首页范文高层建筑抗震结构设计十篇高层建筑抗震结构设计十篇

高层建筑抗震结构设计十篇

发布时间:2024-04-29 12:08:25

高层建筑抗震结构设计篇1

关键词:高层建筑;抗震;结构设计

中图分类号:tU97文献标识码:a文章编号:

1、高层建筑抗震结构设计的基本原则

一是框架—剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。二是抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。三是适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。四是在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

2、高层建筑结构措抗震施设计

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3、高层建筑的抗震设计理念

我国建筑抗震规范对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

4、高层建筑结构抗震设计方法探讨

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

5、高层建筑结构抗震设计方法

5.1基础的抗震设计

基础是实现高层建筑安全性的重要条件。我国高层建筑通常采用钢筋混凝土连续地基梁形式,在基础梁的设计中,为充分发挥钢筋的抗拉性和混凝土的抗压性的复合效应,把设计重点放在梁的高度和钢筋的用量上,在钢筋的布置上采用主筋、腹筋、肋筋、基础筋、基础辅筋5种钢筋的结合。为防止基础钢筋的生锈,一方面采用耐酸化的混凝土,另一方面是增加钢筋表面的保护层厚度,以抑止钢筋的腐蚀。高层建筑基础处理的另一个特色是钢制基础结合垫块的应用,它是高层建筑上部结构柱与基础相连的重要结构部件。它的功能之一是使具有吸湿性的混凝土基础和钢制结构柱及上部建筑相分离,有效防止结构体的锈蚀,确保部件的耐久性。

5.2钢结构骨架的抗震设计

采用钢框架结合点柱壁局部加厚技术来提高结构抗震性能。一般钢框架结构,梁和柱结合点通常是柱上加焊钢制隅撑与梁端用螺栓紧固连接。在这种方式下,钢柱必须在结合部被切断,加焊隅撑后再结合,这样做技术上的不稳定性和材料品质不齐全的可能性很大,而且遇到大地震,钢柱结合部折断的危险性很大。鉴于此,可以首先该结构的梁柱采用高密度钢材,以发挥其高强抗震、抗拉和耐久性。柱壁增厚法避免断柱形式,对二、三层的独立住宅而言,结构柱可以一贯到底,从而解决易折问题。与梁结合部柱壁达到两倍厚,所采用的是高频加热引导增厚技术。在制造过程中品质易下降的钢管经过加热处理反而使材料本来所具有的拉伸强度得以恢复。对于地震时易产生的应力集中,柱的增厚部位能发挥很大的阻抗能力,从而提高和强化了结构的抗震性。

5.3墙体的抗震设计。“三合一”外墙结构体系,首先是由日本专家设计应用的,采用外墙结构柱与两侧外墙板钢框架组合。

6、高层建筑抗震分析和设计的趋势

6.1基于位移的结构抗震设计

我国现行的结构抗震设计,是以承载力为基础的设计。即:用线弹性方法算结构在小震作用下的内力、位移;用组合的内力验算构件截面,使结构具有一定的承载力;位移限值主要是使用阶段的要求,也是为了保护非结构构件;结构的延性和耗能能力是通过构造措施获得的。为了实现基于位移的抗震设计,第一步需要研究简单结构(例如框架及悬臂墙)的构件变形与配筋关系,实现按变形要求进行构件设计;进而研究整个结构进入弹塑性后的变形与构件变形的关系。这就要求除了小震阶段的计算外,还要按大震作用下的变形进行设计,也就是真正实现二阶段抗震设计,这是结构抗震设计的发展趋势。

6.2动力时程响应分析的状态空间迭代法

该种方法把现代控制理论中的状态空间理论应用到高层建筑结构动力响应问题,根据结构动力方程,引人位移与速度为状态变量,导出状态方程,给出非齐次状态方程的解,进而建立状态空间迭代计算格式。经工程实例验算,具有较高精度。特别对多自由度体系的多输入、多输出等问题的动力响应解法,效率较高。

6.3材料参数随机性的抗震模糊可靠度分析

该种方法从结构整体性能出发,改变过去对结构抗震可靠度的研究只考虑荷载的不确定性而忽略了其他多种不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性及烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。其研究成果可用于对现有的结构进行抗震可靠度评估,并可用于指导基于可靠度理论的结构抗震设计。

6.4隔震和消能减震设计的推广和应用

目前我国和世界各国普遍采用的传统抗震结构体系是“延性结构体系”,即适当控制结构物的刚度,但容许结构构件(如梁、柱、墙、节点等)在地震时进入非弹性状态,并目具有较大的延性,以消耗地震能量,减轻地震反应,使结构物“裂而不倒”。这种体系,在很多情况下是有效的,但也存在很多局限性。随着社会的不断发展,对各种建筑物和构筑物的抗震减震要求越来越高,使“延性结构体系”的应用日益受到限制,传统的抗震结构体系和理论越来越难以满足要求,而由于隔震消能和各种减震控制体系具有传统抗震体系所难以比拟的优越性,在未来的建筑结构中将得到越来越广泛的应用。

7、结束语

高层建筑已经逐渐成为当前时代建筑发展的主流建筑形态之一,对于高层建筑,其抗震效能的分析一直是国内外建筑抗震设计分析的研究热点,而最直接最有效的抗震措施就是在建筑设计阶段进行结构抗震设计,只有从高层建筑物内部实施结构抗震,才能够从根本上提高高层建筑的抗震效能。

参考文献:

[1]李忠献.高层建筑结构及其设计理论[m].北京:科学出版社,2006.

[2]吴镁良.带高位转换层高层建筑结构抗震性能研究[D].

高层建筑抗震结构设计篇2

关键词:高层建筑;错层;结构;抗震设计

abstract:thesplit-levelfloorelevationisgreaterthan600mmormore,andmorethanhighbeam,split-levelareamustbegreaterthanorequalto30%oftheentirefloorarea.thisstructurebelongstotheirregularstructureofthebuildingprogram.thefirstisflatoneachflooradifferentelevation,whichisequivalenttothefloortoopenabighole,sotheplaneisirregular;followedbyverticalslabsplit-level,thestiffnessoftheverticalelementswillvarygreatly,sotheverticalnortherules.trialsandstudiesshowthatpoorseismicperformanceofthesplit-levelstructureshouldbeavoided,buttherearemarketdemand,toresolvethiscontradictionintheactualdesignprocess,itisnecessarytopayattentiontobetakentostrengthenmeasures.thispaperdiscussestheseismicdesignofhigh-risebuildingsplit-levelstructure.Keywords:high-risebuildings;split-level;structure;seismicdesign

中图分类号:tU97文献标识码:a文章编号:

引言

随着楼市的发展,人们传统的居住习俗正逐渐受到新潮理念的挑战,旧式的居住观念已被迅速发展的现代都市生活理念所替代,在住宅的品位和生活质量上人们已提出了一个相当高的要求,这种要求的提高也势必引起房型的变化,人们要求现在的房型功能更完善、分割更合理、私密性更强。也就是人们对住宅的要求已从以前传统的实惠型向舒适性、小康性、超前性、休闲性、温馨型发展。为此错层式住宅作为一种新概念房型在各地层出不穷,甚至有愈演愈烈的趋势,已经从独立式、联立式的低层住宅发展到多层,又由多层蔓延到高层。

所谓错层,就是楼板标高大于600mm以上,且超过梁高。光有了这样的元素还不能构成错层结构,错层的面积必须大于等于整个楼层面积的30%。这种结构,属于建筑方案不规则的结构形式。首先是平面,每层的楼板由于标高不同,相当于楼板开大洞,所以平面不规则;其次是竖向,由于梁板错层,竖向构件的刚度会相差很大,所以竖向也不规则。在试验和研究中均表明,错层结构的抗震性能较差,应尽量避免,但是又有市场需求,为解决好这个矛盾,在实际的设计过程中,就要注意采取加强措施。

一、高层建筑错层结构的特点

错层结构属于复杂高层结构,之所以定义为复杂高层结构主要是因为以下特点。

1、错层结构属于竖向布置不规则结构,在错层部位竖向抗侧力构件因计算高度不同而引起刚度突变;剪力墙结构错层后因建筑使用功能原因易形成错洞或叠合错洞剪力墙使洞口布置不规则;框架结构错层后形成长短柱混合的不规则结构,更加不利。

2、由于楼板错层,故相当于错层楼板开大洞,楼板会受到较大的削弱而形成平面不规则结构。

3、错层附近竖向抗侧力构件受力复杂,易形成许多应力集中部位。且限于目前计算软件的能力尚无法进行精准计算,应根据结构概念进行构造加强。

二、错层布局方式

错层住宅的布局方式很多(常见的有左右错(图1),前后错(图2)、双层错(无论哪一种错层方式(建议每次错层高差控制0.3m-0.45m之间.

