首页范文分子遗传学的作用十篇分子遗传学的作用十篇

分子遗传学的作用十篇

发布时间:2024-04-25 20:06:06

分子遗传学的作用篇1

关键词数量遗传学;分子遗传学;动物育种;研究进展

自20世纪80年代以来,随着现代分子生物技术和信息技术的迅速发展,动物育种计划和动物分子遗传学研究取得了大量的突破性成果,国际上的动物育种已逐渐进入分子水平,从传统的育种方法朝着快速改变动物基因型甚至是单倍体型的方向发展。

1数量遗传学与动物育种

数量遗传学选择原理充分考虑了环境因素对微效多基因控制的数量性状的影响力,从表型方差中剖分出基因型方差,通过运用资料设计和统计模型估计有关的遗传参数,最后达到选种的目的[1-2]。数量遗传学主要应用于估计遗传参数、通径分析和动物育种估计的模型方法等几个方面。

1.1遗传参数估计

从统计学上讲,遗传参数的估计可归结为方差或协方差组分估计。从亲子回归、同胞分析到方差分析法;到了20世纪50年代,CRHenderson提出了针对非均衡资料的Henderson方法Ⅰ、Ⅱ和Ⅲ;之后出现了极大似然法约束极大似然法、最小范数二次无偏估计法和最小方差二次无偏估计法以及贝叶斯估计等方法。目前,约束最大似然法是世界各国育种学家采用的主要方法。

1.2育种值估计

畜禽遗传评定即评估畜禽种用价值的高低,是畜禽育种工作的中心任务。畜禽种用价值的高低是用育种值来衡量的,影响数量性状表型值的是微效多基因的加性效应值(a)、等位基因之间的显性效应值(D)和非等位基因间的上位效应值(i)。其中,只有基因的加性效应值即育种值能够稳定的遗传给后代,但是育种值不能直接测量,只能使用一定的统计学方法通过表型值对其间接加以估计,所以遗传评定的主要工作就是对育种值的估计。畜禽的估计育种值是选择种畜的主要依据,育种值估计的准确性在很大程度上影响着畜禽育种效果的好坏。用于育种值估计的方法概括起来主要有选择指数法、群体比较法和混合线性模型法。

2分子数量遗传学与动物育种

分子数量遗传学是分子生物技术与数量遗传学相结合的一门发展中的新的交叉学科,目前仍属于数量遗传学范畴[3-6]。现代分子生物技术的发展,使得从分子水平上研究数量性状的基因成为可能。

2.1对QtL作出遗传标记

目前对决定数量性状的多基因还不能准确定位,但如果能找到一个可以识别的基因或基因组的Dna多态,或是一个染色体片段与这一目标性状有密切的关联,就可作为对目标性状选择的遗传标记。遗传标记还可应用于基因转移、基因定位和基因作图等研究。

2.2QtL的分离和克隆

分子数量遗传学的目标是要分离和克隆决定数量性状的基因,研究其结构和功能,最终达到从分子水平上改良数量性状的目的。虽然在理论上可以将分子生物学领域发展的各种基因克隆技术用于QtL,但是数量性状的遗传表达一般涉及多个基因座位。例如,奶牛的产奶量既受繁殖和泌乳的内分泌系统基因的控制,又受消化酶系统基因的控制,情况相当复杂,很难把这些基因一一分离和克隆。但也可以根据已有的知识,通过对候选基因的筛选找出一个或几个对某个数量性状有较大效应的QtL,就可以对这个QtL用一般的基因克隆方法进行克隆,作为数量性状的一个重要基因来研究。例如,有资料报道猪的雌激素受体基因可影响产仔数1.0~1.5头。

3动物育种方法前景

动物分子育种是依据分子数量遗传学理论,利用分子生物学技术来改良畜禽品种的一门新型学科,是传统的动物育种理论和方法的新发展。从目前发展状况来看,它应包含两方面内容:以基因组分析为基础的标记辅助选择和以转基因技术为基础的转基因育种。由于动物分子育种是直接在水平上对性状Dna的基因型进行选择,因此其选种的准确性会大大提高;同时转基因技术的应用还能根据人们的需求创造出一些非常规性的畜牧产品[7-8]。可以说,动物分子育种是动物遗传育种学科发展的必然,它将是21世纪动物育种的一种重要方法,对21世纪世界畜牧业产生巨大的影响。

4参考文献

[1]俞英,张沅.畜禽遗传评定方法的研究进展[J].遗传,2003,25(5):607-610.

[2]李善如.遗传标记及其在动物育种中的应用[J].国外畜牧科技,1997(1):29-33.

[3]吴常信.分子数量遗传学与动物育种[J].遗传,1997(S1):1-3.

[4]李宁,吴常信.动物分子育种:一门发展中的新型学科[J].农业生物技术学报,1997,5(2):142-147.

[5]陈宏.现代生物技术与动物育种[J].黄牛杂志,2000,26(4):1-5.

[6]盛志廉,陈瑶生.数量遗传学[m].北京:科学出版社,1999.

分子遗传学的作用篇2

关键词行为遗传学;数量遗传学;分子遗传学:基因:人格

分类号B845

1引言

人格是一个人独特精神面貌的整体反映,是需要、动机、兴趣、态度、价值观、气质、性格、能力等多个方面的整合。它的形成和发展与遗传因素息息相关。然而,人格的遗传性究竟如何?到底哪些基因在起作用?它们又是如何起作用的?针对诸如此类的问题,行为遗传学家们试图为我们提供有效的解答,并由此形成了一个重要的研究领域,即人格行为遗传学研究。

人格行为遗传学研究就是运用行为遗传学理论和方法来考察和揭示人格特征(包括人格障碍)和人格差异的遗传基础问题。它强调遗传基因是塑造人格核心特征和造成人格个别差异的主要因素,但并不忽视环境的作用,甚至主张人格特征与人格差异是多种基因、多种环境以及基因与环境动态交互作用的结果。早在19世纪中后期,英国心理学家高尔顿(Galton,F.)就首先利用家谱法和双生子法研究了人格差异的遗传基础。尽管他的研究因未将遗传和环境区分开来而具有诸多局限,但它“为人类行为的变异范围提供了档案证明并且说明了行为变异存在遗传基础”(plomin,DeFries,mcClearn,&mcGuffin,2008),是运用行为遗传学方法研究人格差异的先驱性尝试。高尔顿之后的20世纪,人格的行为遗传学研究因行为主义主流范式的盛行而长期遭到“冷遇”。前者强调人格的遗传性,而后者坚持环境论并认为人格由社会化的习惯决定,两者的矛盾在这种势力不均的情势下曾一度不可调和。

但近几十年来,行为主义的逐渐衰落和现代生物学特别是分子生物学的飞速发展分别为人格的行为遗传学研究提供了巨大发展空间和发展动力,并使它由传统的数量遗传学取向发展到分子遗传学取向。分子遗传学取向是发端于20世纪初而到20世纪末才应用于人格研究的一种新取向,它在研究方法和研究理念上都较数量遗传学取向具有革命性突破,目前正以惊人的速度发展着。可以说,人格遗传学研究进入到分子遗传学时代(Johnson,penke,&Spinath,2011)。不过,两种研究取向在基本思路方面各有特色,在具体研究方面都取得了很多有价值的成果,积极推动了人格行为遗传学研究的复兴和发展。

2数量遗传学取向

人格的数量遗传学(quantitativegenetics)研究取向主张运用双生子研究、收养研究等设计来估计群体中遗传因素对人格表现型方差的贡献率,旨在用数量化的手段从宏观上估计某种人格变异在多大程度上是由遗传效应引起的,并考察遗传通过与环境交互作用或相关影响人格的方式以及这些效应发生的具体情境。

2.1人格遗传率

数量遗传学衡量人格遗传性大小的核心指标是遗传率(heritability),即在某群体内观测到的人格总变异中能被遗传变异解释的百分比,它既可以揭示遗传是否影响某种人格特征又可以指明这种影响达到何种程度。人格遗传率可以用公式h2=Vg/Vp(其中h2代表人格遗传率,Vg代表遗传导致的人格变异,V。代表观测到的人格总变异)来表示,数值在0~1之间,越接近于0,说明变异越少源于遗传;越接近于1,说明变异越多源于遗传。需要指出的是,遗传率估计具有如下三个特点:第一,它具有群体特异性,仅仅适用于解释样本或群体的人格差异,而不适用于描述个体人格的遗传性;第二,它假定遗传因子和环境因子之间不存在相关或交互作用;第三,它会因测量方法和计算方法不同而有细微差别(郭永玉,2005;Larsen&Buss,2009)。

2.2数量遗传学设计

为了把基因和环境对人格差异的贡献分离开来,数量遗传学家采用了家族研究、双生子研究和收养研究等多种研究设计。家族研究是最早用于人格研究的行为遗传学方法,但它不能将遗传与共同环境的作用区分开来,因而不能得出准确的遗传率;双生子研究是现代人格行为遗传学研究最常用的一种有效方法,它在一定程度上克服了家族研究的缺陷,但它的等环境假设和代表性也往往令人担忧:收养研究作为一种强有力的自然实验法,是“解开影响家族相似性的遗传和环境源之结的最直接方法”,避免了双生子研究中的等环境假设问题,提供了环境影响人格差异的最佳证据,但它也存在三个争议,即代表性、生前环境影响和选择性安置效应(plominetal.,2008)。

鉴于以上三种方法各有其长处和不足,在过去的20多年中,数量遗传学家已经开始利用家族研究、双生子研究和收养研究的组合设计来研究人格。例如,研究分开抚养的同卵双生子就把双生子研究和收养研究各自的优点进行了有效整合,并且分开抚养的同卵双生子在某种人格特质上的相关系数可以直接解释为遗传率的一个指标(Larsen&Buss,2009)。另外,随着离异和再婚现象增多而产生的继亲家庭研究,自然地综合了家族研究与收养研究的优势,也是一种有趣和有效的组合研究设计。对多组比较的组合设计,甚至简单的收养和双生子研究,现代行为遗传学通常采用模型拟合(modelfitting)的方法进行统计分析,即建立一个反映各种遗传和环境因素对某种人格特质贡献大小的结构方程模型,并将其与观测到的相关进行比较,从而估计出遗传和环境的影响程度(郭永玉,2005)。

2.3具体研究与发现

数量遗传学取向的人格研究者利用上述设计主要对人格特质、人格障碍以及态度与偏好的遗传性问题进行了考察。

2.3.1人格特质

数量遗传学关于人格特质的研究主要涉及人格的五大特征,即外倾性、宜人性、责任心、神经质和经验开放性,其中研究最充分的要数外倾性和神经质。多数数量遗传学研究表明,“大五”人格模型中的所有因素都具有中等大小的遗传率,并且此研究结果在不同年龄段、不同性别以及不同文化背景的样本群体中具有普遍一致性(saudino,1997;Loehlin,mcCrae,Costa,&John,1998)。例如,两项以双生子为被试的研究表明,神经质和外倾性的遗传率估计值分别为43%和52-54%(wray,Birley,Sullivan,Visscher,&martin,2007;Rettew,Rebollo-mesa,Hudziak,willemsen,&Boomsma,2008)。以往数量遗传学对“大五”人格的研究通常都以正常人群为被试,最近许多研究开始关注异常人群“大五”人格的遗传性问题。例如,Kendler,myers和Reichborn-Kjennerud(2011)的研究表明,边缘型人格障碍与“大五”人格中的神经质维度存在显著的遗传正相关,而与宜人性和责任心维度存在显著的遗传负相关。Hare等人(2012)的研究表明,躁郁症患者人群“大五”人格的遗传率(23%~32%)某种程度上低于正常人群的研究结果(40%~60%)。我们固然可以推测是异常人格影响了“大五”人格遗传率的变化,但要得出确切的因果结论还需依赖未来数量遗传学和分子遗传学更加细致的综合研究。

除“大五”人格外,研究者还对活动水平(activitylevel)和“精神病”人格特质的个别差异进行了行为遗传学分析。活动水平是气质的一个组成元素,其个别差异出现于生命早期,并随着时间推移在儿童身上表现出稳定性。Spinath,wolf,angleitner,Borkenau和Riemann(2002)对300对双生子的研究表明,活动水平存在40%的遗传率。“精神病”人格特质包括权术主义、铁石心肠、冲动性不一致、无所畏惧、责备外化和压力免疫等方面。Blonigen,Carlson,Krueger和patrick(2003)对353名男性双生子进行了研究,发现所有这些“精神病”人格特质都表现出中等或高等的遗传率。

数量遗传学研究发现,尽管不同研究设计所得出的具体数值会有所不同,但一般的人格特质都具有较高的遗传率估计值(Krueger&Johnson,2008)。

2.3.2人格障碍

数量遗传学系统研究的人格障碍主要有精神分裂型人格障碍、强迫型人格障碍和边缘型人格障碍。精神分裂型人格障碍具有轻微精神分裂样症状,用个人访谈法和问卷法所做研究表明,它具有非常高的遗传率(Kendler,myers,torgersen,neale,&Reichbom-Kjennerud,2007)。强迫型人格障碍是一种神经精神病状态,以思想、情感、观念以及行为的反复为典型症状,它所包含的五个因素即禁忌、污驰/清洁、疑虑、迷信/仪式和对称/囤积的遗传率位于24%和44%之间(Katerbergetal.,2010)。上述两种人格障碍可能是精神机能障碍遗传连续体的一部分,因为它们分别与精神分裂症和强迫焦虑症之间存在某种程度的遗传重叠(plominetal.,2008)。边缘型人格障碍是一种以心境反复无常、自我认同感紊乱、情绪冲动以及行为不稳定等为主要表现的人格障碍,它很大程度上受遗传基因影响。例如,对荷兰、比利时和澳大利亚三个国家5000多名双生子的数量遗传学研究表明,加性遗传效应(additivegeneticeffect)可以解释42%的边缘型人格障碍变异,而且这一结果具有跨性别和跨国别的一致性(Disteletal.,2008)。最近一项10年的双生子纵向研究发现,边缘型人格障碍特质在14~24岁的各个年龄段都具有中等的遗传率,且遗传率有随年龄增长而轻微上升的趋势,而这些特质的稳定性和变化受遗传因素高度影响,一定程度上也受非共享环境的影响(Bornovalova,Hicks,iacono,&mcGue,2009)。

2.3.3态度与偏好

稳定的态度和偏好通常被看作人格的一部分,并表现出广泛的个体差异。数量遗传学家对态度和偏好的遗传性进行了饶有趣味的考察。综观多数研究可知,态度的核心特征传统主义具有中等的遗传率。例如,一项明尼苏达的双生子研究表明,传统主义的遗传率为63%;一项对654名收养和非收养儿童的纵向研究表明,遗传对保守态度具有重要影响,并且显著的遗传影响早在12岁时就已产生(Larsen&Buss,2009)。然而,并不是所有态度和信仰都表现出中等水平的遗传率,这要因所研究的态度类型而异。例如,一项对400对双生子的研究表明,对上帝的信仰、对宗教事务的参与以及对种族一体化的态度的遗传率为零(Larsen&Buss,2009)。基因似乎也影响职业兴趣或偏好。一项用修订版的杰克逊职业兴趣量表(JViS)做的研究表明,34种职业兴趣中有30种的遗传率在37%和61%之间(schermer&Vernon,2008)。这表明,我们绞尽脑汁作出的职业选择很大程度上受到我们从父母那里继承的基因的影响。但值得我们注意的是,为什么有些态度和兴趣具有较高的遗传性,而有些态度和信仰的遗传性不明显甚至为零?或许未来的行为遗传学研究能够给出答案。

