首页范文纳米技术的知识十篇纳米技术的知识十篇

纳米技术的知识十篇

发布时间:2024-04-25 20:38:06

纳米技术的知识篇1

据苏州日报,日前,国家知识产权局《关于确定国家专利导航产业发展实验区的通知》,苏州工业园区等8家部级开发区成功获批国家知识产权局首批专利导航产业发展实验区。园区是江苏省唯一获此殊荣的开发区。据悉,园区实验区建设将以纳米技术应用为主导,探索专利运用导航产业高端发展的新模式。

此次实验区项目是国家知识产权局实施区域知识产权发展战略,着力推进专利与产业发展相结合,优化整合专利资源,提升专利运用能力,建设与区域资源相适应、专利引领并推动发展的产业集聚区,从而提升产业创新驱动发展能力和国际竞争能力的重要举措之一。

近年来,园区确立了以纳米技术引领全区新兴产业发展的战略决策,将纳米技术创新与产业化发展列为园区的“一号工程”,将纳米技术产业列为园区的“一号产业”。园区围绕纳米技术产业,已集聚了以中科院苏州纳米所为代表的近20家纳米技术创新研发机构和以中科大苏州纳米学院、苏州大学纳米学院等为代表的24家国内外著名高等院校或其研究教学机构,已基本建成近200万平米的苏州纳米城、苏州纳米技术国家大学科技园等纳米技术高科技产业园,已集聚纳米技术企业近200家,2012年纳米技术相关产业产值90亿元,年增长超过50%。园区先后被授予“国家纳米技术国际创新园、苏州纳米技术国家大学科技园、部级纳米科技企业孵化器、苏州国家纳米高新技术产业化基地、国家纳米技术产业化标准化示范区、国家微纳加工与制造产业技术创新战略联盟、国家科教结合苏州纳米技术产业创新基地”等七大部级纳米技术创新基地的牌子,并纳入国家纳米技术创新与产业发展体系,奠定了园区纳米技术产业的国内优势地位。

根据《苏州工业园区创建国家专利导航纳米技术应用产业发展实验区建设方案》,园区将利用5年的时间,初步掌握纳米技术应用产业知识产权发展规律;实现专利与纳米技术应用产业的有机融合,专利运用能力大幅提升,构建完成与纳米技术应用产业规划协调发展的知识产权运营体系,基本实现纳米技术应用产业知识产权管理的科学化、规范化和知识产权服务的高效化、流程化、标准化,形成纳米技术应用产业优势明显、特色突出、专利集聚、布局合理、专利和纳米技术应用产业发展紧密结合的示范区,基本建成国家专利导航纳米技术应用产业发展实验区。

纳米技术的知识篇2

1进行纳米生物医学技术教学的主要目标

纳米生物医学技术是一门非常典型的多领域交叉学科,生物医学、材料、化学和物理等学科的内容都包含在内,因此对人才培养的要求自然也非常高[5]。个人认为,应该将教学目标设计为培养学生具备相关领域多元化的知识结构,富有创新精神与思维模式,在纳米医学生物技术的某一或某几方面具有相当的专业实践技能与经验,能够将纳米生物医学的知识和技术应用于实际的科学研究与实际技术产业化之中,对纳米生物医学技术的发展方向和某一领域的当前产业情况主要发展趋势有所体悟,具有技术研究与项目管理实施的基本专业素养和技能。

2实施纳米生物医学技术教学的主要理念

纳米生物医学技术作为一门多领域交叉的新兴学科。作为一门非常强调实践与实用性的应用型技术学科,在纳米生物医学技术的教育教学过程中,我们必须坚持将理论教学与实践教学很好地结合在一起,通过把理论知识教学与课程实验教学、专业科研活动和产业企业课外实践活动整合成一个综合教学体系才能够真正培养学生的学习素质、自主发现、思考和解决实际问题的能力。因此,纳米生物医学技术的教学内容、方法、教学主体和教学对象等基本要素必需共同有机的地结合在一起,协同服务于学科教学目标,以合理的安排与布局,相互相同综合成一个有效的教育教学整体过程。我们应该充分注重激发与引导学生学习与创新的主动性与积极性,立足于提高学生的综合素质,不能像过去只是进行知识的单向传授,因此忽略了培养学生自主学习与思考、解决问题的能力,建立一种双向沟通、激励引导、教学相长的良性循环机制。在这种机制下,学生成为教学活动的主体,被动的接受知识变为主动的学习探索,教学过程也不再是枯燥、单调的知识传递,而是师生双方之间在智慧、思想与感情上的沟通分享。而且,教学模式应注意技巧设计,创造设计一个问题情境,通过好的提问与启发引导学生提出和发现问题,然后就该问题从不同的多个角度来解析与研究,并且进行持续的提问与思考,逐步分析挖掘该问题发生的根本性缘由,同时鼓励学生多角度多层次的寻找答案,通过答案的适度不固定性引导学生的思维发散开来,从而让学生主动学习和分析处理问题的习惯与素质得到良好的培养[6]。

3纳米生物医学技术教学课程体系的设计

纳米生物医学技术课程设置上要考虑多元化。作为一门多领域交叉融合的新兴学科,不是几个学科领域知识的单纯组合,而是将相关的学科都以一种非常紧密、多元化、多层次的联系在一起形成一个整体的。因此在课程设计的时候,教育者必须要充分认识到并理解透彻这些交叉学科之间的内部联系和知识理论结构,并依据这种联系与结构在多个学科的藕合点基础,设计出具有纳米医学生物专业特色的理论课程体系。这时候,对学科知识的划分上也不宜再过于详细,而应更注重该专业的理论特点,让学生的知识背景建立在宽厚扎实的大专业平台上。纳米生物医学技术课程设置上要考虑前沿性。纳米生物医学技术作为一门新兴技术其发展是日新月异的。所以,在教学内容上,我们要注意将该学科的最新前沿研究成果整理出来,及时、适当地融入到课程教学当中,并结合纳米生物医学技术在医学诊疗领域应用的经典实例,以让学生可以更好的理解本专业的发展方向、应用方式和创新思维方法,也让教学内容更加的丰富化和实用化,进而让学生知道如何学以致用,很好地激发强烈的学习兴趣[7]。纳米生物医学技术课程设置上要考虑应用性。纳米生物医学技术作为一门应用型技术,其实验教学对于培养学生将理论知识用于实践当中,主动发现问题、分析问题和解决问题的能力起到不可忽视的作用。因此,学生在独立设计、完成实验的过程中,其专业思维、创新意识、科研素质和动手能力都能得到很好的锻炼。这就要求我们注意控制死板的验证性实验所占的比例,多设置一些具有较好综合性、可设计性和开放性的实验,课程进行过程中也更注重学生实验得出结论的过程而非实验结果[5]。

4CDio实践教学模式在纳米生物医学技术教学过程中的应用

CDio实践教学模式是近年出现的一种全新的实践教育模式。CDio的主要内涵是将构思(Conceive)、设计(Design)、实现(implement)与运用(operate)共同组成一个系统的实践教育方法体系[8]。该方法体系模拟了应用技术从研发到运行的完整流程,能充分培养学生运用主动性和综合性的实践方式来学习与运用学到的专业知识,进而提高学生的综合实践能力,非常适用于纳米生物医学技术教育教学体系。因此,我们应当将这套综合性和操作性都强的CDio教学模式融入到整个教学活动中,把每个实践能力点的培养都具体落实到实践教学活动中,并且能够很好的与科研活动参与、行业企业实习等课程外实践活动结合在一起,为学生提供一种深度的“学以致用”的宝贵经历和体验,这不仅可以更好地实现学生创新实践能力的培养,还对其人际交往能力和专业思维能力都能提供有益的帮助。

5结语

纳米生物医学技术近年来的发展十分迅猛,同时具有鲜明的交叉与复合特性,能助力整体医学诊疗水平的提高,对人民健康水平的提升起到巨大推进作用。因此如何培养适应专业发展和产业需求的纳米生物医学技术专业人才,是医学院校相关专业高等教育目前所面临的核心问题。通过以上积极教育教学方面的研究探索,以及在后续的教学实践中不断完善与优化,我们若能据此更好地培养出纳米生物医学技术专业的研究与应用兼顾的综合性专业人才,将能发挥更大的教学效果和教育意义,促进人才培养质量和提高和纳米生物技术的更大发展。

作者:刘斯佳孙健凌敏单位:广西医科大学广西医科大学

参考文献:

[4]顾宁.纳米技术在生物医药学发展中的应用[J].advancedmaterialsindustry,2002(12):67-71.