图1

图2

三、高层建筑错层结构抗震设计

1、设计要点

高层错层建筑结构由于在错层短柱存在很大的内力集中,且错层框架结构在错层处的短柱要协调相互错开的楼盖的变形,特别是在地震作用下,更易发生破坏。为改善普通错层框架结构的受力性能,主要采取以下措施来解决:

(1)在普通错层框架结构的错层处根据实际需要增设若干撑杆,用撑杆的轴力来转移普通错层框架结构错层处短柱受的剪力。

(2)在普通错层框架结构的适当位置增设若干剪力墙,用剪力墙来承担大部分的结构水平剪力。

(3)错层不宜沿建筑通高设置,错层中应设置一定数量的贯通层,将错层分为几个区段,且每个错层区段包含的错层层数也不宜太多,通层要重点加强。

(4)对于电算结果给出的超筋、超限的连梁,在提高其混凝土强度等级,截面调整仍无效果的情况下,可采用钢骨混凝土连梁加以解决,采用钢骨时要注意钢骨和墙体暗柱的连接构造。

(5)在对复杂高层建筑进行设计时,运用概念设计的思想确定结构方案、进行结构布置是十分重要的。在此基础上还要有充分的计算分析手段例如采用二种不同计算程序进行分析对比、相互验证,并采用结构动力分析方法进行补充分析。

(6)对高层错层建筑在错层处应在纵横向布置剪力墙,并使其互相形成扶壁,错层处布置单独的框架柱是不可取的。

2、错层结构设计注意事项

错层结构应用较广,如何保证结构安全,采取有效措施正确处理错层结构就显得尤为重要。在设计时应具体问题具体分析,充分考虑各种不利因素,针对错层结构可能出现的薄弱部位从建筑平面布置、理论计算及抗震构造措施等方面出发,增强结构的整体受力性能,提高结构的延性。

(1)结构的共用柱大多为短柱,而短柱的延性很差,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌,因此对因错层形成的短柱,应该尽量提高短柱的承载力,减小短柱的截面尺寸,采取各种有效措施提高短柱的延性,改善短柱的抗震性能。

(2)尽可能使结构平面布置合理化,使错层部位两层的竖向构件刚度相等,对结构平面布置不对称的结构,地震的扭转效应将十分显著,可能造成角部抗侧力构件开裂,在设计中应加强这些部位的配筋,增强抗震构造措施。

(3)加强错层结构中错层柱及其上连梁的抗扭能力,同时使错层柱与相邻普通柱的长细比控制在1~2之间。

(4)在高层建筑中,竖向体型应避免过大的外挑和内收,立面收进部分的尺寸比值应满足≥0.75的要求。

(5)对设防烈度较高、抗震等级较高的高层钢筋混凝土结构,应尽可能限制使用错层结构,如不可避免,则应用剪力墙结构,并尽量避免上下层楼面刚度突变。

四、结语

1、错层结构受力复杂,抗震性能较差,应尽量回避错层结构的设计方案。一旦确定为错层结构,尽量减少错层的范围和错层的楼层数,错层的两侧尽量采用结构布置和侧向刚度相近的结构体系,并尽量选择抗震性能好的剪力墙结构。通过选择合理的结构形式,采用较规则的平面布置体系,加强抗震构造措施,可以满足规范抗震设计的要求。

2、对于错层结构的结构设计,应更注重于概念设计,既很好的保证结构的安全性,又确保收到良好的经济效果。

3、根据建设部令第111号的精神,对复杂的高层错层结构应进行专项审查,这也是保证错层结构设计质量的重要措施。

参考文献:

[1]王超,张华丽.高层剪力墙局部错层结构抗震设计[J].工程建设与设计,2011,(04).

[2]王春伟.浅谈带错层的高层建筑结构抗震设计[J].中国新技术新产品,2011,(13)[3]任华.某高层建筑结构设计的分析与探讨[J].建材与装饰(中旬刊),2007,(12)

[4]黄宁峰.结合实践对高层建筑结构设计若干问题的分析[J].四川建材,2009,(06)

[5]杨光明.对高层建筑结构设计中提高短柱抗震措施的探讨[J].建材与装饰(中旬刊),2008,(06).

[6]连晓庄,何照明.建筑学专业“建筑抗震设计”课程教学探讨[J].南方建筑,2003,(03).

高层建筑抗震结构设计篇3

关键词:高层住宅建筑结构抗震性能优化设计

中图分类号:tU318文献标识码:a文章编号:1672-3791(2012)06(b)-0076-01

高层住宅建筑结构的抗震设计是建筑工程设计以及施工重点,高层建筑的发展与城市的发展具有密切的联系,城市人口的密集、用地紧张,从而促进人们对高层住宅建筑的要求。为了保证高层建筑结构在地震的作用下不被受到严重破坏以及保证人们的生命财产安全通过对高层住宅建筑结构的抗震优化设计,保证建筑具有良好的抗震性能以及安全性。

1高层住宅建筑结构的抗震设计原则

高层住宅建筑结构的抗震设计应该选择合适的结构形式,做到刚柔相济,保证建筑结构的抗震性能,并且应该达到建筑物“小震不坏、中震可修、大震不倒”的抗震目标。由于建筑物在地震的作用力下,其结构会发生很大的变化,所以高层住宅建筑设计人员应该根据不同的建筑类型以及地震强烈程度采用不同的建筑构造和结构类型,保证设计的建筑结构达到安全性和效益相统一的原则。所以在对高层住宅建筑结构设计的过程中首先应该认真进行抗震设计,综合考虑建筑结构构件的稳定性、承载能力以及刚度和延性等建筑性能,并且对于结构中相对比较薄弱的部位应进一步加强抗震措施。并且在抗震设计使,应该设有多道防线,使建筑结构形成一个完整的抗震结构体系,从而达到高层住宅建筑良好的抗震效果,并且在进行处理建筑结构之间的关系时,应该保证“有效屈服”能够保持较长的阶段,从而可以保证建筑结构的抗倒塌能力和延性[1]。

2优化策略

对高层建筑结构抗震设计时,首先可以从高层住宅建筑结构的结构体系、建筑结构的规则性等方面着手,在将抗震和消震相结合的基础之上,建立建筑结构延性和结构设计的地震力要求相互影响的双重指标和设计方法,从而可以通过建筑结构形式达到减震消震的效果,从而使高层住宅建筑在地震中具有良好经济的抗震性能。

2.1建筑结构的抗震设计应重视建筑结构的规则性

(1)在高层住宅建筑抗震设计中建筑主体抗侧力结构应该沿着竖向断面构成变化比较均匀,并且不能出现突变的现象,这种均匀的高层建筑结构能够避免因为结构薄弱层的破坏而造成整个建筑结构破坏,特别是对于强震区的高层住宅建筑应该特别注意。

(2)建筑主体的抗侧力结构的两个主轴方向变形特性以及刚性应该比较相近,这主要是因为高层建筑结构是三维形式,实际的地震作用以及风荷载具有任意的方向性,在设计中使建筑主体抗侧力的两个主轴方向的刚度比较均匀,这就可以保证建筑结构具有良好的抗风能力和抗震性。

(3)在高层住宅建筑抗震设计时,主体抗侧力结构的平面布置应保证同一主轴方向的抗侧力结构刚度应该均匀,这样可以有效避免在主体结构的布置设置中刚性大而延性小的结构,比如长窄的实体剪力墙,这种结构虽然能够满足刚度以及对称性的要求,但是由于在建筑结构中一些结构刚度比较大,所以在地震发生时,将会吸收非常大的能量,造成应力的集中的地方首先受到破坏,从而造成正整体结构的损坏。因此在设计的过程中保证高层住宅建筑同一主轴方向的抗侧力结构刚度的均匀性,对建筑结构的抗震延性具有重要作用。