3分子遗传学取向

人格的分子遗传学(moleculargenetics)研究取向主张在Dna水平上用基因测定方法研究特定基因对人格表现型的影响效应,旨在超越传统人格数量遗传学研究仅停留在统计学层面考察遗传率的局限,而从微观层面直接鉴别对人格产生重要遗传影响的具体基因或基因组合,以精确揭示人格特征(包括人格障碍)或人格差异的根本遗传机制。

3.1人格候选基因

已知人类基因具有数万种之多,要想从中找出对人格起作用的特定基因是件困难的事情。况且,复杂的人格或行为特质并不简单地遵循孟德尔的单基因遗传定律,而是同时受作用幅度不完全相同而又相互协同和相互作用的多个基因的影响,这就又大大增加了确定这些基因的难度。因此,研究者不可能对所有基因都进行考察,更多的是考察候选基因与人格的关系。人格候选基因(candidategene)是被假定与某一人格特质有关的基因,通常人们已了解其生物学功能和序列,它们可能是结构基因、调节基因或在生化代谢途径中影响性状表达的基因。研究者一般通过了解相关生理机制来确定人格的候选基因。例如,用于治疗活动过度的药物常含有多巴胺,因而像多巴胺受体、多巴胺启动子和多巴胺转运体这样与多巴胺有关的基因便成为候选基因研究的目标。我们通常缺乏哪些基因是人格候选基因的强假设,因此试图将那些与具有生理作用的Dna标记有关的基因与人格联系起来的做法是很有道理的(张丽华,宋芳,邹群,2006)。

3.2研究策略

人格分子遗传学研究者主要采用连锁策略和关联策略来寻找和鉴别对特定人格或行为特质有广泛遗传影响的具体基因。连锁策略(linkagestrategy)采取从行为水平到基因水平的“自上而下”的研究思路,它以携带某种人格特质或障碍的家系为研究对象,对连续几代人的Dna样本进行分析,以确定是否有对该人格特征影响较大的特定基因存在。由于研究者并无假定的候选基因,这种策略对定位单基因遗传特质的强效基因十分有效,但当牵涉若干个作用较小的基因时它便不再那么有效。然而,大多数复杂的人格或行为特质往往牵涉多个微效基因,于是另一种较新的关联策略(associationstrategy)便成为最常用的确定人格基因的策略。关联策略采取由基因到行为的“自下而上”的研究思路,通过考察拥有某种特定基因(或等位基因)的个体比没有该基因的个体在某种特定人格特质上的得分是高还是低,来确定候选基因与人格或行为特质之间的关联情况,即一种可能的因果关系。关联策略比连锁策略更容易找到只有微弱效应的特定基因,但系统性不够强。

随着人类基因组多态性研究以及Snp分型技术的发展,全基因组扫描(genome-widescanning)逐渐成为一种标志性的分子遗传学人格研究策略(Strobel&Brocke,2011)。它主要包括对人格表现型的全基因组连锁分析和全基因组关联分析,先将人格表现型的相关位点定位于染色体某个区域,然后再进行候选基因研究或连锁不平衡分析,确定其具体基因位点。例如,一项用全基因组扫描做的研究表明,伤害回避与8p21染色体区域存在显著相关(zoharetal.,2003)。

3.3具体研究与发现

基因主要是通过大脑中的神经递质系统来影响人格的,因而参与调节神经递质系统的基因便成为主要的候选基因。在Cloninger等人的人格心理生物模型中,新颖性寻求(novelty-seeking)、伤害回避(harm-avoidance)和奖赏依赖(reward-dependence)三种气质维度被假定分别与大脑调节不同类型刺激反应的三种神经递质系统即多巴胺(dopamine)系统、5-羟色胺(serotonin)系统和去甲。肾上腺素(noradrenaline)系统相联系。此类理论假设促使人格分子遗传学研究者们主要从这三种神经递质路径考察了基因多态性与人格之间的关系。

3.3.1多巴胺系统

多巴胺是脑部负责快乐和兴奋的一种积极化学物质,它的缺乏会促使个体积极寻求有效物质或新异经验以增加多巴胺释放。到目前为止,人格研究中最早且最多关注的Dna标记是位于第11号染色体短臂上的多巴胺D4受体基因(DRD4)。1996年,两个独立研究小组同时在《自然遗传学》上报告了DRD4基因的3号外显子中的48-bpVntR多态性与新颖性寻求之间存在正相关,标志着人格分子遗传学研究的初步登场(ebstein&israel,2009)。其中,ebstein领导的小组运用三维人格问卷(tpQ)对124名犹太健康志愿者进行了测量,发现长重复段DRD4等位基因对新颖性寻求具有6%的解释效应,而未发现它与另外三个tpQ指标(奖赏依赖、伤害回避和坚持性)有显著关联(ebsteinetal.,1996);Beniamin领导的小组运用大五人格量表修订版(neo-pi-R)对315名美国成人和兄弟姐妹进行了预测测量,也发现拥有长重复段DRD4等位基因的个体比拥有短重复段DRD4等位基因的个体新颖性寻求水平显著高,并且发现长重复段DRD4等位基因与neo-pi-R量表的外倾性和责任心两个维度显著相关,而在其他三个维度即神经质、开放性和宜人性上未见此结果(Benjaminetal.,1996)。对于这两种研究的结果可能的解释是,拥有长重复段DRD4等位基因的个体对多巴胺的相对缺乏反应敏感,需要寻求外界新异经验来增加多巴胺释放,而拥有短重复段DRD4等位基因的个体倾向于对脑中已经存在的多巴胺作出高度反应,无需寻求新异经验便可使多巴胺含量达到适当水平。

此后,一系列研究对DRD4基因与新颖性寻求这种人格特质之间的关联进行了重复验证,但结果并不完全一致。两项分别以德国人和日本人为被试的研究证实DRD4基因与新颖性寻求特质之间的确存在显著关联(strobel,wehr,michel,&Brocke,1999;tomitakaetal.,1999);Burt等人对明尼苏达137个双生子家庭所做的研究发现,DRD4基因与新颖性寻求测量指标之间不存在任何关联(Bun,mcGue,iacono,Comings,&macmurray,2002);ekelund等人则得出了与1996年研究相反方向的结果,即在新颖性寻求水平较高的群体中,2次和5次重复等位基因而非7次重复等位基因的频率更高(ekelund,Lichtermann,Jarvelin,&pelmnen,1999)。除此之外,有些研究还发现DRD4基因与其他人格候选基因存在联合效应。一项关于1岁新生儿对新异事物反应的研究发现,DRD4基因中的48-bpVntR与5-羟色胺转运体基因(5-Htt)中的一种多态性存在联合效应(Lakatosetal.,2003)。之所以会出现如此多样的研究结果,可能与样本大小、被试特点(年龄、性别和种族文化等)、测量工具、研究设计等因素有关。例如,分组方法不同所得研究结果就会有很大差异(tsuchimineetal.,2009)。不管怎样,这都有待于进一步研究证实。

除DRD4基因外,研究者还对多巴胺系统中的其他人格候选基因进行了考察,如多巴胺D2受体基因(DRD2)、多巴胺D3受体基因(DRD3)、多巴胺D5受体基因(DRD5)以及多巴胺转运体基因(Datl)等。一项用多种人格测验所做的研究表明,DRD2基因的-141C插入/缺失多态性与卡氏人格量表(KSp)测量的冷漠以及北欧大学人格量表(SSp)测量的自信缺乏之间存在关联(JSnssonetal.,2003,),而利用气质性格量表(tci)对被试所做的一项研究表明,-141C插入/缺失多态性和DRD2/anKK1基因的taqla多态性与人格特质之间可能并非存在直接强相关,而是在DRD2基因与anKKl基因的交互作用条件下才对人格产生影响(tsuchimineetal.,2012)。在一个由862名个体组成的样本中发现DRD3基因与神经质和行为抑制存在关联,而当该样本扩大到1465人时这种关联未得到验证(Hendersonetal.,2000)。有研究表明,DRD5基因可能与人格的持续性发展有关(Vanyukov,moss,Kaplan,Kirillova,&tarter,2000)。由于发现Dat1基因与具有某些新颖性寻求特征的注意缺陷多动症(aDHD)存在关联(Jormetal.,2001,),有人用极端分数个体为被试考察了Datl基因与新颖性寻求之间的关联,结果表明这种效应只在女性被试身上有所显现(vanGesteletal.,2002)。

3.3.25-羟色胺系统

5-羟色胺作为一种生物胺,对于人类的攻击性、抑郁、焦虑、冲动、幸福感等情绪情感具有重要调控作用。此系统中最经常被研究的人格候选基因是5-羟色胺转运体基因(5-Htt),该基因越长释放和回收5-羟色胺的效率越高,已有许多研究考察了它与伤害回避等焦虑类人格特质之间的关联。5-Htt基因具有两种多态性:5-Htt基因连锁的多态性区域(5-HttLpR)和5-Htt基因2号内含子中的VntR多态性,其中人格研究关注最多的是5-HttLpR。

1996年的一项经典研究发现,短5-HttLpR等位基因携带者较长5-HttLpR等位基因携带者在神经质和伤害回避维度上的表现水平更高(Leschetal.,1996)。功能性磁共振成像表明,携带一个或两个短5-HttLpR等位基因复本的个体在对恐怖刺激的反应中表现出更强的杏仁核神经元活动(Haridetal.,2002)。这种由遗传导致的杏仁核对情绪刺激的兴奋性差异支持了该结论。不过,也有一些其他研究并未发现此种关联(Floryetal.,1999;tsai,Hong,&Cheng,2002)。还有一些研究得出了相反结果。例如,使用极端得分个体做的一项研究发现,短5-HttLpR等位基因在低伤害回避群体中比在高伤害回避群体中出现的频率更高(vanGesteletal.,2002)。2004年的一份元分析指出。这种可重复性的缺乏很大程度上是由于样本量过小以及所使用的量表不同而导致(Sen,Burmeister,&Ghosh,2004)。分析者发现,运用大五人格量表测量的神经质与5-HttLpR有显著关联,而运用气质性格量表测量的伤害回避与5-HttLpR不存在任何显著关联。2008年的另一份元分析也得出了类似结论(munaf6etal.,2008)。然而,使用neo-pi-R量表对4000多名被试进行的一项大型研究发现,5-HttLpR与神经质或其各维度(焦虑,抑郁,愤怒,敌意,自我意识,冲动。易受伤害性)之间不存在任何关联(terraccianoetal.,2009)。近年来,有研究者发现,与其杂合子同伴或短等位基因的纯合子同伴相比,具有长5-HtLpR等位基因的纯合子个体通常更关注积极情感画面,而选择性地回避一同呈现的消极情感画面(Fox,Ridgewell,&ashwin,2009)。这表明他们通常更加乐观。使用信息加工眼动跟踪评估法进行的另一项研究发现,短5-HtLpR等位基因携带者在视觉上更加偏爱积极场景而回避消极场景,长5-HtLpR等位基因的纯合子个体更加无偏地看待情绪场景(Beevers,ellis,wells,&mcGeary,2009)。这表明,短5-HtLpR等位基因携带者可能比长等位基因纯合子个体对环境中的情绪信息更加敏感。对于5-HtLpR与人格特质之间关系的这些看似不一致的结论,还有待进一步研究确证。此外,一项最新研究显示,5-HtLpR与Val66met两种多态性对伤害回避存在显著交互作用(ariasetal.,2012)。

除5-Htt基因外,研究者还对5-羟色胺系统中的另外两个人格候选基因5-羟色胺2a受体基因(5-Ht2a)和5-羟色胺2C受体基因(5-Ht2C)进行了考察。有研究者在双极性精神障碍患者和健康控制组群体中检验了5-Ht2a的1号外显子中的一种单核苷酸多态性与伤害回避维度之间的关联,但是没有发现任何关联存在(Blairyetal.,2000)。还有研究者以健康日本人为样本对5-Ht2a的5种单核苷酸多态性进行了考察,没有发现它们与气质性格量表的任何维度存在关联(Kusumietal.,2002)。就5-Ht2C与人格的关系而言,研究者发现5-Ht2C中的一个点突变与三维人格问卷的奖赏依赖维度和坚持性维度存在关联,并且DRD4与5-Ht2C对奖赏依赖存在显著交互效应(ebsteinetal.,1997)。然而,后来的一项重复性研究发现,5-Ht2C对奖赏依赖不存在主效应,但DRD4与5-Ht2C对奖赏依赖确实存在显著交互效应(Kühnetal.,1999)。

3.3.3去甲肾上腺素系统

在人格的分子遗传学研究中,人们对去甲肾上腺素系统的关注远不及对多巴胺系统和5-羟色胺系统的关注多,但也取得了一些研究成果。有研究以健康被试为样本,考察了去甲肾上腺素转运体(net)的一种外显子限制性片段长度多态性(RFLp)与气质性格量表中各维度之间的关系,但没有发现任何关联存在(Samochowiecetal.,2001)。不过,另一项以朝鲜人为被试的研究表明,去甲肾上腺素转运体的t-182C基因多态性与气质性格量表的奖赏依赖维度存在显著关联(Ham,Choi,Lee,Kang,&Lee,2005)。有研究表明,在中国人被试中,αla肾上腺素受体基因(aDRala)和0c2a肾上腺素受体基因(aDRa2a)的多态性与三维人格问卷各维度之间不存在任何关联(tsai,wang,&Hong,2001)。而之前的另一项研究发现,aDRa2a的一种常见单核苷酸多态性与易怒性、敌对性和冲动性诸测量值之间的确存在某些关联(comingsetal.,2000)。关于去甲肾上腺素系统的诸候选基因与人格之间关系的研究,有待进一步加强。

4总结与展望

行为遗传学通过数量遗传学和分子遗传学两条取径对人格遗传性问题进行了不同层次的详细探索,取得了较为丰富的研究成果,推进了我们对人格遗传程度和遗传机制的深刻认识,也有利于促进人格研究的科学化。人格行为遗传学研究的两类取向各具优势和不足。数量遗传学取向借助生态研究设计从宏观上估计遗传变异对人格差异的解释程度,资料获取经济简单、技术要求低,并且结果解释相对容易,但它无法确切地告诉我们究竟哪些基因或多态性导致了人格差异以及具体作用过程如何(parens,2004),对研究设计和被试取样的依赖性较强,况且面对遗传与环境实际存在相关或交互作用的不争事实,遗传率的解释意义往往遭到质疑(Lerner,2011)。分子遗传学取向摆脱了数量遗传学取向存在的诸多不足,可以从Dan水平精确细微地探知造成人格障碍或差异的特定基因及其作用机制,但研究程序繁琐复杂,对新兴生物技术要求较高,在人格候选基因的选择上带有推测性,迄今为止尚未产生符合最初预期的可重复的实质性人格研究成果(mcClellan&King,2010)。除此之外,两类研究取向还存在诸多共同的问题:一是受测量手段限制,对被试自陈报告依赖性高,往往会造成某些人格特质在防卫或伪装心理作用下被隐藏;二是由于研究设计和技术、被试取样、人格和基因自身复杂性以及环境与基因的交互作用等原因,研究结果的可重复性不高(Kim&Kim,2011);三是受过去百余年消极心理学研究传统的影响,所研究的对象主要是精神分裂症、抑郁症、多动症等病理人群(张文新,王美萍,曹丛,2012),缺乏对健康人群积极人格品质的遗传研究;四是研究成果的现实利用率低,未能把研究所得成果及时有效地转化为现实效益。

鉴于人格行为遗传学研究所存在的诸多问题,未来研究应特别注意以下五个方面:

