沉淀下来。为了达到排放要求,排放前加酸碱调pH值。

2.4酸碱废水处理

镀件电镀前需经除油、酸洗、机械磨光或滚桶滚光来清洁表面。使镀件在入槽前达到无油、无锈、无厚的氧化膜和无脏物覆盖。一般用化学法可达到清洁表面的目的。应尽可能的采用滚桶滚光法,用较低浓度的酸、碱或表面活性剂,借机械摩擦可将钢铁件的油污和铁锈等除去,并可将零件表面磨光滑。这些措施能大幅度的减少酸碱废水的排出量,但仍然会有碱洗和酸洗产生的酸碱废水已经地面清洗废水。一方面可以利用产生的酸、碱液相互中和达到处理目的;也可以在其他系统中加以利用,例如:用酸性、碱性废水用来调整pH值。使领加药品中和酸碱废水变为补充措施,可大大境地治理废水的成本。

酸碱纵横废水主要来自镀件清洗水,呈酸性,水量最大,是电镀废水的主要来源。废水中主要含有Cu2-、ni2+等重金属离子,这些重金属离子以游离态形式存在于废水中。通过调节废水pH值(9-10),添加絮凝剂、助凝剂,使之形成氢氧化物沉淀,经过固液分离可除去Cu2+、ni2+等重金属离子,最后经砂滤器过滤及中和池条件pH值(6-9)使废水达标排放。另外预处理后的含氰废水及含铬废水也并入酸碱综合废水处理系统中进一步处理。主要化学反应:

Cu2++2oH-Cu(oH)2

ni2++2oH-ni(oH)2

Cr3++3oH-2Cr(oH)3

H++oH-H2o

3结论

电镀废水的种类和水样性质因生产条件和生产目的的不同而各有差异。因此,对不同的情况要区别进行处理,在设计废水处理工艺流程时应结合生产,充分利用废水中的可回收成分,如镀铬、镍、金、银等的废水应该进行回收利用。实践证明用合理工艺处理电镀废水,首先可大幅度减少废水的排放量;按系统分别处理电镀废水,简化了处理方法,提高了处理效果;回收铬等重金属,有效的防止了污泥对环境造成的二层污染。

参考文献:

[1]马小隆,刘晓东,周广柱.电镀废水处理存在的问题及解决方案[J].山东科技大学学报(自然科学版)2005(1):107-108.

[2]国家环保总局.1999年中国环境状况公报[J]环境保护.2007(7):120-123.

[3]黄瑞光.21世纪电镀废水处理的发展趋势[J]电镀与精饰.2000(3):1-2.

[4]王月娟,侯爱东,孙涛.综合电镀废水处理技术与应用(J)污染防治技术.2005(5):37-40.

[5]谢东方,郑建涛,田国元.电镀废水处理技术工程应用实践[J].环境技术,2004(6):37-28.

[6]彭吕盛,孟洪.等.化学法处理电镀废水的工艺流程既药剂选择[J]水处理技术,2003(6)363-365.

[7]尹洪.电镀废水中铬处理与回收[J].陕西环境,1998(1):24-25.

处理废水中重金属的方法篇10

关键词:电镀废水传统方法CZB矿物法新流程

前言

电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机器制造、轻工、电子等行业。

电镀废水的成分非常复杂,除含氰(Cn-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(au)废水、含银(ag)废水等。电镀废水的治理在国内外普遍受到重视,研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重金属、水循环使用等措施消除和减少重金属的排放量。随着电镀工业的快速发展和环保要求的日益提高,目前,电镀废水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环是发展的主流方向。

1电镀重金属废水治理技术的现状

针对我国家目前电镀行业废水的处理现状的统计和调查,广泛采用的主要有7不同分类的方法:(1)化学沉淀法,又分为中和沉淀法和硫化物沉淀法。(2)氧化还原处理,分为化学还原法、铁氧体法和电解法。(3)溶剂萃取分离法。(4)吸附法。(5)膜分离技术。(6)离子交换法。(7)生物处理技术,包括生物絮凝法、生物吸附法、生物化学法、植物修复法。但目前都存在一定的弊端或严重的不合理性。