2.2抗震结构体系的优化设计

高层住宅建筑结构体系的设计是建筑结构设计中最为重要的问题。建筑结构设计方案的合理性,对建筑结构的经济性以及安全性具有重要的作用。而抗震结构体系是高层住宅建筑抗震设计中关键问题,在抗震结构体系设计的过程中应该设计多道抗震防线,并且还应该根据建筑的类型以及因素进行设计,这样不仅可以避免因为建筑中某些部分的构件的破坏而造成整个建筑体系的抗震能力失效的现象,而且还可以保证建筑设计的安全性。在设计中结合建筑特点、经济条件等因素综合考虑,并且在建筑抗震结构体系的设计中应该选择不承受重力载荷的构件。抗震结构体系必须具有合理的地震作用传递途径,设计中不适合采用轴压比较大的钢筋混凝土框架作为抗震结构体系设计的第一道防线,在抗震设计中设计多道防线主要是为了减少建筑主体结构的地震能量,必要的强度分布以及刚度能够减轻主体结构的破坏[2]。

2.3层间位移的控制

高层住宅建筑都具有非常大的高宽比,并且在地震以及风力的作用下会产生非常大的层间位移的现象,严重情况会超出结构位移的限制数值,位移限值的大小与建筑结构体系和结构材料、侧向荷载以及装修等多方面因素有关。所以在高层住宅建筑结构设计的过程中应该根据建筑的具体情况以及地理位置等进行设计,不仅应该具有足够的刚度,而且诶还应该有效避免水平载荷作用下造成的位移现象,而影响建筑结构的稳定性、承载能力和舒适度。

参考文献

高层建筑抗震结构设计篇4

关键词:高层住宅;建筑结构;抗震性能;优化设计

中图分类号:tU241.8文献标识码:a文章编号:

引言:

随着我国钢产量、成型制造工艺以及经济政策等方面的支持,我国房地产业的迅猛发展。进入上世纪90年代后,高层钢结构成为高层建筑的发展趋势。高层建筑不仅在材料和结构体系上逐渐多样化,而且在优化建筑结构设计上也越发受到业界普遍关注和重视。由于我国处于地震多发区,结构抗震分析和设计已提到各国建筑设计的日程。房地产业的高速发展将成为趋势,国内虽有一些高层钢结构设计理念,但可靠性仍值得商榷。因此,住宅高层建筑结构抗震的优化设计处于非常重要的地位。

1.住宅高层建筑结构抗震设计原则

抗震设计要刚柔相济,选择合适的结构形式,在增加结构刚度的同时也要增强地震作用,需要确定合理的抗震措施。保证结构的抗震性能主要是确保建筑物满足“小震不坏、中震可修、大震不倒”的抗震目标。在地震力作用下,要求结构保持在弹性范围内正常使用。建筑物的变形破坏性态后不能发生很大的变化,经简单的修复后可正常使用。随着建筑物高度的增加,允许结构进入弹塑性状态,但必须保证结构整体的安全。因此,六级以上必须进行抗震设计。每次强震之后都会伴随多次余震,在建筑抗震设计过程中如果若一味的提高结构抗力,就会增加结构刚度。若只有一道设防,则会导致结构刚度大。所以,建筑物在地震过程中既能满足变形要求,又能减小地震力的双重目标。因此,只有这样才能使建筑物抗震设计过程中防止造成建筑物局部受损。建筑物的抗震结构体系如果刚度太柔,首次被破坏后而余震来临时其结构将因损伤,结构构件协同工作来抵挡地震作用容易导致建筑物过大形变而不能使用。延性较好的分体系组成,地震发生时不会发生整体倾覆。因此,由若干个在地震发生时由具有较好延性。

2.高层建筑结构抗震设计要点

2.1结构规则性

建筑在结构方案设计的初期,结合抗震设计的要求,对建筑平面及使用功能进行合理优化和布局,特别是高层住宅建筑,应保证建筑物有足够的扭转刚度以减小结构的扭转影响,要求建筑物平面对称均匀,柱网剪力墙布置合理。因为该种结构建筑容易估计出其地震反映,对建筑进行合理的布置,以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。并应尽量满足建筑物在竖向上重力荷载受力均匀,体型简单,结构刚度。大量的地震灾害表明,在地震时,只有建筑物受力均匀,平立面布局简洁对称合理,这样的结构才能满足抗震设防的设计要求。

2.2层间位移限制

我们在进行高层建筑物结构设计时要注意建筑的高宽比,位移的限制和结构材料、结构体系甚至装修标准以及侧向荷载等问题。其中钢筋混凝土结构的位移限值要求严格,以及所处的地理位置进行设计,稳定性以及正常使用功能等。其在风力和地震作用下往往能够产生较大的层间位移,满足其具有足够的刚度又要避免超过结构的承载力,位移限值风荷载作用下的限值比地震作用下的要求严格,在水平荷载的作用下产生过大的位移而影响结构的承载力。

3.抗震设计中的注意事项

3.1基本设计信息的确定

根据当地的抗震设防烈度和建筑类别等确定抗震等级。值得注意的是,高层住宅建筑一般为丙类建筑,是不需要调整设防烈度的,而甲、乙类建筑要按照《建筑抗震设防分类标准》来调整设防烈度。设计时要明确该场地土类别、地面粗糙度和地震加速度,使设计更加合理。建筑越高,风荷载的影响越大,因此对基本风压也要更加重视,当建筑高度超过60m或者对风荷载敏感的建筑,就要按照一百年重现期的风压采用,并应根据建筑的形状、高宽比等选择合适的体形系数。

3.2概念设计与设计参数的正确选择

在方案设计阶段,要进行概念设计,使结构体系的地震作用传递途径明确以及使结构具有多道抗震防线。结构最大适用高度要控制在规范允许范围内,使结构具有足够的延性。剪力墙的布置应均匀、对称,在纵横两个方向上都有布置,使两个主轴方向的刚度尽量接近;墙体要尽量减少开洞,如果要开洞,洞口应均匀对齐,避免任意开洞。砼结构构件应控制截面尺寸和受力钢筋、箍筋的设置,防止剪切破坏先于弯曲破坏、砼的压溃先于钢筋的屈服、钢筋的锚固粘结破坏先于钢筋破坏。结构各之间的连接应做到构件节点的破坏,不应先于其连接的构件;预埋件的锚固破坏,不应先于连接件;装配式结构构件的连接,应能保证结构的整体性;预应力砼构件的预应力钢筋,宜在节点核心区以外锚固。

4.优化策略

对高层建筑结构抗震设计时,首先可以从高层住宅建筑结构的结构体系、建筑结构的规则性等方面着手,在将抗震和消震相结合的基础之上,建立建筑结构延性和结构设计的地震力要求相互影响的双重指标和设计方法,从而可以通过建筑结构形式达到减震消震的效果,从而使高层住宅建筑在地震中具有良好经济的抗震性能。

4.1建筑结构的抗震设计应重视建筑结构的规则性

4.1.1在高层住宅建筑抗震设计中建筑主体抗侧力结构应该沿着竖向断面构成变化比较均匀,并且不能出现突变的现象,这种均匀的高层建筑结构能够避免因为结构薄弱层的破坏而造成整个建筑结构破坏,特别是对于强震区的高层住宅建筑应该特别注意。

4.1.2建筑主体的抗侧力结构的两个主轴方向变形特性以及刚性应该比较相近,这主要是因为高层建筑结构是三维形式,实际的地震作用以及风荷载具有任意的方向性,在设计中使建筑主体抗侧力的两个主轴方向的刚度比较均匀,这就可以保证建筑结构具有良好的抗风能力和抗震性。

4.1.3在高层住宅建筑抗震设计时,主体抗侧力结构的平面布置应保证同一主轴方向的抗侧力结构刚度应该均匀,这样可以有效避免在主体结构的布置设置中刚性大而延性小的结构,比如长窄的实体剪力墙,这种结构虽然能够满足刚度以及对称性的要求,但是由于在建筑结构中一些结构刚度比较大,所以在地震发生时,将会吸收非常大的能量,造成应力的集中的地方首先受到破坏,从而造成正整体结构的损坏。因此在设计的过程中保证高层住宅建筑同一主轴方向的抗侧力结构刚度的均匀性,对建筑结构的抗震延性具有重要作用。

4.2抗震结构体系的优化设计

高层住宅建筑结构体系的设计是建筑结构设计中最为重要的问题。建筑结构设计方案的合理性,对建筑结构的经济性以及安全性具有重要的作用。而抗震结构体系是高层住宅建筑抗震设计中关键问题,在抗震结构体系设计的过程中应该设计多道抗震防线,并且还应该根据建筑的类型以及因素进行设计,这样不仅可以避免因为建筑中某些部分的构件的破坏而造成整个建筑体系的抗震能力失效的现象,而且还可以保证建筑设计的安全性。在设计中结合建筑特点、经济条件等因素综合考虑,并且在建筑抗震结构体系的设计中应该选择不承受重力载荷的构件。抗震结构体系必须具有合理的地震作用传递途径,设计中不适合采用轴压比较大的钢筋混凝土框架作为抗震结构体系设计的第一道防线,在抗震设计中设计多道防线主要是为了减少建筑主体结构的地震能量,必要的强度分布以及刚度能够减轻主体结构的破坏。