(1)强调两种研究取向的有机结合,在数量遗传设计中加入对特定基因型的直接测量。这两种研究取向各有优缺,可以相互弥补,况且分子遗传学的许多工作需用传统数量遗传学设计综合考虑环境与遗传因素来完成。未来研究可以在数量遗传设计中加入对特定基因型的直接测量,例如,可以先用数量遗传学方法确定某种人格特征是否具有遗传性以及遗传到什么程度,然后再用分子遗传学方法从根本上细微探究影响人格的具体基因及其作用方式。

(2)注重多学科和多范式的有效整合。人格的行为遗传学研究是一项综合性很高的困难工作,涉及遗传学、心理学、生物学、神经科学、医学和社会学等多门学科,因此需要在更广泛的视野下进行多学科的整合研究。人格的遗传机制相当复杂,靠单一研究工具(如自陈问卷)或研究范式很难获得理想结果,今后应在传统研究范式的基础上综合采用脑成像、诱发电位、前脉冲抑制和计算机博弈模型等一些新的研究范式,从多个角度综合考察和相互印证人格与基因的关系,从而弥补由自陈报告带来的弊端,同时克服可重复性低的问题。

(3)扩大对健康人群积极人格品质的研究。未来人格行为遗传学研究不仅要研究病理人群的消极人格品质,而且更要研究正常人群甚至超常人群的积极人格品质,探究它们的遗传性及分子作用机制,为积极人格品质的培养提供遗传学依据。

分子遗传学的作用篇3

1表遗传学的产生和发展

遗传学是生物学的核心学科之一,与生物的发育、进化等学科密切相关。在19世纪,主流生物学认为遗传和发育是同一个问题至19世纪下半叶,遗传学研究取得重要进展。1865年孟德尔发现“分离规律”和“自由组合规律”,提出了遗传因子说来解释这些遗传现象;1879年,Flemming发现染色体,随后wilson和Boveri等通过实验证明,发育的编程存在于染色体中;1911年摩尔根在果蝇的伴性遗传中证明,遗传因子存在于染色体上,并发现位于同一条染色体上基因遗传的连锁和互换规律。此后,当遗传学迅速发展的同时,也积累了不少传统遗传学不能解释的遗传现象。例如,muller等的工作表明,基因的易位或染色体重排能影响基因性状的表达,看来基因并不是一个独立的实体,它的功能还受到在基因组中的位置的影响;在基因组印记基因中,表现的性状取决于亲本的来源,表明双亲的等位基因对性状的遗传贡献并不相等。

20世纪初的几十年里,遗传学和发育生物学的研究很少考虑对方的成果和方法,各自发展。至40年代,一些生物学家认识到这种研究方法的局限性,其中通晓发育生物学和遗传学的waddingtonCH(1905-1975)于1939年首先提出“发育是表遗传的(epigenetic)”;1942年他又提出表遗传学(epigenetics)和表遗传景观(epigeneticlandscape)等概念,主张将两个学科联系起来研究。他认为表遗传学是研究基因型产生表型的过程。其实,具有发育生物学背景的摩尔根也有类似认识,早在1925年《基因论》一书中就认为:“明了基因如何对发育中个体发生影响,毫无疑义地将使我们对遗传的观点进一步扩大,对于目前还不了解的许多现象也多半会有所阐明”。此后遗传学发展遇到一些难题,也印证了开展这类研究的重要性。

在个体发育中所有细胞都具有相同的基因组,是何种机制调控基因表达的特异性编程,分化成不同类型的组织细胞,一旦建立就能在谱系细胞间遗传;又如,人类同卵双生子具有完全相同的基因组,根据传统理论应发育成完全相似的两个个体,然而约有1/3的同卵双生子20岁后出现了个性和疾病易感性等方面的差异;另外,成体组织细胞核移植实验发现,虽然所形成的克隆胚胎具有完整的基因组,但实际上在胚胎发育过程中常出现各种异常,多数在出生前夭亡,少数生存的个体也有多方面的异常,并且寿命较正常胎生的个体短。

表遗传学概念提出后,由于对其机制还不清楚,长期以来发展缓慢。直至1975年Holliday等在研究中发现,Dna甲基化在基因表达中具有重要作用,并认为是发育中基因活性调节的开关;另外,他还推测存在一种维持型甲基化酶,能识别复制的半甲基化Dna,从而解决甲基化模式的遗传问题[4,12]。此后的10多年间,没有发现这种甲基化酶,表遗传学又是一段沉默。

20世纪90年代,表遗传学研究取得一系列重大突破。首先证实了维持型Dna甲基化酶的存在,如小鼠剔除Dna甲基化酶基因,则发育异常;在人类肿瘤中发现,肿瘤抑制基因p16因高甲基化而灭活,如用去甲基化抑制剂处理,能使p16基因复活。上述研究提示,Dna甲基化在正常发育和肿瘤发生中起重要作用[2,4]。其次,在染色质结合组蛋白的研究中发现,组蛋白各种修饰如乙酰化、甲基化和磷酸化等,可影响各种调节蛋白和功能复合物与Dna接触通路;各种修饰组合构成的"组蛋白密码",提供了效应蛋白的结合点,在基因表达调控中发挥作用;另外,还发现染色质和基因组转录的非编码Rna在基因表达调控中也起到重要作用。至此,表遗传学机制的框架已初步确立,并在各种类型的生物得到证实。2001年Science专辑发表一组评述,系统介绍了表遗传学研究领域和进展。2003年,nature就双生子等表遗传学研究发表述评。21世纪表遗传学迅猛发展,上述遗传学存在的难题已有不同程度的阐明,并开发出新的研究领域,显示表遗传学已成为主流生物学和医学的一部分。

人类基因组计划完成及其后续计划的研究,提升了对人类自身的认识,但也获得了许多意想不到的结果,对传统基因中心论形成了冲击。例如:(1)人类基因组约有10万个基因,而实际只测出不足25000个,约是果蝇的2倍。有学者质疑,只有不足2%的Dna序列就含有充分的遗传信息,调控人类的生长发育和生命的全过程,而98%的Dna为"垃圾Dna”;(2)不是机体愈复杂基因数愈多。如在脊椎动物中编码蛋白质基因的数量、编码序列的长度并没有显著改变,而它们的发育复杂性存在巨大的差异;深入研究发现,90%以上的基因组被转录,生物学复杂性通常与基因组非蛋白质编码部分相关,而编码蛋白质基因维持相对的静态;各种类型的非编码Rna几乎调节各个水平的基因表达,构成一个巨大、高效的调控网络,促进正常的发育和生理过程,其功能异常可引发疾病,而这些正是表遗传学的研究领域;(3)人类基因组约有1千多万个单核苷酸多态,曾有学者期望于通过单核苷酸多态性的研究,确定一些常见病的个体易感性,但迄今为止,包括应用全基因组关联研究(Genomewideasso?ciationstudy,GwaS)虽取得不少成果,但在总体上两者间的关联性不如预期的那样好。

只有从史学角度分析一个事物的发生与发展,才能更好地了解其存在意义。对上述表遗传学发展的过程和背景的分析表明,表遗传学是科学发展到一定阶段产生的,能够克服和补充传统遗传学之不足,随着表遗传学研究的深入,必将促进新一轮的遗传学的发展。

2表遗传学与遗传学的关系2.1表遗传现象与非孟德尔遗传方式

表遗传学是研究不能用Dna序列变化解释的、能通过有丝分裂或减数分裂遗传的基因功能的改是变。表遗传学遗传或表遗传(epigeneticinheritance)涉及非Dna序列编码的信息或基因表达状态,在细胞和个体世代间的传递。这种能影响后代性状的表遗传信息,没有Dna原始结构的改变或来自环境的诱因。目前,多把涉及个体世代间的表遗传称之为跨代表遗传(transgenerationalepigeneticinheritance),尽管在单细胞生物,细胞分裂与世代交替是一致的,而在多细胞生物就可能有不同的机制和进化意义_。

百年来积累了许多不能用孟德尔规律解释的遗传现象,例如基因组印记、位置效应花斑、副突变、表突变、X-染色体失活和转基因沉默等。近年来研究发现,这些现象都有其表遗传学基础。

基因组印记是一种表遗传现象,其特征是某些基因以亲本来源特异性、等位基因差异性表达,这类印记基因约占基因组基因数的1%,是晡乳动物和有花植物的独特现象。经典的孟德尔遗传,遗传性状的形成需要来自父、母双方等位基因的表达;而印记基因的表达是由染色体亲本来源所决定、单等位基因表达;受影响的基因在男、女性后代中显示与亲本特异性相同的表达。现已研究表明,基因组印记是由于特定亲本等位基因差异甲基化区(DmR)高甲基化的结果。

位置效应是指当基因在染色体上的位置发生改变时,影响该基因的表达,位置效应花斑(position-effectvariegation,peV)是其中的一种,是由muller等于1930年首先在果蝇研究中发现的。在位置效应花斑情况下,由于基因周边基因组环境的改变引发了基因可逆性灭活,通常是由于处于有转录活性常染色质区的基因,通过染色质重排,移至邻近无转录活性异染色质区,因异染色质能随机扩展,引发部分基因的失活,这样在相同遗传背景的细胞群体中产生镶嵌表型的花斑。

副突变(paramutation)也是一种表遗传现象。根据孟德尔的分离规律,来自双亲、决定性状遗传的一对等位基因彼此独立,互不影响;在生殖细胞形成时,各自分离,分别进入配子。副突变是一对等位基因间相互作用的结果,此时沉默的等位基因通过反式沉默另一等位基因,并可通过减数分裂遗传。沉默等位基因是副突变源性的(paramutagenic),具有副突变能力的等位基因是副易变的(paramutable);沉默的副易变等位基因在下一代则获得了副突变源的能力,因此这一可遗传的表达状态能在群体中迅速传播。最近的结果表明,副突变关系到Rna介导的、可遗传的染色质改变,以及许多与Rnai途径相关基因的变化。

其他一些传统遗传学之谜随着表遗传学进展也在逐步解开。例如:同卵双生子间个性和易感性等的差异,是基因组甲基化模式差异的结果;在发育过程中,分化细胞所形成特殊的基因表达模式,通过细胞记忆在细胞世代间稳定传递,维持细胞的同一性,即体细胞表遗传现象。在肿瘤发生中,启动子区的高甲基化和基因突变一样,引发肿瘤抑制基因的灭活;生殖系hmLH1启动子区的高甲基化引起的表突变,同样可引发遗传性肿瘤,等等。

2.2传统遗传学信息与表遗传学信息

近10多年来的遗传学和表遗传学研究进展使人们认识到人类基因组含有两类遗传信息,传统遗传信息(Classicgeneticinformation)提供了合成生命所必需蛋白质的模板,表遗传信息(epigeneticin?formation)提供了何时、何地和以何种方式应用遗传信息的指令。它们的遗传物质基础、编码和遗传方式不同。编码蛋白质的遗传信息贮存在Dna序列之中,通过半保留复制准确地传递给后代,因此除非偶发突变事件,通常遗传性状不受所处环境和亲本行为等的影响,在世代间稳定地传递。

表遗传信息提供了在细胞内选择性地激活或灭活基因功能,这是更高层次和特化的遗传信息。大量的研究显示,染色质修饰是基因转录活性调控的基本机制,其中关键机制是Dna甲基化和组蛋白修饰,由于这类修饰的组合本质,大大地延伸了遗传密码的信息潜能。它们再与染色质重塑复合物、核内系统结构和ncRna协同,决定了受控基因区段的染色质结构和其转录活性。在细胞分裂中,表遗传学信息的复制机制除Dna甲基化外其余的尚不很清晰,其保真度不如Dna复制可靠;它们易受到环境压力、营养和亲本行为等因素的影响,其中一部分修饰的表基因型可传递给后代,引起表遗传性状的改变。

从上述可见,生物至少存在有3个不同层次的遗传信息:一是编码蛋白质的基因和Dna调控序列,蛋白质是生命体系中结构和功能的物质基础,是最基本的遗传信息;二是由编码Rna基因组成,这类基因主要存在于非蛋白质编码的Dna序列中,转录形成的多种类型的ncRna构成巨大的基因表达调控网络;三是表遗传信息,贮藏在Dna及与其结合蛋白的各类共价修饰和染色质构型之中,是表遗传学调控的基本机制。它们之间的功能协同,才能完成生物的遗传过程;同时完成了从基因的一维遗传信息向三维的表遗传信息的转换。

2.3基因组与表基因组

基因组是机体遗传信息的总和,其中包括编码蛋白质的Dna序列(基因)、非编码Dna序列(非编码Rna基因,non-codingRnagene)、基因表达调控序列和功能尚未被阐明的Dna序列。早期曾把单倍体(全套)染色体组称之为基因组。

表基因组是遗传信息载体一染色质生化修饰的总和。表基因组是编程的基因组,表基因组信息主要由Dna甲基化、组蛋白修饰、核小体定位和染色质高阶结构组成。在个体发育中胚胎细胞具有相同的基因组,但在表遗传学机制调控下,通过分化产生不同结构、不同功能的组织细胞,从而具有各别的表基因组,故表基因组是调控基因表达的模式,也是一类细胞的总体表遗传学状态。

与基因组比较,表基因组更为动态,这反映了细胞处于不同时空下的功能状态。同时,表基因组处于基因组与环境的界面,它能将动态的环境与遗传上静态的基因组连接起来,除通过上述的染色质修饰机制外,还与另外一些非共价修饰的表遗传机制如miRna和染色质重塑复合物等相关。因此,表基因组在发育中不仅通过一个高度有序、协同的生物学过程,依据遗传和环境信息,产生一定的基因表达程序,结果形成特定的表型;而且在整个生命过程中,还能对环境应激作出反应,可能引发表遗传异常疾病。因此,表基因组将环境和基因型与表型和疾病连接起来。

2.4传统遗传学和表遗传学是遗传学的一体两面

遗传和变异是生命的基本现象,对遗传现象的研究不仅要研究遗传性状在生物世代间的传递规律,研究基因复制和变异等的机制,而且要研究遗传性状在个体发育中的形成与变异,研究调控和实施遗传学信息的分子机制。可见,传统遗传学和表遗传学应是遗传学不可分离的两个组成部分。如同世间万物一样,遗传也有阴阳两个方面[17,18],基因编码蛋白质,有实质功能,表遗传修饰在其上,为阴;表遗传修饰在Dna外,调控基因的表达,为阳。两者既相区别、彼此制约,又相辅相成构成同一性,完成生物的遗传、变异和发育、进化过程。

近年来积累的实验事实也表明,传统遗传学和表遗传学相反相成、密不可分而成为现代遗传学的两个方面。例如:(1)表遗传现象是遗传现象的重要组成部分,其中如基因组印记、X-染色体失活和表突变等,在人体的正常发育和疾病发生中起重要作用;(2)传统遗传信息与表遗传信息载体有不同的稳定性和可变性,其中基因组Dna能精确地复制,保证了遗传学信息的稳定性和连续性,使物种维持相对稳定;同时又通过具有不同程度稳定性的表遗传学机制,如组蛋白修饰所产生的基因灭活,多为短期的改变,用于转录因子基因等的抑制;而Dna甲基化所引起的基因灭活,多为长期的改变,提供了特定序列如转座子、印记基因和干细胞多能性相关基因等的沉默,使基因组能根据机体自身的信息、程序以及内外环境信号适当地表达,在个体发育中能与环境达到实时的平衡或适应。有时环境引发种系表遗传学状态的改变,能产生可遗传的发育表型,作为自然群体中的表型变异,提供了自然选择的原料[4,14,31];(3)传统遗传信息和表遗传信息相互为根,彼此依存。表遗传信息是动态的,需要编写表遗传信息的各种Dna和组蛋白修饰酶(writer),如Dna甲基转移酶和组蛋白乙酰化酶等;并在有必要时,能及时消除这些修饰的酶((erasers),如Dna去甲基化酶和组蛋白去乙酰化酶等;以及含有识别表遗传修饰结构域(Domain)的效应分子(Readers),如含有JumonjiC结构域的组蛋白去甲基化酶。表遗传学调节还必需有表遗传学接头(epigeneticadaptors)或介导分子,如甲基化Dna结合蛋白以及染色质重塑酶、非编码Rna等,所有这些以及组蛋白本身都是由Dna所编码,因此没有遗传信息就没有表遗传信息;同样,在遗传信息实施过程中,只有在表遗传信息适当调控下,才能合成所需蛋白,进而形成由各种组织器官构成的、功能协调的整体;而被表遗传机制沉默的基因没有任何生物学功能,仅是一段化学物质Dna而已。可见,只有当遗传信息与表遗传信息按遗传发育编程分工协同,才能在与环境相互作用中完成遗传性状的传承。传统遗传学和表遗传学应是现代遗传学密不可分的两个方面。

