高分子材料的现状十篇

发布时间:2024-04-26 00:51:43

高分子材料的现状篇1

abstract:Functionpolymermaterialsarerapidlydevelopinginrecentlyyears.Buttherearenotanygeneralizationstothedevelopmentofshapememorypolymers.thedefined,mechanism,characterizationandthepreparationofthemostsimulativeshapememorypolymerarebrieflyintroducedinthispaper.thenthedevelopingprospectsarealsoreviewed.

关键词:功能高分子材料;展望;形状记忆

Keywords:functionalpolymermaterials;outlook;shapememorypolyer

中图分类号:tB324文献标识码:a文章编号:1006-4311(2012)31-0303-02

0引言

随着社会的进步和科学技术的发展,一般的材料难以满足日益复杂的环境,因此需要具有自修复功能的智能材料——形状记忆材料。20世纪50年代以来,各国相继研究出在外加刺激的条件(如光、电、热、化学、机械等)经过形变可以回复到原始形状的具有形状记忆功能的材料,它可分为三大类,形状记忆合金、形状记忆陶瓷和形状记忆聚合物材料。高分子产业的迅速发展,推动了功能高分子材料得到了蓬勃发展。形状记忆聚合物材料的独特性,广泛应用于很多领域并发展潜力巨大,人们开始广泛关注[1]。

1功能高分子材料研究概况

功能高分子材料是20世纪60年代的新兴学科,是渗透到电子、生物、能源等领域后开发涌现出的新材料。由于它的内容丰富、品种繁多、发展迅速,成为新技术革命不可或缺的关键材料,对社会的生活将产生巨大影响。

1.1功能高分子材料的介绍功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子[2]。

1.2功能高分子材料分类可分为两类:第一类:以原高分子材料为基础上进行改性或其他方法,使其成为具有人们所需要的且各项性能更好的高分子材料;第二类:是具有新型特殊功能的高分子材料[3]。

1.3形状记忆功能高分子材料自19世纪80年现热致形状记忆高分子材料[4],人们开始广泛关注作为功能材料的一个分支——形状记忆功能高分子材料。和其它功能材料相比的特点:首先,原料充足,形变量大,质量轻,易包装和运输,价格便宜,仅是金属形状记忆合金的1%;第二,制作工艺方简便;形状记忆回复温度范围宽,而且容易加工,易制成结构复杂的异型品,能耗低;第三,耐候性,介电性能和保温效果良好。

形状记忆聚合物(Smp)代表一项技术上的重要的类别刺激响应的材料,在于形状变动的反应。更确切地说,传统意义上的Smp是聚合物变形,随后能固定在一个临时的形状,这将保持稳定,除非它暴露在一个适当的外部刺激激活了聚合物恢复到它原来的(或永久的形状)。因此,相关的反应被称为聚合物内的形状记忆效应(Sme)。虽然各种形式的外部刺激可以被用来作为恢复触发,最典型的一种是直接加热,通向温度增加[4]。

2部分形状记忆高分子材料的制备方法

2.1接枝聚乙烯共聚物在形状记忆聚乙烯中,交联(辐射或化学)是必须的,但是交联程度过高会导致聚合物的加工性能不好,因此最好是将交联放在产品制造的最后一步:FengKuiLi等采用尼龙接枝HDpe获得了形状记忆聚合物。他们采用马来酸酐和DC处理熔融HDpe在180℃反应5分钟,然后在230℃下和尼龙-6反应5分钟得到产物。Sem照片显示尼龙微粒小于0.3μm,在HDpe中分散良好,两者界面模糊,显示两者形成化学粘合;而尼龙和HDpe简单混合的Sem照片中两者界面明显试验同时表明,随着DCp含量和尼龙含量的提高,共聚物中形成了更多的共聚物具有和射线交联聚乙烯(Xpe)Smp相似的形状记忆效应,形变大于95%,恢复速度好于射线交联的聚乙烯Smp,该聚合物在120℃左右形状恢复达到最大。对其机理研究表明,接枝在pe上的尼龙形成的物理交联对形状记忆效应有重要作用。值得注意的是该共混物是仅仅通过熔融混合得到的,工艺非常简单,而且采用的是通用聚合物,因此该方法值得推广[5]。

2.2聚氨酯及其共混物聚氨酯是含有部分结晶相的线性聚合物,该聚合物可以是热塑性的,也可是热固性的。聚氨酯类形状记忆材料,软段的结构组成和相对分子质量是影响其临界记忆温度的主要因素,硬段结构对记忆温度影响不大。

采用聚氨酯和其它聚合物共混,可以改善性能,得到所需要的产物。有报道采用聚己内酰胺(pCL)、热塑性聚氨酯(tpU)和苯氧基树脂制得的形状记忆材料。发现该产物随着组成的变化而玻璃化转化温度不同;同时发现pCL部分在混合物中结晶相消失,说明结晶过程被阻碍。改混合物具有形状记忆效应的原因在pCL/苯氧树脂作为了可逆相。该混合物的玻璃化温度可以通过tpU/苯氧基树脂的混合比例和种类决定,增加混合物中固定相和减少tpU链长度可以减少滞后效应。报道采用pVC和pU共混也能得到Smp。该混合物中存在pVC/pCL形成的无定形相,混合物的玻璃化的温度也随着pVC/pCL的组成变化而平稳的发生变化,固定相记忆着最初形状[6-8]。

