半导体光电技术十篇

发布时间:2024-04-26 00:28:31

半导体光电技术篇1

关键词:半导体;光刻;图形;薄膜;沉积

Doi:10.16640/ki.37-1222/t.2016.11.038

0引言

人来研究半导体器件已经超过135年[1]。尤其是进近几十年来,半导体技术迅猛发展,各种半导体产品如雨后春笋般地出现,如柔性显示器、可穿戴电子设置、LeD、太阳能电池、3D晶体管、VR技术以及存储器等领域蓬勃发展。本文针对半导制造技术的演变和主要内容的研究进行梳理简介和统计分析,了解半导体制造技术的专业技术知识,掌握该领域技术演进路线,同时提升对技术的理解和把握能力。

1半导体技术

半导体制造技术是半导体产业发展的基础,制造技术水平的高低直接影响半导体产品的性能及其发展。光刻,刻蚀,沉积,扩散,离子注入,热处理和热氧化等都是常用的半导体制造技术[2]。而光刻技术和薄膜制备技术是半导体制造技术中最常用的工艺,下面主要对以上两种技术进行简介和分析。

2光刻技术

主流的半导体制造过程中,光刻是最复杂、昂贵和关键的制造工艺。大概占成本的1/3以上。主要分为光学光刻和非光学光刻两大类。据目前所知,广义上的光刻(通过某种特定方式实现图案化的转移)最早出现在1796年,aloysSenefelder发现石头通过化学处理后可以将图像转移到纸上。1961年,光刻技术已经被用于在硅片上制造晶体管,当时的精度是5微米。现在,X射线光刻、电子束光刻等已经开始被用于的半导体制造技术,最小精度可以达到10微米。

光学投影式光刻是半导体制造中最常用的光刻技术,主要包括涂胶/前烘、曝光、显影、后烘等。非光学光刻技术主要包括极深紫外光刻(eUV)、电子束光刻(e-beamLithography)、X射线光刻(X-raylithography)。判断光刻的主要性能标准有分辨率(即可以曝光出来的最小特征尺寸)、对准(套刻精度的度量)、产量。

随着半导体行业的发展,器件的小型化(特征尺寸减小)和集成电路的密集度提高,传统的光学光刻制造技术开始步入发展瓶颈状态,其面临的关键技术问题在于如何提高分辨率。

虽然,改进传统光学光刻制造技术的方法多种,但传统的光学投影式技术已经处于发展缓慢的阶段。与传统的投影式光刻技术发展缓慢相比,下一代光刻技术比如eUV、e-beam、X-ray、纳米压印等的发展很快。各大光刻厂商纷纷致力于研制下一代光刻技术,如三星的极紫外光刻、尼康的浸润式光刻等。目前先进的光刻技术主要集中在国外,国内的下一代光刻技术和光刻设备发展相对较为滞后。

3薄膜制备技术

半导体制造工艺中,在硅片上制作的器件结构层绝大多数都是采用薄膜沉积的方法完成。薄膜的一般定义为在衬底上生长的薄固体物质,其一维尺寸(厚度)远小于另外二维的尺寸。常用的薄膜包括:Sio2,Si3n4,poli-Si,metal等。常用的薄膜沉积方法分为化学气相沉积(ChemicalVaporDeposition)和物理气相沉积(physicalVaporDeposition)两种。化学气相沉积利用化学反应生成所需的薄膜材料,常用于各种介质材料和半导体材料的沉积,如Sio2,poly-Si,Si3n4等[3]。物理气相沉积利用物理机制制备所需的薄膜材料,常用于金属薄膜的制备,如al,Cu,w,ti等。沉积薄膜的主要分为三个阶段:晶核形成―聚集成束―形成连续膜。为了满足半导体工艺和器件要求,通常情况下关注薄膜的一下几个特性:(1)台阶覆盖能力;(2)低的膜应力;(3)高的深宽比间隙填充能力;(4)大面积薄膜厚度均匀性;(5)大面积薄膜介电\电学\折射率特性;(6)高纯度和高密度;(7)与衬底或下层膜有好的粘附能力。台阶覆盖能力以及高的深宽比间隙填充能力,是薄膜制备技术的关键技术问题。我们都希望薄膜在不平整衬底表面的厚度具有一致性。厚度不一致容易导致膜应力、电短路等问题。而高的深宽比间隙填充能力则有利于半导体器件的进一步微型化及其性能的提高。同时,低的膜应力对所沉积的薄膜而言也是非常重要的。

4结语

虽然,与不断更新换代的半导产品相比,半导体制造技术发展较为缓慢,大部分制造技术发展已经趋于成熟。但是,随着不断发展的半导体行业,必然会对半导体制造技术的提出更高的要求,以满足半导体产品的快速发展。因此,掌握和了解半导体制造技术的相关专利知识有利于推进该领域的发展。

参考文献:

[1]mostoftheclassicdevicepapersarecollectedinS.mSze,ed.,SemiconductorDevices:pioneeringpapers,worldSci.,Singapore,1991.

半导体光电技术篇2

关键词:电子科学与技术;实验教学体系;微电子人才

作者简介:周远明(1984-),男,湖北仙桃人,湖北工业大学电气与电子工程学院,讲师;梅菲(1980-),女,湖北武汉人,湖北工业大学电气与电子工程学院,副教授。(湖北武汉430068)

中图分类号:G642.423文献标识码:a文章编号:1007-0079(2013)29-0089-02

电子科学与技术是一个理论和应用性都很强的专业,因此人才培养必须坚持“理论联系实际”的原则。专业实验教学是培养学生实践能力和创新能力的重要教学环节,对于学生综合素质的培养具有不可替代的作用,是高等学校培养人才这一系统工程中的一个重要环节。[1,2]

一、学科背景及问题分析

1.学科背景

21世纪被称为信息时代,信息科学的基础是微电子技术,它属于教育部本科专业目录中的一级学科“电子科学与技术”。微电子技术一般是指以集成电路技术为代表,制造和使用微小型电子元器件和电路,实现电子系统功能的新型技术学科,主要涉及研究集成电路的设计、制造、封装相关的技术与工艺。[3]由于实现信息化的网络、计算机和各种电子设备的基础是集成电路,因此微电子技术是电子信息技术的核心技术和战略性技术,是信息社会的基石。此外,从地方发展来看,武汉东湖高新区正在全力推进国家光电子信息产业基地建设,形成了以光通信、移动通信为主导,激光、光电显示、光伏及半导体照明、集成电路等竞相发展的产业格局,电子信息产业在湖北省经济建设中的地位日益突出,而区域经济发展对人才的素质也提出了更高的要求。