3表遗传学与个体发育及系统发育

表遗传学的发展与发育生物学及进化研究密切关联,并从彼此的研究中获益。

3.1表遗传学与发育

性状的遗传在发育过程中得以实现,然而传统遗传学长期不能说明有关的两个核心问题:一是如何从单一细胞的受精卵分化形成由多种细胞类型组成的、复杂的多细胞生物,而这些细胞具有相同的基因组;二是什么样的分子机制参与表型遗传。近年来,随着基因测序等的研究进展,明确显示遗传因素本身不足以说明发育过程和表型形成,因为遗传性状的形成还依赖与环境因素的相互作用,而在这一过程中表遗传学机制发挥了决定性的作用[36,37]。表遗传学机制调控从受孕至死亡的所有生物学过程,包括在早期胚胎发育的基因组重编程、细胞分化、定型、谱系细胞的维持和配子发生等,因此发育是表遗传的[24,31],正如1939年waddington所说的那样。

从受精卵开始的个体发育需要遗传和表遗传程序的密切协同,由于Dna序列不变,是表遗传机制编排了各种细胞类型特有的基因表达程序,从而使分化形成的各类细胞获得了不同的结构与功能。这种表遗传编程(epigeneticprogramming)是正常发育中的一种生理过程,表遗传学机制如Dna甲基化和组蛋白修饰等,通过建立有丝分裂可遗传的、活性或抑制的染色质状态,调控发育潜能和细胞同一性;同时这些编程通过细胞记忆,可在各谱系内细胞世代间维持[4,38,39]。

成体晡乳动物每一类型的细胞都有自己的表遗传状态,它反映基因型、发育过程和环境的影响,最终产生一定的表型。这些表遗传学状态在大多数分化细胞已被固定下来,然而在正常发育的某些阶段或疾病的情况下,细胞就会发生表遗传重编程(epigeneticreprogramming),首先需要消除原有的表遗传学标志,随后建立不同的表遗传学标志和基因表达编程。已知在两个发育的关键期发生表遗传学重编程,一是在配子发生期,重编程发生在原生殖细胞,使配子全能性恢复;二是发生在发育早期的植入前阶段,同样使胚胎细胞获得全能性。

健康和疾病的发育起源(Developmentaloriginsofhealthanddisease,DoDaH)理论近年来曰益受到关注,并有人主张应将这一成果转化为干预和政策。该理论认为,在生命早期阶段特别是发育中的胚胎,对环境因素的作用最为敏感,因为此期Dna合成速度最快,并在精确构建对正常发育所必需的甲基化模式和染色质构型,不良的环境因素如母体营养状况、环境毒物的暴露和心理压力等,可通过表遗传学机制改变细胞的表基因型,并通过细胞记忆得以维持,进而影响成年后一些慢性病如2型糖尿病、高血压和冠心病等的发病及其病情。因此,很多研究者认为许多慢性病起源于生命发育的早期阶段,与表基因型异常改变相关;这一疾病发育起源说不仅揭示了复杂、非孟德尔疾病的病因和病理机制,而且为这类疾病的预防和开发高效、低毒的表遗传学药物提供了设计的依据。

3.2表遗传学与系统发育

遗传是生物系统发育或进化的基础,表遗传学发展历史不长,与进化关系的研究尚在起步阶段,需要深入探讨。

3.2.1表遗传机制是生物进化到一定阶段发生的现象

在进化过程中表遗传调控机制是作为宿主抗病毒和抗寄生序列的防御机制而进化,例如在植物和真菌中,Dna甲基化主要局限于转座子和Dna重复序列;在酵母、线虫和果蝇中几乎不存在Dna甲基化,果蝇因转座子等的作用使自发突变率高达50%~80%;晡乳动物Dna甲基化的程度较高,并且是表遗传学调节的主要机制,由于重复序列和转座子被高甲基化,自发突变率显著下降。可见,Dna甲基化调节基因的表达,是生物界进化到一定阶段发生的现象。

3.2.2表突变和表遗传变异

表突变是特定染色体位点的、可遗传的表遗传信息或状态的改变,并产生可检出的表型改变,而不是Dna序列改变的结果。一些表遗传变异的后代在配子形成时,亲本的甲基化改变可被消除,因此以往有人认为,这些表遗传学变异是短暂的,不可能是稳定地遗传,因而忽视其在人工和自然选择中的作用。近年来增多的证据表明,表遗传学改变特别是Dna甲基化改变,能与突变一样通过减数分裂遗传,可传递数代。已在人类证明,有一些家族性大肠癌就是由错配修复基因mLH1和mSH2的表突变所引起。

3.2.3表遗传变异与进化

非Dna序列变化的表遗传学状态的改变,可在细胞和个体世代间传递,拓宽了遗传的概念,挑战目前广泛被接受的、基因中心论的新达尔文主义;获得性状遗传问题又重新提出,并认为在多个生物学、医学领域是重要的。有研究者认为获得性状遗传可用表遗传学理论来解释,即食物数量和质量的改变,可能激活某些途径,引起表遗传状态的改变,并传给后代,这在营养对小鼠毛色、饥荒对人类后代疾病易感性影响的研究中得到部分验证。进一步研究认为,表遗传机制可促进基因突变,是进化的动力。环境持续诱发的、基因表达模式的改变能引起表型的改变,接受自然选择,因此有人认为,表遗传学过程在进化中起中心作用。

4表遗传学定义和中文译名问题

4.1表遗传学定义

表遗传学这一术语首先由英国发育生物学家waddington提出,他主张把发育与遗传结合起来研究。当时积累的事实已使他认识到,在遗传学之上(‘overandabove’genetics)必然存在某种因素,能使具有相同基因型的细胞在发育中分化成各种不同类型的细胞。1942年,他把前缀epi-加genetics结合,创建表遗传学一词,并认为它是生物学的一个分支,是研究基因与其形成表型产物间的因果作用。在这一定义的原意中,是指修饰基因型表达、产生特定表型的所有分子途径。

此后50多年间,随着分子生物学对表遗传学机制认识的深化,表遗传学的定义也在演进中。20世纪80年代中期Holliday就认识到,存在不依赖Dna序列改变的、新的遗传方式,他根据自己的工作,认为Dna甲基化改变与基因活性调控和一些非孟德尔遗传现象相关。20世纪90年代,阐明,先后有学者提出了至今仍较常用的两个定义:(1)表遗传学是研究不能用Dna序列变化解释的、能通过有丝分裂或减数分裂遗传的基因功能变;(2)表遗传学是研究没有Dna序列变化的、可遗传的基因表达改变。

进入新世纪,又不断有研究者提出新的定义,我们初步收集到的就有40多种,归纳起来表遗传学的研究内涵主要有:(1)研究主体是基因表达、功能或表型的改变;(2)其内在机制是发生在基因组结构表面的、染色质修饰状态的改变,它们能通过有丝分裂和减数分裂在细胞和个体世代间遗传;(3)没有内在Dna序列的改变,或不能用Dna序列改变来解释的;(4)这些改变是潜在可逆的。目前,学术界应用较多的还是上述两个较为简明的定义,如要全面考虑到表遗传学的研究内涵,可将表遗传学定义为:研究没有Dna序列变化的、可遗传并潜在可逆的基因表达或表型的改变,作为内在机制的染色质状态改变,能通过有丝分裂和减数分裂遗传。

国内的多数研究者亦采用上述两种常用的定义,但在2006年国家名词委审定颁布的遗传学名词(第二版)中,将表遗传学定义为:"研究生物体或细胞表观遗传变异的遗传学分支学科"。显然内容空泛,没有考虑到数十年来表遗传学研究成果和学科特点。进一步修改,势在必行。

4.2epigenetics的中文译名问题

1996年,在《人类遗传学概论》一书中作者首次将epigenetic译成"表遗传“。进入21世纪,国内在epigenetics方面评介和研究逐渐增多,出现包括表观遗传学在内的10多种中文译名,但无论在杂志和网站上都以表遗传学译名应用较多。2006年国家名词委公布的《遗传学名词》将epigenetics译成"表观遗传学",但编委会也认为"名词审定工作难度很大……希望遗传学界同仁提出宝贵意见,使之曰臻完善"。确实如此,表遗传学在我国的发展尚属初期,对本学科的研究和理解尚待提高;另一方面,学科译名更应审慎和周延,好的译名应有助于对学科内涵的理解。鉴于此,本文对此进行了系列的讨论。

近来在系统査阅、整理表遗传景观(epigeneticlandscape)文献时发现,将epigenetics中文译成表观遗传学可能是一种误读,并且对某些新术语的翻译带来困难。其他研究者也发现第二版"遗传学名词"存在许多可商榷之处。因此,有必要根据一些新的资料和体悟,以及国内认同的中文翻译理论,再次审视这一译名的确切性。

4.2.1中文翻译原则

在多年的反复讨论中认识到,首先必需确立中文翻译应遵循的原则,否则讨论就没有标准。目前国内翻译界大多推崇"信、达、雅"的翻译原则,并认为这是最简明、实用的翻译理论。根据自己多年来的学习和翻译实践,可以将"信"理解为准确、忠实地反映原文、原义;"达"要求译文能反映原文的内涵,晓畅通达;"雅"为译文的遣词造句得体,追求含蓄、典雅。

要准确翻译epigenetics一词,首先要正确理解前缀“epi-”的含义,在陆谷逊主编的《英汉大词典》(第二版,上海译文出版社,2010)中有8种含义,其中医学生物学相关的含义主要有:(1)表示"在…上面",如epiderm表皮;(2)表示"在...之外",如epiblast夕卜胚层;(3)表示"在...之后",如epigenesis后成论,等等。在该词典的各种前缀“epi-”的含义中,无一有"表观"之含义,其他中英文词典亦如此。

其次是要准确地反映epigenetics的研究内涵,如前述,该学科是研究没有Dna序列变化的、可遗传的基因表达或表型改变;其表遗传机制和信息的贮存、改变和复制,以及作用平台都在基因组的表面;作为总体的、染色质修饰特异性组合的表遗传景观(表观),具有重要生物学和医学意义。这样在中文表述的表遗传学研究内涵中,含有的表达、表型、表面和表观4个关键词,"表”为这些词的共素,根据汉语共素缩合构词法,再结合“epi-”前缀的含义,如将epigenetics译成"表遗传学",不仅忠实于中、英文原意,也符合中文构词法,而且可自然联想到它的定义、作用机制和理论实践意义,从而基本了解该学科的研究内涵。因此与表遗传学译名比较,表观遗传学的译名看来不够准确,也未能很好地反映epigenetics的研究内涵。

4.2.2表观遗传学译名可能是误读

分子遗传学的作用篇4

【关键词】分子遗传学;教学;方法

分子遗传学是在分子水平研究生命现象的学科,已经成为21世纪生命科学前沿学科,它的基础理论已经渗透到生命科学几乎所有的领域,是涵盖面非常广的一门学科,同时也是现代生物科学发展最快的学科之一。从分子遗传学发展以来逐渐从重视形态、代谢功能方面的演变延伸到研究基因和基因的结构和功能等的演变。

分子遗传学目前已成为综合性大学、理工科大学、农林院校等生命科学类各专业研究生的专业学位课,是继本科阶段课程如生物化学、分子生物学、遗传学等课程后的进一步学习,对提高研究生的基本科学素质、提升专业素养和增强科研创新等有着十分密切的联系和重要的影响。以分子遗传学为基础的遗传工程则正在发展成为一个新兴的工业生产领域,许多国家已经把分子遗传学及技术列为优先发展的高科技项目。在这样的发展潮流中,如何使学生能够及时了解快速发展的分子遗传学理论和技术的相关知识,为我国生命科学培养富有开拓精神、创新精神,具有国际竞争力的高层次、高质量的人才,研究生分子遗传学课程的改革必将成为我们探索的一个重要课题。

一、学院特色

生物化学与分子生物学学科是生命科学领域发展最为迅速的前沿学科之一,也是中国计量学院近年来重点建设的学科,2004年入选浙江省重点扶植学科,2005年获硕士学位点授予权。该学科的主要特色包括分子检测和检验技术、重大生物安全和生物入侵问题、植物天然活性产物的提取与利用、环境分子生物学与农产品安全等方面的研究,均从基因或蛋白质等方面来阐明具体的机理,这与分子遗传学存在着密切联系。随着分子遗传学概念的深入人心,为了适应培养基础厚、知识宽、素质高、能力强、面向21世纪开拓创新的生命科学优秀基础性人才的需要,结合我院专业特色和人才培养计划,2011年新增《分子遗传学》课程为本学院生物化学与分子生物学硕士研究生的专业学位课,并于2011-2012年第二学期正式实施教学工作。

二、教材的选择和教学内容的整合优化

本课程选用了以高等教育出版社出版的由路铁刚、丁毅主编的《分子遗传学》为教材。以南京大学出版社出版的由孙乃恩,孙东旭,煦编著的《分子遗传学》和高等教育出版社出版的由朱玉贤等编著的《现代分子生物学》等为参考教材,同时也选择了一些相关的动画网络电子教材。在教材上突出基础性、综合性、前沿性、时代性、创新性和引导性,并且符合相应的课时数,同时避免与其它课程的重复,能够适合应用型人才的教材。

同时,从分子遗传学的特色出发,优化教学内容,注重知识的横向和纵向衔接,删改与生物化学、分子生物学等相关课程间重复交叉内容,同时补充本教材内容的不足,使教学内容体现课程的特色性。课堂教学主要是讲授基因组学与后基因组学、基因组结构与功能、基因表达调控、基因突变与Dna损伤修复、遗传重组与转座、杂交育种与诱变育种、突变体的创制与应用、分子遗传学研究的常用技术介绍等。同时在讲授基础知识的同时也结合相关前沿热点领域的知识和进展,如适当引入学科前沿内容以激发学生的学生兴趣,并将最新的知识理论和科学热点通过文献介绍给学生。不仅达到授课内容国际化、教学理念前瞻化,而且可以培养研究生学习外文文献的能力和思考科学问题的方法和习惯。教学过程全部采用多媒体与动画网络资源的教学方法相结合。在讲授部分内容时,注重启发研究生寻找自己相关课题进一步研究的新切入点,引导其通过科研和实验过程去解决问题。实现在有限的课时中讲授分子遗传学的新发展、新观念,为学生的思维打开一扇通向未来之门。

三、采用启发式、引导式、讨论式的教学方法

研究生教育是我国教育结构中最高层次的教育,培养的研究生不仅要有坚实的理论基础,还要有鲜明的创新性,所以对于这种层次的教学,需要采用多种教学方式如启发式、引导式、讨论式。首先,在授课中进行启发式教学,引导学生积极思考,按照提出问题、分析问题、解决问题的思路进行讲解,而不是简单的背记已有的结论,并在教学过程中增加专业英语词汇,通过课堂上的反复讲授,既能增加学生的专业英语词汇量,帮助学生更好地理解教材内容,又提高了阅读外文文献的能力,为将来的专业及科研工作打下良好的基础。其次,为了进一步巩固理论课堂所学知识,并将理论与将来的研究课题联系起来,设立相关的讨论课,每个学生以分子遗传学技术结合自己的研究方向,写出课题设计思路,可以是目前正在研究的课题,也可以是假想的课题。让学生在课余时间通过文献查找和整理,准备讨论提纲,并分组讨论。鼓励学生积极发言,阐明自己的科研思路,同时教师通过积极正确的引导,使课题设计更加合理,并赋予创新性。最后,进行课堂学术报告竞赛活动,通过设计一些学科发展前沿与动态相关的讨论议题,如突变体创制的应用前景、转基因作物的安全性等。

四、采用综合测评的方式评定成绩

本课程成绩的评定采用综合测评的方式,进行基础理论闭卷考试、综述撰写和课堂讨论表现相结合的方法,让研究生通过查阅文献,撰写综述,课堂讨论等,锻炼研究生的归纳总结,推陈出新,开拓创新的综合能力。也有利于提高研究生的学习热情,并充分调动研究生主动探究的积极性和主动性。这种考试方法的建立,也增加了对学生的学习情况评价的客观性,对创新能力培养和教学评价方式作有益的探索。

综上所述,本次教学改革将全面推进研究生的教学工作,并且使教学内容体现基础性、综合性、前沿性、时代性、创新性和引导性。不仅可以有效地提高分子遗传学的教学效果和处理与其它相关课程的衔接问题,而且还可以增强研究生的自主学习、科研创新等能力,让他们实现科学知识向技术的转化,为研究生独立开展项目研究和申报课题奠定基础,最终产出一定的科研成果,甚至实际的生产力。

参考文献

[1]屈艾,朱必才,潘沈元,李宗芸,高焕,汪承润,王秀琴.提高遗传学课程教学质量有效途径的探讨及体会[J].生物学通报,2002,37(11):44-45.