[5]胡建华,张阳德等.促进我国纳米生物医学高端创新人才培养的对策[J].中国现代医学杂志,2008,18(20):3070-3072.

[6]胡高,胡弼成.大学教学协同创新论[J].现代教育科学,2004(4):109-110.

纳米技术的知识篇3

当前我国该领域存在一些急需解决的问题,如:创新能力不够强,前沿领域纳米纺织品材料比重较低;布局比较分散,集约化程度不高,企业综合实力较弱;资源利用效率较低,能源消耗偏高;知识产权保护及安全性监管滞后。这些问题严重限制了产业的快速发展。“产业发展,标准先行”,如果要推动纳米纺织品领域的健康快速发展,首先需要从标准入手,建立起促进该领域发展的标准体系。

2建立纳米纺织品标准体系的重要意义

2.1规范纳米纺织品市场秩序,提高产品质量

纳米纺织品范围较广,种类较多,按其功能形式可分为纳米智能纺织品和纳米功能纺织品。目前,纳米纺织品发展势头强劲,各地涌现出许多生产各类纳米纺织品的中小企业,客观上造成了纳米纺织品企业数量众多,产品类别也较多的现状。此外,纳米纺织品属于高新技术产业,产品技术含量较高,且处于不断革新的过程。若没有健全、统一的标准体系,会给相关部门的监管带来困难,导致纳米纺织品市场的无序竞争,进而无法保证和提高产品的质量、性能。

2.2明确纳米纺织品标准化发展目标以及工作重点

我国在发展纳米纺织品的战略规划中是以纳米纺织品材料的研究与应用为主展开的。根据我国纳米纺织品产业化的布局,按照通用基础、技术,以及保障的总体发展思路编制的纳米纺织品标准体系,较好地体现了纳米纺织品标准化的近期与未来工作任务与制修订项目。

2.3指导纳米纺织品标准化工作协调发展

纳米纺织品是21世纪最具有竞争力的高新技术产业之一,标准化工作也受到了我国政府各个部门的高度重视,有关研究单位与企业也积极参与了标准化工作。为确保纳米纺织品标准化工作的协调与健康发展,整合各方面的资源,我们要在标准体系的框架下,协调有关方面的财力与人力,抓住主攻方向,分清轻重缓急,加快标准的制定速度。

2.4为抢占纳米纺织品的新技术制高点奠定基础

对标准的竞争,尤其对高新技术标准的竞争,说到底,是对未来产品、未来市场和国家经济利益的竞争。我们制定的标准体系,反映了纳米纺织品近中期发展的方向与全局,而且在纳米纺织品标准的制定方面也抢先一步,已经批准了1项纳米纺织品标准。由于我们在纳米纺织品标准化工作方面处于世界领先地位,我们在未来的纳米纺织品国际标准化工作以及国际交往中就有了更大的发言权,也为我国抢占纳米纺织品技术的制高点奠定了基础。

3纳米纺织品标准体系框架的构建

3.1纳米纺织品标准体系的基本概念

我国纳米纺织品标准体系是具有一定内在联系的由纳米纺织品标准组成的科学有机整体,是有计划制定标准的工作蓝图。它对我国纳米纺织品标准的总体结构给予说明,反映了我国纳米纺织品领域内整体标准的相互联系。我国纳米纺织品标准体系将纳米纺织品领域内的标准按照一定的形式排列起来,以图表的形式加以表达,能够直观、形象地概括标准体系的局部和全貌,清楚地表明各标准所属的层次和结构。

3.2我国纳米纺织品标准体系的指导思想

(1)加强顶层设计。按形成纳米纺织品产业链来规划现行与未来的纳米纺织品标准。(2)打破原有的部门划分与产业界线,提倡纳米纺织品标准化跨学科跨产业的合作与发展。(3)根据纳米纺织品的应用目标和产品目标,选准突破口和切入点,本着优先发展基础、检测、以及安全性评价等方面标准的策略,及时制定相关标准。(4)纳米纺织品与传统纺织品有质的差异,具有传统纺织品所不具备的特殊功能,在纳米纺织品标准体系中充分反映突出了纳米纺织品的特征与本质。

3.3我国纳米纺织品标准体系的框架结构

本着完整性、前瞻性、统一性、科学性和实用性的原则,既考虑到国家“十一五”发展规划所列重点领域,又力求充分体现“十二五”发展期间我国纳米纺织品发展的重点方向,构建了我国纳米纺织品标准体系框架。纳米纺织品标准体系由纳米纺织品通用基础标准体系、纳米纺织品技术标准体系、纳米纺织品保障标准体系三大子体系组成,其层次结构如图1所示。在标准体系的上层,是产业适用的法律法规,以及纳米纺织品标准化方针、目标与总体要求等。纳米纺织品标准体系范围内的所有标准都是在这一层标准的指导下形成的。在纳米纺织品标准体系范围内,包括第一层次的通用基础标准体系以及第二层次的技术标准体系和保障标准体系。这三个体系中,通用基础标准体系是基础,技术标准体系、保障标准体系两个体系是纳米纺织品标准化建设的中心内容;其中,技术标准体系是核心,保障标准体系是为实现技术标准提供的支持和保障,两个体系互相制约,互为补充,协调配套。该标准体系共有一个总体系和两个子体系,根据纳米纺织品标准体系的研究进展和实际经验的总结,在两个子体系的技术标准和保障标准等层次下面都设有可扩展项,以及时补充、完善和修订标准体系的内容,使其逐步规范化、科学化和系统化。

3.4我国纳米纺织品标准体系结构说明

3.4.1基础标准体系纳米纺织品基础标准体系在纳米纺织品标准体系范围内处于第一层,是指在纳米纺织品领域作为其它标准的基础,并普遍使用,具有广泛指导意义的标准。如图2所示,基础标准体系包括标准化导则、术语与缩略语标准、图形与文字代码、量和单位标准以及编码分类标准等。3.4.2技术标准体系纳米纺织品技术标准体系、保障标准体系在纳米纺织品标准体系范围内均处于第二层,分别是针对标准化领域中需要协调统一的技术事项,以及管理和工作事项所制定的标准,它们之间存在着相互补充和制约的关系,是直接指导纳米纺织品标准化活动的适用标准。纳米纺织品技术标准体系是针对纳米纺织品的研发、生产和销售过程中需要协调统一的技术事项来进行规范的,主要是为实施的标准化行为提供技术上的依据和规范。如图3所示,纳米纺织品技术标准体系包括设计技术标准、产品标准、工艺技术标准、表征及检测方法标准、包装,贮存及标志技术标准、安全风险评估技术标准、市场准入技术标准等七类标准。3.4.3保障标准体系纳米纺织品保障标准体系是针对纳米纺织品产业链中需要协调统一的管理事项,主要是为了对实施过程中涉及的关键环节和因素进行管理和控制,保证纳米纺织品技术标准体系的顺利运行而设立的。如图4所示,纳米纺织品保障标准体系包括设计、开发与创新管理标准,产品质量管理标准,工艺管理标准,表征、检测管理标准,包装、贮存、标志管理标准,安全性风险评估管理标准,市场准入管理标准,回收利用与处置管理标准,知识产权管理标准以及人员资质及岗位工资标准等10类标准。保障标准体系中的多数子体系与技术标准体系中的各类子体系相对应。设置保障标准体系是为更好的实施技术标准提供保障。同时纳米纺织品属于高新技术产品,会涉及到许多知识产权的保护和转化问题,为更好的协调好知识产权的管理事项,本标准体系设有知识产权管理标准。