湖北工业大学电子科学与技术专业成立于2007年,完全适应国家、地区经济和产业发展过程中对人才的需求,建设专业方向为微电子技术,毕业生可以从事电子元器件、集成电路和光电子器件、系统(激光器、太能电池、发光二极管等)的设计、制造、封装、测试以及相应的新产品、新技术、新工艺的研究与开发等相关工作。电子科学与技术专业自成立以来,始终坚持以微电子产业的人才需求为牵引,遵循微电子科学的内在客观规律和发展脉络,坚持理论教学与实验教学紧密结合,致力于培养基础扎实、知识面广、实践能力强、综合素质高的微电子专门人才,以满足我国国民经济发展和国防建设对微电子人才的迫切需求。

2.存在的问题与影响分析

电子科学与技术是一个理论和应用性都很强的专业,因此培养创新型和实用型人才必须坚持“理论联系实际”的原则。要想培养合格的应用型人才,就必须建设配套的实验教学平台。然而目前人才培养有“产学研”脱节的趋势,学生参与实践活动不论是在时间上还是在空间上都较少。建立完善的专业实验教学体系是电子科学与技术专业可持续发展的客观前提。

二、建设思路

电子科学与技术专业实验教学体系包括基础课程实验平台和专业课程实验平台。基础课程实验平台主要包括大学物理实验、电子实验和计算机类实验;专业课程实验平台即微电子实验中心,是本文要重点介绍的部分。在实验教学体系探索过程中重点考虑到以下几个方面的问题:

第一,突出“厚基础、宽口径、重应用、强创新”的微电子人才培养理念。微电子人才既要求具备扎实的理论基础(包括基础物理、固体物理、器件物理、集成电路设计、微电子工艺原理等),又要求具有较宽广的系统知识(包括计算机、通信、信息处理等基础知识),同时还要具备较强的实践创新能力。因此微电子实验教学环节强调基础理论与实践能力的紧密结合,同时兼顾本学科实践能力与创新能力的协同训练,将培养具有创新能力和竞争力的高素质人才作为实验教学改革的目标。

第二,构建科学合理的微电子实验教学体系,将“物理实验”、“计算机类实验”、“专业基础实验”、“微电子工艺”、“光电子器件”、“半导体器件课程设计”、“集成电路课程设计”、“微电子专业实验”、“集成电路专业实验”、“生产实习”和“毕业设计”等实验实践环节紧密结合,相互贯通,有机衔接,搭建以提高实践应用能力和创新能力为主体的“基本实验技能训练实践应用能力训练创新能力训练”实践教学体系。

第三,兼顾半导体工艺与集成电路设计对人才的不同要求。半导体的产业链涉及到设计、材料、工艺、封装、测试等不同领域,各个领域对人才的要求既有共性,也有个性。为了扩展大学生知识和技能的适应范围,实验教学必须涵盖微电子技术的主要方面,特别是目前人才需求最为迫切的集成电路设计和半导体工艺两个领域。

第四,实验教学与科学研究紧密结合,推动实验教学的内容和形式与国内外科技同步发展。倡导教学与科研协调发展,教研相长,鼓励教师将科研成果及时融化到教学内容之中,以此提升实验教学质量。

三、建设内容

微电子是现代电子信息产业的基石,是我国高新技术发展的重中之重,但我国微电子技术人才紧缺,尤其是集成电路相关人才严重不足,培养高质量的微电子技术人才是我国现代化建设的迫切需要。微电子学科实践性强,培养的人才需要具备相关的测试分析技能和半导体器件、集成电路的设计、制造等综合性的实践能力及创新意识。

电子科学与技术专业将利用经费支持建设一个微电子实验教学中心,具体包括四个教学实验室:半导体材料特性与微电子技术工艺参数测试分析实验室、微电子器件和集成电路性能参数测试与应用实验室、集成电路设计实验室、科技创新实践实验室。使学生具备半导体材料特性与微电子技术工艺参数测试分析、微电子器件、光电器件参数测试与应用、集成电路设计、LeD封装测试等方面的实践动手和设计能力,巩固和强化现代微电子技术和集成电路设计相关知识,提升学生在微电子技术领域的竞争力,培养学生具备半导体材料、器件、集成电路等基本物理与电学属性的测试分析能力。同时,本实验平台主要服务的本科专业为“电子科学与技术”,同时可以承担“通信工程”、“电子信息工程”、“计算机科学与技术”、“电子信息科学与技术”、“材料科学与工程”、“光信息科学与技术”等10余个本科专业的部分实践教学任务。

(1)半导体材料特性与微电子技术工艺参数测试分析实验室侧重于半导体材料基本属性的测试与分析方法,目的是加深学生对半导体基本理论的理解,掌握相关的测试方法与技能,包括半导体材料层错位错观测、半导体材料电阻率的四探针法测量及其eXCeL数据处理、半导体材料的霍尔效应测试、半导体少数载流子寿命测量、高频moSC-V特性测试、pn结显示与结深测量、椭偏法测量薄膜厚度、pn结正向压降温度特性实验等实验项目。完成形式包括半导体专业实验课、理论课程的实验课时等。

(2)微电子器件和集成电路性能参数测试与应用实验室侧重于半导体器件与集成电路基本特性、微电子工艺参数等的测试与分析方法,目的是加深学生对半导体基本理论、器件参数与性能、工艺等的理解,掌握相关的技能,包括器件解剖分析、用图示仪测量晶体管的交(直)流参数、moS场效应管参数的测量、晶体管参数的测量、集成运算放大器参数的测试、晶体管特征频率的测量、半导体器件实验、光伏效应实验、光电导实验、光电探测原理综合实验、光电倍增管综合实验、LD/LeD光源特性实验、半导体激光器实验、电光调制实验、声光调制实验等实验项目。完成形式包括半导体专业实验课、理论课程的实验课时、课程设计、创新实践、毕业设计等。

(3)集成电路设计实验室侧重于培养学生初步掌握集成电路设计的硬件描述语言、Cadence等典型的器件与电路及工艺设计软件的使用方法、设计流程等,并通过半导体器件、模拟集成电路、数字集成电路的仿真、验证和版图设计等实践过程具备集成电路设计的能力,目的是培养学生半导体器件、集成电路的设计能力。以美国Cadence公司专业集成电路设计软件为载体,完成集成电路的电路设计、版图设计、工艺设计等训练课程。完成形式包括理论课程的实验课时、集成电路设计类课程和理论课程的上机实践等。