4.3层间位移的控制

高层住宅建筑都具有非常大的高宽比,并且在地震以及风力的作用下会产生非常大的层间位移的现象,严重情况会超出结构位移的限制数值,位移限值的大小与建筑结构体系和结构材料、侧向荷载以及装修等多方面因素有关。所以在高层住宅建筑结构设计的过程中应该根据建筑的具体情况以及地理位置等进行设计,不仅应该具有足够的刚度,而且诶还应该有效避免水平载荷作用下造成的位移现象,而影响建筑结构的稳定性、承载能力和舒适度。

5.结语

随着新型结构、高性能材料的出现人类建筑也势必再上新台阶,理顺结构与建筑,使得新型结构建筑要求同时能满足建筑物的使用功能和外观要求。提高结构与设备的关系,需要从目前抗震设计现状出发,设计者应根据工程抗震概念各方面的知识和经验,作出正确的工程判断,找出结构安全与经济合理的最佳结合点,探求处一种实用可行的二步或三步设防的合理有效的抗震设计方法,以更好地适应社会经济和科学技术的发展。

参考文献:

高层建筑抗震结构设计篇5

关键字:高层钢结构建筑;抗震设计;震害;基于性能

中图分类号:tU97文献标识码:a

1.高层钢结构建筑抗震设计理念

建筑结构的抗震设计包括三个方面:一是概念设计,即把握抗震设计的主要原则,弥补由地震作用和结构地震反应的复杂性而造成抗震计算不准确的不足;二是抗震计算,为抗震设计提供量的保证;三是构造措施,为抗震概念及计算提供有利的保障。

高层建筑钢结构抗震设计基本原理:保证结构的完整性,提高结构的延性以及设置多道结构防线。

高层钢结构应采用全刚接框架,当结构刚度不够时,可采用中心支撑框架、钢框架混凝土芯筒或钢框筒结构形式;但在高烈度区(8度和9度区),宜采用偏心支撑框架和钢框筒结构,从而保证结构具有较好的延性。对于钢框架支撑结构及钢框架混凝土芯筒结构,钢支撑或混凝土芯筒部分的刚度大,可能承担整体结构绝大部分地震作用力。但钢支撑或混凝土芯筒的延性较差,为发挥钢框架部分延性好的作用,承担起第二道结构抗震防线的责任,要求钢框架的结构承载力不能太小,为此框架部分按计算得到的地震剪力应乘以调整系数,达到不小于结构底部总地震剪力的25%和框架部分地震剪力最大值1.8倍两者的较小值。高层钢结构和混凝土结构一样也要满足以下三个原则即强柱弱梁的原则(保证梁端的破坏先于柱端的破坏)、强剪弱弯的原则(弯曲破坏先于剪切破坏)以及强节点弱构件的原则(构件的破坏先于节点的破坏)。

建筑的平面布置宜简单规则,并使结构各层的抗侧力刚度中心与质量中心接近或重合,同时各层的刚心和质心接近在同一竖直线上,建筑的开间和进深宜统一。高层钢结构建筑不宜设置防震缝,但薄弱部位应注意采取措施提高其抗震能力,如当结构平面布置不规则时,可设置防震缝。

2.高层钢结构建筑主要震害特征及分析

钢结构的强度高、延性好、重量轻、抗震性能好。总的来说在同等场地、烈度条件下,钢结构房屋的震害较钢筋混凝土结构房屋的震害要小。例如在墨西哥的高烈度区内有102幢钢结构房屋,其中59幢为1957年以后所建,在1985年9月的墨西哥大地震中,1957年以后建造的钢结构房屋倒塌或严重破坏的不多,而钢筋混凝土结构房屋的破坏就要严重得多。

高层钢结构在地震中破坏形式有节点连接破坏、构件破坏及结构倒塌。节点连接破坏中一种是支撑连接破坏,一种是梁柱连接破坏。1978年日本宫城县远海地震造成钢结构建筑的破坏更多是支撑连接破坏。1995年日本的阪神地震造成了很多梁柱刚性连接破坏。高层建筑钢结构构件破坏主要表现为支撑压屈(支撑在地震中所受的压力超过其屈曲临界力时即发生压屈破坏)、梁柱局部失稳(梁或柱在地震作用下反复受弯,在弯矩最大截面处附近由于过度弯曲可能发生翼缘局部失稳破坏)、柱水平裂缝或断裂破坏。1995年日本阪神地震中,位于阪神地震区芦屋市海滨城的52栋高层钢结构住宅,有57根钢柱发生断裂,其中13根钢柱为母材断裂,7根钢柱与支撑连接处断裂,37根钢柱在拼接焊缝处断裂。结构倒塌是地震中结构破坏的最严重的形式。钢结构建筑尽管抗震性能好,但在地震中也会发生倒塌。1985年墨西哥大地震中有10幢钢结构房屋倒塌,1995年的日本阪神地震中也有钢结构房屋倒塌。

3.常规的抗震设计与基于性能的抗震设计的对比

为了更有效地将地震所带来的灾害及损失降低,随着对地面运动特征和结构地震反应特征认识的不断深化,高层建筑抗震设计思想也在不断完善,美国从上世纪90年代陆续提出了一些有关抗震性能设计的文件(如atC40、Fema356、aSCe41等),近几年由洛杉矶市和旧金山市的重要机构了新建高层建筑(高度超过160英尺、约49m)采用抗震性能设计的指导性文件。2008年美国一学术组织“国际高层建筑及都市环境委员会(CtBUH)”发表了有关高层建筑(高度超过50m)抗震性能设计的建议。日本从1981年起已将基于性能的抗震设计原理用于高度超过60m的高层建筑。高层建筑采用抗震性能设计已形成一种发展趋势。

我国常规抗震设计方法是满足“小震不坏、中震可修、大震不倒”的设防目标,按指令性、处方形式的规定进行设计,通过结构布置的概念设计、小震弹性设计、经验性的内力调整、放大和构造以及部分结构大震变形验算,即认为可实现预期的宏观的设防目标,但随着新技术、新材料、新结构体系的发展,这种抗震设计方法已经不能很好地满足现在高层建筑的抗震功能的深层次要求,更加不能有效地控制地震所造成的损失。

基于性能的抗震设计理论是20世纪90年代初由美国学者提出,按此理论设计的结构在未来的地震灾害下能够维持所要求的性能水平。基于性能的抗震设计理论是一种更加合理的设计理念,它将抗震设计以保障人民生命安全为基本目标转化为在不同风险水平地震作用下满足不同的性能目标,通过多目标、多层次的抗震安全设计来最大限度保障人民生命安全,采用多个预期的性能目标,包括结构的、非结构的、设施的各种具体性能指标,由业主选择具体工程的预期目标,而且提出了符合预期性能要求的论证,包括结构体系、详尽的分析、抗震措施和必要的试验,并经过专门的评估予以确认。通过对两者的分析比较可以看出基于性能的抗震设计的优越性,它代表了未来结构抗震设计的发展方向。

4.结语

通过以上的阐述及分析我们可以看到基于性能的抗震设计能够更好的强化结构抗震的安全目标和提高结构抗震的功能要求,在新修订的建筑抗震设计规范中也得到了体现,然而基于性能的抗震设计也存在一些问题,例如地震作用的不确定性,结构分析模型及参数选用存在不少经验因素,模型试验以及震害资料的欠缺,存在的这些问题都需要进一步的改进与完善,从而减少地震所带来的灾害与损失。

参考文献:

[1]李国强建筑结构抗震设计中国建筑工业出版社2009

[2]范高层建筑结构东南大学出版社2008

[3]史庆轩高层建筑结构设计科学出版社2006

[4]沈蒲生高层建筑结构设计中国建筑工业出版社2006

高层建筑抗震结构设计篇6

关键词:高层建筑;抗震;结构设计

abstract:withthehighbuildingtohigherthedirectionofdevelopment,theseismicperformancealsobecomesmoreandmoreimportant.theauthordiscussesthedesignpractice,thenhigh-risebuildingdesignofanti-seismicstructureneedtobepaidattentiontorelevantissuesarediscussed.