4结语

纳米技术的知识篇4

1.1纳米材料的鉴别和表征

目前,由于不断有研究工作揭示出与纳米材料相关的风险。企业为规避监管,可能不会宣称其产品使用了纳米材料或者在产品的生产过程中应用了纳米技术。因为国家食品药品监督管理总局早在2006年就将纳米产品从Ⅱ类升级为Ⅲ类,并对其安全性和有效性进行审慎的考察。因此,企业并不以纳米技术作为其产品的主要宣传点,在这类情况中,由于纳米物质具有某些优异性能,或者在生产工艺中需要采用纳米技术,从而可能产生一批没有贴纳米标签的,实质上的纳米产品。对于此类产品,在技术审评工作中,首先要求审评人员具备一定的专业知识,能够从企业递交的注册资料中准确判断产品中是否有纳米物质成分,或者在生产中采用了纳米技术。为了准确鉴别医疗器械中是否使用了纳米材料,证明等同性非常重要。化学成分的相似性并不足以证明纳米材料的等同性,因为纳米材料是否呈现出特定性质可能取决于纳米材料的化学成分和形状,和(或)纳米材料的来源(供货方)。当判定了产品确实是纳米产品之后,对于其安全性和有效性的把握,需要具备必要的纳米表征手段知识。对含有纳米材料的医疗器械的生物学效应的试验和评价要求对纳米材料进行全面表征。因为纳米材料的毒性,不仅取决于其化学成分,也与其粒度(粒度分布)、长径比、形状、表面形貌、表面电势、表面化学、亲水(疏水性)、团聚(聚集)态等因素密切相关。因此,对于某些产品,可能需要根据扫描电镜、透射电镜、原子力显微镜、电感耦合等离子质谱等表征手段所获得的图像和数据来判断其安全性和有效性。应该根据纳米材料的类型和形式,以及器械的预期用途来选取表征方法。对特定物理化学参数的表征通常可采取多种方法。单一的表征方法可能无法提供对于参数的准确评估(例如:粒度分布、表面成分)。在该类情况下,如果可行,可能需要采取补充方法来对需要表征的性质进行充分评估,即采用两种独立的表征方法。需要特别注意的是,用不同的方法获取的有关特定性质的结果不能直接进行对比。例如,正如指导性文件所指出的,对于粒径测定,应至少采用两种显微镜技术(例如:透射电镜和激光扫描共聚焦显微镜)。为了对使用纳米技术的医疗器械进行可靠的表征,需要毒理学、物理学、化学、工程学和其他专业领域的专家之间的跨专业合作。

1.2纳米材料剂量

用于毒理学研究的剂量水平通常是以质量浓度为基础。然而,纳米材料的多个属性可能会影响其毒理性质。普遍认为,除了质量浓度以外,还应使用包括表面积和数量浓度在内的其他参数来充分表征纳米材料剂量。在确定用于纳米材料体外研究的毒理学相关的剂量时,应该考虑可分沉淀物的可能性。小纳米颗粒(例如:水动力学直径<40nm)与培养细胞层之间的接触主要取决于扩散和对流力。由于沉降力的额外影响,在细胞培养基中形成的稍大的纳米材料和纳米材料聚集体的沉淀速度更快。这些因素,以及与蛋白质和培养基其他成分的相互作用,可能会影响直接接触培养细胞的颗粒的数量。应该根据具体情况评价可分沉淀物出现的可能性。若有必要,应开展对于体外细胞剂量的分析性或计算性评估。目前,对介质中的剂量(分散/溶液浓度)或实际的纳米颗粒细胞摄入/接触量是否应该被用于剂量本身的表达还存在争议。

1.3纳米材料参照样品

试验结果的可靠性在一定程度上取决于是否可获得适合的参照样品。参照样品指拥有一项或多项特性参数、具有足够可重复性的已经确认的材料。可利用该材料或物质对仪器进行校准,评估测量方法或为材料赋值。纳米尺度参照样品的最初研发重点在于将其用于校准试验仪器,而不是作为生物响应基准进行参照样品研发。开发一种广泛接受的参照样品,包括在适合不同的试验系统的阳性对照与阴性对照纳米颗粒方面达成共识,已经成为纳米材料风险评估的一个关键性要求。虽然参照样品对于评估医疗器械中应用的纳米材料至关重要,但是因为存在实际困难,研发进度还是很慢。认识到纳米材料代表性样本的可用性对于纳米物质安全试验的可重复性和可靠性至关重要。iSo/tC229nm技术委员会已提出使用“代表性试验材料”,并且正对其进行讨论。代表性试验材料的拟议定义为“来自同一批的物质,在其一个或多个特定性质方面具有同质性和稳定性,被认为适合于开发用于针对除已表现出的同质性和稳定性以外的性质的试验方法”。目前这种方法已被应用于oeCD人造纳米材料工作组的纳米材料安全性试验合作项目,该项目使用欧洲委员会联合研究中心代表性纳米材料库中的代表性纳米材料来进行。

1.4纳米材料样品制备

纳米材料体积小,并且其物理化学特性可能发生改变,这使得与宏观(非纳米尺度)颗粒或化学物质的试验相比,纳米材料的样品制备会遇到重大的挑战。带来挑战的因素包括能加强纳米材料反应性的表面性质;聚集或团聚颗粒的形成;纳米颗粒在通过水合作用,部分溶解或其他过程的分散中发生的转变;以及低浓度水平污染物对纳米材料的物理化学性质和毒理性质的强烈潜在影响。如同其他类型的试验样品,纳米物体有可能吸附到容器表面。因此,确认标称浓度非常重要。对于研发针对含有纳米材料的医疗器械的可靠的样品制备方案来说,必须认识到这些问题。相比于使用常规材料的医疗器械,解决这些问题也许需要极大提高直接针对样品制备的研发力度,并制定处理策略。由于其独特的表面性质,纳米材料对用于样品制备的技术表现出极强的敏感性。颗粒之间以及颗粒与周围环境之间的相互作用会影响颗粒的分散。分散的纳米材料不一定呈现单分散颗粒的形式。呈聚集形式的单分散颗粒(由强结合或强融合的颗粒组成的颗粒)和呈团聚形式的非单分散颗粒(弱结合颗粒,聚集体,或两者的混合体)可以出现在以液体、粉末和气溶胶形式出现的纳米材料中,除非通过表面电荷或立体效应进行稳定化处理。因此,样品中纳米材料的分散状态和粒度分布可能随时间变化。这一属性对于制备浸提液和(或)储存溶液和剂量分散溶液有着非常重要的意义,pH值、离子强度或分子成分的轻微调整就可能显著改变颗粒分散度。基于该原因,受试品的稳定性对于在生物评价中获取具有代表性的和可重复性的结果来说显得尤为重要。纳米材料的样品制备可能包含对于制造商生产的或供应商提供的材料的表征,以及制备用于动物试验或体外实验的储存溶液和剂量溶液。制备细节可能根据给药途径和递送方法的不同而有所差别。

