首页范文欧姆定律问题十篇欧姆定律问题十篇

欧姆定律问题十篇

发布时间:2024-04-29 11:27:00

欧姆定律问题篇1

【关键词】物理;欧姆定律;问题;解题思路

欧姆定律是高中物理电学部分的核心内容,也是高考的重难点内容,同时欧姆定律掌握的好坏会直接影响我们的考试成绩,因此要多用时间将这块知识进行巩固,以取得更高的分数。

1在欧姆定律的学习中常遇到的问题

1.1欧姆定律的使用范围问题

在电路的实验过程中,我会出现忽略导线,电子元件与电源自身的电阻,将整个电路视为纯电阻电路的问题。而欧姆定律通常只适用于导电金属和导电液体,对于气体、半导体、超导体等特殊电路元器件不适用,但我们知道,白炽灯泡的灯丝是金属材料钨制成的,也就是说线性材料钨制成的灯丝应是线性元件,但实践告诉我们灯丝显然不是线性元件,因此这里的表述就不正确,本人为了弄清这里的问题,向老师进行了请教并查阅了相关资料,许多资料上说欧姆定律的应用有“同时性”与“欧姆定律不适用于非线性元件,但对于各状态下是适合的”。但我自身总觉得这样的解释难以接受,有牵强之意,即个人理解为既然各个状态下都是适合的,那就是适合整个过程。

1.2线性元件的存在问题

通过物理学习我们会发现材料的电阻率ρ会随其它因素的变化而变化(如温度),从而导致导体的电阻实际上不可能是稳定不变的,也就是说理想的线性元件并不存在。而在实际问题中,当通电导体的电阻随工作条件变化很小时,可以近似看作线性元件,但这也是在电压变化范围较小的情况下才成立,例如常用的炭膜定值电阻,其额定电流一般较小,功率变化范围较小。

1.3电流,电压与电阻使用的问题

电流、电压、电阻的概念及单位,电流表、电压表、滑动变阻器的使用,是最基础的概念,也是我最容易混淆的内容。电流表测量电流、电压表测量电压、变阻器调节电路中的电流,而电流、电压、电阻的概念是基本的电学测量仪器,另外,欧姆定律只是用来研究电路内部系统,不包括电源内部的电阻、电流等,在学习欧姆定律的过程中,电流表、电压表、导线等电子元器件的影响常常是不考虑在内的,而对于欧姆定律的公式i=UR,i、U、R这三个物理量,则要求必须是在同一电路系统中,且是同一时刻的数值。

2欧姆定律学习中需要掌握的内容

本人在基于电学的基础之上,通过对欧姆定律的解题方式进行分析,个人认为我们需掌握以下内容:了解产生电流的条件;理解电流的概念和定义式i=q/t,并能进行相关的计算;熟练掌握欧姆定律的表达式i=U/R,明确欧姆定律的适用条件范围,并能用欧姆定律解决相关的电路问题;知道什么是导体的伏安特性,什么是线性元件与非线性元件;知道电阻的定义和定义式R=U/i;能综合运用欧姆定律分析、计算实际问题;需要进行实验、设计实验,能根据实验分析、计算、统计物理规律,并能运用公式法和图像法相结合的方法解决问题。

3欧姆定律的解题思路及技巧

3.1加深对欧姆定律内容的理解

在欧姆定律例题分析中,我们比较常见的问题是多个变量的问题,以我自身为例,由于物理理解水平有限,且电压、电流、电阻的概念比较抽象,所以学习难度较大,但我通过相关教学短片的学习,将电阻比喻成“阻碍电流通行的路障,电阻越大路越不好走,电阻越小通过速度则快”的方式,明白了电阻是导体自身的特有属性,其大小是受温度、导体的材料、长度等各方面因素影响的,与其两端的电压跟电流的大小无关,并且明白了电阻不会随着电流或者电压的大小改变而改变。同时我们每一个人都知道对于不同的习题,解决步骤都是不相同的,虽同一问题会有不同的解题方法,但总是离不开欧姆定律这个框架。因此对于一些与电学有关的知识,我一般会利用欧姆定律解决电生磁现象与电功率计算问题。例如:某人做验时把两盏电灯串联起来,灯丝电阻分别为R1=30Ω,R2=24Ω,电流表的读数为0.2a,那么加在R1和R2两端的电压各是多少?我可以根据两灯串联这一关建条件,与U=iR得出:U1=iR1=0.2a×30Ω=6V,U2=iR2=0.2a×24Ω=4.8V,故R1和R2两端电压分别为6V、4.8V的结论。

3.2利用电路图进行进行计算

在解有关欧姆定律的题时,以前直接把不同导体上的电流、电压和电阻代入表达式i=U/R及导出式U=iR和R=U/i进行计算,并把同一导体不同时刻、不同情况下的电流、电压和电阻都代入欧姆定律的表达式及导出式进行计算,因此经常混淆,不便于分析问题。通过后期老师给予我的建议,在解题前我都会先根据题意画出电路图,并在图上标明已知量、数值和未知量的符号,明确需分析的是哪一部分电路,这部分电路的连接方式是串联还是并联,以抓住电流、电压、电阻在串联、并联电路中的特征进行解题。同时,我还会注意开关通断引起电路结构的变化情况,并且回给“同一段电路”同一时刻的i、U、R加上同一种脚标,其中需注意单位的统一与电流表、电压表在电路中的连接情况,以及滑动变阻器滑片移动时电流、电压、电阻的变化情况。

3.3利用电阻进行知识拓展

本着从易到难的原则,我们可从一个电阻的问题进行计算,再扩展到两个电阻、三个电阻,逐渐拓宽我们的思路,让自己找到学习的目标以及方法。比如遇到当定值电阻接在电源两端后电压由U1变为U2,电路中的电流由i1增大到i2,这个定值电阻是多少的问题时,我们可利用欧姆定律的概念ΔU=Δi・R得到电阻的值,而当难度增加由一个电阻变为两个电阻时,定值电阻与滑动变阻器串联在电压恒定的电源两端,电压表V1的变化量为ΔU1,电压表V2的变化量为ΔU2,电流表的示数为Δi,在这样的问题上可将变化的问题转化为固定的关系之间的数值,就可简化许多变量问题的计算。当变量变为三个电阻时难度会进一步的增大,我起初认为这是一项不可能完成的任务,所以放弃了这类题,而在经过询问成绩优秀的同学时,才知道可将三个电阻尽量化为两个电阻,通过电压表与电流表的位置将电阻进行合并,以此简化题目。

4总结

简言之,欧姆定律是物理教材中最为重要的电学定律之一,是电学内容的重要知识,也是我们学习电磁学最基础的知识。当然,对于欧姆定律的学习与解题方法,自然不止以上所述方法,因而在具体的学习中,我们要立足于自身实际学习情况来进行方法的选取,突破重难点知识,以找到更好的解题思路。

参考文献:

[1]高飞.欧姆定律在串并联电路中的应用技巧[J].才智,2009(27)