[2]余诞年.遗传学的发展与遗传学教学改革谄议[J].遗传,2000,22(6):413-415.

[3]林海萍,张立钦,张昕,胡加付.几种讨论式方式在微生物学教学中的应用[J].微生物学通报,2010,37(7):1054-1057.

[4]赵新民,夏莉,徐玲,彭晓赟,刘石泉.分子生物学教学动画网络资源的利用[J].广东化工,2011,7(38):196-198.

[5]王晓霞,刘志荣,解军,程牛亮.如何在分子生物学教学中培养研究生的科研创新能力[J].西北医学教育,2011,19(1):78-80.

[6]贺根和,叶九根,郭小华,段世华,朱立成.分子生物学双语教学中“双主体互动”教学模式构建策略初探[J].河北农业科学,2011,15(3):148-149,161.

分子遗传学的作用篇5

关键词:生物信息学遗传学教学方法教学内容

遗传学(Genetics)是研究自然界中生物的遗传和变异规律的科学,是生命科学领域中最为重要和基础的学科之一。它也是生物科学中一门最具活力,发展最迅速的理论科学,又是一门紧密联系生产实际的基础应用科学,对探索生命起源和本质,推动整个生物科学的发展起着巨大的作用。因此,遗传学作为生命科学相关专业的一门重要主干课程,在教学中起着举足轻重的作用。

一、生物信息学专业开设遗传学的必要性

20世纪80年代末,由分子生物学、计算机科学以及信息技术等学科的交叉和结合产生了生物信息学(Bioinformatics),它是基于分子生物学与多种学科交叉,以计算机为工具对生物相关信息进行储存、检索和分析的科学,是当今生命科学和自然科学的重大前沿领域之一。近20年,特别是随着人类基因组计划(humangenomeproject,HGp)不断拓进,生物信息学作为跨越和融合生命科学与信息技术的新兴学科已成为生命科学核心领域和最具活力的前沿领域之一。生物信息学专业应运而生。国内单独设立生物信息学本科专业的高校较少,且普遍较晚。

遗传学与生物信息学两个学科之间关系密切。有国内学者利用美国《科学引文索引》(SCi)数据库webofscience,运用文献计量学方法对8种权威生物信息学期刊2001年至2010年于2011年1月15日之前上传至wedofscience的全部文献进行统计及分析。对施引文献按跨学科强度排列的结果显示,遗传学及基因与生物信息学跨学科文章发表量居第二位,仅次于生物化学与分子生物学。这说明,生物信息学与遗传学直接的跨学科研究较多,二者交叉学科的发展关系密切。因此,生物信息学专业开设《遗传学》课程十分必要。

二、遗传学教学中存在的问题

多年来,不同专业的《遗传学》课程的教学过程中涌现出一些共性问题,这些问题在生物信息学本科专业的教学过程中也存在。一是,学科拓展深化与课时压缩之间的矛盾。随着遗传学研究范畴的不断拓展,新的学科分支相继涌现,信息量逐步扩增,待教授内容逐渐增加且显得零散。但随着大学素质教育改革的进行,更多新的选修课、实验课被引入,遗传学理论课时被压缩,课时减少与内容增多的矛盾日益突显。二是,遗传学与其他课程教学内容设置与组织易重复。学科交叉为科研工作提供源源不断的动力,但在教学工作中学科渗透也造成教学内容重叠,基础和关紧技术重复教学的问题。例如,分子遗传学是遗传学重要组成部分,是目前遗传学研究的重点和热点,与生物信息学关系最为紧密,它包括的遗传物质的本质,基因的调控,基因重组等内容也在基因工程、分子生物学、细胞学等课程中作为讲授重点。如何利用有限的理论课时,合理安排教学内容,提高教学效率值得思考。

与此同时,生物信息学作为比较新的本科专业,开设各课程之间的衔接问题也比较突出。生物信息学专业的学生在大二开始全面生命科学和信息技术相关程学习。在理论知识在实际中如何应用缺乏概念,学生达不到共鸣,这也是生物信息学专业低年级学生面临的通病。遗传学课程安排在大学二年级上学期讲授,对于刚刚接触专业课程的学生而言本来就陌生,而且信息技术和生命科学相关课程独立讲授,二者貌似是两条平行线,怎样相交碰撞出火花,对于学生来说很难结合,必须由任课老师在授课过程中充分引导。传统的《遗传学》课程教学注重以杂交分析为主的经典遗传学理论的讲解,很大篇幅集中在三大定律(分离定律、自由组合定律以及连锁和互换定律)的教授上。遗传学课程教学重点集中在经典遗传学定律,经典案例跟不上学科发展。这个问题已经被一线教育工作者认知。

综上,由于学科本身发展迅速,涵盖知识范围越来越广,课时压缩等原因,容易让学生在学习过程中对该课程产生“内容太发散”“课时进程快”“知识跨越大”等认识,不利于课程的学习。由此可能造成,内容广泛且繁杂“抽象且深奥”枯燥无味,容易让学生觉得难或者枯燥。学生学习主动性不高。因此,在教学实践中,针对不同专业性质和培养目标存在的差异,不同专业《遗传学》课程教学应在知识体系、内容侧重点、教学方法等方面在各专业间有所区分。特别是生物信息学这种学科交叉性强的专业,如何实施该专业本科生遗传学的教学,以达到即符合本科教学难易程度的要求,又被大多数同学接受,同时能符合生物信息学学科自身特点,需要在教学过程中逐步的探索与实践。本文将结合资深授课教师经验及笔者生物信息学本科专业《遗传学》教学经历对这一问题进行阐述。

三、教学过程中的探讨与实践

1.制定具有专业特色的教学内容

(1)优化教学内容,关注专业需求

生物信息学专业的课程教学中,遗传学相关知识是需要讲授的重点。传统遗传学课程教学将重点内容集中于经典遗传学定律及其相关知识的讲授,其优点在于能够帮助学生打牢遗传学知识基础,缺点在于教学内容过于单一,没有包含遗传学重要分支的最新知识,无法与当前的研究热点联系起来,学生学习兴趣不高。随着国际遗传学研究的深入,分子遗传学和群体遗传学得到长足发展,极大地丰富了遗传学的知识体系。为了紧跟国际研究前沿,国内许多高校对遗传学课程进行了教学改革,在经典遗传学教学的基础上,纷纷加入了分子和群体遗传学的教学内容,为后续开展更深入的专业研究和学习奠定了良好的知识基础。为了帮助学生对遗传学知识体系形成全面而系统的认识,结合生物信息学专业特点,在教学设计时借鉴了以“遗传信息”为主线的教学思想,教学内容涵盖了“经典”“分子”和“群体”三类主体遗传学内容。在现实教学中,受遗传学课时限制,对所有遗传学知识点进行了梳理和必要的删减,既把握三种遗传学知识的内在联系,做好各部分知识的教学衔接,同时注意区分三者的不同,突出教学重点,做到“主题鲜明,重点突出,点面结合,结构清晰”,使学生在掌握经典基础理论知识的同时了解最新的遗传学研究进展。

(2)生物信息学专业遗传学课程与其他课程的衔接

遗传学是研究生物遗传和变异的科学,以遗传物质结构和功能为研究对象,是生命科学的主干。因此,与其他学科在内容上有交叉或重叠无法避免。同中求异,突出遗传学的特色,是教学中值得研究的问题。遗传物质的本质、染色体畸变、基因突变、遗传调控等章节与微生物学、细胞生物学、生物化学内容重复较多,可以强调知识结构的完整性,淡化这些内容的分子结构和生化过程的讲解。例如,结合孟德尔定律和摩尔根定律案例,着重从染色体和基因角度切入,增强遗传学色彩,同时对其他课程起到提纲挈领的作用。

(3)结合生物信息学,引入最新研究成果,体现前沿性

在处理好学科衔接之后,还需要关注的就是内容与生物信息学的结合。学生在学习过程中,最想了解的莫过于,这门课程与我的专业有什么联系?因此,在讲授内容中加入生物信息学手段解决遗传学问题的新成果既体现前沿性,又能提高遗传学课程的专业针对性。教师平时要多注意积累教学素材,对于现阶段比较热点且与生物信息学相关的、应用性强的问题,要在课程基础知识讲授后,进行一定拓展。例如,在讲授基因定位和遗传图绘制时,引入用eSt进行基因定位及遗传图谱绘制等内容;在讲到遗传家谱时,引入通过对患病群体或家系进行外显子组测序分析,对小家系孟德尔遗传病的致病基因进行鉴别和定位的例子。通过引入生物信息学教学例子,不仅可以使学生加深对遗传学知识的理解,还可帮助学生了解生物信息学最新进展,激发对后续生物信息学专业课程的学习兴趣。

2.教学方法多样化,提升学生学习兴趣

遗传学教学内容繁杂、理论性强,不易理解。为了提高教学效果,在教学模式上必须变“以教师为主体”为“以学生为主体”,注重采用灵活多样的教学方法和手段,开展多媒体教学、案例教学和研讨教学等,将传统抽象、枯燥的说教式教学转变为具体、生动的参与式教学,增强教与学的双向互动。

(1)多媒体教学方式

计算机多媒体辅助教学改变了传统的黑板加粉笔,以教师为中心灌输式教学模式。多媒体通过实时可交互的多维动画及图像展示,可以增强教学内容的展示效果,提高课堂教学的信息量和容积率,提升学生学习兴趣,加深对枯燥晦涩知识点的理解,提高教学效率。充分利用多媒体课件的超文本功能、交互功能、网络功能的优势,比如Holliday模型是分子水平上关于遗传重组机制的重要模型,很好解释了基因转变现象。在讲到Holliday模型时,为了让学生直观了解单链交换重接及分支移动后的Holliday交叉旋转180度形成Holliday异构体的过程,采用了动画、图片、电子板书相结合的方式,很容易让学生理解空间旋转互换的过程,以及基因转变产生的原因等较难理解的知识点,反响较好。此外,声音、视频、动画、图片等便于学生拆解枯燥内容。

(2)案例教学

案例教学是一种创新型的教学方式,主要通过开放课堂、增强互动,培养学生运用所学知识解决实际问题的能力。案例教学需要结合本课程的专业理论知识,着眼于达成课程教学目的,编写和准备基于一定事实且具有一定场景的教学案例,这些教学案例要能够启发学生的思考,促进学生将从外部学习的知识吸收转化内在的专业素养和能力。在教学实践中,教学案例是“教”与“学”互动的桥梁和纽带,使枯燥乏味的学习过程变得活泼有趣;“教”不是告诉学生怎么去做,而是启发学生如何去思考,对学生针对案例问题提出的解决思路进行引导和评价,鼓励学生创新性思考,找到最优的问题解决方法;“学”不是被动的接受,而是主动的思考和创造,通过与他人而不仅仅是老师进行互动和交流,加深对知识的理解,培养解决实际问题的能力。

案例教学的核心是精心设计教学案例,将知识内化在符合实际又富于想象的故事情景中,使得学生通过身临其境将抽象的理论知识具体化,学会如何用概念性和原理性知识在实际工作和研究中解决问题,进而加深对特定原理和概念内涵的理解。在教学实践中,先以典型案例提高学生兴趣,把抽象的东西具体化,让学生变被动接受为主动思考,激发学生的求知欲。注重培养学生创造力和解决问题的能力。通过案例的分析,深化学生对基本原理、基本概念的理解。案例教学能很好地启发学生进行自主思考,对于理论性较强,比较枯燥的内容,通过案例式教学能激发学生学习兴趣。所举案例应具有针对性,要考虑案例产生的时间、背景和条件,要贴近生活,耳熟能详,与时俱进。在处理问题的同时,获取知识。进行案例教学过程中,要注重与学生的互动。围绕教学目的,选择合适案例,进行启发式教学,调动学生参与性。教师不能一味平铺直叙的讲案例,还要注意学生的参与度。只有学生和教师共同参与,才能达到预期教学效果。

(3)以学生为主体的教学

以往课程中,往往针对经典类型习题进行讲解,参考“标准答案”。在实际教学中发现,这样往往造成学生思想禁锢,学科交融性不够。特别是对于生物信息学专业的学生来说,传统习题课或者讨论课,没有实用效果。习题课及讨论课应注重实用性,关注遗传学与生物信息学学科发展与融合,设置开放性答案,突出培养学生创新性的应用能力。

课堂教学不仅要“授业”,更要“传道”,即培养学生如何学习和如何思维。根据教学内容和学生的认知水平,研究、讨论、交流式的教学模式的引入,有助于调动学生积极性。采用专题自学,规定材料与学生自学有机的结合起来,开展研讨,充分体现学生观点。同时,教师只起到点评引导作用,能培养学生获取信息、分析问题、创造性的解决问题的能力,有利于学生形成科研创新意识。教师如何正确引导是开展研讨式教学的重点。首先,应明确课程在相关领域中的作用和地位,了解课程的教学内容,选择课程中适合研讨的内容,并将研究与讨论贯穿教学的全过程。在选择题目时,要考虑专业相关程度及考虑不同学生层次的需求,考虑学生个体间的差异,难度适宜。

四、结语

生物信息学本科专业遗传学的教学,以孟德尔定律为基础,分析遗传物质的存在形式、传递、保存及变化,课程脉络更加清晰,通过案例教学的等教学模式,激发兴趣,并有利于与后续课程连接,在实践教学中体现了比较好的教学效果。因为生物信息学专业的需求与传统生物专业有差异,教学内容侧重点不同这给教师备课增加了难度。同时,在期末考核时,由于讲授侧重点不同,考试侧重点也应有所区别,在师资允许的前提下,引入小班教学,有利于教学侧重点突出。后续课程如果设置分子遗传学,将使知识体系更加完整。

参考文献:

[1]李巨超,李楠.适应应用型人才培养模式的遗传学教学改革与探索[J].中国科教创新导刊,2012,(2):66.