(4)科技创新实践实验室则向学生提供发挥他们才智的空间,为他们提供验证和实现自由命题或进行科研的软硬件条件,充分发挥他们的想象力,目的是培养学生的创新意识与能力,包括LeD封装、测试与设计应用实训和光电技术创新实训。要求学生自己动手完成所设计器件或电路的研制并通过测试分析,制造出满足指标要求的器件或电路。目的是对学生进行理论联系实际的系统训练,加深对所需知识的接收与理解,初步掌握半导体器件与集成电路的设计方法和对工艺技术及流程的认知与感知。完成形式包括理论课程的实验课时、创新实践环节、生产实践、毕业设计、参与教师科研课题和部级、省级和校级的各类科技竞赛及课外科技学术活动等。

四、总结

本实验室以我国微电子科学与技术的人才需求为指引,遵循微电子科学的发展规律,通过实验教学来促进理论联系实际,培养学生的科学思维和创新意识,系统了解与掌握半导体材料、器件、集成电路的测试分析和半导体器件、集成电路的设计、工艺技术等技能,最终实现培养基础扎实、知识面宽、实践能力强、综合素质高、适应范围广的具有较强竞争力的微电子专门人才的目标,以满足我国国民经济发展和国防建设对微电子人才的迫切需求。

参考文献:

[1]刘瑞,伍登学.创建培养微电子人才教学实验基地的探索与实践[J].实验室研究与探索,2004,(5):6-9.

半导体光电技术篇3

关键词:识别指纹采集指纹传感器u.are.u2000fps200

近年来,越来越多的个人、消费者、公司和政府机关都认为现有的基于智能卡、身份证号码和密码的身份识别系统很繁琐而且并不十分可靠。生物识别技术为此提供了一个安全可靠的解决方案。识别技术根据人体自身的生理特征来识别个人的身份,这种技术是目前最为方便与安全的识别系统,它不需要你记住象身份证号码和密码,也不需随身携带像智能卡之类的东西。

生物识别技术[1]包括虹膜识别技术、视网膜识别技术、面部识别技术、声音识别技术、指纹识别技术[2]。其中指纹识别技术是目前最为成熟的、应用也最为广泛的识别技术。每个人的包括指纹在内的皮肤纹路在图案、断点和交叉点上各不相同,也就是说,这些指纹特征是唯一的,并且终生不变。依靠这种唯一性和稳定性,我们就可以把一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,就可以验证他的真实身份。

指纹识别系统[3]是通过指纹采集、分析和对比指纹特征来实现快速准确的身份认证。指纹识别系统框图如图1所示。

指纹采集器采集到指纹图像后,才能被计算机进行识别、处理。指纹图像的质量会直接影响到识别的精度以及指纹识别系统的处理速度,因此指纹采集技术是指纹识别系统的关键技术之一。本文着重分析比较不同的指纹采集技术及其性能。

1指纹采集技术

指纹的表面积相对较小,日常生活中手指常常会受到磨损,所以获得优质的指纹细节图像是一项十分复杂的工作。当今所使用的主要指纹采集技术有光学指纹采集技术,半导体指纹采集技术和超声波指纹采集技术。

1.1光学指纹图像采集技术

光学指纹采集技术是最古老也是目前应用最广泛的指纹采集技术,光学指纹采集设备始于1971年,其原理是光的全反射(ftir)。光线照到压有指纹的玻璃表面,反射光线由ccd去获得,反射光的量依赖于压在玻璃表面指纹的脊和谷的深度以及皮肤与玻璃间的油脂和水分。光线经玻璃照射到谷的地方后在玻璃与空气的界面发生全反射,光线被反射到ccd,而射向脊的光线不发生全反射,而是被脊与玻璃的接触面吸收或者漫反射到别的地方,这样就在ccd上形成了指纹的图像。如图2所示。

光学采集设备有着许多优势:它经历了长时间实际应用的考验,能承受一定程度温度变化,稳定性很好,成本相对较低,并能提供分辨率为500dpi的图像。

光学采集设备也有不足之处,主要表现在图像尺寸和潜在指印两个方面。台板必须足够大才能获得质量较好的图像。潜在指印是手指在台板上按完后留下的,这种潜在指印降低了指纹图像的质量。严重的潜在指印会导致两个指印的重叠。另外台板上的涂层(膜)和ccd阵列随着时间的推移会有损耗,精确度会降低。

随着光学设备技术的革新,光学指纹采集设备的体积也不断减小。现在传感器可以装在6x3x6英寸的盒子里,在不久的将来更小的设备是3x1x1英寸。这些进展得益于多种光学技术的发展。例如:可以利用纤维光束来获取指纹图像。纤维光束垂直照射到指纹的表面,他照亮指纹并探测反射光。另一个方案是把含有一微型三棱镜矩阵的表面安装在弹性的平面上,当手指压在此表面上时,由于指纹脊和谷的压力不同而改变了微型三棱镜的表面,这些变化通过三棱镜光的反射而反映出来。

美国digitaipersona[4]公司推出的u.are.u系列光学指纹采集器是目前应用比较广泛的光学指纹采集器,主要用于用户登录计算机windows系统时确认身份,它集成了精密光学系统、led光源和cmos摄像头协同工作,具有三维活体特点,能够接受各个方向输入的指纹,即使旋转180度亦可接受,是目前市场上最安全的光学指纹识别系统之一。u.are.u光学指纹采集器按照人体工学设计,带有usb接口,是用户桌面上紧邻键盘的新型智能化外设。

1.2半导体指纹采集技术

半导体传感器是1998年在市场上才出现的,这些含有微型晶体的平面通过多种技术来绘制指纹图像。

(1)硅电容指纹图像传感器

这是最常见的半导体指纹传感器,它通过电子度量来捕捉指纹。在半导体金属阵列上能结合大约100,000个电容传感器,其外面是绝缘的表面。传感器阵列的每一点是一个金属电极,充当电容器的一极,按在传感面上的手指头的对应点则作为另一极,传感面形成两极之间的介电层。由于指纹的脊和谷相对于另一极之间的距离不同(纹路深浅的存在),导致硅表面电容阵列的各个电容值不同,测量并记录各点的电容值,就可以获得具有灰度级的指纹图像。