欧姆定律问题篇2

1.地位和作用

《欧姆定律及其应用》这一节在学生学习了电流表、电压表、滑动变阻器的使用方法及电流与电压、电阻的关系之后才编排的。通过这一节的学习,要求学生初步掌握和运用欧姆定律解决实际电学问题的思路和方法,了解运用“控制变量法”研究物理问题的实验方法,为进一步学习电学内容打下一定的基础。

2.教学目标

(1)知识目标

理解掌握欧姆定律及其表达式,能用欧姆定律进行简单计算;根据欧姆定律得出串并联电路中电阻的关系;通过计算,学会解答电学计算题的一般方法,培养学生的逻辑思维能力。

(2)技能目标

学习用“控制变量法”研究问题的方法,培养学生运用欧姆定律解决问题的能力。

(3)情感目标

通过介绍欧姆的生平,培养学生严谨细致的科学态度和探索精神,学习科学家献身科学、勇于探索真理的精神。通过欧姆定律的运用,帮助学生树立物理知识普遍联系的观点以及科学知识在实际中的价值意识。

3.重点和难点

重点:理解欧姆定律的内容及其表达式和变换式的意义,并且能运用欧姆定律进行简单的电学计算。

难点:运用欧姆定律探究串、并联电路中电阻的关系。

二、说学生

1.学生学情分析

在学习这节之前学生已经了解了电流、电压、电阻的概念,并且还初步学会了电压表、电流表、滑动变阻器的使用,具备了学习欧姆定律基础知识的基本技能。但对电流与电压、电阻之间的联系的认识是肤浅的、不完整的,没有上升到理性认识,需要具体的形象来支持。所以在本节学习中应结合实验法和定量、定性分析法。

2.知识基础

要想学好本节,需要学生应具备的知识有:电流、电压、电阻的概念,电流表、电压表、滑动变阻器使用方法,电流与电压、电阻的关系。

三、说教法

结合学生情况和本节特点本人采取以下几个教法:采用归纳总结法、采用控制变量法、采用定性分析法和定量分析法。

四、说教学过程

1.课题导入(采用复习设置疑问的方式,时间3分钟)

复习:电流是如何形成的?导体的电阻对电流有什么作用?

设疑思考:电压、电阻和电流这三个量之间有什么样的关系呢?通过简单的回顾、分析,使学生很快回忆起这三个量的有关概念,通过猜想使学生对这三个量的关系研究产生了兴趣,达到引入新课的目的。

2.展开探究活动,自主总结结论(时间37分钟)

根据上节探究数据的基础,让学生自主总结出两个结论:导体的电阻一定时,通过导体的电流与导体两端的电压成正比;导体两端的电压一定时,通过导体的电流与导体的电阻成反比。

为了进一步得出欧姆定律的内容,可采用以下几点做法:各小组在教师指导下,对实验数据进行数学处理,理解数学上“成正比关系”“成反比关系”的意思,从而引入欧姆定律的内容;让学生思考用一个什么样的式子可以将这两个结论所包含的意思表示出来,从而引入欧姆定律的表达式。

3.说明事项

在欧姆定律中有两处用到“这段导体”,其意思是电流、电压、电阻应就同一导体而言,即同一性和同时性。

向学生介绍欧姆的生平,以达成教学目标中的情感目标。学习科学家献身科学、勇于探索真理的精神,激发学生的学习积极性。

欧姆定律应用之一:通过课本第26页例题和第29页习题2和习题3,让学生自己先试做,然后教师再加以点评和补充,使学生理解掌握欧姆定律表达式及变形式的应用,达成教学目标的知识目标,充分体现了课堂上学生的自主地位。

应用欧姆定律解题时应注意以下几点问题:

(1)同一性

即公式中的U、i,必须针对同一段导体而言,不许张冠李戴。

(2)统一性

即公式中的U、i、R的单位要求统一(都用国际主单位)。

(3)同时性

即公式中的U、i,必须是同一时刻的数值。

(4)规范性

解题时一定要注意解题的规范性(即按照已知、求、解、答四个步骤解题)。

欧姆定律应用之二:探究串并联电路中电阻的关系。

(1)实验分析

在演示实验之前,要鼓励学生进行各种大胆的猜想,当学生的猜想与实验结果相同时,他会在实验中体验到快乐与兴奋,有利于激发学生的学习兴趣。

①演示实验

将两个电阻串联起来,让学生观察灯泡的亮度情况(变暗了),并说出原因(电路中的电流变小了,说明总电阻变大了)。

得出结论:串联电阻的总电阻比任何一个分电阻的阻值都大。

②演示实验

将两个电阻并联起来,同样让学生观察灯泡的亮度情况(变亮了),并说出原因(路中的电流变大了,说明总电阻变小了)。

得出结论:并联电阻的总电阻比任何一个分电阻的阻值都小。

(2)定性分析

(提出问题)为什么串联后总电阻会变大?并联后总电阻会变小?

得出结论:电阻串联相当于导体的长度变长了,所以串联电阻的个数越多总电阻就越大;电阻并联相当于导体的横截面积变粗了,所以并联电阻的个数越多总电阻就越小。

(3)定量分析

利用欧姆定律公式以及前面学过的串并联电路中电流和电压的特点推导串并联电路中总电阻的关系得出结论:(1)电阻串联后的总电阻R串=R1+R2+…+Rn;(2)电阻并联后的总电阻=+…+。

4.小结(4分钟)

(1)理解掌握欧姆定律的内容及其表达式

(2)运用欧姆定律解决有关电学的计算题以及探究串、并联电路中电阻的关系

5.布置作业(1分钟)

本节作业的布置主要是针对欧姆定律表达式及其变形公式的运用,并结合前面学习过的串并联电路中电流、电压的特点的一些常见题型加以知识的巩固。

作业:《课堂点睛》17页至18页的习题。

五、说板书设计

欧姆定律的内容:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。

欧姆定律的表达式:i

电阻的串联:R串=R1+R2+…+Rn

欧姆定律问题篇3

关键词:物理欧姆定律复习

在物理复习的整个知识体系中,电学知识板块儿尤为重要。一是:它占整个三式合一理化试题物理部分的40%左右,即70分中的近30分属于物理电学试题。二是:电学知识在生产实践中的重要作用已凸显出来。而要学生全面掌握、领会初中阶段电学知识,对于相当一部分初中生来说具有较大的难度。从教以来我听过一些初中电学复习课:有的先把所要用到的电学公式板书在黑板上,再讲典型例题,接着练习;有的则通过学生作题中所反馈的问题对知识进行补充强调,再练习;有的直接强调万变不离其宗,让学生多看教材,然后讲例题等。复习中讲例题没错,但选择的例题过多,又无代表性,既延长了复习时间,又不能使学生的知识得到升华。久而久之,学生疲劳,老师厌烦。要使复习课在短时间内生动、奏效,应选择恰当的例题,在讲例题的基础上,对知识进行归纳和升华。

复习课,一要体现“从生活走向物理,从物理走向社会”,教学方式多样化等新课程理念;二要体现“知识与技能、过程与方法以及情感态度和价值观”三维目标的培养;三要优化学生的认知结构,让学生在教师的引导、帮助下,把学到的知识归纳起来,从而便于提练和记忆。所以对电学的复习要从学生喜闻乐见的小电器起步,从典型例题入手进行归纳总结。