3国内外形状记忆高分子材料研究现状

3.1国内研究现状国内研究的形状记忆高分子材料多以聚氨酯和环氧树脂基为主,加入添加剂或固化剂进行改性,可以得到满足基本要求的Smps,但是由于其自身缺点的约束,所以限制了其使用范围。最近几年来,形状记忆合金以利用聚合物为基体添加其他成分,突出各个优点进行对比,得到一些性能良好的形状记忆材料因此我们列举国内最新的Smps研究。

魏堃等人将新型聚合物固化剂与环氧树脂(ep)进行机械共混,进行适度交联固化后,制出具有较低玻璃化转变温度(tg)的无定型ep体系,得出结果显示适度交联固化的ep体系具有良好的形状记忆特性。

高淑春等人利用活化溅射方法制备tio2薄膜,以ni-ti形状记忆合金生物材料为基体,附着在形状记忆和金材料的表面,其跟血液相容性比较好,因此具有较高的临床使用价值。

3.2国外研究现状对比国内,国外的Smps发展比较早,例如:美国、日本、德国等由于具有先进的设备和理论基础,因此在各个方面相对国内都比较成熟,所以本人参考最近国外Smps相关研究在此论述。

Y.C.Lu等人利用环氧基的形状记忆材料设计模拟服务环境所能反映出的预期性能要求即

①暴露在紫外线辐射下循环为125分钟;②在室温下沉浸油内;③浸泡在热水中49℃。一种新颖的高温压痕法评估适应条件的Smps的形状和力学性能。结果表明对于有条件的比较一般环境条件Smps的玻璃化转变温度降低与较高模和敏感应变速率。如果温度设定低环境条件影响的Smps形状恢复能力。特别是紫外线暴露和浸入水中的Smps回复率明显低与无条件的材料。当回复温度高于tg,材料的回复能力相对保持不变。

R.Biju等人用双酚a(BaDC)与缩水甘油醚或者双酚a(DGeBa)与苯酚螯合物(ptoH)通过一系列聚反应合成热固性聚合物表现出具有形状记忆性能。利用差示扫描量热分析、红外光谱及流变仪来表征其固化特征。以不同比例DGeBa/ptoH/BaDC混合,研究了它们的弯曲、动态力学性能以及热性能;对于一个给定的成分,弯曲强度和热稳定性随着氰酸酯浓度增加而增加,而这些特性随着ptoH浓度的增加而降低,储存模量表现出相似的趋势。这个转变温度(tt)随着整体氰酸酯含量的增加而增加。这些聚合物在形状记忆性能显示出良好的恢复形状,并且形状恢复时间减少。而显示恢复时间与形状恢复模量增加(eg/er)刚好相反。这个转变温度可调谐反应物组成及变形恢复速度随驱动的温度增加而增加。这些环氧基氰酸盐系统具有良好的热、力学和形状记忆特征很有希望用在智能电气领域。

4展望

由于Smp有着丰富的后备资源,而且形状记忆的方式灵活,具有广阔应用和发展前景。因此本文认为,有很多重要因素影响将Smps技术成功转化成生产应用,例如:标准化的不同方法描述为量化形状记忆材料的性能。应该进一步完善形状记忆原理,在分子结构理论和弹性形变理论基础之上,建立形状记忆的数学理论模型,为开发新材料奠定了理论基础;运用分子结构理论、实验设计原理和改性技术知识,提高形状记忆各项性能、丰富品种、满足不同的应用需要,增强应用和开发研究,拓宽应用领域,尽快转化为生产力。

形状记忆高分子与形状记忆合金相比具有感应温度低,且形状记忆高分子因其独特的优点而具有广泛的应用前景,但是我们也应该看到在开发应用上仍存有一些不足[22]:形变回复力小;只有单程形状记忆功能,没有双程性记忆和全程记忆等性能;优化制作设计与工艺,开发更多优秀的品种,在研究聚合物基的Smp中有许多重要工作需要我们一步步努力去做,在完善Smp过程中,同时要研究复合社会不同需求的产品。

参考文献:

[1]陈义镛.功能高分子[m].上海:上海科学技术出版社,1998:1-5.

[2]江波等.功能高分子材料的发展现状与展望[J].石油化工动态,1998,6(2):23-27.

[3]古川淳二.对21世纪功能高分子的期待[J].聚合物文摘,1994,(6):17.

[4]taoxie.Recentadvancesinpolymershapememory[J].polymer,2011,(52):4985-5000.

[5]HanmoJeongeuropenpolymerourn[m].2001,(37):2245~2252.

[6]饶舟等.形状记忆聚氨酯高分子材料的研究进展[J].聚氨酯,2011,110(7):1-7.