(2)半导体压感式传感器

其表面的顶层是具有弹性的压感介质材料,它们依照指纹的外表地形(凹凸)转化为相应的电子信号,并进一步产生具有灰度级的指纹图像。

(3)半导体温度感应传感器

它通过感应压在设备上的脊和远离设备的谷温度的不同就可以获得指纹图像。

半导体指纹传感器采用了自动控制技术(agc技术),能够自动调节指纹图像像素行以及指纹局部范围的敏感程度,在不同的环境下结合反馈的便可产生高质量的图像。例如,一个不清晰(对比度差)的图像,如干燥的指纹,都能够被感觉到,从而可以增强其灵敏度,在捕捉的瞬间产生清晰的图像(对比度好);由于提供了局部调整的能力,图像不清晰(对比度差)的区域也能够被检测到(如:手指压得较轻的地方),并在捕捉的瞬间为这些像素提高灵敏度。

半导体指纹采集设备可以获得相当精确的指纹图像,分辨率可高达600dpi,并且指纹采集时不需要象光学采集设备那样,要求有较大面积的采集头。由于半导体芯片的体积小巧,功耗很低,可以集成到许多现有设备中,这是光学采集设备所无法比拟的,现在许多指纹识别系统研发工作都采用半导体采集设备来进行。早期半导体传感器最主要的弱点在于:容易受到静电的影响,使得传感器有时会取不到图像,甚至会被损坏,手指的汗液中的盐分或者其他的污物,以及手指磨损都会使半导体传感器的取像很困难。另外,它们并不象玻璃一样耐磨损,从而影响使用寿命。随着各种工艺技术的不断发展,芯片的防静电性能和耐用度得到了很大的改善。

从lucent公司中分离出来的veridicom[5]公司,从1997年开始就一直致力于半导体指纹采集技术的研发,迄今已研制出fpsll0、fps200等系列cmos指纹传感器产品,并被一些商品化的指纹识别系统所采用。其核心技术是基于高可靠性硅传感器芯片设计。

fps200是veridicom公司在吸收了已广泛应用的fpsll0系列传感器优点的基础上,推出的新一代指纹传感器。fps200[6]表面运用vefidicom公司专利技术而制成,坚固耐用,可防止各种物质对芯片的划伤、腐蚀、磨损等,fps200能承受超过8kv的静电放电(esd),因此fps200可应用在苛刻的环境下。该产品融合了指纹中不同的脊、谷及其他纹理,通过高可靠性硅传感器芯片的图像搜索功能,无论手指是干燥、潮湿、粗糙都可以从同一手指采集的多幅指纹图像中选择一幅最佳图像保存在内存中,指纹分辨率可达500dpi,大大降低了传感器芯片识别过程中误接受与误拒绝情况的发生。

fps200是第一个内置三种通信接口的指纹设备:usb口、微处理器单元接口(mcu)、串行外设接口(sn),这使得fps200可以与各种类型的设备连接,甚至不需要外部接口设备的支持。外形封装尺寸(24mmx24mmxl.4mm),只有普通邮票大小。由于它的高性能、低功耗、低价格、小尺寸,可以很方便地集成到各种intemet设备,如:便携式电脑、个人数字助理(pda)、移动电话等。

1.3超声波指纹图像采集技术

ultra-scan公司首开超声波指纹图像采集设备产品先河。超声波指纹图像采集技术被认为是指纹采集技术中最好的一种,但在指纹识别系统中还不多见,成本很高,而且还处于实验室阶段。超声波指纹取像的原理是:当超声波扫描指纹的表面,紧接着接收设备获取的其反射信号,由于指纹的脊和谷的声阻抗的不同,导致反射回接受器的超声波的能量不同,测量超声波能量大小,进而获得指纹灰度图像。积累在皮肤上的脏物和油脂对超声波取像影响不大。所以这样获取的图像是实际指纹纹路凹凸的真实反映。

总之,这几种指纹采集技术都具有它们各自的优势,也有各自的缺点。超声波指纹图像采集技术由于其成本过高,还没有应用到指纹识别系统中。通常半导体传感器的指纹采集区域小于1平方英寸,光学扫描的指纹采集区域等于或大于1平方英寸,可以根据实际需要来选择采用哪种技术的指纹采集设备。

表1给出三种主要技术的比较。

表1

光学扫描技术半导体传感技术超声波扫描技术

成像能力干手指差,汗多的和稍胀的手指成像模糊。易受皮肤上的脏物和油脂的影响。干手指好,潮温、粗糙手指亦可成像。易受皮肤上的脏物和油脂的影响。非常好

成像区域大小中

分辨率低于500dpi可高达600dpi可高达1000dpi

设备体积大小中

耐用性非常耐用较耐用一般

功耗较大小较大

成本较高低很高

2应用与发展前景

半导体光电技术篇4

据了解,Dialog半导体可以为智能手机、平板电脑、物联网、固态照明(SSL)和智能家电应用提供高度集成的标准(aSSp)及定制(aSiC)混合信号集成电路(iC)。Dialog半导体的DC-DC可配置系统电源管理等节能技术,通过延长电池使用寿命和实现便携式设备快速充电,提高产品的使用效率并增强消费者的用户体验。此外,Dialog半导体的技术组合还包括音频、智能蓝牙BluetoothSmart、快速充电RapidChargeaC/DC电源转换以及多点触控技术。《电器》记者了解到,Dialog半导体总部位于伦敦,在全球设有销售、研发和营销机构。2014年,Dialog半导体营业收入约为11.6亿美元。敦宏科技成立于2011年,是光宝集团成员公司敦南科技股份有限公司旗下的全资子,专注于应用在消费电子系统中的光学、惯性及环境传感器的设计与生产,并已向中国大陆市场批量供应光学传感器。

Dialog半导体将与敦宏科技紧密合作,开发用于智能手机、可穿戴设备和物联网应用的传感器及传感器解决方案。“用于环境光和接近感测以及用于色彩和手势分析的传感器等将成为新公司成立后生产的首批产品。另外,Dialog半导体还将与敦南科技和讯芯科技就先进制造和封装技术展开战略合作,进一步提升旗下产品和解决方案的竞争力。与此同时,Dialog半导体将继续向客户提供更多的系统解决方案,巩固其在电源管理、可应用于消费电子产品的智能蓝牙技术和可应用于智能家居的固态照明技术等领域的市场领先地位。”一位知情人士透露。

Dialog半导体首席执行官JalalBagherli在谈到该协议时表示:“该投资标志着Dialog半导体开始进军传感器市场,不但继续巩固在智能手机、物联网和智能照明等领域的电源管理、音频及蓝牙等领域的领导地位,还将密切参与对这些应用起到补充作用的技术的开发。这也是我们通过开展本地商业合作,在快速成长的大中华区的智能手机、智能照明和物联网市场上获得更高市场份额的又一重要举措。我们将继续为我们的客户提供一流的技术,并帮助他们快速而可靠地将这些技术融入产品设计,以提升产品的性能、降低成本、缩短上市时间。”