例1:如图-1是一个玩具汽车上的控制电路。小明对其进行测量和研究发现:电动机的线圈电阻为1Ω,保护电阻R为4Ω。当闭合S后,两电压表的示数分别为6V和2V,则电路中的电流为?摇?摇?摇?摇a,电动机的功率为?摇?摇?摇?摇w。(这是陕西师范大学出版社出版,经陕西省中小学教材审定委员会2008年审定通过的《物理课堂练习册》中的一道题)

学生通常按下列方法计算电路中的电流:

R中的电流:i=U/R=2V/4Ω=0.5a,

电动机中的电流:i=U/R=4V/1Ω=4a,

由此得第一空电路中的电流就有两个值0.5a和4a。

于是第二空的对应值为:p=Ui=4V×0.5a=2w与p=Ui=4V×4a=16w。这就存在两个问题:

1.根据欧姆定律计算出两个串联元件中的电流不相等,与串联电路中电流的特点相矛盾。

2.由串联分压原理得:U:U=R∶R=1∶4,得:

①当U=2V时,U=8V,得到U+U=2V+8V=10V≠U源;

②当Um′=4V时,U′=1V。U′+U=1V+4V=5V≠U,这与串联电路中的电压关系相矛盾。

对此,应找出题中所涉及的知识点,分析这些知识点间的联系,那上面的矛盾就迎刃而解了。

首先,应对欧姆定律有深入的理解。

例2:如图2所示电路(R≠R≠R)。引导学生分析如下:

1.对电路状态的分析。

(1)当S、S、S都闭合时,R与R并联,并联后作为一个整体再与R串联。a测R中的电流,V测R或R两端电压。

(2)当S、S闭合S断开时,则由图-2演变为图-2(a)到(b)。

R与R串联,R处于断开状态,a测整个电路中的电流。

(3)当S、S闭合S断开时,则由图2演变为图-2(c)到(d)。

R与R串联,R处于断开状态,V测R两端电压。

2.欧姆定律中涉及i、U、R三个量间的关系。

(1)欧姆定律中的i、U、R三个量是针对同一个用电器或者同一部分电路而言的,即必须满足“同一性”。

当图-2中的S、S、S都闭合时,a测R中的电流为i,V测R两端电压为U。此时能否用U与i的比值来计算R或R阻值呢?(即R=U/i)。

如果R=R时,由于R与R并联,所以R两端电压U等于R两端电压U,即U=U=U。根据R=U/i得R=U/i,R=U/i。这样计算出的R2的值虽然是正确的,但属于不正确的方法得出了正确的结果,实属偶然巧合。

若R≠R时,那么R=U/i,若再按R=U/i来计算R的电阻值就没有上述的巧合了。因为电压相等是并联电路电压的特点,R、R中的电流是不相等的。上述中错误地认为R、R中电流相等。这里的电压是R两端电压,而电流是R中的电流,电压与电流是两个不同电阻(或用电器,或电路)的对应量,也就违背了“同一性”。

这就告诉我们,在应用欧姆定律解题时,一定要遵循“同一性”原则,切忌“张冠李戴”,电学中的所有公式都不能违背“同一性”原则。如:w=Uit、Q=iRt、p=Ui等。

(2)欧姆定律中的i、U、R三个量必须是同一状态、同一时刻存在的三个物理量,即必须满足“同时性”。

在图-2中,当S、S闭合时,R中的电流大小与S、S闭合时R中的电流大小是否相等?

在图-2中,当S、S闭合S断开时,不难看出,R与R串联:i=i=i则i=U源/(R+R);当S、S闭合S断开时,R与R串联:i=i=i,则i=U/(R+R)。因为R+R≠R+R所以U源/(R+R)≠U源/(R+R),即两次电流不相等。S、S闭合时,R中的电流大小与S、S闭合时R中的电流大小不相等,这是因为S、S闭合时与S、S闭合时电路状态不同,R是在不同的状态下工作,不是同一时间内电流的大小,电流不相等。

在利用公式计算的过程中,不能用第一状态下的量值与第二状态下的量值代入关系式计算。如:要计算R的电阻值,就不能用第一状态下R两端的电压值与第二状态下R中的电流的比值来计算R的电阻值。在计算电流、电压时,也不能这样处理。

因此在利用公式计算时,带值入式的物理量必须是同一状态下的物理量,必须满足“同时性”。

(3)欧姆定律中的i、U、R三个量的单位必须同一到国际单位制,即i―a、U―V、R―Ω。即应满足“统一性”。

除各物理量的主单位外,还应记住常用单位及其单位换算关系,将常用单位换算为国际单位制单位,在利用其它电学公式计算时也要统一单位。

如:电功的公式w=Uit中,各物理量的对应单位:U-V、i-a、t-S;这样w的单位才是J。电热的公式Q=iRt中:i―a、R―Ω、t―S;这样Q的单位才是J。电功率的公式p=Ui中:U-V、i-a,这样p的单位才是w。

我们要确定欧姆定律的适用条件。

1.欧姆定律只对一段不含电源的导体成立,即只适用于纯电阻电路。因此,欧姆定律又称为一段不含源电路的欧姆定律。

例1中涉及到电磁转换的知识,电动机工作时实质上也是一个发电机。电动机工作时,其闭合线圈切割磁感线会产生感应电流,所产生的感应电流对流过电动机线圈中的电流有一定影响。

实际上图1相当于一个“RL”串联电路,总电压的有效值不等于各分电压有效值的代数和,即U≠U+U。但得到的电流有效值的关系i=U/Z与直流(或部分)电路的欧姆定律相似,各元件上的分电压与该元件的阻抗(Z)成正比。

虽然电动机工作时产生的阻抗目前初中阶段无法计算出来,但无论电动机工作时产生的阻抗为多少,电路中的电流都等于电阻R中的电流,即i=U/R=2V/4Ω=0.5a。电动机两端的实加电压等于总电压(电源电压)减去电阻R两端的电压,即U=U-U=6V-2V=4V。则电动机的功率为:p=Ui=4V×0.5a=2w。

本文为全文原貌未安装pDF浏览器用户请先下载安装原版全文

上述分析说明,电阻R所在的这部分电路与电动机所在的这部分电路有着本质的不同。从能量转化的角度看:电阻R所在的这部分电路是将电能全部转化为热能;而电动机所在的这部分电路电能只有少部分转化为热能,大部分转化为机械能。前者属于纯电阻电路,后者属于非纯电阻电路。

欧姆定律只适用于纯电阻电路,即用电器工作的时候电能全部转化为内能的电路。例如电熨斗、电暖气、电热毯、电饭锅、热得快等。而电动机、电风扇,等等,除了发热外,还对外做功,所以这些是非纯电阻电路,欧姆定律不再适用。由欧姆定律导出的公式也只适用于纯电阻电路(如:w=iRtw=U/RtQ=UitQ=U/Rtp=iRp=U/R等。)