高分子材料的现状篇2

一、功能高分子材料的介绍以及其研究现状

1.功能高分子材料的简介

功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子。

2.功能高分子材料的研究现状

在原来高分子材料的基础上,可将功能高分子材料分为两类:一类是以改进其性能为目的的高功能高分子材料;另一类是为赋予其某种新功能的新型功能高分子材料。

2.1高功能高分子材料

2.1.1光功能高分子材料

光功能高分子材料是指能够对光进行透射、吸收、储存、转换的一类高分子材料,可制成各种透镜、棱镜、塑料光导纤维、塑料石英复合光导纤维、感光树脂、光固化涂料及黏合剂等。这类材料主要包括光记录材料、光导材料、光加工材料、光转换系统材料、光学用塑料、光导电用材料、光合作用材料、光显示用材料等。在光的作用下,实现对光的传输、吸收、贮存、转换的高分子材料即为光功能高分子材料

2.1.2生物医用高分子材料

生物医用高分子材料需要满足的基本条件:除具有医疗功能外,还要强调安全性,即要对人体健康无害。不会因与体液或血液接触而发生变化;对周围组织不会引起炎症反应;不会产生遗传毒性和致癌;不会产生免疫毒性;长期植入体内也应保持所需的拉伸强度和弹性等物理机械性能;具有良好的血液相容性;能经受必要的灭菌过程而不变形;易于加工成所需要的、复杂的形态。

2.1.3电功能高分子材料

导电高分子材料通常是指一类具有导电功能、电导率在10-6S/cm以上的聚合物材料。这类高分子材料具有密度小、易加工、耐腐蚀、可大面积成膜,以及电导率可在绝缘体-半导体-金属态(10-9到105S/cm)的范围里变化。按照材料结构和制备方法的不同可把导电高分子材料分为结构型(或本征型)导电高分子材料和复合型导电高分子材料两大类。

2.2新型功能高分子材料

2.2.1高吸水性高分子材料

高吸水性树脂是一种三维网络结构的新型功能高分子材料,它不溶于水而大量吸水膨胀形成高含水凝胶。高吸水性树脂的主要性能是具有吸水性和保水性。它可吸收自身重量数百倍至上千倍的水,自身含有强亲水性基团同时具有一定交联度。,此外,高吸水性树脂的保水性能极好,即使受压也不会渗水,而且具有吸收氨等臭气的功能。高吸水性树脂在石油、化工、轻工、建筑等部门被用作堵水剂、脱水剂、增粘剂、密封材料等;在农业上可以做土壤改良剂、保水剂、植物无土栽培材料、种子覆盖材料,并可用以改造沙漠,防止土壤流失等;在日常生活中,高吸水性树脂可用作吸水性抹布、餐巾、鞋垫、一次性尿布等。

2.2.2形状记忆功能高分子材料

形状记忆功能高分子材料自19世纪80年现热致形状记忆高分子材料,人们开始广泛关注作为功能材料的一个分支——形状记忆功能高分子材料。形状记忆功能材料的特点是形状记忆性,它是一种能循环多次的可逆变化。即具有特定形状的聚合物受到外力作用,发生变形并被保持下来;一旦给予适当的条件(力、热、光、电、磁),就会恢复到原始状态。

2.2.3生物可降解高分子材料

生物降解高分子材料具有无毒、可生物降解及良好的生物相容性等优点,所以其应用领域非常广,市场潜力非常大。高分子的降解主要是各种生物酶的水解,其中聚乳酸类高分子是已开发应用于生命科学新型生物可降解材料,生物降解高分子材料除了在包装、餐饮业、农业、医药领域的应用外,在一次性日用品、渔网具、尿布、卫生巾、化妆品、手套、鞋套、头套、桌布、园艺等多方面都存在着潜在的市场,有很好的发展前景。

二、新型高分子材料的应用

现代高分子材料是相对于传统材料如玻璃而言是后起的材料,但其发展的速度应用的广泛性却大大超越了传统材料。高分子材料不仅可以用于结构材料,也可以用于功能材料。

这些新型的高分子材料在人类的社会生活、医药卫生、工业生产和尖端技术等方方面面都有广泛的应用。在生物的医用材料界中研制出的一系列的改性聚碳酸亚丙酯(pm-ppC)的新型高分子材料是腹壁缺损修复的高效材料;在工业污水的处理中,可以利用新型高分子材料的物理法除去油田中的污水;开发的苯乙烯、聚丙烯等热塑性树脂及聚酰亚胺等热固性树脂复合材料,这些材料比模量和比强度比金属还高,是国防、尖端技术等方面不可缺少的材料;同样,在药物的传递系统中应用新型的高分子材料,在包转材料中的应用,在药剂学中应用等等。