1.5纳米材料对于生物相容性研究试验的影响

将纳米材料用于试验系统时,必须认识到需要测定的一些性质可能会受到周围环境的影响,并且在很大程度上依赖于周围环境(例如:组织培养基、血液/血清、蛋白质存在)。与环境的相互作用可能导致纳米材料本身发生暂时性改变,如通过获得/脱落蛋白涂层,形成纳米颗粒团聚/聚集,或纳米材料其它方面的变化。由于这样的变化可能会影响纳米材料的特性,因此会影响纳米材料的毒性特征。因此,纳米材料应完全根据制造出来的形态/组成,以及最终用户所接收的形式(如果该形式包含自由纳米材料)进行表征。最后,还应该对最终产品中的纳米材料进行评价。对于生物安全性评价,需要将纳米材料分散在适当的介质中进行评价。这些介质与纳米材料之间的相互作用可严重影响到纳米材料在试验系统中的表现。应该在试验过程和试验结果评价过程中考虑该因素。纳米物体在生物环境中很容易将蛋白质迅速吸附在其表面,形成所谓的蛋白质“冕晕”。据报道,冕晕是由两层结构组成,内层是由强结合的蛋白质组成,而外层是由快速交换的分子组成。蛋白质冕晕并不是静态的,可能根据纳米材料所处环境的不同而发生改变。作为有机体内的异物,纳米材料的归宿为从被吸收、分布、代谢到排泄/消除。众所周知,纳米材料表现出与其对应的常规材料不同的物理化学特性(力学、化学、磁学、光学或电学特性),因此,可以合理的期望纳米尺度材料会影响生物学行为,并且生物学行为会引发在细胞、亚细胞和生物分子层面(例如:基因和蛋白质)包括细胞摄取的各种不同反应。因此,与由常规材料引发的毒理学反应所不同的各种毒理学反应可能在接触到纳米材料后才会显现。应该注意的是,不仅蛋白质会以冕晕形式参与这个过程,而且脂质也会参与这个过程。因此,毒物动力学研究应被视作针对含有纳米材料的医疗器械开展的毒理学风险评估的一个部分。当接触到生物环境的时候,纳米材料会与蛋白质发生相互作用,这种相互作用的定量和定性水平取决于生理环境的性质(例如,血液、血浆、细胞质等)和纳米材料的特性。同样,当接触到试验介质的时候,纳米材料也会与周围环境发生相互作用并且/或者也会对环境产生干扰,这取决于其本身的性质和所接触的条件;跟相应的常规材料相比,它们可能会有不同的表现。因此,对于任何被设计用来对医疗器械进行生物学评价的试验方法,对其进行专门的验证是十分有必要的。试验方法的选择将取决于纳米材料的特性。在纳米材料的毒性试验中,有几个已知的风险因素应该避免。对纳米材料的毒性和最终结局了解的还不多,所以一些未知的隐患还会在将来逐渐显露出来。由于纳米材料的毒性试验存在许多不确定性,所以公开透明变得至关重要。潜在的生物相互作用不是直接取决于分子的浓度或数量,而是取决于纳米颗粒本身。在纳米毒理学中,剂量反应关系的单位可能不是传统意义的质量单位,而可能是以纳米颗粒的数量或者他们的总表面积来表示剂量。除了表征以外,还应该以文件的形式记录下实验条件的详细情况。

2纳米材料标准化工作

纳米技术的知识篇5

阅读下文,完成1—5题。你家纳米了吗“你家纳米了吗?”什么事几乎都能先知先觉、赶在潮头浪尖之上的新新一族近一时期常挂在嘴边的这句话,让绝大部分人感到莫名其妙,不知道“纳米”是何方“神圣”。北京国际周上,“纳米”与智能、宽带等字眼并肩排列,再加上刚出世时各媒体好一阵“热炒凉拌”,人们对“纳米”只是闻其名却不知其实。简单地说,“纳米”是一种极微小的长度单位,一纳米等于十亿分之一米,也等于千分之一微米,大约是三四个原子的宽度。纳米科技是90年代初迅速发展起来的新兴科技,其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。纳米科技以空前的分辨率为我们揭示了一个可见的原子、分子世界。这表明,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到了前所未有的高度。有资料显示,2010年,纳米技术将成为仅次于芯片制造的第二大产业。“清洁卫士”披挂上阵人们越来越关注室内环境污染,长期在空调环境中工作、生活的人们不知不觉间可能会染上头痛、胸闷、咳嗽、困乏等“空调病”,纳米技术应用于空气净化过滤的消息给深受“空调病”困扰的人们带来一个惊喜。国内首批将纳米技术应用于空调机生产的上海欧臣纳米稀土空调就借其空气净化和水处理的国际技术背景,掀开21世纪健康空调的篇章。纳米是怎样充当“清洁卫士”,成为空气净化过滤材料的呢?据悉,这种特殊材料是由多种稀土金属、稀有金属、多种氧化物通过高科技方法合成的,其中加入了特殊的纳米材料。在纳米材料与多种稀土金属、稀有金属联合作用下,便构成了对各种有机污染物有良好去除效果的微孔活动中心。这个中心在不改变空气自然状态的大前提下,过滤空气中的有害物质,增加室内空气的含氧量。经过中国预防医学科学院检测,这种合成稀土纳米材料对甲醛的去除率超过96%,对苯的去除率为89.8%,对氨的去除率为81.8%,对氮氧化物的去除率高达98%,对香烟烟雾的去除率为60.7%……总之,它能够把家庭和建筑装修以后散发的各种有毒、有害、致癌有机污染物进行有效地去除。主要表现在——无毒害、杀菌、吸附异味、高附着强度等几个特点上。“筛子”好使却有点儿贵如今,纳米技术被较多地运用于一些楼盘的内外墙粉刷,像作为奥运样板工程的首都体育馆的改造工程;复旦大学研制成功的可以自我清洁的“纳米二氧化钛光催化玻璃”已经运用到医院手术室器材、汽车后视镜等方面;在国外比如日本等地也已将纳米技术开发成功并投入使用。最早做户式中央空调的清华同方人工环境公司表示,下一步他们将研究室内的空气处理系统,不断地融合数字控制、纳米材料、充电效应、环保介质等现代高新技术,提供温度、湿度适宜,纯净新鲜的室内空气。当更多的商家包括房地户商对“纳米”给予越来越多的关注,并将纳米作为一张强档绿色牌打给购房者时,人们也应该清醒地看到“纳米”的不成熟之处:一是纳米产品目前可以说是鱼龙混杂,趁许多人还不大了解有关知识,有些产品就硬往“纳米”上套;而国内外现在也缺乏真正的认证机构,无法进行有法律效力的认证。此外,并不是所有的家用电器或其他产品都适合采用纳米技术。最后,要提醒消费者注意的是,由于成本的加大,凡沾上"纳米"的东西都会比同类产品价格高一些。例如纳米空调比同品质普通空调贵10%到15%,消费者对此要有心理准备。1.人类研究纳米科技的目的是什么?(用原文回答)2.请根据上下文解释下面两句话的含义。①不知道“纳米”是何方“神圣”。②(纳米材料)刚出世时各媒体好一阵“热炒凉拌”。3.纳米技术净化过滤空气的过程是,先与_________________________联合作用,然后_________________________,最后____________________________。4.指出下面句子的说明方法,并谈谈它们的作用。(1)“筛子”好使却有点贵(2)一纳米等于十亿分之一米,也等于千分之一微米

纳米技术的知识篇6

关键词:纳米环境健康公正分配

中图分类号:X9文献标识码:a文章编号:1007-3973(2012)002-185-02

在电影《食破天惊》中,男主角弗林特为自己只有沙丁鱼吃的家乡发明了一款依据水分子变异便什么食物都能产出的机器。该电影的导演或者编剧也许并不知道有了纳米技术,这样的机器可能会以另外的形式成为现实。后来机器的失控给小镇带去了一些麻烦,在这幻想里,我们看到了纳米技术可能带来的巨大利益和巨大灾难。作为一门交叉学科,纳米技术涉及的范围十分广泛,在军事、生物、医学、化学、环境、电子、信息、分子组装等领域都有听到过关于纳米的发展。世界主要发达国家,英、美、日、德等都将发展纳米科技作为自己新世纪的战略项目。在纳米技术还没有引起如工业革命那般的巨大影响时,人们吸取了工业革命的教训,对纳米技术的可行性进行了各种考察,近年来也越来越关注纳米技术的伦理问题了。下面我们将探讨纳米技术带来的两大伦理问题。