2.欧姆定律适用于金属导体和通常状态下的电解质溶液;但是对于气态导体(如日光灯管中的汞蒸气)和其它一些导电元器件,欧姆定律不成立。欧姆定律对某一导体是否适用,关键是看该导体的电阻是否为常数。当导体的电阻是不随电压、电流变化的常数时,其电阻叫线性电阻或欧姆电阻,欧姆定律对它成立;当导体的电阻随电压、电流变化时,其电阻叫非线性电阻,如:电子管、晶体管、热敏电阻等,欧姆定律对它不成立。

3.欧姆定律只有在等温条件下,即导体温度保持恒定时才能成立。当导体温度变化时,欧姆定律对该导体不成立,因为电阻是温度的函数。

在讲解欧姆定律的应用时,常举白炽灯的例子,实际上白炽灯的钨丝在温度变化很大时电阻具有非线性,随着电流的增大,钨丝的温度升高很多,其电阻也随着变化。对非线性电阻,欧姆定律不成立,但是作为电阻定义的关系式R=U/i仍然成立,只不过对非线性电阻,R不再是常量。

综上所述,例1中第一空电路中的电流有两个值0.5a和4a,一个是在纯电阻电路(电阻R)中用欧姆定律算出的电流0.5a。另一个是用欧姆定律计算在非纯电阻电路(含电动机的电路)中的电流为4a,显然不对。

通过对例1的全面、透彻的分析,我们对电学知识得到了进一步升华:(1)判断电路的连接方式;(2)判断电表的作用;(3)利用欧姆定律解决实际问题时必须注意“三性”;(4)复习了电功率、焦耳定律等相关电学公式;(5)欧姆定律的适用范围。

学生能够领悟到,复习不是为了解题,而是要掌握知识的前后联系,优化知识结构;仔细观察,认真分析;发散思维,以点带面;举一反三,融会贯通。这样,从而体现出知识与技能、过程与方法,以及情感态度和价值观的培养。

参考文献:

[1]王较过.物理教学论.陕西师范大学出版社,2003.

[2]阎金铎,田世坤.初中物理教学通论.高等教育出版社,1989.

[3]梁绍荣等.普通物理学―电磁学高等教育出版社,1988.

[4]新课程实施难点与教学对策案例分析丛书,(初中卷).中央民族大学出版社.

欧姆定律问题篇4

欧姆定律在中考中的题型主要有填空题、选择题、图像题、问答题、实验探究题、计算题等。填空题、选择题、图像题主要考查欧姆定律的基础知识,实验探究题主要集中在探究电流与电压、电阻的关系及伏安法测电阻上,问答题一般在实际应用方面出题,计算题主要考查欧姆定律的计算。

重点考查:

1.探究实验:探究电流与电压、电阻的关系;伏安法测电阻及变形;

2.欧姆定律的意义及应用:对欧姆定律的理解及应用欧姆定律解决问题。

考查热点:

1.实验:探究电流与电压、电阻的关系;伏安法测电阻及变形;

2.理解:对欧姆定律的理解;

3.应用:应用欧姆定律分析动态电路、计算及解决实际问题。

考点1:电流与电压、电阻的关系

例1:小华用如图所示的电路探究电流与电阻的关系。已知电源电压为6V,滑动变阻器R2的最大电阻为20Ω,电阻R1为l0Ω。实验过程中,将滑动变阻器滑片移到某一位置时,读出电阻R1两端电压为4V,并读出了电流表此时的示数。紧接着小华想更换与电压表并联的电阻再做两次实验,可供选择的电阻有l5Ω、30Ω、45Ω和60Ω各一个,为了保证实验成功,小华应选择的电阻是Ω和Ω。

解析:要探究电流与电阻的关系时,必须要控制电阻R1两端的电压一定,即R1两端电压U1=4V不变。要能保证实验成功,滑动变阻器两端电压控制为6V-4V=2V,R2中也就是电路中的最小电流为2V/20Ω=0.1a,此时定值电阻最大为U1/i=4V/0.1a=40Ω,故只能选择l5Ω、30Ω的电阻。

答案:15,30。

点拨:探究电流与电阻的关系,要改变电阻大小,而必须控制其两端电压一定。

考点2:欧姆定律表达式及其物理意义

例2:关于欧姆定律公式i=■,下列说法正确的是()。

a.导体的电阻与电压成正比,与电流成反比

B.导体两端的电压越大,其电阻越大

C.据欧姆定律公式变形可得R=■,可见导体电阻大小与通过它的电流与它两端电压有关

D.根导体电阻的大小等于加在它两端的电压与通过它的电流的比值

解析:i、U、R三者不能随意用正比、反比关系说明,R=U/i,它是电阻的计算式,而不是决定式,导体的电阻是导体本身的性质,与电流电压无关,只与导体的长度、材料、横截面积和温度有关,但可用电压与电流的比值求电阻。

答案:D。

点拨:理解欧姆定律中的“成反比”和“成正比”两个关系及知道决定电阻大小的因素。

考点3:动态电路分析

例3:如下图所示,电源电压不变.闭合S1后,再闭合S2,电流表的示数,电压表的示数。(选填“变大”、“变小”或“不变”。)

解析:当闭合S1后,再闭合S2,此时R2被短路,电压表接到电源两端,因此电压表示数变大,此时电路中的总电阻减小,电流表示数也变大。

答案:变大,变大。

点拨:分清原来开关闭合时电路状态和两个开关同时闭合时电路的状态。

考点4:欧姆定律计算

例4:实验室有甲、乙两只灯泡,甲标有“15V1.0a”字样,乙标有“10V0.5a”字样。现把它们串联起来,则该串联电路两端允许加的最高电压为(不考虑温度对灯泡电阻的影响)()。

a.25VB.35VC.15VD.12.5V

解析:甲灯的电阻是R甲=■=■=15Ω。乙灯的电阻R乙=■=■=20Ω,两灯串起来后,总电阻是15Ω+20Ω=30Ω,允许通过的最大电流是0.5a,所以最高电压是30Ω×0.5a=15V。

答案:C。

点拨:不能把两额定电压的值相加作为最高电压;串联应取小电流。

考点5:电阻的测量

例5:现有一个电池组,一个电流表,一个开关,一个已知电阻R0,导线若干,用上述器材测定待测电阻Rx的阻值,要求:①画出实验电路图;②简要写出实验步骤并用字母表示测量的物理量;③根据所测物理量写出待测阻值Rx的表达式。

解析:此题是伏安法测电阻的变形――双安法,在两表一器不全的情况下设计电路测电阻,因有电流表和定值电阻,故设计并联电路,测出两支路电流,利用电压相等,电流比等于电阻反比列关系式解答。答案不唯一,但基本原理是设计成并联电路。

欧姆定律问题篇5

上一期文章介绍了自制欧姆表的作品创意。但在测试阶段,我们发现测量0~1KΩ的电阻时,指针的偏转角度很小,误差很大。不知道大家有没有想出优化方案呢?对于这个问题,仁者见仁,智者见智。我也提出了解决方案,供大家参考。

如图1,这是原欧姆表的仪表盘。表盘的量程为0~10KΩ。经过测试,发现0~1KΩ的电阻测量误差较大,需要进一步优化作品,增加0~1KΩ的精确度。一定要注意,这里的误差是指指针指示的误差,如果用串口监视器观察电阻值,就会发现串口显示的数值误差较小,一旦转换成舵机的变化角度,误差就很明显。

那么,如何解决这个问题呢?真实的指针式电压表或者电流表一般有两个量程,并且两个量程共用一个表盘。由此可以做出猜想,欧姆表的大小量程是否可以共用一个表盘呢?将0~1KΩ放大到整个表盘上,是否能实现0~1KΩ小量程段的精确测量?