三、开发新型高分子材料的重要意义

从上世纪30年代高分子材料的出现开始到现代,世界工业科学不再只是满足与对基础高分子材料的开发研究,从90代开始,科学家们就将注意力转到了高智能的高分子材料的开发上。新型高分子材料的开发主要是集中在制造工艺的改进上,以提高产品的性能,减少环境的污染,节约资源。目前而言,合成树脂新品种、新牌号和专用树脂仍然层出不穷,以茂金属催化剂为代表的新一代聚烯烃催化剂开发仍然是高分子材料技术开发的热点之一。在开发新聚合方法方面,着重于阴离子活性聚合、基团转移聚合和微乳液聚合的丁业化。同时,也更加重视在降低和防止高分子材料生产和使用过程中造成的环境污染。新型高分子材料的开发,不但能够满足现代工业发展对于材料工业的高要求,更重要的是能够促进能源与资源的节约,减少环境的污染,提高生产的能力,体现现代科技的高速发展。加快高分子材料回收、再生技术的开发和推广应用,大力开展有利于保护环境的可降解高分子材料的研究开发。

四、结束语

材料是人类用来制造各种产品的物质,是人类生活和生产的物质基础,是一个国家工业发展的重要基础和标志。我国国民经济和高技术已进入高速发展时期,需要日益增多的高性能、廉价的高分子材料,环境保护则要求发展环境协调、高效益的高分子材料制备和改性新技术,实施高分子材料绿色工程。作为材料重要组成部分的高分子材料随着时代的发展,技术的进步,越来越能影响人类的生活,工业的进步。

参考文献

[1]严瑞芳.高分子形状记忆材料.材料科学技术百科全书[m].北京:中国大百科全书出版社,2008:382~383.

[2]陈莉主编.智能高分子材料[m].北京:化学工业出版社,2006.

[3]何天白,胡汉杰主编,功能高分子与新技术,北京:化学工业出版社,2009.

高分子材料的现状篇3

关键词:插层复合复合材料层状无机物电导率

一、聚合物/层状无机物复合材料的研究状况

聚合物复合材料是以聚合物为基体,无机物以纳米尺度(小于100nm)分散于基体中的新型高分子复合材料。与传统的复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间强的界面相互作用,聚合物复合材料具有优于常规聚合物复合材料的力学、热学性能。目前,聚合物复合材料的研究成为当前材料科学研究的热点和前沿课题,具有重大的科学意义和广阔的应用前景.聚合物/层状硅酸盐复合材料是目前研究最多、最有希望工业化生产的聚合物纳米复合材料。

1.聚合物/层状无机物复合材料的特点

1.1填料用量远远少于普通复合材料;

1.2具有优良的热稳定性及尺寸稳定性;

1.3优良的力学性能、高的阻隔性;

2.聚合物/层状无机物复合材料的制备方法

用于制备聚合物/层状无机物纳米复合材料的方法主要有三种:

2.1单体嵌入到无机物夹层中,在外力作用如氧化剂、光、热、引发剂或电子作用下发生聚合;

2.2主体材料强有力的氧化还原特性使嵌入与聚合原位同时发生,也自动聚合;

2.3溶胶-凝胶法,在聚合物溶液中形成层状无机物,共沉淀干燥后得到嵌入纳米复合材料。

3.聚合物/层状无机物复合材料的应用前景

3.1高性能有机改性陶瓷

层状硅酸盐嵌入聚合物,可降低陶瓷的固化烧结温度,且韧性大大提高。如在层状硅酸盐中嵌入丙烯腈,在其夹层间聚合得聚丙烯腈,在高温下,聚丙烯腈经烧蚀可转化为碳纤维,从而得到分子水平分散的碳纤维增韧陶瓷。

3.2导电材料

在层状无机物的夹层中嵌入导电聚合物,可制得导电复合材料。

3.3发光或变色材料

聚合物ppV和moo3分别是有机电致发光和无机电致发光变色材料,二者形成的复合材料,不但兼有各自的优点,而且改善了加工性能。

聚合物/层状无机物复合材料还可用于分子增强剂、光学材料等,总之聚合物/层状无机物复合材料结合了有机高分子材料的易于加工、韧性好和无机物的刚性、尺寸稳定性强等优点,应用十分广泛,有着广阔的应用前景。

二、聚合物/层状无机物复合材料的制备

本实验选用聚乙烯醇和无机物高岭土作为试验用聚合物和层状无机物。采用聚合物水溶液插层,聚乙烯醇可以从水溶液中直接插层到高岭土的层间,并形成强的氢键,因此而减弱了高岭土层间结合力,层间小分子迅速分解产生巨大的推力使其层间剥离,得到纳米复合材料。此法的特点是:水溶剂对高岭土具有一定的溶胀作用,有利于聚合物插层并剥离高岭土片层,插层条件比其他方法温和,水基插层既经济又方便。

1.实验药品

聚乙烯醇(pVa)工业品市售

高岭土工业品市售

焦磷酸钠分析纯上海试剂二厂

工业酒精工业品市售

2.实验仪器

DDS-11a型电导率仪上海雷磁新泾仪器有限公司

电子恒温水浴锅上海金桥科析仪器厂

KD-50万能电子拉力实验机深圳凯强利电子股份有限公司

电子显微镜

3.样品的制备

将配方量的聚乙烯醇和蒸馏水加入反应器,在100℃下搅拌溶解,将配方量的高岭土、焦磷酸钠(分散剂)和蒸馏水在研钵中搅拌研磨配制成乳液。待反应器中的聚乙烯醇完全溶解后,将配制成的高岭土乳液在100℃、高速搅拌下加入反应器中,并持续搅拌1h,使高岭土完全分散在聚乙烯醇中。将产物倒入烧杯中,测定其电导率并在玻璃或瓷片上流延成膜。将此膜在常温下干燥24h,得到半透明状薄膜。