[2]巴恩斯.遗传学工作者的生物信息学[m].丁卫,李慎涛,廖晓萍,译.北京:科学出版社,2009.3.

[3]皮妍,林娟,侯嵘,等.国内高校遗传学教材发展研究[J].遗传,2009,31(1):109-112.

[4]武妍,胡德华.生物信息学跨学科研究[J].现代生物医学进展,2012,(12):137-141.

分子遗传学的作用篇6

一、难点解析

1.细胞质遗传并非都是母系遗传

细胞质遗传现象的发现最早可追溯到1909年,德国学者科伦斯(CarlCorrens)和鲍尔(Baur)分别在紫茉莉和天竺葵中发现叶色的遗传不符合孟德尔定律,而表现为细胞质遗传现象。后来的研究表明,大多数物种的细胞质性状表现为母系遗传的特征,因而有些学者甚至某些遗传学教科书中也将细胞质遗传与母系遗传这两种现象混为一谈,将这两个概念等同起来,并认为细胞质遗传即为母系遗传。

20世纪80年代以来,随着分子生物学技术的发展,将Dna分子标记应用于细胞质遗传研究,从Dna分子水平上研究细胞质遗传物质的变异,使得人们对细胞质遗传现象有了更进一步的认识。据研究表明,在所有高等真核生物中,线粒体Dna一般表现为母系遗传的特征,包括人类、其他哺乳类动物、两栖动物、鱼类及高等植物等。但也发现,老鼠、衣藻、被子植物月见草属的一个杂种、大麦和黑麦的属间杂种、甘蓝型油菜、北美红杉等生物体中线粒体Dna是父系遗传的。在被子植物中,对近60个物种的质体Dna的遗传研究,发现大多数表现为母系遗传特征,而其中20%的物种中存在着双亲遗传的现象,紫花苜蓿、胡萝卜等植物表现为典型的父系遗传特征。与被子植物相比,大多数裸子植物的质体Dna则表现为父系遗传特征。

可见,细胞质遗传表现为多种形式的复杂性,没有一种简单的机制去解释这种现象。母系遗传是细胞质遗传的主要特征,而不能代表细胞质遗传的全部内容。随着分子生物学技术的发展和应用,为人们对细胞质遗传规律的研究和认识提供了强有力的手段,科学家们已揭示出了生物细胞质Dna遗传的新规律和新现象,在细胞质遗传方面表现为单亲的母系遗传、父系遗传及双亲遗传多种形式,大大丰富和逐步完善了细胞质遗传研究的内容。[1]

2.下定义不同于作诠释

下定义和作诠释是在编写教材时经常用到的、极易混淆的两种逻辑学概念。所谓下定义,就是用准确、简练、概括的语言说明事物本质的一种说明方法。[2]例如“基因是有遗传效应的Dn段”就运用了下定义的说明方法。其中,定义项“有遗传效应的Dn段”是对被定义项“基因”的本质特征的揭示。而作诠释,则是对事物或事理的某些性质和特点进行适当解释的一种说明方法。有些被说明的事物经过下定义,读者理解起来感到困难,甚至产生误解,这就需要采用作诠释的方法。例如对“细胞分化”这一概念,教材是这样表述的:“在个体发育中,由一个或一种细胞增殖产生的后代,在形态、结构和生理功能上发生稳定性差异的过程,叫做细胞分化。细胞分化是一种持久性的变化,细胞分化是生物界中普遍存在的生命现象,是生物个体发育的基础。”在这段话中,首先用了下定义的方法概括了细胞分化的本质,然后用作诠释的方法对细胞分化做了进一步的说明。

下定义与作诠释的区别是多方面的:下定义要揭示事物的本质特征,并且定义项的外延与被定义项的外延必须是全同的[3];而作诠释并不要求从本质上去揭示概念,只要揭示概念的一部分内涵就可以了,并且解释的对象与做出的解释外延也可以不相等。例如“细胞质遗传”这节内容,教材在介绍了紫茉莉花斑植株的杂交结果后,这样表述细胞质遗传的特点,“从上述杂交实验的结果可以看出,紫茉莉F1植株的颜色,完全取决于种子产生于哪一种枝条,而与花粉来自哪一种枝条无关。也就是说,F1的性状,完全是由母本决定的。像这样具有相对性状的亲本杂交,F1总是表现出母本性状的遗传现象,叫做母系遗传”。教材中这句话是采用了下定义还是作诠释的说明方法呢?若是下定义,那么根据下定义说明方法的特点,定义项和被定义项的外延必须是全同的,即F1总是表现出母本性状的遗传现象就一定是母系遗传;反过来,母系遗传的F1也总是表现出母本性状。事实是否如此呢?我们知道,椎实螺外壳的遗传,其子一代F1外壳的旋转方向总是与母本的表型相同,这是由核基因的产物积累在卵细胞中所决定的,生物学上称之为母性影响,而不是母系遗传。再如,本节内容中紫茉莉花斑植株的花做母本,其F1除了花斑植株,还出现了绿色和白色两种不同于母本的植株。可见,F1总是表现出母本性状的遗传现象,并不一定是母系遗传,而母系遗传的F1也不一定仅表现出母本性状。因此,教材中的表述不是给母系遗传下定义,而是以作诠释的方式介绍了母系遗传的现象。

可见,学生把教材中对母系遗传的诠释当做严格的下定义,从而得出“‘母系遗传’与‘F1总是表现出母本性状’的外延有全同关系,因此具有母系遗传特征的紫茉莉花斑枝条上的花做母本,F1必定是与母本一样的花斑植株”等一系列逻辑推理,直至与F1产生三种植株的事实相矛盾,从而断定“F1总是表现出母本性状”的表述错误。殊不知,他们在推理的源头就错了。

综上所述,混淆了细胞质遗传与母系遗传以及误解了教材中关于母系遗传现象的表述导致本节内容难点的产生。

二、难点突破

1.引发认知冲突

任何学科体系的构建都离不开众多学科概念,概念混淆和错位是概念学习中常见的错误。如何使学生从错误概念向正确概念转变,是科学教育界研究的热点问题。对于有些同学认定细胞质遗传就是母系遗传以及F1总是表现出母本性状的遗传就是母系遗传的错误理解,教师不必急于纠正,可以提供一些与他们的理解相矛盾的事实,如erickson和Kemble在双子叶的甘蓝型油菜中发现了线粒体Dna父系遗传,ohba等观察到日本柳杉中质体Dna表现为双亲遗传,椎实螺子一代F1外壳的旋转方向总是与母本的表型相同,但不是母系遗传等,引导学生认识到先前理解的错误,从而转向正确理解细胞质遗传的本质及与母系遗传的关系。

2.绘制概念图表

为了能更直观地把握细胞质遗传、母系遗传和F1的表型之间的关系,还可以通过绘制概念图来解决这一问题。所谓概念图,实质上就是用于组织和表征知识信息的工具,它通常是将有关某一主题不同级别的概念或命题置于方框或圆圈中,再以各种连线将相关的概念和命题连接,这就形成了关于该主题的概念图。

对于细胞质遗传与母系遗传、母系遗传与F1的关系,教学中首先指出细胞质遗传的本质是生物性状通过细胞质内的遗传物质控制的遗传方式,主要表现为母系遗传,但也有少数表现为父系遗传和双亲遗传(如图1),F1与母本性状一致并不一定是母系遗传(如图2),然后以概念图的方式展示这些概念之间的关系,则细胞质遗传、母系遗传和F1的表型三者之间的关系就一目了然了。

以上是笔者对本节内容难点形成的看法及采取的对策。当然,本节内容的教学难点与重点并不完全一致,在教学中不能花费太多时间,因此探讨巧妙突破难点、进行有效教学的策略仍是摆在我们教学工作者面前的重要课题。

(作者单位:占芳龙,都昌三汊港中学,江西都昌,332600;吴笑臣,赣南师范学院化生学院,江西赣南,341000)

参考文献:

[1]田志宏.细胞质遗传并非都是母系遗传[J].生物学通报,1999(1):14-15.

分子遗传学的作用篇7

1教学内容与要求

课标规定的本单元的内容包括:总结人类对遗传物质的探索过程;概述Dna分子结构的主要特点;说明基因和遗传信息的关系;概述Dna分子的复制;概述遗传信息的转录和翻译。活动建议有两项:搜集Dna分子结构模型建立过程的资料,并进行讨论和交流;制作Dna分子双螺旋结构模型。

1)知识目标

“总结人类对遗传物质的探索过程”属于应用性的内容。这部分内容的教学不是要求学生记住对遗传物质探索过程的史实,而是通过对科学过程的分析领悟科学实验的思想、方法、过程与价值。具体选择哪些科学史实?肺炎双球菌的转化实验以及噬菌体侵染细菌的实验是两个经典实验,应该进行具体的分析。烟草花叶病毒感染烟叶的实验主要用于说明Rna也可以作为遗传物质,在实验设计的思想与方法上与Dna是遗传物质的实验是类似的,因此可以从简些。具体目标包括:①分析肺炎双球菌转化实验及噬菌体侵染细菌的实验,证明Dna是遗传物质;②分析烟草花叶病毒侵染烟草的实验,证明Rna也是遗传物质;③总结遗传物质的共同特征;④评价人类探索遗传物质的实验设计思想与方法。

“概述Dna分子结构的主要特点”属于理解水平。只有明确Dna的结构特点,才能理解Dna对遗传信息的贮存、传递与表达等基本功能。要明确Dna的结构特点,首先应掌握Dna的结构及化学组成,具体目标包括:①概述Dna的元素组成、基本组成物质、结构单位、一级结构,以及沃森-克里克提出的双螺旋结构模型的基本论点;②说明Dna分子结构的稳定性、特异性和多样性。

“说明基因和遗传信息的关系”属于理解水平。本单元的核心内容是阐明基因概念,即从基因与性状的关系上说明基因是控制性状遗传的基本单位,从基因与染色体的关系上说明基因的存在部位及方式,从基因与Dna的关系上说明基因的化学本质,从功能上揭示基因中蕴涵着特定的遗传信息。具体目标包括:①举例说明基因是有遗传效应的Dn段;②说明基因与遗传信息的关系。

“概述Dna分子的复制”也属于理解水平。Dna通过自我复制将遗传信息从亲代传递到子代,从而保持亲子之间的连续性。具体教学目标为:①概述Dna的复制场所、时间和过程,②说明Dna复制的条件、分子基础和特点,③揭示Dna复制的实质及意义。

“概述遗传信息的转录和翻译”仍然是理解水平。在子代的个体发育阶段,基因控制蛋白质合成的转录与翻译过程,从而使遗传信息得以通过性状而表达。具体目标为:①区别遗传信息转录的场所、模板、过程、结果与条件;②说明翻译过程是信使Rna、转运Rna、核糖体三者之间协同作用的结果;③Dna分子的碱基序列与蛋白质分子的氨基酸序列之间的对应关系上分析说明遗传密码的构成方式;③解说中心法则的论点和意义。④举例说明基因对生物性状的控制作用。

2)情感态度与价值观目标

本单元蕴含了丰富的情感态度价值观的内容。课标在《遗传与进化》模块中提出了要“体验科学家探索生物生殖、遗传和进化奥秘的过程”,在具体内容标准中列出了应用层次的“总结人类对遗传物质的探索过程”的要求,可见通过生物科学史组织教学应该是本模块的基本要求。从人类对遗传物质的探索过程中,可以领悟人们对科学的认识是不断的深化与发展的;从肺炎双球菌的转化实验、噬菌体侵染细菌的实验以及Dna半保留复制等实验中,可以体会从实验材料的选择、研究思路的确定、技术手段的进步对研究过程所起的作用;从Dna双螺旋结构模的构建过程,可以看到不同学科的交叉与渗透以及合作在科学研究中的重要性。通过完美的Dna双螺旋结构模型,可以从分子水平领悟Dna分子之美,从复制、转录与翻译等过程,可以体验遗传信息的传递与表达过程中的和谐之美;从遗传密码可以感悟生物界多样性与共同性的统一。

3)能力目标

课标建议活动“搜集Dna分子结构模型建立过程的资料,并进行讨论和交流”,应该尽量让学生自己去搜集相关的资料,这对于学生搜集、甄别、处理信息能力的培养是十分有帮助的。建议活动“制作Dna分子双螺旋结构模型”是要学生动手制作模型,要通过这一活动让学生体会模型构建在科学研究中的应用,同时培养空间想象能力及动手操作的能力。除了这两个活动外,本单元可以安排的探究活动是非常多的,这些活动分别可以从不同的方面培养学生的能力。如运用分析与推理的方法说明遗传物质应该具备的条件及Dna具备作为遗传物质的条件;尝试运用数学的方法分析遗传信息的多样性、碱基与氨基酸之间的对应关系等相关问题;用假说-逻辑推理的方法探究Dna的复制过程;用资料分析与推理的方法分析遗传信息的转录与翻译过程等等。

2对教学的几点思考

根据本单元的教学目标及内容特点,笔者以为以下几个方面值得关注:

1)充分发挥科学史的作用。生物学是一门自然科学,知识的结论都是通过观察与实验得出或验证的。本单元有着许多经典的科学实验,如肺炎双球菌的转化实验,噬菌体侵染细菌的实验,烟草花叶病毒侵染烟叶的实验,Dna双螺旋结构模型的构建,Dna的半保留复制的证明实验,遗传密码的破译实验等等。通过这些经典科学实验分析与体验,不仅要让学生获得科学知识,更应通过这些实验发展学生的科学探究能力,培养学生质疑、求实、创新及勇于实验的科学精神和科学态度。

如何运用好这些经典的实验素材呢?方法可以是多种多样的,教学中要依据教学目标、教学对象等因素的不同而确定。例如噬菌体侵染细菌的实验可组织如下的教学:

步骤一:提供背景资料。通过投影或视频介绍噬菌体以及噬菌体侵染细菌的过程,让学生明确在噬菌体侵染细菌的过程中,Dna进入了细菌细胞内,而蛋白质的外壳留在了细胞外。

步骤二:引发思考与讨论:

问题1:根据这个实验你能得出什么结论?为什么?

问题2:细菌和病毒那么小,用肉眼是无法观察到的,那么科学家怎么知道Dna进入到了细菌细胞内,而蛋白质没有进入的呢?

问题3:用同位素标记什么元素?

问题4(如果学生无法回答问题3):科学用32p和35S分别标记了噬菌体的Dna中的p和蛋白质中的S,为什么选择标记这两种元素呢?

问题5:用什么办法才能使噬菌体标记上同位素呢?

问题6:用含有同位素标记的噬菌体去侵染不含同位素标记的细菌,结果将会是如何?

问题7:在培养液中我们没有办法直接看到32p位于细菌内,35S位于细菌之外的,有什么办法能够知道呢?