改装

首先对表盘进行改进,在同一个表盘标明两个量程。如图2,在原有的基础上,将1KΩ均匀分成10份。每一份表示0.1KΩ,最小刻度为0.05KΩ。这是欧姆表改进的第一步。

除了对表盘进行改进外,是否还需要改进原欧姆表的电路连接呢?上文已经提到,对0~1KΩ电阻测量时,串口监视器观测到的电阻值显示精确,但转换成为舵机显示的数值时误差较大,因此可以推断出,电阻的计算公式完全正确,但在电阻值对应舵机角度变化的程序编写上,需要进一步优化。因此,多量程欧姆表电路连接图与原有电路图相比,只增加红、绿LeD灯。绿灯和红灯正极分别连接到2、3管脚,负极共地。红、绿LeD灯因程序需要添加,下文会详述(如上页图3)。

玩转

重新编写程序,需要设置多量程欧姆表的量程为0~1KΩ与0~10KΩ。当程序检测到电阻小于1KΩ时,r值放大100倍,与表盘100度对应;当检测到电阻大于1KΩ时,r值放大10倍,与表盘100度对应。这个程序仍会出现一个问题:观察者不知道舵机显示的阻值是大于1KΩ还是小于1KΩ。因此,有必要加入提示,我们为电路添加红绿灯,区分电阻大小。当检测到电阻大于等于1KΩ时,红灯亮;当检测到电阻小于1KΩ时,绿灯亮。打开mixly图形化编程,编写程序。

程序的编写大致分为三个部分:第一个部分是对变量的定义,第二个部分是各个小程序的编写,第三个部分是用程序语句连接各个小程序,实现多量程欧姆表的功能。

第一部分程序定义变量。定义analog变量为小数变量,初始值为0,模拟端口a0的数值会赋予这个变量。同理,经过欧姆定律公式计算,得到的待测电阻数值用r来表示:r扩大10倍得到的数值赋予a,a表示0~10KΩ电阻;r扩大100倍得到的数值赋予b,b表示0~1KΩ电阻(如图4)。

第二部分是各个小程序的编写。首先根据欧姆定律,编写待测电阻的计算程序。将模拟端口的a0数值赋予analog变量,再代入计算公式中。这里的计算公式与上述欧姆定律的计算公式一致。不同的是,总电压V原先是5V,现在是与5V对应的1023,而电压V1用变量analog表示。

名为“电阻”的程序被执行后,会得到待测电阻的精确数值r。程序如上页图5所示。

舵机显示0~1KΩ电阻测量值,首先将数值r放大100倍,之后与舵机旋转角度一一对应,同时绿灯亮,程序如上页图6所示。输出管脚2为高、3为低表示绿灯亮、红灯灭。

舵机显示0~10KΩ电阻测量值,首先将数值r放大10倍,之后与舵机旋转角度一一对应,同时红灯亮,程序如上页图7所示。输出管脚2为低、3为高表示绿灯灭、红灯亮。

第三部分程序,是用逻辑关系连接第二部分的程序。如果r小于1KΩ,执行“0~1KΩ程序”,如果r大于等于1KΩ,执行“0~10KΩ程序”。需要注意的是,要想使欧姆表能够及时复位,当不测量阻值,即analog变量等于0时,将指针旋转到10KΩ的位置。具体程序如上页图8所示。

最后,连接三部分程序,得到最终程序,如图9所示。

分享

欧姆定律问题篇6

论文关键词:多用电表,欧姆档,多倍率,电路图

多用电表是中学物理教材电学内容的一个基本点,也是重点。因为多用电表的原理包含了串、并联电路的规律和闭合电路欧姆定律,而这些规律是电流计改装成电流表、电压表和欧姆表的理论基础,更是历年高考电学实验考察的重点。新课程改革中,人教版教材在本节的编写上充分体了现新课程理念,摆脱了旧教材中单纯理论的推导和仪表结构、原理、使用方法的讲解,而是先以例题的形式引入,让学生结合教材中的电路图(图1),通过“体验式探究”的方式,来理解欧姆表的工作原理。然后过度到图2探究如何把三个单独的电压表、电流表、欧姆表合为一个单量程多用电表,通过共用表头让学生体会实现“多用功能”的巧妙之处。最后的难点是让学生掌握如何实现多量程多用功能的,结合图3领悟转换开关在实现“多量程”功能上的作用。

笔者教学中就是把这些难点进行梯度化处理的,以探究的方式来完成本节“欧姆表”、“多用电表”两模块内容的。但在师生探究多用电表原理时,学生通过讨论发现书中的电路图与实际的电表内部结构不同,并向教师提出疑问:教材的电路图(图3)虽然能实现多功能测量,即能测电流、电压、电阻,而且能实现测电流和电压的多量程功能,但却不能实现测电阻的多量程功能,即不能实现电阻档的倍率转换功能。

学生的提出的两个主要问题如下:

1、电路图中多路电源与实际表内只有一路电源相矛盾

keyimg22、如果实际电路有多路电源按着教材中的原理图去设计时,确实能实现多倍率功能,但有一个基本要求:即每路电源的电动势关系应满足e=ne1。(e1是×1档的那条支路电源电动势)。由此可推知若e1=1.5V,则×10、×100档的电源分别为15V、150V,而×1K档的电源电动势就应高达1500V!显然这不可能,也很荒谬!任何电表内都不可能装有这么高的电源,还是直流电源!