4.测试与表征

4.1电导率的测定:先用DDS-11a型电导率仪测出标准样(纯的聚乙烯醇溶胶)的电导率,再比较各组样品(溶胶状态下)电导率与标准样之间的偏差,计算得出电导率。

4.2拉伸强度的测定:将制得的样品薄膜裁制成一定尺寸,在75℃下干燥1h使其失水干燥,在拉伸实验机上测定其拉伸强度。

4.3X-射线衍射测试。

4.4光学显微镜测试。

三、实验结果与讨论

1.高岭土含量对样品电导率的影响

对于聚乙烯醇/高岭土复合材料,人们最关心的是高岭土是否以纳米尺寸分散于聚乙烯醇基体中;分散是否均匀;它具有那些特性;它的应用前景如何;下面就上述问题研究的结果进行讨论。

表1高岭土含量对电导率的影响

从表1可以看出溶胶状态下样品电导率随高岭土含量的增加而增大,这是因为在溶液中高岭土自身表面带有电荷,增大其含量电荷数也会增多,电导率必然会有所提高,但提高幅度不是很大。而且可以看出蒸馏水含量对电导率影响很小。

2.高岭土含量对样品抗拉强度的影响

表2高岭土含量对抗拉强度的影响

从表2可以看出在高龄土含量小于10%时,,样品的抗拉强度与屈服强度都比空白样有明显提高。这是因为在高龄土含量小于10%时出现纳米效应是其强度提高,力学性能有很大改善。从表中还可以看出在75℃下加热后,其抗拉强度有很大提高,这是因为加热时样品失水,结晶度提高,样品抗拉强度提高。但断裂伸长率几乎不变。

3.X-射线衍射分析

由衍射图可知,高岭土的峰出现在2θ~11.716°(d~7.5472a),2θ~35.278°(d~2.5420a),分别对应于001,002晶面。聚乙烯醇的最强峰出现在2θ~19.489°(d~4.5509a),对应于101晶。可以看出高岭土的加入使得聚乙烯醇结晶度有很大提高。

四、结论

1.样品电导率随高岭土含量的增加有所提高。

2.高岭土含量在10%以内,能产生纳米效应,使得样品抗拉强度、屈服强度等力学性能有很大提高。

3.聚乙烯醇的结晶度有很大提高。

4.由分散剂处理过后,高岭土以球状颗粒分布,尺寸可达到85nm。

从以上分析可以看出,聚乙烯醇/高岭土薄膜强韧性好,拉伸强度高,气体透过率小。但加入高岭土后使得薄膜透明性变差,由于实验操作过程中薄膜厚度不均,所以薄膜的测试性能有所偏差,有待于进一步改进。

图2聚乙烯醇/高岭土X-射线衍射图

参考文献

[1]徐国财,张立德.纳米复合材料,北京:化学工业出版社,2002.207~209

[2]张彦军,秦永宁,马智,吴树新.高岭土制备纳米材料的研究进展,天津化工,2002(3):19~21

[3]马永梅,漆宗能.聚合物/层状硅酸盐纳米复合材料,塑料,2001,30⑹:9~10

高分子材料的现状篇4

关键词材料;液晶高分子;光致形变高分子材料

中图分类号tG1文献标识码a文章编号1674—6708(2012)76—0157—02

材料是人类文明的标志,是社会生存和发展的基础,人类支配和改造自然能力的提高都是通过新型材料的发现和利用来实现的。科学家们预言“21世纪将是智能材料的新时代”。所谓的智能材料指的是能够根据周边环境的变化而做出不同响应的一种新型材料。这其中材料对光、热、电、磁以及溶剂等不同介质所做出的响应。根据智能材料所使用的材质的不同,我们可以将其大致归为三类:金属类智能材料、无机非金属类智能材料和智能高分子材料。本文主要针对的是光致形变液晶高分子材料进行一些列研究和探讨,希望能起到抛砖引玉的效果,让更多的同行来共同关注这一领域的发展。

所谓的光致形变液晶高分子材料指的是能够吸收特定波长的光,而改变自身形状以及尺寸的一种高分子材料。光致形变液晶材料之所以能够对光进行响应是因为其分子中含有感光官能团。