步骤三:归纳总结。通过图示或Cai回顾总结噬菌体侵染细菌的实验过程,并作如下归纳:

①标记噬菌体

含35S的培养基含35S的细菌蛋白质外壳含35S的t2噬菌体

含32p的培养基含32p的细菌内部Dna含32p的t2噬菌体

②噬菌体侵染细菌

组别被标记的噬菌体被侵染细菌处理实验结果成分

1含35S的

t2噬菌体未标记

的细菌搅拌

离心上清液放射性很高主要是噬菌体外壳

沉淀物放射性很低主要是细菌

2含32p的

t2噬菌体未标记

的细菌搅拌

离心上清液放射性很低主要是噬菌体外壳

沉淀物放射性很高主要是细菌

③原理与结论

亲代噬菌体寄主细胞内子代噬菌体实验结论

32p标记Dna有32p标记DnaDna有32p标记Dna分子具有连续性,是遗传物质

35S标记蛋白质无35S标记蛋白质外堑鞍字饰?5S标记

步骤四:深化讨论:

问题1.科学家选用噬菌体侵染细菌的实验来证明Dna是遗传物质,你认为有什么巧妙之处?这一实验与肺炎双球菌转化实验在实验设计的思想与方法上有什么共同之处?

问题2.同位素的标记还可以用于哪些类型的研究?

2)注重演绎、推理的运用。在科学发现过程中,与观察、实验法一样,演绎与推理也是科学发现的重要方法。课标也明确提出了《遗传与变异》教学应让学生领悟假说与演绎在科学研究中的作用的要求。在本单元的教学中,许多内容是适宜组织学生进行演绎与推理的,如遗传物质应该具备的条件,可从自然界生命现象的特点入手进行分析推理;Dna的双螺旋结构模型可以科学家相关的实验结果与数据为资料,引导学生去分析推理。下面重点以Dna半保留复制证明为例,说明演绎与推理在教学中的应用。

步骤一:作出假设。要求学生根据已有Dna结构等方面的知识对Dna可能的复制作出猜测,并对所猜测的复制方式作简要的描述。

步骤二:分析推演。告诉学生,科学家已证实,Dna是一种半保留式的复制。

问题1:从理论上作出推演,如果是半保留复制,亲代的Dna分子复制后得到的第一代Dna和第二代Dna的组成是怎么样的?

问题2:你如何识别Dna中的哪一条链是母链哪一条是子链呢?

(启发学生采用同位素标记的方法。)

 问题3:你准备用同位素标记哪种物质?哪种元素?

问题4:如果原Dna是15n的,原料是14n的,那么请推演复制后的第一代Dna与第二代Dna中n的情况如何?用图解表示出来。

问题5:根据分析第一代的每条Dna都是一条链含有15n,另一条链含有14n的(表示为15n/14n—Dna);第二代的Dna中有一半是14n/14n-Dna,另一半为15n/14n-Dna。但我们是看不出Dna分子的,有什么办法我们可以知道这一结论呢?

(引导学生考虑同位素除了放射性不同外,还有哪些性质。启发学生明确同位素的质量也是不相同的。)

问题6:根据同位素质量的不同,你有什么办法可以区别不同同位素标记的Dna呢?

问题7:如果对每一代的Dna进行离心分离,推演实验的结果会是怎样的呢?

最后向学生介绍科学家所做的具体实验,并分析讨论Dna半保留复制的具体过程。

3)重视模型的构建与运用。模型构建是自然科学研究中的一种常用方法。在现代生物科学研究中,模型方法被广泛运用。模型方法也被引入新课标中。在生物科学学习中,模型提供观念和印象,是非常吸引学生的生动的感性材料,是学生知识结构的重要组成部分。本单元的两个建议活动都是与模型构建相关的,教学中要切实加以落实。

例如,Dna双螺旋结构模型的构建,教学中可以采取以下步骤:

步骤一:资料搜集。课前由学生搜集Dna双螺旋结构模型构建的相关资料,为课上进行交流与讨论作为准备。

步骤二:模型讨论。围绕模型构建过程的相关资料,提出问题让学生进行分析讨论,如:①哪些资料支持Dna是双链的结构?②哪些资料支持Dna碱基间的配对是嘌呤与嘧啶?哪些支持a与t配对,G与C配对?③哪些观点支持磷酸与核糖的骨架在螺旋的外部,碱基对在螺旋的内部?④Dna双螺旋结构模型的构建运用到了哪些学科的知识与方法?有哪些科学家为此作出了贡献?能够给你哪些方面的启迪?等等。

步骤三:模型构建。学生自己动手构建模型。

对于条件有限,学生搜集资料有困难的学校,也可由教师搜集并提供资料给学生进行讨论。例如,提供不同生物Dna碱基组成的材料以及嘌呤与嘧啶的分子结构资料,让学生分析碱基之间的数量关系,进而推测碱基间的可能配对关系等。

分子遗传学的作用篇8

 

遗传学是大学生物学相关专业的一门重要专业课程,对学生打下坚实的生物学基础及其未来在生物学领域的相关研究具有重要意义。大学遗传学课程的教学技术及方法日益完善,但仍有一些方面有待优化。该文以遗传学教学过程中发现的问题及积累的教学经验为基础,提出改进遗传学教学模式及策略:教材内容与科学前沿动态的整合;将生产实践中的应用及社会关注热点引入课程教学;实验课程与理论课程的合理搭配;注意培养学生归纳总结的能力。通过对教学模式的优化及教学策略的改进,可以提高学生的学习兴趣,加强学生知识扩展能力,完善学生的科学思维能力及科研创新能力。

 

遗传学是大学生物学及相关专业的一门重要理论课程和实验课程,是生物学分支下的一个重要二级学科,包含了微生物、动物、植物等领域的全部遗传进化相关的研究成果及研究内容,与生物学领域其它学科的知识交叉渗透并相辅相承。因此,大学遗传学是生物学相关专业本科生的一门重要理论课程。尽管近年来大学教学水平不断提高,遗传学教学方法和教学技巧在不断丰富,但在教学模式及教学策略方面仍有巨大的提升空间。本文基于在遗传学教学过程中发现的不足及积累的教学经验,通过分析学生学习特点及对知识吸收和需求等方面提出若干遗传学教学内容及策略方面的改进意见,可提高学生学习兴趣,有助于学生更好地掌握遗传学领域的知识。

 

1教材内容与科学前沿动态的整合

 

随着科技的进步和发展,科学研究在不同领域也发生着日新月异的进步,新技术和新成果如雨后春笋般的涌现,遗传学研究的发展同样突飞猛进。能被遗传学教科书收录的知识都是不同阶段遗传学研究中的精华,同时有价值的遗传学相关研究成果也不断被写入教科书。因此,对于大学遗传学的教学要做到两个方面:使学生对遗传学研究历史中的重大发现如数家珍;使学生对遗传学领域现今的科学前沿及发展动态了如指掌。为达到以上两个方面的教学效果,教师需要在教学内容上进行优化,加强遗传學研究历史的讲解并将“CnS”的重要成果及诺贝尔奖的介绍引入课堂。

 

遗传学的发展是一个承前启后的过程,针对同一问题介绍其前因后果,追踪发展动态有助于学生对知识整体脉络的掌握。如对《遗传学》教材第四章“孟德尔遗传”知识的讲解可以加入其研究历史和后续的发展动态,使学生对该部分内容的掌握更加深刻[1]。根据教学大纲的要求,学生在这个章节需要掌握孟德尔以豌豆籽粒形状、子叶颜色、茎的长度等7对相对性状为基础所发现的基因分离和自由组合规律的相关知识。如果在讲课过程中仅介绍基因分离和自由组合的原理及相关计算方法不足以加深学生对科学研究方法的掌握及科学实验设计思维的提升。在该部分内容可适当介绍孟德尔发表该成果的主要论文《植物杂交试验》的相关实验设计及数理统计,以达到使学生了解科学研究的具体过程,培养学生实验设计及结果分析的相关能力。同时,在该部分内容讲解完毕后要追踪该问题的发展动态,介绍后续的进一步研究成果。如该部分内容可增加部分关于孟德尔选取的不同性状背后分子调控机制的研究进展。如对于豌豆籽粒形状的表现型(圆粒豌豆、皱粒豌豆)是由那些分子机制导致的。对于这个问题,后续的研究结果已经清楚证明,皱粒豌豆是受淀粉分支酶i(SeB1)编码基因所调控的,由于淀粉分支酶基因突变使种子中的果糖不能转化为淀粉,随着失水作用而使籽粒形状表现为皱缩[2]。其它几个性状的研究进展同样可以进行简单介绍,如子叶颜色受常绿蛋白(SGR)调控,茎的长度受赤霉素3-氧化酶(Ga3ox)调控等[3]。通过围绕遗传学某一部分的内容,对其前因后果及研究动态的讲解有助于学生对知识的整体性把握,加深学生对知识的掌握程度。

 

诺贝尔奖是科学研究领域的最重要奖项之一,绝大部分获奖成果在科学研究历史上具有里程碑意义或为人类社会的进步和发展作出巨大贡献。在遗传学领域的发展史上不乏许多被授予诺贝尔奖的重要成果,支撑着遗传学的发展和生物学领域的进步。因此,在遗传学课堂上适当引入诺贝尔奖的介绍不仅可以加深学生对知识的理解程度,同时可以激发学生学习热情和科学探索精神。如在讲解遗传学第三章《遗传物质的分子基础》时可以引入1962年沃森(Jameswatson)、克里克(FrancisCrick)、威尔金斯(mauricewilkins)由于发现Dna双螺旋模型所获得的诺贝尔生理学或医学奖。在遗传学教学的第五章《连锁遗传和性连锁》的教学过程中,可以围绕摩尔根发现连锁遗传的相关内容引入1933年摩尔根(thomasHuntmorgan)由于创立遗传学说所获得的诺贝尔奖以及1946年摩尔根的学生缪勒(HermannJosephmuller)由于发现X射线照射可引发基因突变所获得的诺贝尔奖。其它部分章节均可适当向学生介绍由于转座子的发现,聚合酶链式反应体系建立所获得的诺贝尔奖的相关信息等。同时最新的诺贝尔奖获奖内容同样涉及遗传学领域,如2015年诺贝尔化学奖关于Dna修复的细胞机制方面的研究是对遗传学第十章《基因突变》的进一步丰富和发展,2016年关于细胞自噬理论的研究是对第二章《遗传的细胞学基础》中细胞膜功能的深入阐述等。使学生在遗传学的学习过程中能不断了解该领域的最新前沿有助于学生追寻科研领域重大发现者的脚步与时俱进,打下深厚的知识基础。

 

2将生产实践中的应用及社会关注热点引入课程教学

 

教师的教学活动除使学生掌握基本的理论知识外,还应联系实际,使学生在工作和生活中对所学知识运用自如。遗传学的教学同样需要在讲解理论基础知识的同时联系实际,使学生对所学的知识的应用产生切身的体会,这样不但可以提高学生学习兴趣,同时可以增强学生学以致用,提高分析问题和解决问题的能力。在遗传学课程的讲授过程中,可以适当添加一些对日常生活中的社会热点问题、公众普遍存在的争议问题等的讲解,增加以课程的吸引力和实际应用价值。如在讲解遗传学第三章《遗传物质的分子基础》这部分内容时,主要教学目标是通过几个实验证据的介绍证明Dna是主要的遗传物质。该章节可以通过中国古代的迷信思想“滴血认亲”是否具有科学依据来引入,讲授亲子鉴定方法(如Dna指纹技术)应用的理论基础,最后通过总结否定古代迷信的亲自关系鉴定方法,提出新的鉴定方法。在讲授过程中穿插这种与日常生活息息相关的内容更容易激发学生的学习热情,创造良好的课堂气氛。此外,在教学过程中还可以理论联系实际对遗传学领域社会争议的热点问题进行科普及探讨。如目前“转基因是否存在危害”这个问题是公众中存在争议的焦点之一,甚至引发崔永元和方舟子之间的争论大战,而公众对转基因的具体机理及操作知之甚少,甚至存在误读。在遗传学课程第九章《基因工程和基因组学》这部分内容的讲解过程中可以联系教科书中介绍的转基因操作流程在教学过程中做适当的扩展,深入阐述转基因的原理、田间试验的流程、目前中国可食用的转基因产品、目前中国可种植的转基因产品以及转基因真正容易引发的问题和不可能引发的问题等,使学生对类似的社会争议热点问题具有客观的认知,激发他们独立思考问题的能力。通过理论联系实际和将社会热点问题引入遗传学课程教学的方法可增强该课程的趣味性及应用性。

 

3实验课程与理论课程的合理搭配

 

遗传学是生物学领域里一门重要理论课程,同时也是一门重要的实验课程。大学遗传学课程分为理论课和实验课两个部分,实验课的教学需要与理论课的教学配合进行才能达到较好的教学效果。在遗传学的教学安排中,对于同一部分内容的理论课程和实验课程连续进行容易使学生印象深刻。如在讲解“细胞有丝分裂”这部分内容时,把实验课安排在理论课结束一周内进行效果较好。如同学们在课堂上学习了有丝分裂具体过程及细胞分裂各个时期形态特征后一周内进行实验操作,观察显微镜下真实的染色体形态,比较与教科书中的差异可使学生更牢固地掌握所学到的知识。同样,遗传学的实验设计需针对各部分所讲的理论课程内容相配合,在理论课学习完成一周内开展,可以达到良好的教学效果。

 

4注重培养学生归纳总结的能力

 

培养学生独立思考及学会学习的能力同样是大学教学活动的一个重要方面,大学的教学要求学生不仅要被动地接受知识,还要主动地归纳总结进而很好地吸收所学知识。因此,在大学遗传学的教学中同样要注重培养学生归纳总结知识的能力,训练思考问题的逻辑思维能力。在遗传学的教学活动中,教师不仅要教学生具体的理论知识内容,还需要引导学生学会学习,因此要做到以下两点:展示给学生学习的逻辑思维;引导学生归纳总结。引导学生学习的逻辑思维要求教师不仅要展示给学生具体的知识内容,还要求教师展示给学生对问题的理解及学习过程,图示教学法是实现该目标的很好方法。教师在准备教学幻灯片时应尽量以图示的方式展示每一部分的知识内容,备课过程中教师可以阅读书中的每一段主要文字,然后可通过自己的理解将学习到的以文字为主体现的内容转化为以各种图形及流程图为主来表达,在授课过程中结合图示用文字的方式再将知识点传达给学生,这样就可以是学生了解到每一段文字都可以转化为以图形表示的直观内容,引导他们采用类似方法进行知识的学习。如在讲授遗传学中“乳糖操纵子”相关内容时,为表达“乳糖乳糖水解酶基因开启乳糖分解乳糖水解酶基因关闭”这一过程时,可通过制作一个该过程动态变化的幻灯片来进行讲解,展示每一步反应及其原理,引导学生学习的逻辑思维能力。遗传学教学的第二个重要方面是引导学生对问题的归纳总結能力,通过比较相似及异同达到对不同知识点清晰掌握的效果。如在讲到“非等位基因间的相互作用”这一教学难点时,可引导学生通过归纳总结对其进行区分。在该部分内容中,学生对控制同一生物性状的两对基因间的几类相互作用容易混淆,我们做了如下总结和归纳,采用更通俗易懂的语言揭示控制同一性状两个基因的内在联系,如表1:

 

通过对不同相关内容的比较分析,可以提高学生归纳和总结问题的能力,找出各部分知识及内容的异同点,可提高学生学习效率。在大学遗传学的教学过程中,教师应针对教材内容与科学前沿动态的整合,将生产实践中的应用及社会关注热点引入课程教学、实验课程与理论课程的合理搭配、注意培养学生归纳总结的能力等几个方面,灵活使用不同的教学模式及教学策略,对学生进行教学引导和兴趣的激发,从而达到良好的教学效果。