1人类健康和环境问题

根据美国国家纳米技术行动计划,纳米技术的社会和伦理问题主要包括三个问题,其中一个便是纳米技术的环境、健康和安全议题。纳米技术对人类健康和环境的毒性及风险,主要包括纳米微粒的危害和暴露风险的两个焦点。纳米技术作为一个全新的领域在给人类带来巨大机遇的同时,也带来了巨大的潜在风险。纳米新材料具有了全新的特性,并且可以做到无孔不入,特别是对人和动物这样的有机组织,不可回收的纳米粒子可以穿越自然的屏障排放到包括有机体在内的环境中,还可能对包括人自身的有机体造成实质改变。2002年,erosiontechnologyandConcentration行动小组(etC)呼吁政府颁布法令禁止纳米材料以及纳米材料的商业生产。面对etC的禁止呼声,担心纳米技术的发展受到阻碍的专家们,旨在缩小纳米技术与伦理之间的差距。王国豫教授等指出,纳米伦理的兴起首先是因为纳米材料的安全问题。安全是人们自由生活的保障,是社会人人都应享有,不应被侵犯的权利,是“正义的最低限度要求。”而我们要鉴定的安全,首先便是人的自身安全。山西大学科技哲学研究中心的费多益认为材料变成纳米级后,活性、毒性都更加的大。如果这材料暴露在空气中,无疑对可能接触的人和环境都会带去破坏。纳米技术的发展,使得接触纳米材料的人群从研发人员扩大到了产业劳动者和消费者。2009年北京朝阳医院宋玉果课题组对一起职业中毒死亡事故进行调查,发现死去的两名女工肺部及肺盥洗液中均检出了30nm尺寸的颗粒物,课题组认为女工的死亡与纳米颗粒有关。工人是在原材料生产场地长时间接触高浓度纳米材料的人群,在生产场地的呼吸与皮肤接触都使他们暴露在可能的危险中。紧接着在加工的过程中,工人们也可能以同样的方式接触到纳米材料,并且无论是原材料生产还是产品加工生产,工厂都有可能将生产的废气、废料排入环境中。最后,消费者通过使用纳米材料化妆品和体育用品进行皮肤接触,使用过后的产品也会随生活垃圾进入环境。

当然,上述的风险只有在纳米颗粒具有毒性并且有暴露发生时才会存在。那么,纳米微粒是否存在毒性?尽管关于工程纳米材料的人体健康以及环境风险的研究正在进行,但是研究成果很少公布,在波兰华沙的某研究小组称“在含有碳纳米管的尘埃中工作不会产生太大的健康问题”。naSa的研究人员却发现,与同等质量的炭黑或石英相比,“碳纳米管如果被吸入肺部,会表现出更强的毒性”。杜邦公司则发现,当暴露于高浓度的单臂纳米管的环境中时,有一部分小老鼠会死亡,但是存活下来的老鼠并没有显示出任何炎症反应。研究发现,纳米材料的毒性是极其不稳定不确定的因素。种种不确定因素聚集起来,就形成了“评估人体健康风险时几个数量级的不确定性”。许多毒理学家都承认毒性评估“非常不准确”。Rice大学生物及环境纳米技术中心主任VickiColivin博士在2003年向国会的陈述中概括了这一领域的不确定性:“近年来,如果你曾使用过防晒霜,那么你的皮肤就有可能接触过纳米级陶瓷材料。该不该为此而担心呢?没有人知道……纳米材料是十分有价值的材料……然而,诸如研究人员、在工厂上班的工人甚至普通大众如果不小心接触某些纳米级物质,则有可能产生非常可怕的后果,远比让皮肤变蓝可怕得多。当然结果也有可能是良性的。只是我们不知道罢了。”

笔者认为,人类健康和环境问题是纳米伦理学中最关键的问题,纳米科技的安全由于其材料本身毒性风险的不确定性,给参与其中的人员埋下了一块定时炸弹。科学家应在国家安全前提下及时将纳米的毒性研究公之于众,并致力于纳米毒性的检测。在研究过程中采取必要安全措施,保证自身安全,从事相关工作的人员亦是如此,否则可能会对人员与环境造成无法挽救的伤害。

2公正分配问题

从一个国家内部来说,以纳米技术为支撑的任何生物技术都需要大量的资金支持,用于医学时更是只有富贵的阶层才负担得起,结果只有社会的小部分人能够从纳米技术中获益。没有公正的分配制度,巨大的经济效益将会变成巨大的社会问题。而最重要的问题是风险与利益分配的不公正,即少数人享受了纳米技术带来的巨大利益,而大多数人却要为之付出健康与环境的代价。这样最终也影响到纳米技术的健康、可持续发展。从国与国之间来看,国内的加剧不公也会同理沿用到各国之间,在有些发展中国家还在解决粮食问题,医疗问题,维护国内和平的时候,发达国家却有时间和精力去研发纳米技术,这将加剧各国之间的不平等。南京大学哲学系的沈骊天教授谈到,纳米技术在被认为拥有缓解人们争夺能源大战,大幅度削减物质能量消耗的正面能量时,纳米时代也被人们设想为了纳米武器的战争年代。而纳米在军事上的强大应用的可能性,会掀起新一轮的军备竞赛,结果还可能使新的霸权主义诞生。

纳米技术用于治疗疾病之外,还被考虑用在健康的人身上使人变得更满意自己或更被别人满意。现在在人们思考范围内的纳米技术用于人类增强引发的生命伦理思考大概有用于延长寿命、基因优先和人类复制。长生不老的灵丹妙药是古代道士帝王的不舍追求,如果纳米技术让他那变成了现实,也许并不是什么好事。当延长寿命普及到社会的时候,生命的质量和生命的价值都将受到影响,更不利于社会的发展。谁有生命无限的权利?少数人或每个人?科学家会成为控制个人生死的实施者吗?额外获得的寿命也许使人的价值观整个颠覆,漫长甚至无期的人生路人们能否依然保持该有的动力?人们能否依然只有唯一的伴侣?人们能否依然致力于保持家庭的稳定?甚至只来但久久不去的人会给早已超重负荷的地球更添压力,为了抢夺资源,将上演怎么样的大战。

基因工程刚刚被提出能帮助治愈如亨廷顿舞蹈这类家族遗传“绝症”时,本应获得来自社会受其迫害和善良的人们的欢呼,但当人们同时想到基因工程也能用来做点其他的改变,使人更完美或更如父母社会所期待的那样时,伦理学家们指出了其中的问题。神学论证认为人类不能代替上帝。但也有神学家认为上帝与人都有义务利用基因工程改善人类生物学。世俗论证主要反对改变人类胚胎基因和设计婴儿,强调生物复制性和不可预测性。生物学家纽曼引用动物克隆的教训,指出克隆和生殖细胞基因工程往往出现差错,破坏胚胎的正常发育,给人类胚胎带来不可接受的风险。但也有人认为现今的国际协议并没有妨碍父母利用生殖细胞和胚胎选择技术来改良他们的后代。在笔者看来,我们也许轻易地发现将纳米技术用于基因优生给人类带来的影响。首先,人们可以根据自己的意愿选择拥有一个儿子还是女儿。在传统的中国,我们将面临更严峻的男女比例严重不平衡状态,因为即使在文明程度达到如此境地的今天,重男轻女的思想依然存在。其次,贫富差距和社会不公愈演愈烈。有机会并有能力选择的父母将为自己的孩子选择尽可能好的未来吗,更好的外表、更强的记忆,更高的智商,将人生的比赛起点提前了很多,这些“优生”的孩子将在未来处于更有利的地位,并“恶性循环”。

纳米技术引发的伦理问题归纳起来最引人担忧的还是安全问题,虽然纳米技术完全发挥科学家预想的功能还需要无法估量的时间,但是未雨绸缪,总可以避免毁灭性的灾难,以免“弗莱肯斯坦”的故事变成现实。一步步探索,一步步求证,纳米伦理与纳米技术同步发展,将为纳米技术保驾护航。尽管我国政府也重视发展纳米技术,也强调发展纳米伦理,但是我国纳米技术的伦理研究远远滞后于纳米技术的发展。首先,目前我国伦理问题的提出没有得到解决的办法,也没有国际的认可。其次,我国公众参与纳米伦理的意识薄弱。再者,文理分界明显阻碍发展。美国曾预言,纳米技术将带来与工业革命一样的影响,在可持续发展发面,工业革命留给世界很多的遗憾,人们希望这一次可以在还没有给环境给人类带来不能挽救的伤害时就采取对策引导其发展,我国纳米伦理的研究可以说才刚刚起步,完善纳米伦理研究方式为人类造福是所有纳米伦理研究人员的目标。

参考文献:

[1]樊春良.积极应对纳米技术社会和伦理问题[n].中国社会科学报,2010-9-21.