光致形变高分子要满足一定的条件才能发生形变,Lendlein等人认为需要满足下面三个条件[1]:1)感光官能团要以一定的方式引入到高分子材料中;2)当感光官能团与分子发生可逆的光异构化的时候,就能够引起材料在外观上的改变。因为这种变化可以传递给高分子链,高分子链在构象上的变化则表现在外观形状以及尺寸的变化上;3)该体系的维持需要有一定的交联度,只有这样才能稳定材料最初的形体状态。光致形变液晶高分子材料要想有大的形变,需要高分子链在材料中呈有序排列,从而可以产生各向异性的响应,这样产生的形变应力比较大。

ikeda和俞燕蕾等人合成了一系列的液晶弹性体薄膜,他们把偶氮苯官能团引入到该薄膜中从而可以有效地实现液晶弹性体薄膜在方向上所产生的可控光致弯曲的发生。如图1(多畴液晶弹性体的光致形变弯曲图,其中白色箭头的方向即为偏振光的偏振方向)所示,当多畴向列相液晶弹性体薄膜沿着任意方向发生弯曲的时候,弯曲后用570nm波长的可见光照射,薄膜可以恢复到原来的状态,这是因为薄膜的弯曲方向与入射偏振紫外光的偏振方向一致,所以可以通过简单的改变入射光偏振方向,即可简单地精确控制薄膜的对弯曲方向。

Lee等人在最近研究出了一种全新的液晶高分子薄膜,这种薄膜在其主链上含有偶氮苯基团,而且薄膜也可以根据线性偏振光来控制自身所弯曲的方向变化。同时,这种薄膜也是一种非化学交联的体系,所以这就让它能够广泛应用于纤维制成或任意形状的光响应材料。另外,该材料也证明了,光致形变液晶高分子材料不一定需要化学交联。

类似纤毛功能的微型执行器是由vanoosten等人通过喷墨打印技术制备出的一种新执行器,这种结构的纤毛可以在有光照的情况下自行运动。如图2(a)所示,当将它放置于水中的时候,它就可以产生变比较强烈的扰动,从而达到促进液体快速交融混合的目的。

另外,通过选择不同的构件,可以实现对纤毛运动幅度大小的调控(图2b),最吸引人注意的一个特点是这种构件的制备可以使用不同类型的喷液进行操作,比如喷涂打印,如此,所使用的成本更加低廉,所以,这就也促使了大面积制备响应性的执行器件。在涉及到替代传统的电驱动执行器方面,同样有着非常明显的优势;图2c是该执行器成分的化学结构式。

图2(a)当采用不同波长的光驱照射人工纤毛的时候,就会令其产生不规则的运动行为;(b)当采用紫外光进行照射的时候,液晶高分子纤毛在水面所产生的运动行为;(c)为构成执行器的液晶单体化学结构式。

结论:由于光的一些优异特点,使得光致形变液晶高分子材料在现实的应用中有着诸多的特点,这些特点使光驱动型执行器不需要使用其他的相关辅助设备,只需要通过改变自身的形状及尺寸就可以将光能直接转化为有用的机械能,所以,它将有望在微机械领域中大放光彩。

参考文献

高分子材料的现状篇5

【关键词】二硒化铌铜基复合材料材料表征

1前言

二硒化铌具有和二硫化钼类似的晶体结构和摩擦学特性,而电阻率仅为10-4Ω.cm比二硫化钼低六个数量级,比石墨低一个数量级。用片状二硒化铌-ag制备的复合材料在航天飞机的导电滑环上有成功的应用,而二硒化铌纳米纤维既有减摩耐磨的作用,又可以提高复合材料的力学性能。我们利用真空热压烧结炉分别制备出纤维状和层状结构的二硒化铌复合材料。

2试验

取实验室制备的二硒化铌纳米材料分别与铜粉(200目2.7n)配置成二硒化铌纳米材料的质量百分比分别为5%、10%、15%、20%的八种混合粉末,每种混合粉末混合均匀后先在150mpa下进行冷压,持续时间10min,再分别在700℃和800℃的真空热压炉中烧结1h。利用X射线分析仪(XRD),扫描电子显微镜(Sem),透射电子显微镜(tem)等研究二硒化铌复合材料的表面形貌、微观结构。

3结果与讨论

图1为制备的纤维状和片层状二硒化铌复合材料的Sem图片。从(a)中可以看出,加热温度为700℃时反应生成了纤维状二硒化铌复合材料,直径比较均匀,且取向基本一致,且生成的产物为实心的纳米纤维,直径在100~300nm范围内,纤维表面光滑,没有明显的缺陷存在,只是在纤维端部存在不规则的断面。由于范德华力的影响,使得制备的纤维相互粘结成束。(b)是单根纤维的tem图片,生成的纤维外壁平坦光滑,粗细均匀。(c)图是800℃获得的二硒化铌复合材料片层结构,样品呈现较为规则的六边形状,粒度均匀,粒径在10μm左右,厚度约为2μm。个别片层发生彼此之间发生粘结,形成大的不规则片层结构,可能是由于石英管中局部温度较高所致。从图中还可以看出,部分片层的表面层发生了卷曲,可以说明所制备的材料是层状的,这一点也可以有图中看出。从图中可以看到单个片层的层状结构,片层厚度约为几十nm。