提出第1个问题,是因为学生打开多用电表后发现确实表内只有一个含源电路,且通常只装有一节或两节干电池,即电动势只有1.5V或3V,这与教材电路图中的多个含源支路相矛盾。

提出第2个问题,是通过分析教材电路图图3必然会得出的结论。由于虚线框内的电路相当于一个安培表,选择开关置于3或者4,等于制作了两个欧姆表(类似图1),很显然这两个欧姆表是同一个安培表改装的。那么实际测电阻时,只要指针偏角相同,流过两个表头的电流就应相等(因为表头G一样),且流过电源的总电流——即安培表的电流也应相同(因为安培表内部结构一定,流入表头的电流占总电流的比例也就确定)。不防设3为×1档,4为×10档,显然多用电表要求用这两档测电阻时,若指针均指在i0(假设为半偏)的地方,3档对应的阻值若为R0,则4档对应的阻值应为10R0。现在就用3档来测某个实际的电阻(阻值就为R0),首先要进行欧姆调零操作,即短接两表笔,调节电源支路的可调电阻,使指针满偏,操作的结果是欧姆表现在的总内阻

R内=e/ig,(由闭合电路欧姆定律ix=e/(RX+R内)决定的);然后测电阻R0时,指针刚好半偏,则必有R内=R0。同理用4档来测另一个电阻R`X(其阻值为10R0)时,也要进行以上操作,且必有R`内=e`/ig,R`内=10R0,综上可知R`内=10R内,即有e`/ig=10e/ig,显然要求e`=10e。同理可推:若多用电表还有其它倍率档,辟如×n(n可以为1、10、100、1K)档,则必须要增加类似3、4那样的含源支路,且电动势大小应是e`=ne(e为×1档支路电源的电动势)。可见按照教材原理图实现欧姆档多倍率功能就必须要满足e`=ne这一条件。试想一上,若×1档支路是一节干电池,e1=1.5V,那么×10档的支路电池就必须为15V,而×1K档的电池就会高达1500V!这显然是不可能的!

实际的学生电表内部是没有那么多含源电路的,更不可能有那么高的电动势,但学生电表又确实具有欧姆档多倍率功能的。矛盾产生的原因在哪里呢?通过查找各种厂家多用电表的资料,发现实际电路远非教材中的示意图那么简单,矛盾的焦点在于实际的电表欧姆档的多倍率功能,并不是靠增加含源支路和提高电源电动势来实现,而是靠改变安培表的量程来实现的!笔者研究后设计了一个简单的电路图(图4),用它向学生说明欧姆档多量程原理,就很容易,也与实际的电表内部结构吻合。本图相当于把三个量程ia不同的电流表用相同的电源和可调电阻改装成了三个欧姆表。根据R内=e/ia可知,由于ia不同(ia是安培表的满偏电流,流过总电路而不是流过电流计的满偏电流ig),所以三个档所对应的欧姆表内阻R内是不同的,由闭合电路欧姆定律ix=e/(RX+R内)可知,当指针指在相同的电流值ix上,由于R内不同,所以RX不同,举例来说:假设现在来测一个未知电阻RX,刚好使指针半偏。因为欧姆刻度线上正中间的刻度值对应的电流为ia/2,所以所测电阻RX=R内,如果测量前选择的开关置3且欧姆调零后R内=15Ω,则说明所测的RX=15Ω;若开关置的是2且R内=150Ω,则所测的RX=150Ω;如果开关置1且R内=1500Ω,则RX=1500Ω。可见,尽管原来的电流刻度盘一样,但改装时相同电流刻度值i(注:不是电源的总电流,而是流过电流计的电流)所对应的电阻值RX是不同的,因此原来的一条电流刻度线就可以表示三个欧姆刻度盘,因而实现了多倍率功能。

教材中电路图和本图的最大区别在于,是否体现出换档后电流表的电路变化。对于前者(见图3)不论接3档还是4档,当表头指针偏转角度相同,电路的总电流也会相同,由ix=e/(RX+R内)知,欧姆调零时由于指针都要满偏,所以电路总电流ix相等,此时ix=e/R内,所以要想R内不同只有改变e才行,这也是前面学生发现的矛盾e=ne1原因所在。对于后者(图4)即使表头指针偏转相同角度,由于换档导致其他支路与表头支路的电阻比例关系已经变化,总电流仍然是不同的。可见,本图设计一方面保证了换档后即使指针偏转角度相同,但流经电源的总电流也是不同的;同时也重点保证了换档后欧姆调零时表的总内阻会不同,这就确保了欧姆档多倍率功能的实现。

参考文献

1.廖佰琴、张大昌主编《物理课程标准(实验)解读》湖北教育出版社

2.赵沃槐.优化物理实验教学培养学生创新能力.教学仪器与实验,2002,(10).

3.安忠刘炳升《中学物理实验与教学研究》高等教育出版社

欧姆定律问题篇7

关键词:电路电阻闭合电路欧姆定律综合应用能力

在中学电学知识中,电路问题是其中的核心内容之一。准确把握电路问题的处理方法,既是强化恒定电流复习的关键所在,又是提高电学知识综合应用能力的重要途径。本文就十大电路的分析方法作探讨。

1.有线性电阻的电路

线性电阻是指电阻阻值不随通过它的电流变化而变化的用电器。求解由线性电阻组成的电路问题,关键是弄清线性电阻的串、并联情况,注意有效进行电路等效简化,灵活应用闭合电路的欧姆定律和串并联电路的特点。

2.有非线性电阻的电路

非线性电阻是指电阻阻值不稳定,随着通过的电流的变化而变化的用电器,如“小灯泡”、“半导体二极管”等。求解含有非线性电阻的电路问题,关键是确定非线性电阻两端的电压和通过的电流大小的实际值。一般方法是作出非线性电阻的伏安特性曲线和除了非线性电阻外其余部分电路的伏安特性曲线,两条曲线的交点即为非线性电阻两端的实际电压U和通过的电流i。

3.动态电路

动态电路是指电路中因某个电阻阻值的变化、或者电路中开关的闭合与断开等因素,引起电路中电流、电压的变化的电路。求解此类问题的基本思路:从引起阻值变化的这部分电路入手,由电阻的串、并联特点判断总电阻R的变化情况,再由闭合电路的欧姆定律判断i和U的变化情况,最后由部分电路欧姆定律确定各部分电路的相关物理量的变化情况。

4.有电动机的电路

电动机是非纯电阻性用电器,它消耗的电能,一部分转化为机械能,另一部分转化为热能。在高中阶段,含有电动机的电路,欧姆定律不适用,一般选用能量守恒定律解题。

5.有电容器的电路

在恒定电路中,当电容器处于充电、放电状态时,电路处于不稳定状态。当电容器充、放电结束后,电路趋于稳定,此时,电容器相当于一个电阻无穷大的电路元件,与电容器串联的电路处于断路状态。求解含有电容器的电路问题,关键在于弄清电路结构,准确确定电容器两极板间的电压,有时还要分析电容器两极板极性的变化。

6.有故障的电路

电路故障主要有断路和短路两种。有故障的电路分析方法有电表检测法和假设分析法。

电表检测法一般使用电压表检测:(1)断路故障检测法。先用电压表与电源并联,若有电压,再依次与某电路(或某用电器)并联;当电压表指针偏转时,则这部分电路(或该用电器)发生断路。(2)短路故障检测法。先用电压表与电源并联,若有电压,再依次与某电路(或某用电器)并联;当电压表示数为零时,则这部分电路(或该用电器)发生短路。

假设分析法。通过对某电路(或某用电器)假设发生断路或短路故障,依据电路知识,结合电路结构,分析和判断可能出现的情况,对照题设条件确定可能发生的故障。

7.与电磁感应相联系的电路

在磁场中做切割磁感线运动的导体或磁通量发生变化的回路会产生感应电动势,将这部分导体或回路等效为电源,再与其他的电阻构成闭合电路,即为与电磁感应相联系的电路。求解这类与电磁感应相联系的电路问题,关键要明确哪部分是等效电源,明确电路的连接情况,然后熟练应用法拉第电磁感应定律、闭合电路欧姆定律等规律求解。