[2]胡比希.王国豫(译).不能将发展纳米技术的决策权交给市场[n].中国社会科学报,2010-9-21.

[3](美)J.C.米勒,R..塞拉托,G.孔达尔,J.m.雷普雷萨斯-卡德纳斯.周正凯,邱琳(译).纳米技术手册-商业、政策和知识产权法[m].北京:科学出版社,2009:32-33,35-37.

[4]王国豫,龚超,张灿.纳米伦理:研究现状、问题与挑战[J].中国科学,2011,(02).

[5]费多益.灰色忧伤―纳米技术的社会风险[J].哲学动态,2004,(1).

[6]贾光.关注纳米材料职业人群的健康维护[n].中国社会科学报,2010-9-21.

[7]郭良宏,江桂斌.纳米材料的环境应用与毒性效应[n].中国社会科学报,2010-9-21.

[8]王国豫.纳米技术的伦理挑战[n].中国社会科学报,2010-9-21.

[9]沈骊天.纳米技术革命的未来展望与现实关注[J].科学技术与辩证法,2003,(01).

纳米技术的知识篇7

关键词:纳米技术,技术应用,技术问题

引言:现在各种产品一直朝着集成化和微型化的方向发展,但不同的器件必然受到尺寸上的物理约束。纳米材料的优势也因此凸显,目前纳米材料在磁、光、电、传感等方面都有许多重要的应用[2]。但与其他新技术一样,纳米技术仍存在着不少问题。主要原因是部分企业对纳米材料技术的期望过高,急功近利的思想导致忽略了它的弊端。

1纳米技术新应用的概述

1.1纳米技术在制材上的新应用――纳米陶瓷材料及高透明材料

在微米级基体中引入纳米分散相进行复合,可使材料的断裂强度、断裂韧性大大提高,同时还可提高其硬度、弹性模量以及抗疲劳破坏性能。纳米陶瓷材料正是利用这一点才得以广泛的应用。由于纳米微粒表面分率高,而且纳米粒子的粒径远小于可见光的波长,因此具有很高的穿透性。于是各种高透明纳米材料也应运而生。目前,国外已用纳米级羰基铁粉、镍粉、铁氧体粉末成功配制了军事隐身涂料。

1.2纳米技术在电磁领域的新应用――磁性纳米微粒

磁性纳米微粒[3]由于尺寸小,具有单磁畴结构与矫顽力高的特性,用它制作磁记录材料可以提高信噪比,改善图像质量。磁性纳米微粒除了上述应用外,还可作抗癌药物磁性载体,细胞磁分离介质材料,复印机墨粉材料以及磁墨水和磁印刷材料。近几年用铁基纳米晶巨磁阻抗材料研制的磁敏开关具有灵敏度高、体积小、响应快等优点,广泛用于自动控制、速度和位置测定、防盗报警系统和汽车导航、点火装置等。

1.3纳米技术在水泥材料中的应用――纳米矿粉

混凝土是现代应用最广泛、最重要的工程材料,利用纳米技术和纳米矿粉开发新型的混凝土可大幅度提高混凝土强度、施工性能和耐久性能。纳米矿粉不但可以填充水泥的空隙,提高混凝土的流动度,更重要的是可改善混凝土中水泥石与骨料的界面结构,使混凝土强度、抗渗性与耐久性均得以提高。

1.4其他应用[4]

利用离子交换复合工艺,使层状无机纳米材料在极性分子的作用下发生膨胀、层离,均匀分散在水介质中。他们在层间进行交换作用,抗菌或净化成分进入层间后,把层与层撑开,在层间交替形成分子级支柱,从而形成各种不相同的纳米复合抗菌材料、净化空气材料。这种纳米复合抗菌材料和净化空气材料可净化甲醛、苯等有害挥发物。利用纳米技术还可开发可净化二氧化碳并产生负离子具有森林功能的建材以及粘合剂及密封胶。将纳米二氧化硅作为添加剂加到粘合剂和密封胶中,会大大提高粘结效果和密封性能。

2纳米技术的问题

尽管纳米材料用途很广,但由于过分强调纳米技术的先进性,导致出现了一系列的问题。首先,由于纳米材料的特殊性质,对生命健康和生态环境产生的负面效应和不确定性让人担忧。由于纳米粒子无孔不入,在研发、生产、存储、运输等方面都有各种问题,而且其毒性还未知。它与其他物质的接触面积很大,反应也会很剧烈。第二,对纳米技术的盲目性导致了“纳米热”。近年来政府一直把“纳米技术”列为发展重点,于是不少企业冒充纳米企业,享受国家的优惠税收政策,并为了谋利推出“伪纳米”产品。其导致的恶果是国家的有限资金不能有效地应用到真正的纳米材料技术研究和开发中,严重影响了纳米产业的发展。第三,虽然中国在纳米技术的理论建立上取得了不少成绩,但在研制开发与产业化的实践中却显得力量不足。由于纳米技术是高新技术,实际工程中,很多理论与定理都会有误差,但这方面的专业人才紧缺,直接了导致纳米技术研究的滞后。第四,纳米技术作为高新技术,必须投入大量资金,但由于各种原因,往往不能取得相应的回报,资金大量流失,却毫无成果。

3结论与展望

纳米技术是对于未来经济和社会的发展将产生重大影响的一种关键性前沿技术,这是世界各国科学家的共识。纳米材料在各个科学领域都有着非常广泛的应用前景。可预料在不久的将来,纳米技术不仅会推动产品的开发,还将改善人们的生活质量,改善人们的生活环境。在未来的15-20年内,与纳米技术相关的产品市场规模将达1万亿美元,可见其前景广阔。但是,由于纳米材料自身处于发展阶段,还有各种各样的问题有待解决。在某种意义上,它还是一种不确定的技术,我们对它的认识也仅处于初始阶段。如何构建一个既普遍有效,又能够满足和包容不同价值体系的纳米技术准则,将成为纳米技术今后发展面临的一大挑战。

参考文献:

[1]张金升,纳米材料和技术与发展新型建材.中国建材装备,2002,(2)

[2]崔铮.纳米加工技术及其应用.北京:高教出版社,2005[CuiZ.nanofabricationtechnologiesandapplica2tions.Beijing:Highereducationpress,2005(inChinese)]

纳米技术的知识篇8

关键词:环境化学;教学;纳米传感器

随着社会的发展以及经济水平的提升,环境问题日渐凸显,社会需要大量具备科学环境知识的高素质人才,所以高校肩负着塑造大批环境类人才的使命。在众多高校的课程体系中,环境化学课程占据着不可或缺的地位。环境化学课程主要探讨的是化学污染物质在环境介质中的存在、化学性质、行为及控制的化学原理等。新诞生的纳米传感技术涵盖的知识面广泛,并且具有全面性和综合性,将其融入于课程的教学中,可以显著提升教学效果。在环境化学现存的教学工作的基础上,紧密地结合学校自身的办学特点,是提升教学质量的重要措施之一。