图2(a)为纤维状二硒化铌复合材料的透射电子显微镜图片,由图中可以看出交叉在一起,直径大约为200nm和300nm的两根纤维,外壁较为光滑,较粗一根纤维由于长度较长(几十微米)未能拍摄全貌。由图中可以很明显的看到,纤维的整体颜色不均,个别地方出现暗黑色,原因可能有两个:一是由于铌的相对原子量较大,核外电子多,使得电子束不易透过,因此,得到的tem图像发暗;二是纤维内部生长不均匀,存在大量缺陷所致。由图中较细一根纤维可以看出,纤维生长的初期阶段形成了非常细小的纤维,由于其表面能很大,随着温度的升高或者保温时间的增加这些细小的纤维会黏结成束形成较粗的纤维。插图为纳米纤维的高分辨(HRtem)图像,由图可以看出纤维材料具有明显的层状结构,经过计算层间距为6.2,但也存在着大量的位错,这有可能是因为在此条件下(600℃)硒粉过量,与铌粉反应不充分,生成产物不均一(包括二硒化铌,nbSe3,nb2Se9等)导致形成了非共格界面。图2(b)为片层状纳米二硒化铌的透射电镜图,图中可以看出,较小的纳米颗粒由于其较大的表面能而团聚在一起,但可以看出颗粒形状为六边形,较大的纳米片则很明显的呈现出规则的六边形,由图2(b)的高分辨插图可以清楚地看到纳米片的晶体生长完美。

图3为纤维状和片层状二硒化铌复合材料的XRD图谱。从图中可以看出,两种温度下的产物XRD图谱主峰均主要为(002)相。同pDF65-7464卡片给出的二硒化铌的XRD图谱相吻合。可以证实,产物主要是二硒化铌。但同时在图3(a)中出现少量的nbSe3,在图3(b)中出现nb2o5等铌的氧化物。这主要是因为二硒化铌纤维的形成是在nbSe3前驱体的基础上进一步失去Se原子形的,因此,在生成的二硒化铌纤维中会存在少量的nbSe3。而随着温度的升高,在形成片层的过程中,硒原子会蒸发为气氛,使得部分铌与氧发生反应,生成了铌的氧化物。

高分子材料的现状篇6

形状:上段成锥形,下部是圆柱形。

化学组成:矿泉水和可乐瓶是用的聚对苯二甲酸乙二醇酯pet。另外食品包装塑料瓶材料还有聚丙烯pp,高密度聚乙烯HDpe等。

用途:生活中最常见的就是用塑料瓶装水了,也就是常见的矿泉水。另外就是可以用塑料瓶装其他物品,比如说实验室中不能用玻璃瓶装的试剂有时必须用塑料瓶装。塑料瓶的用途有很多很多,生活中到处可以见到塑料瓶。

改进措施:可以改进塑料瓶的生产工艺,如果能将塑料瓶生产成可自动降解的,那么我们的环境将不会再有更多的白色污染,这是一个非常有前景的技术,如果能够成功,并且价格能够和现在的塑料瓶相当,那么塑料瓶的用途可能将大大增加!

2.名称:一次性纸杯。

形状:上大下小的锥形形状。

化学组成:聚乙烯。

性能:柔软性好、耐冲击性能好;耐热性、耐溶剂性、硬度较差。

用途:最好用于装冷水,不要装开水。

改进措施:如果选用的材料不好,或加工工艺不过关,在聚乙烯热熔或涂抹到纸杯过程中,可能会氧化为羰基化合物。羰基化合物在常温下不易挥发,但在纸杯倒入热水时就可能挥发出来。它既不环保,也不健康。还有些一次性纸杯生产商购买价格低廉的纸浆,在生产过程中添加荧光漂白剂,有致癌危险。建议大家,一次性杯不到万不得已不要使用,如果使用最好装冷水。

3.洗洁精

形状:粘稠状

化学组成:洗洁精的主要成份是:1表面活性剂;其主要作用是产生泡沫及去污;2、洗涤助剂:常用的原料有氢氧化钠和柠檬酸钠;3、增稠剂量:其主要作用是增稠,稳泡及去污,常用的原料有6501、6502、氯化钠;4、防腐剂,其主要作用是杀菌,保持,常用的原料有:苯甲酸钠、甲基异噻唑啉酮等;5、添加剂,其主要作用是处理水质,改善气味,常用的原料有:1、乙二胺四乙酸二钠,2、eDta四钠

性能:去污性能,去油性能等。

用途:可以用来清洗碗筷,也可以用来清洗鞋子或衣服上的污浊等。

4.电冰箱外壳

形状:长方体或者不规则多边形

化学组成:塑料,金属等。

性能:支撑冰箱外形,美观漂亮及减少冰箱成本等等。

改进措施:我们都知道,冰箱在使用一段时间后外形将不再漂亮美观,主要是由于塑料经过长期的外置于空气中可能发生老化,变色等。如果能将塑料的性能改优使其老化速度减缓或者不老化,那么将是一件非常有价值的进步,另外就是和上面一样,如果做到塑料能够自动降解,那么我们的世界将少了一份白色污染。我们的世界也将变得更加美丽!