Keywords:highbuilding;Seismic;Structuredesign

中图分类号:[tU208.3]文献标识码:a文章编号:

地震是人类在繁衍生息、社会发展过程中遇到的一种可怕的自然灾害。强烈地震常常以其猝不及防的突发性和巨大的破坏力给社会经济发展、人类生存安全和社会稳定、社会功能带来严重的危害。研究表明,在地震中造成人员伤亡和经济损失最主要的因素就是房屋倒塌及其引发的次生灾害(约占95%)。无数次的震害告诉我们,抗震设计是防御和减轻地震灾害最有效、最根本的措施。高层建筑结构的抗震仍然是建筑物安全考虑的重要问题。

1结构规则性

建筑物尤其是高层建筑物设计应符合抗震概念设计要求,对建筑进行合理的布置,大量地震灾害表明,平立面简单且对称的结构类型建筑物在地震时具有较好的抗震性能,因为该种结构建筑容易估计出其地震反映,易于采取相应的抗震构造措施并且进行细部处理。建筑结构的规则性是指建筑物在平立面外形尺寸、抗侧力构件布置、承载力分布等多方面因素要求。要求建筑物平面对称均匀,体型简单,结构刚度,质量沿建筑物竖向变化均匀,同时应保证建筑物有足够的扭转刚度以减小结构的扭转影响,并应尽量满足建筑物在竖向上重力荷载受力均匀,以尽量减小结构内应力和竖向构件间差异变形对建筑结构产生的不利影响。

2层间位移限制

高层建筑都具有较大的高宽比,其在风力和地震作用下往往能够产生较大的层间位移,甚至会超过结构的位移限值。而国内普遍认为该位移限值大小与结构材料、结构体系甚至装修标准以及侧向荷载等诸多因素有关,其中钢筋混凝土结构的位移限值(一般在1/400-1/700范围内)则比钢结构(1/200-1/500范围内)要求严格,风荷载作用下的限值比地震作用下的要求严格。因此在进行高层建筑结构设计时应根据建筑物的实际情况以及所处的地理位置进行设计,既要满足其具有足够的刚度又要避免结构在水平荷载的作用下产生过大的位移而影响结构的承载力、稳定性以及正常使用功能等。

3控制地震扭转效应

大量事实表明,当建筑结构的平面布置等不规则、不对称导致建筑层间水平荷载合力中心与建筑结构刚度中心不重合,在地震发生时建筑结构除发生水平位移外还易发生扭转性破坏甚至会导致结构整体倒塌,因此在结构设计中应充分重视扭转的影响。由于建筑物在扭转作用下各片抗侧力结构的层间变形不同,其中距刚心较远的结构边缘的抗侧力单元的层间侧移最大;同时在上下刚度不均匀变化的结构中,各层的刚度中心未能在同一轴线上,甚至会产生较大差距,以上情况都会使各层结构的偏心距和扭矩发生改变,因此,在设计过程中应对各层的扭转修正系数分别计算。计算时应主要控制周期比、位移比两个重要指标,即当两个控制参数的计算结果不能满足要求时则必须对其进行调整。当周期比不满足要求时可采用加大抗侧力构件截面或增加抗侧力构件数量的方法,并应将抗侧力构件尽可能的均匀布置在建筑四周,以减小刚度中心与质量中心的相对偏心,若调整构件刚度不能满足效果时则应调整抗侧力构件布置,以增大结构抗扭刚度。

4减小地震能量输入

具有良好抗震性能的高层建筑结构要求结构的变形能力满足在预期的地震作用下的变形要求,因此在设计过程中除了控制构件的承载力外还应控制结构在地震作用下的层间位移极限值或位移延性比,然后根据构件变形与结构位移的关系来确定构件的变形值,同时根据截面达到的应变大小及分布来确定构件的构造要求,选择坚硬的场地土来建造高层建筑等方法来减小地震能量的输入。

5减轻结构自重

对于同样的地基条件下进行建筑结构设计若减轻结构自重则可相应增加层数或减少地基处理造价,尤其是在软土基础上进行结构设计这一作用更为明显,同时由于地震效应与建筑质量成正比,而高层建筑由于其高度大重心高等特点,在地震作用时其倾覆力矩也随之增加,因此,为了尽量减小其倾覆力矩应对高层建筑物的填充墙及隔墙尽量采用轻质材料以减轻结构自重。

6提高结构的抗震性能

由于高层建筑的受力特点不同于低层建筑,因此在地震区进行高层建筑结构设计时,除应保证结构具有足够的强度和刚度外,还应具有良好的抗震性能。通过合理的抗震设计,使建筑物达到小震不坏,中震可修,大震不倒。为了达到这一要求,结构必须具有一定的塑性变形能力来吸收地震所产生的能量,减弱地震破坏的影响。

框架结构设计应使节点基本不破坏,梁比柱的屈服易早发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜晚形成,应使梁、柱端的塑性铰出现得尽可能分散,充分发挥整体结构的抗震能力。为了保证钢筋砼结构在地震作用下具有足够的延性和承载力,应按照“强柱弱梁”、“强剪弱弯”、“强节点弱构件”的原则进行设计,合理地选择柱截面尺寸,控制柱的轴压比,注意构造配筋要求,特别是要加强节点的构造措施。

7选择合理结构类型

高层建筑的竖向荷载主要使结构产生轴向力,水平荷载主要产生弯矩。其竖向荷载方向不变,但随着建筑高度增加而增加,水平荷载则来自任何方向,因此竖向荷载引起建筑物的侧移量非常小,而水平荷载产生的侧移则与高度成四次方变化,即在高层结构中水平荷载的影响远远大于竖向荷载的影响,因此水平荷载应为设计的主要控制因素,在设计过程中应需在满足建筑功能及抗震性能的前提下选择切实可行的结构类型,使其具有良好的结构性能。目前大多高层结构都采用钢混结构和钢结构,钢混结构具有刚度大、空间整体性好、材料资源丰富、可组成多种结构体系等优点而被广泛应用,但其同时具备自重大、抵抗塑性变形能力差、易发生共振等缺点;钢结构则具有自重轻、强度高、抗震性能好、施工工期短、具有较好延性等优点,但其造价相对较高,当场地土特征周期较长时易发生共振等缺点。

8尽可能设置多道抗震防线

当发生强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

9结束语

高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。

参考文献:

高层建筑抗震结构设计篇7

关键词:高层混凝土建筑抗震结构设计

中图分类号:tU37文献标识码:a

1.高层建筑结构的特点

高层建筑从直观上来说规模较大,所需的成本也较高。高层建筑从本质上来看是一种处于竖向的悬臂梁的建筑结构,其垂直载荷可使该结构产生一定的轴向力[1]。由于高层混凝土建筑和其本身结构是成线性关系的,因此导致建筑结构产生一定的弯矩。对高层建筑而言其垂直方向的荷载一般是不会产生很大的变化,只是随着建筑的层数的增加而导致高层建筑在垂直方向的荷载数量上的增加。如果高层建筑自身荷载分布是呈均匀分布的话,高层建筑和弯矩之间即会产生一种二次方变化的关系,对高层建筑而言其侧移性在竖直方向上的偏移量都较少,如果高层建筑的水平方向的荷载是处于均匀分布的状态则此时高层建筑的水平偏移量即会和高层建筑的具体高度产生四次方的变化关系。综上可知,对高层建筑而言对其影响较大的荷载主要是高层建筑的水平荷载。在高层混凝土建筑的水平荷载作用的过程中会产生一定程度上的剪应力、拉应力和弯矩。因此在高层混凝土建筑过程中需要在保证高层建筑有较大的抗压强度的同时还需要保持一定的结构刚度。从而保证高层混凝土建筑在增加高度的同时能够将高层混凝土建筑的水平偏移量控制在合理范围之内。

2.选择正确的结构体系

高层建筑在设计过程中在充分考虑建筑的实际功用的同时也还需要考虑一下建筑高度和建筑实际抗震性能之间的关系,在合理建筑高度和较好抗震性能之间选择一个平衡点,考虑上述要素之后还需要综合考虑楼层建筑所处的具体环境,综合上述因素之后选择一个最优的建筑结构设计方案。在建筑结构设计过程中常用的建筑结构主要由以下三种类型:框架、筒体、剪力墙和剪力-板柱墙建筑结构体系。