2传统电镀废水处理方法的弊端

目前电镀废水的处理方法一般采用物化法之分流—综合两段处理。前段处理多分三支水:铬水、氰水和综合水(铜镍锌水)。铬水用还原剂使之变价还原,氰水用两级氧化破氰,铜镍锌水直接与前两股水汇合而成为综合水。后段处理综合水,基本上是用碱(烧碱或石灰)、聚合氯化铝(paC)和有机絮凝剂(pam),具体操作是:把综合水的pH值提到10~13,碱浓度大而迫使碱与重金属的反应向生成氢氧化物的方向进行。由于pH>9,排放口又得用酸中和使pH值降到9以下。

上述乃传统的处理工艺,存在许多严重的理论与实践上的错误:1、前处理三支污水的划分,不符合生产实际,因为不论那支水中都是你中有我、我中有你,只不过是铬水以铬为主、氰水以氰为主、铜镍锌三合水以3元素居多。这些实际情况,我们是在废水处理的实践中发现的,几乎所有企业的电镀废水都是如此。我们询问过电镀厂的有关人员,其实他们能把这一现象的成因说得非常清楚,奇怪的是污水管理部门竟把分流—综合两段处理作为不能违反的规范性模式。由于第二段处理的污水中各种污染物都存在,怎么可能用简单的处理药剂和方法就可使终端水达标排放呢?2、许多专门论述中都会提到,氰水要分开处理是因为氰在酸液中会生成毒性极强的HCn(氰酸),它的挥发势必造成人的中毒。这在理论上是成立的,确实要十分注意。不过,我们发现多数氰水本身就是pH

3CZB矿物法处理电镀废水

3.1CZB矿物法的概念

CZB矿物法是采用以纯天然矿物为原料,经过一定特殊工艺该性加工生产而成的专利产品nmSta天然矿物污水治理和矿粉CC,在再辅加某些助剂对电镀废水进行混合处理的一种方法。

3.2CZB矿物法的主要作用机理

由于该方法主要采用的是纯天然的矿物为主体原料,其所具有的特性有离子交换性、吸附性、化学转化性、催化性等。

3.3CZB矿物法的主要优势

该方法的主要优势如下:

1、彻底改变长期以来分流处理的传统工艺,把鉻水、氰水、综合水等混合起来进行处理,纠正了分流处理所存在的某些严重错误,弥补了传统工艺所存在的弊端。

2、经一段处理即可完全解决问题,改变了传统的两段处理模式。

3、由于上述两点,污水处理的工程装置大大简化,基建投资和工程建设时间大幅度减少。

4、传统的处理方法,从理论上分析是不可能达标的,大量的实践也证明了该工艺的确不能达到排放标准。若用矿物法处理电镀废水,从原理和实用上都表明了可以稳定地达标排放。

5、传统工艺处理电镀废水的药剂费用,主要被用于烧碱中和酸水,一般情况处理一吨

污水烧碱费就要10~15元,加上其他药剂,总药剂费多在15元以上。诚然,如果只求把废水澄清,那费用就很难有个标准了。应用矿物法,前提是达标排放。处理一吨废水药剂费大约4~9元之间。

3.4电镀废水处理流程示意图

3.4.1流程示意图

3.4.2流程说明

从车间出来的各种类型的废水在同一调节池进行混合调节,然后泵入第一反应池,还原剂用硫酸亚铁或其他还原剂均可,其用量比分流处理少1/3~1/2,具体用量视水质情况而定,反应完成后进入第二反应池,加nmSta天然矿物污水治理剂和CC矿粉(一部分起中和作用,可以节约大部分的碱,另外有去除重金属的作用)综合反应,可将废水的pH调节到5~6,该阶段一般要求不少于20min,再进入第三反应池,用碱将废水的pH调节到8~8.5,同时加入漂白水等氧化剂破氰,最后经沉淀池沉淀后排放。

4结论

经过长时间来的研究和实践,以及对理论上的探讨,结合目前的实际,我们在对各种工艺进行完全的比较(包括药剂的性价比、工程建设的投资、运营及管理等)之后,认为采用CZB矿物法处理电镀可以保证出水的水质达到国家一级排放标准。

该工艺目前还在进行更深入的研究和不断的完善之中。

5参考文献

[1]何升霞,姬相艳。利用废铁屑处理含铬废水试验研究[J]。油气田环境保护,2002,10(2):36—37。

[2]苏海佳,贺小进,谭天伟。球形壳聚糖树脂对含重金属离子废水的吸附性能研究[J]。北京大学学报,2003,30(2):19—22。

[3]翁国坚,李湘祁,烫德平,等。铝锆柱撑蒙脱石处理Cr6+废水的应用研究[J]。福州大学学报,2003,31(1):116—119。