8.与电场相联系的电路

与电场相联系的电路一般通过电路中接平行板电容器、带电的电容器会产生电场、带电粒子在电场中运动等联系起来。求解这类问题的关键是弄清电容器两端的电压与电路中哪部分电路或哪个电阻两端的电压相等,再注意熟练应用闭合电路的欧姆定律和动力学规律。

9.与磁场相联系的电路

与磁场相联系的电路一般涉及平行板电容器,通过在平行板电容器中加上磁场,从而将磁场与电路联系起来。求解这类问题的关键是弄清带电粒子在电容器内的磁场和电场中的运动情况,弄清电容器两端的电压与哪部分电路两端的电压相等,再灵活选用有关电路、电场和磁场的知识求解。

10.与光电效应相联系的电路

欧姆定律问题篇8

1为什么要对《闭合电路的欧姆定律》进行教材二次开发

人教版教材对这节课的安排是:直接给出全电路的概念,从功能关系出发,根据能量守恒,理论推导出闭合电路欧姆定律和U内+U外=e;再根据闭合电路欧姆定律理论分析电源的路端电压与负载的关系.

教材的顺序安排优点是逻辑主线明了,缺点是对闭合电路特别是内电路的建构不够直观.而学生的具体情况是,已经掌握了部分电路的欧姆定律;根据初中学习的经验,他们认为电源两端的电压是恒定不变的;如何直观认识内电路的结构以及形成电源两端电压会随着负载的变化而变化的观点是本节课的重点之一.显然教材仅从理论角度来推导闭合电路的欧姆定律是不够解决学生的问题的.因此,笔者从学生的学情出发,深入地研究了本节课教材的编写意图和本校的实际情况,进行了教材的二次开发.

2怎样实施《闭合电路的欧姆定律》的教材二次开发

2.1教学呈现顺序的二次开发

如图1所示的演示实验引入,提出当开关S2、S3合上时电灯甲的亮度怎样变化,学生的回答是甲灯亮度不变.而实验发现甲灯的亮度逐渐变暗,引起学生认知的强烈冲突.课堂上通过实验探究甲灯亮度变暗的原因,引入内电路的概念.再呈现演示实验2,直接呈现出电源的内电路部分,用两只电压表测量出外电压和内电压,当负载变化时,实验发现U内+U外为常数.通过这样两个演示实验,学生对内电路有了非常直观的认识,从本质上理解电源具有内阻的原因,知道了如何测量内电压,对全电路的认识更加清晰.总体的教学顺序是:首先是演示实验一、二,然后得到U内+U外为常数,教师指出这个常数就是电源的电动势e,最后推导出闭合电路的欧姆定律.

本节课的最后环节是重新解释演示实验一电灯甲的亮度变暗的原因.这样的教学顺序,始终围绕着实验一展开讨论,在解决问题的过程中获得新知.比较符合学生的认知规律,对于本节课出现的新概念如闭合电路、外电路、内电路、路端电压、内电压有了非常直观的认识.

2.2教学内容的二次开发

从教学内容上看,原教材仅从理论的角度进行教学,而本节课笔者采取的方法是实验和理论相结合的方法进行教学.内容与原教材相比,内容更加丰富,学生要经历观察实验,产生疑问,解决问题,理论推导等多个过程.因此学生对闭合电路的欧姆定律有更全面而深刻的认识.从引入的方式来看,教材直接给出闭合电路的概念,而笔者通过演示实验设疑、答疑的过程中引入闭合电路.从思维的角度看,学生经历了形象思维到抽象思维,从实验到理论的过程.

欧姆定律问题篇9

老师预先将全班同学五人一组,分若干组,每组桌面上放置仪器有:电源(6V)、滑动变阻器(0~20Ω)、定值电阻(20Ω)、阻值约数十Ω的定值电阻各一个;电流表、电压表各一只;开关、导线若干。

首先,引导学生回顾了电阻的相关知识:如电阻的定义、符号、单位,影响电阻大小的因素;滑动变阻器改变电路电阻的原理、连接方法、元件符号。

其次,引导学生回顾一个实验,即“伏安法”测电阻,复习“伏安法”测电阻的原理、电路图如图1所示。学生依据电路图连接实物图,着重指出实验注意事项,认真讨论滑动变阻器在电路中的作用。

2合作探究

在此基础上,引导同学动手操作、实践测量,并依据欧姆定律,实际计算出Rx的阻值。

老师接着问:如果现实中缺少电流表,该如何测量未知电阻Rx呢?

学生马上想到“串联电路电流处处相等”,于是就想到如图2所示的设计方案。

学生代表解释说:如图2所示,先用电压表测出R0两端的电压U0;再测出Rx两端电压Ux。先依据i=U0/R0,计算出通过R0的电流i,由于R0与Rx串联,故通过R0的电流也就是通过Rx的电流,利用欧姆定律:

Rx=Ux/ix=Ux/(U0/R0)=UxR0/U0。

待阐述完毕,各组根据该同学的讲述,选择桌面上的仪器,实际操作。教师适时点拨,利用滑动变阻器,再测量两组数据,实现多次测量求平均值从而减少误差,并与已测得的Rx比较,验证该办法的正确。

一阵忙碌之后,老师又问:若缺少电压表呢?

诸多学生马上想到:一定能利用“并联电路各支电压相等”来完成。

各组学生积极投入到设计、实验中。不一会儿,有学生发言道:

如图3所示,先用电流表测出通过R0的电流i0,再用电流表测出通过Rx的电流lx,由于R0与Rx并联,根据欧姆定律和并联电路的特点,推算出:Rx=Ux/ix=U0/ix=i0R0/ix。

学生马上投入实践探究中,经实际测量并与已测Rx比较,该同学方法正确。

接着,教师见同学探究积极性高,乘胜追问道:上述方法2、3我们都进行了两次测量,并利用串、并联电路特点,利用欧姆定律测出了Rx的值。下面大家开动脑筋,能否仅连接一次,有效利用前面的经验也可以测量出Rx的值呢?