当建筑结构采用框架式结构进行设计时需要在设计过程中能够灵活的布置和设计建筑室内的空间。框架式的结构建筑体系适合那些建筑层数不多,总体建筑高度较低,并且建筑的水平方向的荷载对建筑本身并不会产生较大的影响建筑进行设计。在实践过程中可以得知,框架式的结构建筑是一种主要是以剪应力为基础的柔性的建筑结构,这种建筑结构在实际设计过程中受到的限制很多,主要是适用于那些建筑高度较低并且不需要抗震特性设计的场合。这种建筑结构在实践过程中主要依靠建筑结构中的混凝土墙来承受建筑结构中的所有水平方向和竖直方向上的载荷,也就是所谓的刚性结构。建筑剪力墙自身的结构强度较大,同时抗侧向弯曲强度比较大,虽然建筑本身在水平力的长期作用情形下会产生比较大的侧向变形,但是这种建筑结构在实际中的整体空间效果还是比较良好。相互对比一下,这种建筑结构在实际设计过程中设计的剪力墙自重比较大,因此很难满足用户对入住建筑空间的整体预期。

当建筑结构中采用框架-剪力墙形式的结构时,可以在实际设计过程中增加剪力墙的结构设计,也就是一种刚柔相济的一种建筑结构形式。在这种建筑结构形式中需要框架和剪力墙一起来承担起建筑本身的水平方向的载荷,但是由于框架和剪力墙在刚度方面存在比较大的差异,因此在实际称重过程中产生的变形情况也是不同的。所以在实际过程中需要对建筑结构中的各楼层的变形量进行适当的控制来保证剪力墙和框架承重过程中产生的变形量之间的协同。对建筑结构而言,剪力墙在受力过程中主要是弯曲变形,结构受力主要是剪切变形。通过变形之间的稳定有效的调节可以使框架在剪力墙的有效协助下能够实现抗震的效果。同时因为这种结构的抗震效果能够非常突出的表现剪力墙和框架各自的优点,因此非常适用于各种各样的建筑结构使用。

3.加强高层结构的有效布设

对于高层独立的具体单元而言,在设计过程中应当充分保证建筑结构的具体简约性、刚度和规则性,并且还需要保证建筑结构在承载载荷过程中受力均匀。同时对于建筑结构的竖向的体型来说应当在实际设计过程中保证其竖向体型的均匀性和规则性,这种要求能够避免出现较大的内收、外挑。至于建筑结构的侧向上的刚度来说其在设计过程中最好保证建筑外形是上大下小,变化需要均匀。并且还需要符合一定的规范。首先,在设计建筑结构中应该保证设计建筑能够承载住预期的载荷,保证建筑结构所需的刚度及变形能力,同时在设计过程中需要及时避免由于建筑结构本身的原因而导致建筑结构丧失了承受建筑载荷的能力。其次,对于建筑结构在实践中经常出现问题的一系列较薄的位置需要进行相应的调整和改善。最后,建筑结构的竖直方向上的承载能力和刚度应该分布合理化,避免由于建筑结构局部的变形或者是局部的扭转而产生了一系列负面影响。

4.高层建筑的结构在抗震设计上的基本方法

为了减少地震的能量输入,可以将高层建筑的建造场所设置在场地比较厚实的场所,达到在地震产生时减少对高层建筑的损伤的目的。现在建筑当中采用的抗震结构设计基本上都是传统形式的抗震结构体系,也就是所谓的“延性结构体系”,在实际设计建筑过程中需要能够适当的掌握建筑结构物的刚度。在实际设计过程中可以提高建筑结构的阻尼,在选用建筑结构材料时可以采用一些具备高延性的构件,从而能够提高建筑结构的实际过程中的耗能的能力,减少地震产生时对建筑结构的冲击作用,从而减少建筑楼层在地震发生时产生的剪力。高层建筑设计时,结构材料的选择是非常重要的,要尽可能的选用抗震能力较好的抗震材料,从而改变过去那种只对结构抗震的可靠度做考虑研究而无视其他因素[2]。

5.抗震结构基本方案

高层建筑由于和低层建筑在受力方面有较大不同,因此在设计高层建筑过程中不仅需要保证高层建筑的合理结构刚度还需要保证高层建筑结构良好的抗震性能。在建筑结构抗震设计过程中实质上即是减少地震能量对建筑物的冲击,达到抗震的目的。为了达到这一目的在实际建筑结构抗震体系设计过程中需要注意以下一些问题。在设计抗震层时抗震层顶部和基础面之间的间隙至少需要达到0.7米,同时为了充分利用建筑的使用功能可以将维修层改造成地下室,此时将地震层放置在地下室的墙顶或者是柱顶中即会达到比较好的效果。当在设计过程中要想获得较良好的构件受力的情况,并且水平方向上的剪力又是比较大时,此时应将抗震器放置在地下室的柱中。

6.抗震性能提高策略

在设计工程建筑过程中由于高层建筑和低层建筑在建筑受力方面有着很大的不同,因此在实际设计过程中对一些处在地震频发区域的高层建筑要将建筑结构的刚度,强度,建筑的可变形量控制在合理范围内,在达到抗震功能要求的同时进行最大程度上的外形优化。在设计建筑结构的框架形式当中需要保证抗震结构设计中节点不会轻易受到外界的破坏,同时需要保证抗震结构设计过程中的梁柱顶端自身的塑性要尽可能的分散,只有这样才能够充分发挥建筑结构整体的抗震性能。

总结

本文首先从分析高层混凝土建筑的结构特点出发,而后选择合适的建筑结构体系进而提出了高层混凝土建筑合理的抗震结构设计方案,使高层建筑能够满足高层建筑抗震设计的功能要求。通过对高层混凝土建筑设计抗震结构体系,可以在地震发生时能够在最大程度上减少地震带来的破坏,这对建筑结构体系的完善起到了至关重要的作用。

参考文献:

[1]杨学林,益德清.多塔楼高层建筑结构振动特性与抗震设计[J].工程力学出版社,2001.18(2).

高层建筑抗震结构设计篇8

关键词:高层混凝土建筑建筑后期维护抗震结构设计

中图分类号:tU97文献标识码:a

高层建筑结构的特点

高层建筑从直观上来说规模较大,所需的成本也较高。高层建筑从本质上来看是一种处于竖向的悬臂梁的建筑结构,其垂直载荷可使该结构产生一定的轴向力[1]。由于高层混凝土建筑和其本身结构是成线性关系的,因此导致建筑结构产生一定的弯矩。对高层建筑而言其垂直方向的荷载一般是不会产生很大的变化,只是随着建筑的层数的增加而导致高层建筑在垂直方向的荷载数量上的增加。如果高层建筑自身荷载分布是呈均匀分布的话,高层建筑和弯矩之间即会产生一种二次方变化的关系,对高层建筑而言其侧移性在竖直方向上的偏移量都较少,如果高层建筑的水平方向的荷载是处于均匀分布的状态则此时高层建筑的水平偏移量即会和高层建筑的具体高度产生四次方的变化关系。综上可知,对高层建筑而言对其影响较大的荷载主要是高层建筑的水平荷载。在高层混凝土建筑的水平荷载作用的过程中会产生一定程度上的剪应力、拉应力和弯矩。因此在高层混凝土建筑过程中需要在保证高层建筑有较大的抗压强度的同时还需要保持一定的结构刚度。从而保证高层混凝土建筑在增加高度的同时能够将高层混凝土建筑的水平偏移量控制在合理范围之内。

选择正确的结构体系

高层建筑在设计过程中在充分考虑建筑的实际功用的同时也还需要考虑一下建筑高度和建筑实际抗震性能之间的关系,在合理建筑高度和较好抗震性能之间选择一个平衡点,考虑上述要素之后还需要综合考虑楼层建筑所处的具体环境,综合上述因素之后选择一个最优的建筑结构设计方案。在建筑结构设计过程中常用的建筑结构主要由以下三种类型:框架、筒体、剪力墙和剪力-板柱墙建筑结构体系。

当建筑结构采用框架式结构进行设计时需要在设计过程中能够灵活的布置和设计建筑室内的空间。框架式的结构建筑体系适合那些建筑层数不多,总体建筑高度较低,并且建筑的水平方向的荷载对建筑本身并不会产生较大的影响建筑进行设计。在实践过程中可以得知,框架式的结构建筑是一种主要是以剪应力为基础的柔性的建筑结构,这种建筑结构在实际设计过程中受到的限制很多,主要是适用于那些建筑高度较低并且不需要抗震特性设计的场合。这种建筑结构在实践过程中主要依靠建筑结构中的混凝土墙来承受建筑结构中的所有水平方向和竖直方向上的载荷,也就是所谓的刚性结构。建筑剪力墙自身的结构强度较大,同时抗侧向弯曲强度比较大,虽然建筑本身在水平力的长期作用情形下会产生比较大的侧向变形,但是这种建筑结构在实际中的整体空间效果还是比较良好。相互对比一下,这种建筑结构在实际设计过程中设计的剪力墙自重比较大,因此很难满足用户对入住建筑空间的整体预期。