分子遗传学的作用篇9

文章编号:1003-1383(2007)06-0737-02中图分类号:R394-33文献标识码:B

遗传学是一门发展迅速的生物学分支科学,它从基因水平研究生物的遗传规律,所研究对象涉及了动物、植物、微生物、人类等形形的生物,近年来,随着人类基因组计划的实施,在基因组研究,克隆技术,生物制药,基因诊断与治疗等领域中取得了令人瞩目的成果。由于受传统教育思想的影响,多年来实验教学都是以理论教学为中心,验证课堂上所讲的理论知识,学习有关的实验技术,忽略了能力的培养,这种教学方式限制了学生的创新思维和创新能力的培养。本文结合我校的遗传学实验教学改革进行初步探讨。

遗传学实验主要表现

实验教学是高等院校教学不可或缺的重要组成部分,它在培养学生综合素质和创新能力方面所起到的重要作用,是其他任何教学形式都无法替代的[1]。实验教学不光是为了证实课堂上所学的理论和仅仅掌握一些实验操作技术,而是为了在巩固理论知识的同时,提高学生的科学思维能力、研究能力,培养学生的探索精神、创新意识和创新能力。同志指出:“创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力,一个没有创新能力的民族难以屹立于世界先进民族之林”。如何在实验教学中培养学生的创新意识、创新能力,造就创新型人才,是形式发展的需要。当前我校生物技术专业的遗传学实验主要表现在3个方面。

1.经典遗传学实验内容多,现代遗传学实验内容少遗传学实验主要包括两大内容:①细胞遗传学技术占33%,包括染色体核型及带型分析、染色体结构及数目变异鉴定等染色体操作技术;②经典遗传学验证性实验内容占50%,以三大遗传规律验证为主,忽视了遗传学实验,一是分子遗传实验内容为0,如Dna提取、酶切、连接、扩增与检测技术,基因突变RapD分析等实验;这些实验技术已经成为现代分子遗传学或生物技术的基本内容,本科生不掌握难以跟上遗传学快速发展的步伐,也与目前遗传学理论教学不相适应。二是群体遗传学实验内容仅占17%,如基因数目估计,遗传率估算,群体基因结构分析及遗传疾病风险估算等实验技术,是群体及数量性状遗传研究的基本技术,但这些实验内容却很少。

2.验证性实验多,综合性、设计性、创新性实验少验证性实验50%,综合性30%、设计性20%、创新性实验几乎没有。采用传统的实验设计方法,整个教学过程中学生处于被动接受的地位,学生过分依赖教师的指导,不能独立操作、观察,习惯做完一步就问教师下一步做什么。学生没有机会去设计、去思维、去创新。这种教学模式不利于提高学生研究遗传学的实验技能,不利于提高学生的独立能力、观察能力、判断能力和解决问题的能力,影响学生对实验设计方法的深入理解,不利于学生创造性思维的科研素质培养。

3.课外完成的实验多,课内完成的实验少在所开设的10个实验中,需要课外完成的实验有6个,占60%,如人类染色体标本制备,整个过程需要经历采血、培养、加秋水仙素、制片等过程,培养时间需72小时,课堂计划4学时内学生不可能完成,必须由老师或学生事先做,计划内的4学时仅是学生的制片。而一般的遗传学实验,一次课仅有3~4学时,许多实验操作在有限的时间内不可能完成,学生无法参与实验的全程,一旦离开老师的协作仍然无法独立开展类似实验。お

遗传学实验教学改革形式

1.重组实验内容将原来的10个遗传学实验重组、整合为经典遗传学实验、细胞遗传学实验、分子遗传学实验和群体遗传学实验4个模块。在经典遗传学实验中果蝇杂交实验作为设计性实验;群体遗传学实验的人类正常遗传性状的调查,作为设计性实验;细胞遗传学的人类染色体的制作为综合性实验,其实验课时比重分别为4∶3∶2∶1。

2.增加分子遗传学实验技术我校生物技术专业的课程设置了《分子生物学》,其课程已经开设了分子生物学的基本实验,学生掌握了分子生物学的基本实验技能,在《遗传学》实验中,则重点突出人工诱发基因突变的方法设计、各诱发突变处理材料与未诱变材料RapD指纹差异分析,以及结合医学院校的特点,对广西特有的遗传病,如地中海贫血的检测,避免与生物化学、分子生物学等实验内容重复。

3.增设创新性实验4个实验模块做为《遗传学》实验必做的基本实验,此外为培养学生的创新能力,造就创新型人才,教师给学生一些方向性的选题,如结合广西特有的动、植物,进行的染色体分析技术;环境中致畸、致癌、致突变(三致)物质的检测等,由学生组成课题组按申报课题的方式写出标书,专业教师审核其可行性,配指导教师进行创新性实验1个,学生边设计、边实验、边研究。

4.实施全天性开放实验教学为配合综合性、设计性、创新性实验,实验室实施全天性开放实验教学,让学生不受实验室、实验学时和实验项目的限制,实验室三开放:时间开放、实验项目开放、试剂和仪器设备开放。学生可以通过自行查阅文献、自行设计实验、独立完成实验,教师只是起引导作用。实验室安排教师值班、并负责指导学生,学生自我调节、合理安排实验时间,同时可提高高档仪器设备的使用效率。通过问卷调查,95%的学生认为开放实验室对动脑与动手能力的培养是封闭式教学所无法替代的,对重视学生个性的培养,确立以学生为中心和主体地位大有裨益,是符合教育规律和人才成长规律的培养模式的[2,3]。

5.考核方式的改革实验教学实行学分制,一般不进行书面考试,着重学生设计思路、实验技能与实际操作水平的考核,方式可以口试、操作、实验报告、论文报告、答辩或研讨等方式进行考核,实验设计、实验操作、创新性实验按(4∶4∶2)的比例,对学生进行综合考核评价。

通过对2000~2003级生物技术专业的学生实行实验教学的改革,认为遗传学实验有助于学生独立思考能力,动手能力,分析问题、解决问题的能力,逻辑推理能力等的培养,有助于对经典遗传学的理解,达到融会贯通、事半功倍的效果。从《遗传学》实验课问卷调查可看出,03级生物技术有97.7%的同学赞成开放性实验,有近90%的同学认为对培养实践能力有较大的帮助,此外90%的同学希望能增加更多的开放性实验内容以供同学选择。在2004级的同学中我们正在开展创新性实验,由学生自行确定选题,设计实验方案,在经费许可条件下,购买试剂,完成实验,目前正在进行中。通过实验教学的改革力求将培养目标由知识技能型转变成能力培养型,实验教学以学生的实验动手能力、综合分析能力和创新能力的培养为目的,以适应创新型人才培养的要求。

参考文献

[1]许征程,安静霞.高校实验教学改革与创新人才培养的关系[J].河北师范大学学报(教育科学版),2005,7(1):92-94.

[2]陆审龙.开放教学实验室,提高学生创造能力[J].实验室研究与探索,1999,6(8):10.

分子遗传学的作用篇10

【摘要】目的探讨手汗症患者的遗传方式。方法采用分离分析法和penrose法对23个手汗症高发家系进行分析。结果一、二级家属手汗症的患病率为9.80%(40/408),其中一级亲属为30.21%(29/96),二级亲属为3.53%(11/312)。手汗症的患病率高低与亲缘关系的近远呈显著相关。手汗症的遗传方式不符合常染色体显性遗传和性染色体连锁遗传,也不符合多基因遗传,而符合常染色体隐性遗传。结论手汗症高发家系的遗传方式为常染色体隐性遗传可能性大。

【关键词】汗脉疾病;交感神经系统;手;基因,隐性;连锁(遗传性);染色体图

原发性手汗症是一种无明显诱因引起的手部汗腺分泌亢进的病态。流行病学调查显示约有0.37%的青少年患有手汗症[1]。患者自儿童起出现阵发性的手部汗液滴沥,影响日常生活工作以及人际交往,并可导致焦虑、躲避等心理状态。有学者认为该病有一定的遗传倾向[23],但对手汗的遗传方式和基因定位未做进一步的探讨分析。笔者采用高发家系的研究方法,旨在阐明手汗症的遗传效应及方式,为进一步的分子遗传学研究提供基础。

1对象与方法

1.1对象收集2006年11月-2007年5月就诊于笔者医院胸外科并进行手术的患者127例,其中男性68例,女性59例,年龄(21.23±4.26)岁(16~37岁)。凡一个家系中有≥2例手汗症患者均作为研究对象,共23个高发家系。

1.2方法以手术病例作为先证者,采用自行编制的家系调查表,向先证者本人或其父母详细询问一、二级亲属中手汗症的发病情况,对曾经明确诊断或疑似手汗症的家属逐个面检,其中面检34例,面检率达85%,无法到本院面检的患者由知情者描述病情,然后根据手汗症的诊断标准作出回顾性诊断,绘制家系图[1]。所有调查均由一名胸外科硕士研究生独立完成。

1.3统计学分析采用SpSS11.5软件包分析数据,χ2检验确定有无家族聚集性;应用同胞法和子女总数校正法计算多汗症的分离比,penrose法估计遗传模式。

2结果

2.1患病率23人先证者中,男性12人(52.17%),年龄(20.17±3.30)岁;女性11人(47.83%),年龄(21.45±5.54)岁。一级亲属、二级亲属的患病情况见表1。先证者一级亲属手汗证的患病率高于二级亲属(χ2=64.61,p

2.2遗传方式计算结果

2.2.1常染色体显性遗传如果手汗症是由常染色体显性基因决定,当本病患者与正常人婚配后,其子女中患者与正常人之比为1∶1,子女如果有患病者,其双亲必定也有患病者。本组23名先证者中,有8名先证者其父母均未患手汗症,故可排除常染色体显性遗传的可能性。

2.2.2常染色体隐性遗传理论上来说,当患者的双亲都是同一隐性遗传病杂合子时,子女中发病患者的数量应该约占1/4,且男女发病机率大致相等。但是在仅分析同胞发病率时,患者的比值往往高于1/4,原因是把后代未患病但双亲都是携带者的家庭未列入在隐性遗传家系的集合群中,造成了系统性误差,所以必须进行校正。由于收集资料的方式不同,校正方法也不同,大体上可分为“完全确知”和“不完全确知”两大类。前者指家庭中所有的患者都已被查证确认,而后者指的是家庭中总有患者不能被查出确认。本调查属“不完全确知”类型,常用的校正方法有同胞法,先证者法、最大似然法、子女总数校正法。笔者采用其中的两种方法进行计算,运算结果见表2。

2.2.2.1同胞法

隐性基因的分离比率p=R-nt-n

标准差=p(1-p)t-n

式中R为所有家庭中有病子女的总数,t为所有家庭中子女总数,n为家庭总数。

根据计算,p=0.2917,标准差=0.0656,95%可信度为(0.1631,0.4203),包含了理论分离比率0.25,说明手汗症属常染色体隐性遗传可能性大。

2.2.2.2子女总数校正法[4]

理论同胞总数=p(1-p)t-n

分离比率=∑R理论同胞总数

式中t为所有家庭中子女总数,n为家庭总数,∑R为患病同胞总数。

根据计算,理论同胞总数为121.44,校正后的分离比率=37/121.44=0.3047。结果与同胞法所得结果相似,说明手汗症属常染色体单基因隐性遗传可能性大。表2同胞数及其患病情况

2.2.3性连锁遗传

2.2.3.1Y连锁伴性遗传若一种遗传性状或遗传基因位于Y染色体上,X染色体上缺少相应的等位基因,因此,这些致病基因随Y染色体的行为而传递,女性中不会出现遗传性状或遗传病,本资料先证者中有47.83%的患者为女性,故没有“传男不传女”的现象,可排除Y连锁伴性遗传。

2.2.3.2X连锁显性遗传若一种显性遗传性状或遗传基因位于X染色体上,在父亲患病、母亲正常的家系中,其所生育的子女中儿子应该全部正常,女儿应该全部患病。本组资料中父亲患病、母亲正常的8个家系中所生育的8个患有手汗症的子女,其中4个是儿子,故可排除这种遗传方式。

2.2.3.3X连锁隐性遗传若一种隐性遗传性状或遗传基因位于X染色体上,当母亲患病、父亲正常的家系中,其所生育的子女中儿子应该全部患病,女儿应该全部正常。本资料中母亲患病、父亲正常的8个家系中所生育的13个患有手汗症的子女,其中8个是女儿,故可排除这种遗传方式。

2.2.4penrose法估计遗传模式根据同胞患病率(s)和一般人群患病率(q)可以估计某病的遗传方式,依以下标准判断遗传模式:s/q接近1/2q为单基因显性遗传,s/q接近1/4q为单基因隐性遗传病,s/q接近1/q为多基因遗传病。本次调查计算结果:q=0.0037,s=0.2917,s/q=78.838;1/2q=135.135;1/4q=67.568,1/q=16.44。结果显示s/q接近1/4q,进一步证实手汗症为常染色体单基因隐性遗传病可能大。

3讨论

手汗症是一种交感神经功能亢进性疾病,目前已引起遗传病学者的关注。有些学者发现该疾病呈家族性发病,并具有一定的遗传背景,但至今其发病机理尚未完全阐明[23]。本研究采用高发家系调查的方法,收集遗传因子较为相似的“同质”病例进行研究,有助于阐明遗传因素对本病发生的影响。

本组资料表明,手汗症确有家族集聚现象,家族同胞中发病人数越多,其再发风险越大。一级亲属手汗症发病率为30.21%,二级亲属为3.53%,说明本病高发家族中亲属发病率的高低与血缘关系的亲近呈显著相关,血缘关系越近,发病率越高,从而证实遗传因素在手汗症发病中起明显的作用,特别是23个家系中包括先证者和一二级亲属的患病率为14.62%,较群体患病率的0.37%高39.50倍。因此,笔者认为本病在高发家系中可能存在致病性基因。

在医学遗传数学统计方法中,分离分析适合于常染色体单基因遗传,而阈值理论则适用于验证多基因遗传[5]。本研究结果表明,手汗症的遗传方式既不符合常染色体显性遗传和性染色体连锁遗传,也不符合多基因遗传的规律,而符合常染色体隐性遗传。通过同胞法和子女总数校正法的计算,实际计算值与常染色体隐性遗传的理论预期值十分相似,证实了手汗症属常染色体单基因隐性遗传的可能性大。据此推测,手汗症是由一对基因控制的一种性状,并按照孟德尔遗传规律传递。本研究为将来在手汗症患者中寻找异常性状并进一步进行基因筛检与定位提供一定基础。

值得一提的是,同属于交感神经功能亢进的另两种疾病即长Qt综合症与红斑肢痛症的致病基因均通过分子遗传学及分子生物学的方法得以确定[67]。手汗症的发病机理与上述两种疾病相类似,虽然目前致病基因尚未被发现,但Higashimoto等学者应用基因连锁分析的方法将手汗症基因定位于14q11.2q13之间[8],这也为将来进一步研究提供一定线索。

参考文献

[1]tuYR,LiX,Linm,etal.epidemiologicalsurveyofprimarypalmarhyperhidrosisinadolescentinFuzhouofpeople'sRepublicofChina[J].eurJCardiothoracSurg,2007,31:737739.

[2]RoKm,CantorRm,LangeKL,etal.palmarhyperhidrosis:evidenceofgenetictransmission[J].JVascSurg,2002,35:382386.

[3]KaufmannH,SaadiaD,polinC,etal.primaryhyperhidrosis:evidenceforautosomaldominantinheritance[J].ClinautonRes,2003,13:9698.

[4]陈竺,傅继梁,陆振虞,等.医学遗传学[m].北京:人民卫生出版社,2005:8889.

[5]江三多,吕宝忠,赵桐茂,等.医学遗传学数理统计方法[m].北京:科学出版社,1998:93109.

[6]Curranme,Splaskii,timothyKw,etal.amolecularbasisforcardiacarrhythmia:HeRGmutationscauselongQtsyndrome[J].Cell,1995,80(5):795803.