五组学生都积极投入探究之中,教师适时巡视点拨,一会儿工夫,探究成果出来了:

学生1:方法如图4所示,学了闭合时,Rx短路,电路仅有R0工作,故电流表此时的示数是通过R0的电流即i合。根据欧姆定律,电源电压为:U=i合R0;当S断开时,a的示数是通过Rx和R0的电流,即i断,故此时电源电压为

U′=i断(R0+Rx)。

由于前后电源电压不变,却

i合R0=i断(R0+Rx),所以

Rx=R0(i合-i断)/i断。

学生2:如图5所示,当开关S闭合时,电路中仅Rx工作,V的示数为Rx两端电压U合;当S断开时,R0与Rx串联,V的示数为Rx此时分得的电压U断,根据串联电路特点,此时R0分的电压为U0=U-U断,故通过R0的电流为:

i0=(U合-U断)/R0。

即此时通过Rx的电流,故Rx的值为:

Rx=U断R0/(U合-U断)。

之后,学生纷纷发言,各组开始展示自己的探究成果。

学生3:如图6所示,当开关S断开时,a的示数是通过R0的电流i断;S闭合时,R0与Rx并联,a的示数是Rx与R0的总电流i合;由于电源电压不变,根据并联电路特点与欧姆定律得:

Rx=U/(i合-i断)=R0i断/(i合-i断)。

学生4:如图7所示,由于R0为滑动变阻器,且阻值为0~20Ω,所以,当滑片p在a端时,a的示数是通过Rx的电流ia;当滑片p滑到b端时,a的示数是通过Rx与R0的电流ib;由于电源电压不变,故有:iaRx=ib(Rx+R大)。

所以Rx=ibR大/ia-ib)。

学生5:如图8所示,开关闭合后,滑片p在a端时,V为Rx两端电压,即电源电压为Ua;当滑片p滑至b端时,由于Rx与R0串联,此时V仅为Rx分得的电压Ub,根据串联电路特点和欧姆定律得:Rx=UbR大/(Ua-Ub)。

老师总结说:电路计算题关键是根据电路中开关的断开和闭合正确判断电流的流向,从而得出用电器(电阻)的串、并联情况,然后根据串、并联电路特点和欧姆定律灵活解决电学有关计算问题。同学们,只要掌握方法,牢记规律一定没有解决不了的问题。

一节复习课,紧紧围绕“电阻”的相关知识,将学生分组探究,有效地复习了欧姆定律和串并联电路特点,并实际操作,反复验证,对本章节的“一定律”、“一规律”、“一实验”作了详尽回顾,既培养了学生自主探究,分组协作的能力,又激发了学生的创新意识,并体验了成功的幸福,为中考冲刺复习开辟了全新的面孔,很是值得同学和老师借鉴。

欧姆定律问题篇10

一、教材分析

《欧姆定律》一课,学生在初中阶段已经学过,高中必修本(下册)安排这节课的目的,主要是让学生通过课堂演示实验再次增加感性认识;体会物理学的基本研究方法(即通过实验来探索物理规律);学习分析实验数据,得出实验结论的两种常用方法——列表对比法和图象法;再次领会定义物理量的一种常用方法——比值法.这就决定了本节课的教学目的和教学要求.这节课不全是为了让学生知道实验结论及定律的内容,重点在于要让学生知道结论是如何得出的;在得出结论时用了什么样的科学方法和手段;在实验过程中是如何控制实验条件和物理变量的,从而让学生沿着科学家发现物理定律的历史足迹体会科学家的思维方法.

本节课在全章中的作用和地位也是重要的,它一方面起到复习初中知识的作用,另一方面为学习闭合电路欧姆定律奠定基础.本节课分析实验数据的两种基本方法,也将在后续课程中多次应用.因此也可以说,本节课是后续课程的知识准备阶段.

通过本节课的学习,要让学生记住欧姆定律的内容及适用范围;理解电阻的概念及定义方法;学会分析实验数据的两种基本方法;掌握欧姆定律并灵活运用.

本节课的重点是成功进行演示实验和对实验数据进行分析.这是本节课的核心,是本节课成败的关键,是实现教学目标的基础.

本节课的难点是电阻的定义及其物理意义.尽管用比值法定义物理量在高一物理和高二电场一章中已经接触过,但学生由于缺乏较多的感性认识,对此还是比较生疏.从数学上的恒定比值到理解其物理意义并进而认识其代表一个新的物理量,还是存在着不小的思维台阶和思维难度.对于电阻的定义式和欧姆定律表达式,从数学角度看只不过略有变形,但它们却具有完全不同的物理意义.有些学生常将两种表达式相混,对公式中哪个是常量哪个是变量分辨不清,要注意提醒和纠正.

二、关于教法和学法

根据本节课有演示实验的特点,本节课采用以演示实验为主的启发式综合教学法.教师边演示、边提问,让学生边观察、边思考,最大限度地调动学生积极参与教学活动.在教材难点处适当放慢节奏,给学生充分的时间进行思考和讨论,教师可给予恰当的思维点拨,必要时可进行大面积课堂提问,让学生充分发表意见.这样既有利于化解难点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃.

通过本节课的学习,要使学生领会物理学的研究方法,领会怎样提出研究课题,怎样进行实验设计,怎样合理选用实验器材,怎样进行实际操作,怎样对实验数据进行分析及通过分析得出实验结论和总结出物理规律.同时要让学生知道,物理规律必须经过实验的检验,不能任意外推,从而养成严谨的科学态度和良好的思维习惯.

三、对教学过程的构想

为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:1.在引入新课提出课题后,启发学生思考:物理学的基本研究方法是什么(不一定让学生回答)?这样既对学生进行了方法论教育,也为过渡到演示实验起承上启下作用.2.对演示实验所需器材及电路的设计可先启发学生思考回答.这样使他们既巩固了实验知识,也调动他们尽早投入积极参与.3.在进行演示实验时可请两位同学上台协助,同时让其余同学注意观察,也可调动全体学生都来参与,积极进行观察和思考.4.在用列表对比法对实验数据进行分析后,提出下面的问题让学生思考回答:为了更直观地显示物理规律,还可以用什么方法对实验数据进行分析?目的是更加突出方法教育,使学生对分析实验数据的两种最常用的基本方法有更清醒更深刻的认识.到此应该达到本节课的第一次高潮,通过提问和画图象使学生的学习情绪转向高涨.5.在得出电阻概念时,要引导学生从分析实验数据入手来理解电压与电流比值的物理意义.此时不要急于告诉学生结论,而应给予充分的时间,启发学生积极思考,并给予适当的思维点拨.此处节奏应放慢,可提请学生回答或展开讨论,让学生的主体作用得到充分发挥,使课堂气氛掀起第二次高潮,也使学生对电阻的概念是如何建立的有深刻的印象.6.在得出实验结论的基础上,进一步总结出欧姆定律,这实际上是认识上的又一次升华.要注意阐述实验结论的普遍性,在此基础上可让学生先行总结,以锻炼学生的语言表达能力.教师重申时语气要加重,不能轻描淡写.要随即强调欧姆定律是实验定律,必有一定的适用范围,不能任意外推.7.为检验教学目标是否达成,可自编若干概念题、辨析题进行反馈练习,达到巩固之目的.然后结合课本练习题,熟悉欧姆定律的应用,但占时不宜过长,以免冲淡前面主题.

四、授课过程中几点注意事项

1.注意在实验演示前对仪表的量程、分度和读数规则进行介绍.

2.注意正确规范地进行演示操作,数据不能虚假拼凑.

3.注意演示实验的可视度.可预先制作电路板,演示时注意位置要加高.有条件的地方可利用投影仪将电表表盘投影在墙上,使全体学生都能清晰地看见.

4.定义电阻及总结欧姆定律时,要注意层次清楚,避免节奏混乱.可把电阻的概念及定义在归纳实验结论时提出,而欧姆定律在归纳完实验结论后总结.这样学生就不易将二者混淆.