当建筑结构中采用框架-剪力墙形式的结构时,可以在实际设计过程中增加剪力墙的结构设计,也就是一种刚柔相济的一种建筑结构形式。在这种建筑结构形式中需要框架和剪力墙一起来承担起建筑本身的水平方向的载荷,但是由于框架和剪力墙在刚度方面存在比较大的差异,因此在实际称重过程中产生的变形情况也是不同的。所以在实际过程中需要对建筑结构中的各楼层的变形量进行适当的控制来保证剪力墙和框架承重过程中产生的变形量之间的协同。对建筑结构而言,剪力墙在受力过程中主要是弯曲变形,结构受力主要是剪切变形。通过变形之间的稳定有效的调节可以使框架在剪力墙的有效协助下能够实现抗震的效果。同时因为这种结构的抗震效果能够非常突出的表现剪力墙和框架各自的优点,因此非常适用于各种各样的建筑结构使用。

对于板柱结构形式的建筑结构来说其在实际过程中可以适当性的加入一些类似井筒之类的构件,并且在实际承重过程中,建筑结构中的侧向力主要是由剪力墙构件来承担,所以在实际中建筑结构的侧向强度能够产生很大程度上的提升。在实际应用过程中这种建筑结构形式主要是应用在7、8级抗震建筑中,但是需要注意一点即是在实际过程中这种结构形式应用的楼层高度不能太高。

加强高层结构的有效布设

对于高层独立的具体单元而言,在设计过程中应当充分保证建筑结构的具体简约性、刚度和规则性,并且还需要保证建筑结构在承载载荷过程中受力均匀。同时对于建筑结构的竖向的体型来说应当在实际设计过程中保证其竖向体型的均匀性和规则性,这种要求能够避免出现较大的内收、外挑。至于建筑结构的侧向上的刚度来说其在设计过程中最好保证建筑外形是上大下小,变化需要均匀。并且还需要符合一定的规范。首先,在设计建筑结构中应该保证设计建筑能够承载住预期的载荷,保证建筑结构所需的刚度及变形能力,同时在设计过程中需要及时避免由于建筑结构本身的原因而导致建筑结构丧失了承受建筑载荷的能力。其次,对于建筑结构在实践中经常出现问题的一系列较薄的位置需要进行相应的调整和改善。最后,建筑结构的竖直方向上的承载能力和刚度应该分布合理化,避免由于建筑结构局部的变形或者是局部的扭转而产生了一系列负面影响。

高层建筑的结构在抗震设计上的基本方法

为了减少地震的能量输入,可以将高层建筑的建造场所设置在场地比较厚实的场所,达到在地震产生时减少对高层建筑的损伤的目的。现在建筑当中采用的抗震结构设计基本上都是传统形式的抗震结构体系,也就是所谓的“延性结构体系”,在实际设计建筑过程中需要能够适当的掌握建筑结构物的刚度。在实际设计过程中可以提高建筑结构的阻尼,在选用建筑结构材料时可以采用一些具备高延性的构件,从而能够提高建筑结构的实际过程中的耗能的能力,减少地震产生时对建筑结构的冲击作用,从而减少建筑楼层在地震发生时产生的剪力。高层建筑设计时,结构材料的选择是非常重要的,要尽可能的选用抗震能力较好的抗震材料,从而改变过去那种只对结构抗震的可靠度做考虑研究而无视其他因素[2]。

抗震结构基本方案

高层建筑由于和低层建筑在受力方面有较大不同,因此在设计高层建筑过程中不仅需要保证高层建筑的合理结构刚度还需要保证高层建筑结构良好的抗震性能。在建筑结构抗震设计过程中实质上即是减少地震能量对建筑物的冲击,达到抗震的目的。为了达到这一目的在实际建筑结构抗震体系设计过程中需要注意以下一些问题。在设计抗震层时抗震层顶部和基础面之间的间隙至少需要达到0.7米,同时为了充分利用建筑的使用功能可以将维修层改造成地下室,此时将地震层放置在地下室的墙顶或者是柱顶中即会达到比较好的效果。当在设计过程中要想获得较良好的构件受力的情况,并且水平方向上的剪力又是比较大时,此时应将抗震器放置在地下室的柱中。

抗震性能提高策略

在设计工程建筑过程中由于高层建筑和低层建筑在建筑受力方面有着很大的不同,因此在实际设计过程中对一些处在地震频发区域的高层建筑要将建筑结构的刚度,强度,建筑的可变形量控制在合理范围内,在达到抗震功能要求的同时进行最大程度上的外形优化。在设计建筑结构的框架形式当中需要保证抗震结构设计中节点不会轻易受到外界的破坏,同时需要保证抗震结构设计过程中的梁柱顶端自身的塑性要尽可能的分散,只有这样才能够充分发挥建筑结构整体的抗震性能。

总结

本文首先从分析高层混凝土建筑的结构特点出发,而后选择合适的建筑结构体系进而提出了高层混凝土建筑合理的抗震结构设计方案,使高层建筑能够满足高层建筑抗震设计的功能要求。通过对高层混凝土建筑设计抗震结构体系,可以在地震发生时能够在最大程度上减少地震带来的破坏,这对建筑结构体系的完善起到了至关重要的作用。

参考文献

高层建筑抗震结构设计篇9

关键词:高层建筑;抗震性能;结构设计

为了抵御或减轻地震灾害,必须提升高层建筑的抗震能力。地震具有不确定性、循环性和随机性,目前难以在灾害发生前预测地震的参数和特性。在地震破坏中,建筑物的破坏也是十分复杂的。因此,抗震性能的设计中不能仅依赖于计算设计,还应立足于灾害经验和工程经验所形成的建筑抗震概念。从而实现在地震中大震不倒、中震可修、小震不坏的抗震能力。

1高层建筑的抗震设计基本原则

第一、高层建筑结构构件的抗震性能。作为抗震结构的建筑构件应具备较强的刚度、稳定性、延性和承载力等方面的性能。结构构件在建造中应遵循强剪弱弯、强柱弱梁和强节点弱锚固的基本原则,承受竖向载荷的构件不应作为主要的耗能构件,对可能造成结构相对薄弱的构件,应当采取提高抗震能力的措施加强抗震性能。

第二、高层建筑抗震体系的建立。一个良好的抗震机构体系是由若干个结构完善的分体系构成的,为了提高建筑物的抗震性能,应当尽可能多设置几道抗震防线,同时由延性良好的分支构件连接参与协同工作。往往在强烈地震之后伴随多次余震,若只有一道抗震防线,在经过第一次破坏后遭受余震将会因损坏程度的积累而导致高层建筑结构坍塌。因此高层建筑的抗震体系应具备最大数量的外部、内部冗余度,建立一系列有意识的分布屈服区,适当提高主要耗能构件的延性和刚度,使结构能够消耗和吸收大量地震能量,提高建筑结构的抗震性能,避免在地震中出现倒塌事故。适当的处理各个结构构件之间的强弱关系,在同一楼层内应当使主要耗能构件产生屈服后,其他的抗侧力结构构件处于弹性状态,尽量延长有效屈服的保持时间,保证结构的抗倒塌能力和延性。在高层建筑的抗震设计中,如果某一部分性能过强可能会造成其他结构部位结构相对薄弱,引起抗震受力不均衡。因此在高层建筑结构的设计中不合理加强、以大代小以及改变抗侧力配筋构件的做法都需要进行慎重周密的考虑和计算。

第三、高层建筑薄弱环节抗震能力的提高。构件在强烈的地震冲击下不存在强度的安全储备,它的实际承载能力是以薄弱部位的承载能力为基础的。要使高层建筑结构的实际承载能力与设计计算的受力比值总体保持在相对均匀变化的状态,当楼层比值发生突变时,由于塑性内力分布的变化导致塑性变形集中。应当注意防止局部受力的加强而导致忽视整体结构的承载力和刚度的协调。在高层建筑的抗震设计中有目的、有意识的控制结构的薄弱部位,使其具备足够的形变能力,同时又保证薄弱部位不能发生转移,这是提升高层建筑总体结构抗震性能的有效手段。