半导体光电技术篇5

明确目标

按照“十城万盏”实施方案的要求,到2011年底,厦门市财政计划共投入1.5亿以上资金,推广应用3万盏以上LeD功能照明灯具(包括城市道路、隧道照明等),实现年节电约700万度以上,相应年减少二氧化氮Co2、二氧化硫So2、氧化氮nox、粉尘排放9000吨以上。未来,厦门市将陆续对现有公路和市政道路、公共场所、政府机关的照明灯具进行更新,同等条件下将优先采购本地半导体照明应用产品。

推进情况

创新性探索工程推广模式。为了更好地促进LeD照明产品的推广应用,创建国家“十城万盏”半导体照明应用示范城市,厦门市采取突出重点、分批稳妥实施、按试点示范大面积推广的顺序分步分批推进的模式。目前,已成功实施的创新推广模式有:

推动联盟项目攻关,探索推广模式创新。2008年7月,厦门市组建光电产业技术创新联盟。2009年光电产业技术创新联盟为主,投入市科研经费7500万元,对“半导体照明LeD外延、芯片和封装关键技术攻关与产业化项目”及“LeD路灯技术创新及示范工程项目”两个项目进行联合技术攻关,提高了企业自主创新能力和核心竞争力,为“十城万盏”提供了技术经验和保障。其中,LeD芯片项目产业化水平达到国内先进水平;LeD路灯项目在厦门市的岐山北路、文园路等4条道路进行186盏路灯示范,经厦门市光电技术专家分别三次对路灯现场进行测试,结果表明,示范工程照明效果良好,技术指标符合要求,节能效果达30%以上。

引导企业使用地产光源,加强产业链之间协作能力。为促进本地芯片、封装和应用LeD技术发展,加强厦门市LeD产业链上、中、下游企业之间的技术协作,办公室多次组织有关企业进行研讨,由市光电技术专家推荐,有11家企业采用地产芯片生产的LeD路灯和室内照明灯具送到市LeD检测中心进行产品测试合格后,在科技局办公楼、吕岭路、悦华路等场所应用示范。

标准先行,严格检测,编写“十城万盏”工程技术规范和技术规定。为确保“十城万盏”应用示范工程的产品质量,组织“十城万盏”专家组在参考美国能源之星、国家半导体产业联盟及台湾地区的LeD路灯标准的基础上,结合厦门本地实际情况,历时一年编写LeD技术规范和技术规定,并先后召开二十多次讨论会议,进行修改完善,最终完成了《LeD道路照明灯具》、《LeD道路照明驱动电源》等七项技术规范和《厦门市LeD室内照明工程技术规定》等两项技术规定。其中,今年5月15日市建设局和市科技局联合行文下发《厦门市LeD室内照明工程技术规定》两项技术规定;《LeD道路照明灯具》等七项技术规范已完成专家评审和市质量技术监督局的审查,正在行文中。七个技术规范和两个技术规定为市“十城万盏”半导体照明应用示范工程的顺利推进提供了技术支撑。

发挥检测中心的优势,为工程保驾护航。为确保厦门市“十城万盏”工程产品质量,更好发挥检测平台的优势,2010年6月初,办公室组织了16家LeD照明生产企业3批次47个样品送到厦门市部级LeD检测认证中心进行严格测试,为厦门市“十城万盏”工程提供技术保障。

建设公共服务平台,支撑产业快速发展。从2006年到2009年,厦门基地建设了部级LeD检测与认证中心、厦门产业技术研究院、光电子信息材料与器件工程技术研究中心、光电子孵化器、海外科技企业孵化器、台湾科技企业育成中心、集成电路设计公共服务平台等一系列扶持光电产业的平台机构。针对半导体照明产业,厦门重点打造三大平台:

检测平台:2007年以来,厦门市科技局共投入市科技专项资金3020万元,带动总投资规模7532万元(不含场地费用),组织市产品质量技术检验所、厦门大学和市LeD促进中心组建“厦门市半导体照明检测认证中心”。该中心的检测设备已达到国内领先、国际先进水平,并被科技部列为‘863’计划立项支持的全国两大平台之一,一期工程已顺利通过验收,正在建设二期工程。此外,2008年1月,国家质检总局批准厦门市在原检测认证中心的基础上筹建“国家半导体发光器件(LeD)应用产品质量监督检验中心”。

设计平台:依托厦门思明区,打造厦门LeD照明创意设计园,项目总投入1200万元,面积7100平方米,重点发展LeD应用产品、照明应用产品、照明工程为主的工业设计。

厦门市现代照明应用设计与创业中心目前也即将营业,该中心通过整合全市的资源,引进台湾和国际智力资源,提高厦门市LeD照明光源、灯具的设计水平,加快LeD照明应用产品的商品化和市场化,为厦门市半导体照明产业基地提供设计技术服务和支撑。

营销平台:依托厦门湖里区,打造厦门LeD营销中心,面积达11500平米,目前该中心已经建成封顶,并将于今年9月正式运营。该中心针对LeD各类产品,汇集了贸易、品牌展示推广、仓储物流、电子商务等现代商贸功能于一体,建成后将成为海西最重要并具有国际影响力的半导体节能照明营销平台。

以上公共服务平台的建设将有力地支撑和推动厦门市LeD产业的发展。

未来推进计划

按照厦门市“十城万盏”半导体照明应用示范第一阶段工程实施方案(草案),厦门市“十城万盏”第一阶段工程拟推广40多项示范项目,共实施20896盏的LeD路灯、隧道灯和室内照明产品三类灯具,其中,LeD路灯10149盏,太阳能路灯396盏,隧道灯1863盏,室内照明8488盏。

半导体光电技术篇6

关键词:发光二极管;荧光灯

中图分类号:J914文献标识码:a文章编号:

引言

伴随着全球节能减排的盛行,环保和节能成为市场热点,在此技术上我国也有了自己的技术和产业发展思路:抓住照明产业革命的历史机遇,坚持政府引导,以企业为主体和市场化运作原则,以技术创新为核心,机制创新为保障,在解决市场继续的产业化技术的同时,加大对重大关键技术研发的投入,集中力量,重点突破,实现跨越式发展。

一、发光二极管

发光二极管(LeD),是一种半导体固体发光器件。它是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的pn结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。pn结加反向电压,少数载流子难以注入,故不发光。目前,发光半导体材料主要由iii-V族元素组成,例如磷化镓(Gap)、砷化镓(Gaas),氮化镓等等。

LeD具有以下特性:

1、高效节能:以相同亮度比较3w的LeD节能灯333小时耗1度电,而普通60w白炽灯17小时耗1度电,普通5w节能灯200小时耗1度电。

2、超长寿命:半导体芯片发光,无灯丝,无玻璃泡,不许震动,不易破碎,使用寿命可达五万小时。

3、健康:光线健康光线中含紫外线和红外线少,产生辐射少(普通等管线中含有紫外线和红外线)。

4、绿色环保:不含汞等有害元素,利于回收,普通灯管中含有汞等元素。

5、保护视力:直流驱动,无频闪(普通灯都是交流驱动,就必然产生频闪)

6、安全系数高:所需电压、电流较小,安全隐患小。

7、市场潜力大:低压、直流供电,太阳能供电。

传统的LeD主要应用于信号显示领域、建筑物航空障碍灯、航标灯、汽车信号灯、仪表背光照明,如今娱乐、建筑物室内外、城市美化、景观照明中应用也越来越广泛。但是目前LeD光源的寿命还不能达到所标出的100,000小时,实际寿命约在50,000小时左右,这主要与其散热方面的问题有关。在很小的空间里,随着功率的加大,半导体组件就会过热。再者,白色LeD还不能达到普通灯泡所具有的亮度。

LeD应用前景广阔,就拿白光LeD来讲,不过在讲白光LeD之前,我们先看看目前所用的照明灯光源的状况:白炽灯和卤钨灯,其光效为12lm/w~24lm/w;荧光灯和HiD灯的光效为50lm/w~120lm/w。对白光LeD:光效为15lm/w~50lm/w,比一般家用白炽灯或卤钨灯相近甚至还高,这完全能达到照明领域的需要。而且随着LeD照明的技术日趋完善,逐步发展到大功率的LeD,采用大功率LeD为光源,人的视觉效果柔和、均匀,并且大功率LeD均采用恒流驱动,无频闪,长时间工作环境下眼睛没有疲劳感,是未来绿色照明产品。众所周知,目前中国能源日益紧缺,然而LeD照明可大大达到节电目的,据有关资料理论测算,全国大概只要有1/3的白炽灯被LeD灯取代,每年就能为国家节省用电近1000亿度,相当于一个三峡工程的年发电量。

二、荧光灯管的结构及其放电发光原理

荧光灯管,属低压气体放电发光的新型电光源。因具有光效高、节能、显色性能高等技术特点,被制做成U型管、螺旋管、环型管、细管径直管等形状的节能灯,广泛地应用于室内外环境照明。

但是在实际照明中,荧光灯管的亮度会慢慢地变暗,照明质量降低。这种现象实际上就是荧光灯管光衰现象。

(一)荧光灯管分类:

1、荧光灯管按气体放电性质来划分:有热阴极弧光放电型和冷阴极辉光放电型两大类型。应用于照明领域的荧光灯管,都属于热阴极弧光放电型荧光灯管。

2、按管径大小分

1)直管型荧光灯管按管径大小分为:t12、t10、t8、t6、t5、t4、t3等规格。规格中“t+数字“组合,表示管径的毫米数值。其含义:一个t=1/8英吋,一英吋为25.4mm;数字代表t的个数。如t12=25.4mm*1/8*12=38mm。

2)荧光灯管管径与其电参数的关系:

①荧光灯管,管径越细,光效越高,节电效果越好。

②荧光灯管,管径越细,启辉点燃电压越高,对镇流器技术性能要求越高。

管径大于t8(含t8)的荧光灯管,启辉点燃电压较低。相对于220V、50Hz工频交流电,符合启辉点燃电压小于1/2电源电压定律。可以采用电感式镇流器,进行启辉点燃运行。

管径小于t8的荧光灯管,启辉点燃电压较高。相对于220V、50Hz工频交流电,不符合启辉点燃电压小于1/2电源电压定律。不能采用电感式镇流器,进行启辉点燃运行。管径小于t8的荧光灯管,必须匹配电子式镇流器。由电子式镇流器,产生启辉高压,将荧光灯管击穿点燃。尔后,由电子式镇流器,驱动荧光灯管点燃运行。

(二)荧光灯管结构:荧光灯管有:玻璃管、灯头、灯管阴极、发光荧光粉、放电气体五大部分组成。

1)、玻璃管:玻璃管是荧光灯管的主体,也是荧光灯管的外壳。其内壁用于涂敷发光荧光粉。

2)、灯头:灯头主要用于固定支撑灯管阴极,和实现荧光灯管与灯架的电气连接。

3)、灯管阴极:灯管阴极又有导丝、灯丝、电子粉三部分组成。灯管阴极主要功能,是预热荧光灯管、发射电子、促使放电气体电离,启辉点燃荧光灯管。

4)、发光荧光粉:发光荧光粉主要是吸收紫外线,通过量子转换,将紫外线辐射转换为可见光。

5)、放电气体:放电气体由氪(Kr)、氩(ar)和汞(Hg)惰性气体组成。主要用于荧光灯管,通过气体电离产生紫外线辐射。

(三)荧光灯管放电发光原理:

荧光灯管放电发光原理:荧光灯管通交流电后,由阴极灯丝产生交变电场。管内的汞(Hg)气体,在交变电场和阴极灯丝发射的电子共同作用下。汞(Hg)气体原子不断地获得能量,从原始基态被激发成激发态,而后由激发态返回到原始基态。汞(Hg)气体在这个基态-激发态-基态,能量变换过程中。将交变的电场能量转变为253.7nm的紫外线辐射(同时产生185nm的紫外线辐射)。荧光灯管内壁上的发光荧光粉,吸收253.7nm的紫外线辐射能量。通过量子转换,将253.7nm紫外线辐射转换为可见光。

半导体光电技术篇7

随着绿能环保成为全球热门议题,以及半导体产业对于产能提升、成本下降,及优秀人才的持续需求,今年的SemiContaiwan特别聚焦三大主题:绿能环保、下一代封装技术―tSV,以及产业人才培育,期望帮助产业升级。