1纳米传感器概述

1.1纳米化学及生物传感器

在化学及生物传感器领域融入纳米技术,有效提升了生物传感器及化学的检测性能,推动了新型化学及生活传感器的诞生。由于具备了亚微米的尺寸、换能器及纳微米系统,大大提升了该传感器的物理、化学性质对细胞的检测灵敏度,检测的反应时间也有了明显的减少,而且可以实现高通量的实时检测分析。使用纳米材料所制成的非常灵敏的生物及化学传感器,能够早期诊断癌症及心血管疾病。使用碳纳米管及其他纳米微结构的化学传感器可以检测出氧化氮、过氧化氢、碳氢化合物及挥发性有机物等。和其他具备相同功能的分析仪相比,其不仅尺寸很小,而且价格非常便宜。在生物传感器当中,使用纳米颗粒、纳米器件及多空纳米结构均获取了成功[1]。

1.2纳米气敏传感器

构成纳米气敏传感器的敏感材料有很多种,主要包括碳纳米管、二维纳米薄膜及金属氧化物半导体纳米颗粒等。在纳米气敏传感器的研发过程中,最主要的方向就是在气体环境当中,依靠敏感材料的电导发生变化来制造气敏传感器。将一些珍贵金属的纳米颗粒,融入于纳米敏感材料中,可以有效增强选择性,提升灵敏度,并且降低工作温度。纳米气体传感器的另外一个方向是,采用多壁碳纳米管来制作气敏传感器。1991年,碳纳米管这种材料被初次发现,由于独一无二的性质和制备工艺,得到了研究者的广泛应用。而且多壁碳纳米管具有极强的吸附能力,因为吸附的气体分子和碳纳米管所产生的相互作用,可以改变宏观电阻,根据电阻的变化来检测气体成分,可以充当气敏传感器[2]。

2纳米传感器在环境化学教学中应用

2.1将纳米传感器融入环境化学教学的必要性

在中国地质大学,环境专业不仅是其中的热门专业,也是特色专业之一。对于环境化学课程的设置,一直坚持着学校“特色加精品”的教育理念。将一些全新的技术元素及概念融合于以往环境化学课程的教学模式中,会给课程注入许多生机与活力。环境化学的研究内容纷繁复杂、千变万化,其中主要包括检测和识别环境污染物质,污染物质在空气、水、泥土及生物体中的迁移变化、去除机理等。在此之中,对污染物的分析与检测一直处于研究的上游阶段。因为唯有精确、高效地检测出污染物的浓度与存在方式,才可以给出有效准确的评价,并且制定出对污染物质进行高效处理和防治的有效措施。所以,在环境化学的实际教学过程中,环境分析化学的内容具有不可或缺的作用[3]。随着经济水平的提升,环境污染物的种类也在日益增多,而人们也在不断地开发新的技术与材料,应对这些层出不穷的环境问题。在这样的环境下,纳米传感器应运而生,其最主要的核心作用就是对环境进行监测及分析。总之,化学是一门内容丰富的综合性学科,其中融合了环境分析、新材料的使用以及污染控制技术等。而纳米传感器主要由化学传感器、生物传感器两部分组成,所能监测的物体主要涵盖了气体、固体、液体、温度及压力等。所运用的材料除了碳与金属之外,还有新合成的材料。所以,纳米传感器技术传达的核心知识点和环境化学课程的核心内容存在着千丝万缕的联系,可通过科学的设计及合理的导入,拓展教学范围,提升教学质量,实现最理想的教学效果[4]。

2.2特色案例教学设计

在环境化学课程的教学过程中,会牵涉到环境分析化学的主题,随之也会提及环境污染物最新的检测技术与方法。此时便可以介绍一些以纳米传感器为基础的快速检测污染物的相关知识。并且根据有关的电分析化学理论,当物质发生氧化还原反应时,在电极表面及分析物之间会存在电子转移,通过对电子转移的捕捉,对电信号(电流值和电压值)及特征值进行定量及定性分析,从而获取目标浓度及电子转移数二者之间的一个定量关系,从而可以准确地将目标物的浓度检测出来。一般该技术所需的设备体积小,容易操作,对现场进行分析检测时更加方便。这样的介绍不仅可以让学生更深入地了解纳米传感器的核心技术、主要原理,激发学生的学习积极性及学习兴趣,而且可以有效传递现阶段纳米材料在环境分析化学范围的应用等有关知识,开发学生的创造性思维[5]。案例的展示加上丰富多彩的多媒体课件,结合电分析化学仪及电极等实物,力求做到绘声绘色、动静结合。此外,对一部分许多学生都充满兴趣的话题进行交流和讨论,将全班的学生分为若干个小组,进行5~10min的讨论,然后每个小组派一个代表进行发言,分别叙述自己的观点。这样在营造良好课堂氛围的同时,还可以节约大量的时间,提升教学的质量和效率,事半功倍。现详细介绍使用碳纳米管传感器检测环境水样中的农药百草枯试验。

2.3试验部分

2.3.1仪器与试剂

多壁碳纳米管(<10nm,纯度>95%,长度在0.5~500μm),超声非常均匀地分散于n-二甲基甲酰胺中(5mg/mL),市场上售卖的百草枯,磷酸缓冲溶液(pBS):使用0.1mna2Hpo4和0.1mnaH2po4配置。全部的化学试剂皆为分析纯,试验用水是二次蒸馏水。方波伏安法及循环伏安法都在CHi660b电化学工作站上进行。并且采用三级系统,分别为铂丝电极为对电极,碳纳米管修饰电极为工作电极,饱和甘汞电极为参比电极。测试底液为磷酸缓冲溶液,每次测试之前都通氮除氧10min,在试验过程中始终保持氮气氛围,试验操作在温室下进行。

2.3.2纳米传感器的制备

把玻碳点击表面用1.0、0.3、0.05μm的氧化铝粉抛光,然后依次用水及酒精超声清洗之后,在0.1mH2So4中与-1.0~1.5V电位的范围内反复扫描,直到电流稳定下来为止。使用氮气把电极表面吹干,使用微量注射器吸取2μL多壁碳纳米管DmF溶液,浓度为5mg/mL,均匀地滴落于干净的电极表明,利用室温将其挥发干[6]。

2.3.3方波伏安法检测环境中的百草枯

百草枯可以非常稳定地存在于酸性或者中性环境中,但是在pH值大于12时,便会发生水解,试验检测了在不同的底液中,传感器对相同剂量的百草枯的响应电流,比如磷酸缓冲溶液、硼砂、na2Hpo4柠檬酸及邻苯二甲酸氢钾等。结果表明,在磷酸缓冲溶液当中的响应电流最大,以下试验选用磷酸缓冲溶液为测试底液。pH对百草枯在修饰电极上的方波伏安响应存在一定的影响。当底液pH比较小时,响应电流就会随着pH的增大而增大,在中性底液中变为最大值。在碱性条件下,电流值会下降许多,所以选择pH值为6.8。预富集电位对百草枯方波福安响应也存在一定的影响,预富集电位在0.1~0.4V时,响应电流会随着电位的负移而逐渐增大,这主要是因为百草枯带有正电荷。然而,当预富集电位小于-0.4V时,响应电流开始逐渐下降,造成这一现象的主要原因是预富集电位非常接近百草枯的氧化还原电位,少许的百草枯被氧化还原了,所以试验选择预富电位为-0.4V[7]。尽管百草枯响应电流会伴随着预富集时间的增大而增大,但是时间过于漫长的话,会导致百草枯产生光分解,所以响应电流反而会下降,所以实验所选择的预富集时间为2min。维持试液当中的百草枯浓度是5.0×10-6m,将浓度不一致的干扰物质加入其中,考察一些共存的有机化合物,比如莠去津、邻苯二酚对方波伏安检测百草枯的干扰情况。倘若信号变化超过10%,则视为有干扰。结果显示,邻苯二酚的干扰最大,浓度若超过百草枯的100倍,就会引起干扰。如果是其他的重金属离子,比如Zn2+、K+,浓度需在1000倍以上才会引发干扰。所以,mwnts-GC修饰电极对百草枯具有极强的选择性,不容易受到其他物质的干扰。在校园附近取少量湖水,静置2h,然后用稀盐酸或者氢氧化钠将pH值调节至6.8,在磷酸缓冲溶液中用方波伏安法对实际样品进行检测。检测结果如表1所示。从表1可以看出,在这种方法的检测范围之内,校园的湖水样品当中并不含百草枯成分,进而表面湖水并没有被百草枯所污染。维持试液当中的百草枯浓度为8.3×10-6m,使用方波伏安法用mwnts-GC修饰电极连续测定5次,标准偏差为1.3%左右。将测定之后的修饰电极保存于0.1mpH6.8pBS当中,30d后,使用其测定含有8.3×10-6m的底液,响应电流仍然保持过去的95%,这也进一步表面纳米管在电极上结合得十分牢固,而且性质也十分稳定。