2提高高层建筑抗震性能的具体措施

在具备抗震性能设计要求的建筑结构建造中除了应当满足刚度、强度要求外,还需要满足延性需求度。钢筋混凝土材料本身的自重较大,因此高层建筑结构的底层柱部分会随着高度增加,同时增加它所承担的轴力,而高层建筑的抗震设计中对结构构件的延性有明确的要求,如果建筑物层高一定,要想提高结构延性需要将轴压比控制在一定范围内,如果轴压比过大会导致柱截面增大,甚至形成短柱或超短柱。然而,短柱和超短柱的延性很小,有些超短柱甚至没有延性,当建筑物所遭受的地震强度高于本地区的设防烈度时,将有可能发生建筑物结构剪切破坏,从而造成建筑物结构破坏或坍塌。因此提高高层建筑物的抗震性能主要方法是加强短柱的抗震能力。混凝土短柱延性除了受轴压力影响外,箍筋的形式和配筋率也对混凝土短柱产生很大的影响。位于高层建筑物结构底层的混凝土短柱的轴压比非常大,其塑性变形能力比较小,一旦产生破坏将会呈现脆性破坏。因此,提高混凝土短柱的延性是提高其抗震性能的主要方法。为了提高高层建筑混凝土结构的的抗震性能,应当从以下几个方面实施抗震设计。

第一、提高高层建筑短柱的抗压力和承载力。能够提高剪跨比,减小柱截面,从而改善建筑物整体结构的抗震性能。实施该措施的最直接方法是采用强度等级较高的混凝土材料降低柱子轴压比,从而提高受压承载力。但是高强度混凝土材料的本身延性较差,因此在使用时需慎重使用或与其他措施配合。除了提高混凝土等级外,使用钢管混凝土柱以及钢骨也可以提高短柱抗压力和承载力。同时认真判断分析设计数据,确认数据的有效和合理后,才可以应用于工程设计和施工。

第二、高层建筑结构采用钢管混凝土柱。钢管混凝土是一种套箍混凝土的特殊形式,由于钢管内混凝土受到侧向约束力,导致混凝土处于一种三向受压的状态,使混凝土的极限压应变和抗压强度都有很大的提高,尤其是高强混凝土延性提高效果非常明显。由于钢筋既是横向箍筋,又是纵筋,因此当选择了高等级混凝土以及合适的套箍后,建筑物的柱子承载力将会大幅度提高,消除了结构中的短柱并且具备了良好的抗震性能。

第三、高层建筑结构采用分体柱。短柱的抗剪承载力比抗弯承载力小很多,因此在地震破坏下通常是由于剪坏而导致失效,抗弯强度还没有完全发挥。因此在高层建筑结构的设计中可以消弱短柱的抗弯强度,使其略低于或等于抗剪强度。可以通过沿短柱的竖向设缝将短柱分成2―4个分体柱,在组成分体柱的支柱间设置连接键,增强支柱的后期耗能和分期刚度。

3总论

第一、高层建筑抗震性能设计研究的结论。从抗震设计理论提出至今,世界各国工程界和抗震学术界取得了许多新的科技成果,在设计方法上也改变传统的单一力学抗震设计方法,尝试了基于位移和性能等方面的新型设计理念。抗震理论和计算机科学不断发展,新的设备和施工技术也不断涌现,为高层建筑抗震性能的发展提供了必要的技术条件。与此同时,我国的高层建筑结构基于抗震性能的设计与探究也在不断向前发展的过程中,同时完善自身的不足之处。

第二、高层建筑抗震性能设计研究的意义。目前,高层建筑结构共同工作理论的发展与研究使建筑抗震设计进一步完善。如果能够在地基与结构的动力响应、材料特性、稳定标准和计算理论等方面进行符合实际情况的发展,将会在在高层建筑抗震性能研究领域起到重要的作用。

参考文献

[1]徐宜和,丁勇春:《高层建筑结构抗震分析和设计的探讨》,《江苏建筑》,2004年第3期

[2]程玉梅,王英,张乐文:《地震作用下土层结构动力相互作用研究综述》,《四川建筑科学研究》,2009年第5期

[3]王钲日,姜春宝,卜祥宇:《探讨高层建筑抗震设计原则及常见问题》,《黑龙江科技信息》,2011年第12期

[4]郑晓红:《超高层建筑建筑体外预应力施工质量控制措施的探讨》,《黑龙江科技信息》,2010年第26期

高层建筑抗震结构设计篇10

关键词:高层建筑抗震设计

一、抗震设计的理论分析

(一)拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

(二)反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

(三)动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

二、高层建筑结构抗震设计的基本方法

减少地震能量输入。积极采用基于位移的结构抗震设计,要求进行定量分析,使结构的变形能力满足在预期的地震作用下的变形要求。除了验算构件的承载力外,要控制结构在大震作用下的层间位移角限值或位移延性比;根据构件变形与结构位移关系,确定构件的变形值;并根据截面达到的应变大小及应变分布,确定构件的构造要求。对于高层建筑,选择坚硬的场地土建造高层建筑,可以明显减少地震能量输入减轻破坏程度。错开地震动卓越周期,可防止共振破坏。推广使用隔震和消能减震设计。目前我国和世界各国普遍采用的传统抗震结构体系是“延性结构体系”,即适当控制结构物的刚度,但容许结构构件在地震时进入非弹性状态,并具有较大的延性,以消耗地震能量,减轻地震反应,使结构物“裂而不倒”。采取软垫隔震、滑移隔震、摆动隔震、悬吊隔震等措施,改变结构的动力特性,减少地震能量输入,减轻结构地震反应,是一种很有前途的防震措施。提高结构阻尼,采用高延性构件,能够提高结构的耗能能力,减轻地震作用,减小楼层地震剪力。随着社会的不断发展,对各种建筑物和构筑物的抗震减震要求越来越高,地震控制体系具有传统抗震体系所难以比拟的优越性,在未来的建筑结构中将得到越来越广泛的应用。在高层建筑的方案设计阶段,结构材料选用也很重要。可以对材料参数随机性的抗震模糊可靠度进行分析,改变过去对结构抗震可靠度的研究只考虑荷载的不确定性而忽略了其他多种不确定因素,综合考虑了材料参数的变异性,地震烈度的随机性及烈度等级界限的随机性与模糊性对结构抗震可靠度的影响。从抗震角度来说,结构体系的抗震等级,其实质就是在宏观上控制不同结构的廷性要求。这要求我们应根据建设工程的各方面条件,选用符合抗震要求又经济实用的结构类别。

三、正确认识高层建筑的受力特点,选择合理的结构类型高层建筑从本质上讲是一个竖向悬臂结构,垂直荷载主要使结构产生轴向力与建筑物高度大体为线性关系;水平荷载使结构产生弯矩。

从受力特性看,垂直荷载方向不变,随建筑物的增高仅引起量的增加;而水平荷载可来自任何方向,当为均布荷载时,弯矩与建筑物高度呈二次方变化。从侧移特性看,竖向荷载引起的侧移很小,而水平荷载当为均布荷载时,侧移与高度成四次方变化。由此可以看出,在高层结构中,水平荷载的影响要远远大于垂直荷载的影响,水平荷载是结构设计的控制因素,结构抵抗水平荷载产生的弯矩、剪力以及拉应力和压应力应有较大的强度外,同时要求结构要有足够的刚度,使随着高度增加所引起的侧向变形限制在结构允许范围内。高层建筑有上述的受力特点,因此设计中在满足建筑功能要求和抗震性能的前提下,选择切实可行的结构类型,使之在特定的物资和技术条件下,具有良好的结构性能、经济效果和建筑速度是非常必要的。高层建筑上常用的结构类型主要有钢结构和钢筋砼结构。钢结构具有整体自重轻,强度高、抗震性能好、施工工期短等优点,并且钢结构构件截面相对较小,具有很好的延性,适合采用柔性方案的结构。其缺点是造价相对较高,当场地土特征周期较长时,易发生共振。与钢结构相比,现浇钢筋砼结构具有结构刚度大,空间整体性好,造价低及材料来源丰富等优点,可以组成多种结构体系,以适应各类建筑的要求,在高层建筑中得到广泛应用,比较适用于提供承载力,控制塑性变形的刚性方案结构。其突出缺点是结构自重大,抵抗塑性变形能力差,施工工期长,当场地土特征周期较短时,易发生共振。因此,高层建筑采用何种结构形式,应取决于所有结构体系和材料特性,同时取决于场地土的类型,避免场地土和建筑物发生共振,而使震害更加严重。

四、提高结构的抗震性能