安全与环保--“绿色竞争力”新指标

在全球一片节能减碳的呼声下,要成为现代化的国家,不能只注重生产,同时也要强化在公共安全、工业安全和环境保护方面的能力。2016年-2020年间,将二氧化碳排放量降低到2008年的排放量,台湾地区的半导体产业,在水、电及化学材料的消耗上,都还有努力空间。而在台积电、友达、奇美等制造大厂高调推行绿色政策下,在今年的展场中,来自全球各国的设备厂商也纷纷提供了许多更环保、更安全的半导体相关设备与材料解决方案。此外,Semi特别邀请到台积电、友达和SaHteCH,以及airproducts、edwards等在“大宗硅甲烷/氢气储存及供应系统安全标准研讨会”与“太阳光电及平面显示器产业工安环保技术研讨会”中,从厂房实际使用需求到相关设备标准进行深入讨论和案例分享。

tSV―下一代iC的促成技术Cto论坛引爆热烈讨论

日月光集团研发中心总经理唐和明表示:现今摩尔定律有放慢的趋势,但为了因应市场持续对产品在“轻、薄、短、小”的要求,封装业在近年来积极发展三度空间的堆栈、硅穿孔(throughSiliconVia:tSV)等技术,并且已俨然成为下一波主流技术。除了封装业早已投入人才与资源在tSV(Via-Last)的研发之外,许多iDm与晶圆厂亦已积极投入wafer-level的tSV技术(Via-First),以求取晶圆2D空间的最大利用。这无疑使tSV技术成为一个兵家必争的新战场。

Cto论坛之演讲贵宾阵容坚实,邀请日月光集团研发中心总经理唐和明、Gartner、imeC、美商高通(Qualcomm)、美商リ劭萍(aViZa)副总裁、新思科技(Synopsys)董事长兼执行长aartdeGeus、惠瑞捷(Verigy)等公司之高阶主管与专业人士,针对tSV趋势、技术发展与挑战进行深入研讨。

Semi半导体科技种子计划

根据台湾地区工研院数据显示,未来3年内,台湾地区半导体产业对于人才的需求量将达到35,000个,然而由于专业人才呈现m型化的分部,Semi为强化半导体产业人才培育,特于展览期间筹办“SemiUniversity--半导体科技种子计划”,整合业界资源以培养学生具备理论与实务之能力,为产业储备精英更进一步地提升产业竞争力。本计划提供学生完整的半导体制程介绍与应用课程,并由专人带领导览展会,参观最新颖的设备材料实体展示,进而了解半导体产业之发展现况及最新趋势。

五大联谊活动活络产业交流

半导体光电技术篇8

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和gaas激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(cz-si)单晶的直径和减小微缺陷的密度仍是今后cz-si发展的总趋势。目前直径为8英寸(200mm)的si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(ic‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ulsi生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅ic‘s的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,soi材料,包括智能剥离(smartcut)和simox材料等也发展很快。目前,直径8英寸的硅外延片和soi材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅mos集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、sio2自身性质的限制。尽管人们正在积极寻找高k介电绝缘材料(如用si3n4等来替代sio2),低k介电互连材料,用cu代替al引线以及采用系统集成芯片技术等来提高ulsi的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和dna生物计算等之外,还把目光放在以gaas、inp为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容gesi合金材料等,这也是目前半导体材料研发的重点。

2.2gaas和inp单晶材料

gaas和inp与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界gaas单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(vgf)和水平(hb)方法生长的2-3英寸的导电gaas衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的si-gaas发展很快。美国莫托罗拉公司正在筹建6英寸的si-gaas集成电路生产线。inp具有比gaas更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的inp单晶的关键技术尚未完全突破,价格居高不下。

gaas和inp单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的si-gaas已用于生产,预计本世纪初的头几年直径为6英寸的si-gaas也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。gaas和inp单晶的vgf生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(mbe,mocvd)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)ⅲ-v族超晶格、量子阱材料。

gaaias/gaas,gainas/gaas,aigainp/gaas;galnas/inp,alinas/inp,ingaasp/inp等gaas、inp基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(hemt),赝配高电子迁移率晶体管(p-hemt)器件最好水平已达fmax=600ghz,输出功率58mw,功率增益6.4db;双异质结双极晶体管(hbt)的最高频率fmax也已高达500ghz,hemt逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(dfb)激光器和电吸收(ea)调制器单片集成inp基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmingaas带间量子级联激光器,输出功率达5w以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服pn结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年ingaas/inaias/inp量子级联激光器(qcls)发明以来,bell实验室等的科学家,在过去的7年多的时间里,qcls在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的qcls的工作温度高达312k,连续输出功率3mw.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120k5μm和250k8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,ⅲ-v族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的mbe和m0cvd设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的mocvd中心,法国的picogigambe基地,美国的qed公司,motorola公司,日本的富士通,ntt,索尼等都有这种外延材料出售。生产型mbe和mocvd设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米si/sio2),硅基sigec体系的si1-ycy/si1-xgex低维结构,ge/si量子点和量子点超晶格材料,si/sic量子点材料,gan/bp/si以及gan/si材料。最近,在gan/si上成功地研制出led发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,gesi/si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。si/gesimodfet和mosfet的最高截止频率已达200ghz,hbt最高振荡频率为160ghz,噪音在10ghz下为0.9db,其性能可与gaas器件相媲美。

尽管gaas/si和inp/si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的gaas外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如gaalas/gaas,in(ga)as/gaas,ingaas/inalas/gaas,ingaas/inp,in(ga)as/inalas/inp,ingaasp/inalas/inp以及gesi/si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所mbe小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的mbe小组等研制成功的in(ga)as/gaas高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4w.特别应当指出的是我国上述的mbe小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1w时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本ntt就研制成功沟道长度为30nm纳米单电子晶体管,并在150k观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年yauo等人采用0.25微米工艺技术实现了128mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的mbe小组,在继利用mbe技术和sk生长模式,成功地制备了高空间有序的inas/inai(ga)as/inp的量子线和量子线超晶格结构的基础上,对inas/inalas量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如zno、sno2、in2o3和ga2o3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的larssamuelson教授领导的小组,分别在sio2/si和inas/inp半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,iii族氮化物,碳化硅,立方氮化硼以及氧化物(zno等)及固溶体等,特别是sic、gan和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,iii族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(led)和紫、蓝、绿光激光器(ld)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年gan材料的p型掺杂突破,gan基材料成为蓝绿光发光材料的研究热点。目前,gan基蓝绿光发光二极管己商品化,gan基ld也有商品出售,最大输出功率为0.5w.在微电子器件研制方面,gan基fet的最高工作频率(fmax)已达140ghz,ft=67ghz,跨导为260ms/mm;hemt器件也相继问世,发展很快。此外,256×256gan基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸gan单晶材料,这将有力的推动蓝光激光器和gan基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带inasn,ingaasn,ganp和ganasp材料的研制也受到了重视,这是因为它们在长波长光通信用高t0光源和太阳能电池等方面显示了重要应用前景。