2.4纳米产品的开发及案例教学的课堂实践

因为纳米技术及其材料具备多样性特征,评估其对环境所产生的影响,需要采用可适应多种条件的传感器。所以,在将来的3~10a,需要开发出评估纳米材料暴露在空气当中影响的仪器。现阶段频繁接触纳米材料的人,都急需价格低廉且便于携带的样本收集器,从而测量工作环境当中纳米材料的暴露情况,主要包括比表面积及数量等。这种仪器需要在未来3a内商业化。纳米产品在制造过程中所产生的废物,比如防晒油这种液体消费品当中产生的纳米颗粒,一定会在水中堆积,不对这些废物进行追踪,就无法确定纳米颗粒存在的好坏。所以,必须在未来5a开发追踪纳米颗粒在水中聚集及转化情况的仪器[9]。笔者在高校环境化学课程的实际教学过程中,把纳米传感器的基础知识、研究心得及实际经验融入于具体的教学过程中,对教学质量的提升发挥了良好的推动作用。比如,在环境化学课程中,讲述环境污染物质的检测环节时,介绍了碳纳米管、石墨烯及碳纳米纤维等纳米材料充当以电分析原理为基础的传感器材料的优势。与其他材料相比较可知,碳纳米材料具备非常大的比表面积、良好的导电性、便宜的价格,而且易于修饰成各种外形,有助于蛋白质或者酶等生物性物质与碳纳米材料融合,从而构建出高效生物传感器。这些介绍可以让学生直观全面地了解到碳纳米材料在传感器中的使用。并且根据现存的理论结合实际的教学思路,对教学内容发挥拓展及延伸的作用[9]。除了上述几点之外,在简介如何灵活运用纳米传感器检测水环境中的污染物质时,牵涉到了电子转移理论及电化学反应,并且详解讲述了传感器的工作原理及传感器的种类。这样可以向学生讲述纳米电化学传感器,是基于特异性点分析化学反应基础的知识点,并且详细介绍了膜状电极、芯片传感器及柱状电极等多种不同形式下的具体作用方法,生动具体地展现了纳米传感器检测污染物的整个过程。在拓展教学内容的形式及内容时,对环境化学教学的发展起到了有效的推动作用。每当在讲述这些具体案例的过程中,学生都兴致蓬勃,充满了热情,甚至进一步激发了许多学生的想象力及好奇心,自己也想亲自参与到纳米传感器的开发及应用过程中来。所以,作为一个生动有效的教学载体,纳米传感器推动了环境化学课程教学质量的提升。在未来的教育教学实践工作中,笔者必须进一步丰富教学经验,并且让教学方法更加科学完善[10]。

3结语

将纳米传感器应用于环境化学的教学过程中,有助于培养学生主动分析问题及处理问题的能力,提升教学质量。随着此项技术的不断发展演变,可以把更多有价值的信息以案例教学的模式导入环境化学教学的过程中,不仅可以激发学生对该项技术的兴趣,还可以使纳米传感技术得以进一步发展,形成良性循环。在未来的环境化学课程的教学中,应深入探索,总结经验,进而提升教学的质量。

作者:周林宗单位:楚雄师范学院地理科学与旅游管理学院

参考文献

[1]余会成,黄学艺,李浩,等.纳米氧化铜修饰的苯巴比妥分子印迹传感器的制备及其电化学性能[J].物理化学学报,2014,10(11):2085-2091.

[2]段静,卓莎,姚付军,等.基于mspa蛋白质纳米孔传感器的主客体化学研究[J].分析化学,2016,44(12):1801-1807.

[3]田力,韩鑫,张纪梅,等.基于能量转移的荧光纳米传感器研究进展[J].天津工业大学学报,2013,12(6):49-54.

[4]曹培江,彭双娇,韩舜,等.Zno纳米/微米结构传感器对乙醇气敏性研究[J].发光学报,2014,35(4):460-464.

[5]黄晓玮,邹小波,赵杰文,等.新型室温硫化氢纳米传感器的制备及性能[J].高等学校化学学报,2014,12(6):1175-1180.

[6]胡杰,王勇,倪永年,等.基于层状二硫化钼纳米片比色检测亚锡离子[J].高等学校化学学报,2016,37(3):448-453.

[7]王君,周洁,许迎科,等.基于纳米Ruox的微型电化学胰岛素传感器[J].电子科技大学学报,2015,12(1):155-160.

[8]胡耀娟,黄梦丹,陈昌云,等.微波辅助法制备氢氧化镍-石墨烯纳米复合结构及在葡萄糖检测中的应用[J].高等学校化学学报,2016,37(3):468-474.

纳米技术的知识篇9

成都读者薛阳来信说,纳米技术是一种新兴的科技,根据惯例新科技总要在军事上率先使用,请问纳米技术在军事上有用处吗?

答:看得出来,薛阳读者是一个爱动脑筋的人,纵观科技发展史,确实有许多科技成果在问世之初是用在军事上的。纳米技术作为一种新兴科技,运用前景非常广阔,在各个领域都可能引发深刻的技术革命。所以,纳米技术在军事上也一定会得到充分的运用。

纳米是一种长度单位,一纳米即为10亿分之一米,约为10个原子的长度。物体在0.1纳米~100纳米尺度空间内会表现出不同于宏观物体的特性。纳米技术就是研究和利用这些特性制造具有特定功能设备的高技术。纳米技术将成为划时代的高技术,它的迅速发展有可能使战争的面貌和形态发生根本变化。

科研人员发现,纳米碳管具有很高的强度,比一般的高强度钢要高一百多倍,用纳米碳管制造的复合材料,具有强度高、重量低、耐高温等特性,用纳米碳管制作的防弹衣柔软、合身、防弹性能好。坦克装甲车辆也可能从此抛掉沉重的“乌龟壳”,披挂纳米材料装甲“轻装上阵”。

纳米技术将使武器装备的体积、重量大大减小。纳米技术可以把现代主战坦克等武器系统上的全部电子系统集成在一块小小的芯片上;能将目前需要多辆车运载的电子战系统缩小至可由单兵携带,大大提高电子战的覆盖面,减小部队的作战支援压力和后勤保障压力。利用纳米技术可生产重量小于0.1kg的卫星,这样,一枚火箭一次可发射数百乃至数千颗卫星,覆盖全球,完成侦察和信息转发任务。

纳米技术的知识篇10

1、各国竞相出台纳米科技发展战略和计划

由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了部级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了部级的纳米技术计划(nni),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

2、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDp的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

3、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCi)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。(2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

4、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。iBm、惠普、英特尔等一些it公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。