以cree公司为代表的体sic单晶的研制已取得突破性进展,2英寸的4h和6hsic单晶与外延片,以及3英寸的4hsic单晶己有商品出售;以sic为gan基材料衬低的蓝绿光led业已上市,并参于与以蓝宝石为衬低的gan基发光器件的竟争。其他sic相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

ii-vi族兰绿光材料研制在徘徊了近30年后,于1990年美国3m公司成功地解决了ii-vi族的p型掺杂难点而得到迅速发展。1991年3m公司利用mbe技术率先宣布了电注入(zn,cd)se/znse兰光激光器在77k(495nm)脉冲输出功率100mw的消息,开始了ii-vi族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前znse基ii-vi族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之gan基材料的迅速发展和应用,使ii-vi族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如gan/蓝宝石(sapphire),sic/si和gan/si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除sic单晶衬低材料,gan基蓝光led材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如gan衬底,zno单晶簿膜制备,p型掺杂和欧姆电极接触,单晶金刚石薄膜生长与n型掺杂,ii-vi族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(fib)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如ag/mno多层膜,再用fib注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒fe2o3,发光纳米颗粒cds和介电纳米颗粒tio2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥rivest,shamir和adlman(rsa)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mk的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29si)的硅单晶;减小sio2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2gaas及其有关化合物半导体单晶材料发展建议

gaas、inp等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的si-gaas和3-5吨/年掺杂gaas、inp单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸gaas生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强mbe和mocvd两个基地的建设,引进必要的适合批量生产的工业型mbe和mocvd设备并着重致力于gaalas/gaas,ingaalp/ingap,gan基蓝绿光材料,ingaas/inp和ingaasp/inp等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸gaas生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸mbe和mocvd微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如sic,gan基微电子材料和单晶金刚石薄膜以及zno等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

半导体光电技术篇9

一、何谓芯片?

要了解芯片,首先要明白“集成电路”和“半导体”两个概念。1958年9月12日,在美国德州仪器公司担任工程师的“杰克·基尔比”发明了集成电路的理论模型。1959年,曾师从晶体管发明人之一肖克莱率先创造了掩模版曝光刻蚀方法,发明了今天的集成电路技术。而半导体是一种导电性能介于导体和绝缘体之间的材料,常见的有硅、锗、砷化镓等,用于制造芯片。

我们所说的集成电路指的是采用特定的制造工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及元件间的连线,集成制作在一小块硅基半导体晶片上并封装在一个腔壳内,成为具有所需功能的微型器件

芯片是指内含集成电路的半导体基片(最常用的是硅片),是集成电路的物理载体。

二、中国芯片发展现状

目前中国芯片发展现状可用四个词概括:发展很快,落后两代,技术受限,产品低端。

中国芯片制造工艺落后国际同行两代。中国目前只能量产28纳米级芯片,而国外可完成7纳米级产品制造;产能严重不足,50%的芯片依赖进口;同时中国的产能和需求之间结构失配,实际能够生产的产品,与市场需求不匹配;长期的代工模式导致设计能力和制造能力失配、核心技术缺失;投资混乱、研发投入和人才不足等问题,导致中国集成电路产业目前总体还处于“核心技术受制于人、产品处于中低端”的状态,并且在很长的一段时间内无法根本改变。

为什么中国制造不出高端芯片?先要了解芯片制造过程。芯片制造主要分为三大环节:晶圆加工制造、芯片前期加工、芯片后期封装。其中技术难度最大最核心的是芯片前期加工这个环节,分为上百道制程,每道制程都有相应的装备。在这些装备里面,技术难度最大的就是光刻技术。中国半导体技术主要是在第一和第三环节。第二个环节中的技术装备大部分处于空白,所以高端的整个芯片都需要进口。

光刻机精度,芯片制造的卡脖子环节

制约集成电路技术发展的有四大要素:功耗、工艺、成本和设计复杂度,其中光刻机就是一个重中之重,核心技术中的核心。

一些装备由于其巨大的制造难度被冠以“工业皇冠上的明珠”的称号,最主流的说法是两大装备:航空发动机和光刻机,最先进的航空发动机目前的报价在千万美元量级,但是最先进的光刻机目前的报价已经过亿美金。

半导体光电技术篇10

关键词:硅半导体材料;产业现状;发展趋势

中图分类号:tn304.1+2文献标志码:a

0前言

半导体材料是一类具有半导体性能、可用于制作半导体器件和集成电路的电子材料.硅材料是当今产量最大、应用最广的半导体材料,是集成电路产业和光伏产业的基础.硅材料的发展对推动我国相关产业实现技术跨越、增强国际竞争力、保持社会经济可持续发展和保障国家安全均起着重要作用.

2012年11月,上海市有色金属学会向上海市科学技术协会提交了《上海半导体材料产业技术发展研究报告》,该研究报告以硅半导体材料为重点,概述了国内外(国内主要以上海地区为主)半导体材料产业的现状,分析了“十二五”期间乃至今后几年我国半导体材料产业的机遇、存在问题、发展趋势及主要应用领域的市场需求,提出了上海半导体材料产业技术发展的方向、重点和措施.本文就报告中涉及的国内外硅半导体材料产业现状及其技术发展部分作一介绍.

1国内外硅半导体材料产业现状

1.1多晶硅

多晶硅是拉制单晶硅的唯一原料,90%以上的微电子器件是在单晶硅片和硅基材料上制作的,电力电子器件亦基本在硅上制作.在光伏产业中,多晶硅也是制取单晶硅、多晶硅锭和准单晶硅锭的唯一原料,约80%的太阳能电池是晶体硅太阳能电池,硅被认为是光伏产业的产能材料.

我国从20世纪50年代中期开始研发高纯度多晶硅.60年代中期,多晶硅进入工业化生产,成为当时世界上少数生产多晶硅的国家之一.70年代,由于技术落后、生产规模小、成本高、质量低和缺乏竞争力等原因,多晶硅企业纷纷停产.90年代,由于进口多晶硅的冲击,我国多晶硅产业每况愈下,最后只剩下峨嵋半导体厂一家[1-2].

2000年以前,全球大部分多晶硅用于满足半导体产业的需求.随着全球能源紧张问题的日趋严重,极大地推动了德国乃至欧洲太阳能光伏应用市场的发展,多晶硅市场需求随之快速增长,产能迅速扩张.2004年前后,国内外太阳能电池爆炸式增长造成了全球范围的多晶硅紧缺,多晶硅价格暴涨,更是激发了我国多晶硅产业的发展热潮.短短几年间,我国就建成了十几家千吨级甚至万吨级的多晶硅生产企业,其建设速度和技术提升速度之快,堪称世界之最.

上海有色金属第34卷