5.各种医用高分子材料制品

医用高分子材料是指可以应用于医药的人工合成(包括改性)的高分子材料,一般不包括天然高分子材料、生物高分子材无机高分子材料等在内。随着生物科学技术的不断发展和进步,越来越多的高分子材料被用于与人类生命健康息息相关的各种器官和皮肤的替代材料。

医用高分子材料大致可分为机体外使用与机体内使用两大类。机体外用的材科主要是制备医疗用品。如输液袋、输液管、注射器等。输液袋、管可用卫生级聚氯乙烯制造。由于这些高分子材料成本低、使用方便,现已大量使用。机体内用材料又可分为外科用和内科用两类。外科方面有人工器官、医用粘合剂、整形材料等。内科用的主要是高分子药物。所谓高分子药物,就是具有药效的低分子与高分子载体相综合的药物,它具有长效、稳定的特点。

归纳起来,一个具备了以下七个方面性能的材料,可以考虑用作医用材料。

高分子材料的现状篇7

[论文摘要]目前,静电在生物工程中有着重要的应用。介绍高分子抗静电的方法,阐明高分子材料抗静电技术在我国的发展和策略。

静电广泛地存在于自然界和日常生活之中,如人们每时每刻呼吸的空气每厘米就含有100500个带电粒子;自然界的雷电;干燥季节里人身上化纤衣物由于摩擦起电而粘附在身体上,这一切都是比较常见的静电现象。实际上,静电在生物工程中有着重要的应用。

一、高分子抗静电的方法概述

高聚物表面聚集的电荷量取决于高聚物本身对电荷泄放的性质,其主要泄放方式为表面传导、本体传导以及向周围的空气中辐射,三者中以表面传导为主要途径。因为表面电导率一般大于体积电导率,所以高聚物表面的静电主要受组成它的高聚物表面电导所支配。因此,通过提高高聚物表面电导率或体积电导率使高聚物材料迅速放电可防止静电的积聚。抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消除静电产生的化学添加剂,添加抗静电剂是提高高分子材料表面电导率的有效方法,而提高高聚物体积电导率可采用添加导电填料、添加抗静电剂或与其它导电分子共混技术等。

(一)添加导电填料

这类方法通常是将各种无机导电填料掺入高分子材料基体中,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。

(二)与结构型导电高分子材料共混

导电高分子材料中的高分子(或聚合物)是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、成型困难、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。

(三)添加抗静电剂法

1.有机小分子抗静电剂。有机小分子抗静电剂是一类具有表面活性剂特征结构的有机物质,其结构通式为RYx,其中R为亲油基团,x为亲水基团,Y为连接基。分子中非极性部分的亲油基和极性部分的亲水基之间应具有适当的平衡与高分子材料要有一定的相容性,C12以上的烷基是典型的亲油基团,羟基、羧基、磺酸基和醚键是典型的亲水基团,此类有机小分子抗静电剂可分为阳离子型、阴离子型、非离子型和两性离子型4大类:阳离子型抗静电剂;阴离子型抗静电剂;非离子型抗静电剂;两性型抗静电剂。

导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下4种:(1)抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成“海一岛”型水性的导电膜。(2)离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。(3)介电常数大的抗静电剂可增加摩擦体间隙的介电性。(4)增加制品的表面平滑性,降低其表面的摩擦系数。概括起来一是降低制品的表面电阻,增加导电性和加快静电电荷的漏泄;二是减少摩擦电荷的产生。

2.永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。

二、我国高分子材料抗静电技术的发展状况

我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、aBpS(烷基苯氧基丙烷磺酸钠)、Dpe(烷基二苯醚磺酸钾);上海助剂厂开发目前多家企业生产的抗静电剂Sn(十八烷基羟乙基二甲胺硝酸盐),另外该厂生产的抗静电剂pm(硫酸二甲酯与乙醇胺的络合物)、抗静电剂p(磷酸酯与乙醇胺的缩合物);北京化工研究院开发的aSa一10(三组份或二组份硬脂酸单甘酯复合物)、aSa一150(阳离子与非离子表面活性剂复合物),近年来又开发出aSH系列、aSp系列和aB系列产品,其中aSa系列抗静电剂由多元醇脂肪酸酯、聚氧乙烯化合物等非离子表面活性剂;aSB系列产品则为有机硼表面活性剂(主要是硼酸双多元醇脂与环氧乙烷加成物的脂肪酸酯)与其他非离子表面活性剂复合而成;aSH和aSp系列主要是阳离子与非离子表面活性复合而成,杭州化工研究所开发的HZ一1(羟乙基脂肪胺与一些配合剂复合物)、CH(烷基醇酰胺);天津合成材料工业研究所开发的iC一消静电剂(咪唑一氯化钙络合物);上海合成洗涤剂三厂开发生产的SH系列塑料抗静电剂,已经形成系列产品,在使用效果和性能上处于国内领先地位,部分品种可以替代进口,如SH一102(季铵盐型两性表面活性剂)、SH一103、104、105等(均为季铵盐型阳离子表面活性剂),SH抗静电剂属于结构较新的带多羟基阳离子表面活性剂;济南化工研究所JH一非离子型抗静电剂。(聚氧乙烯烷基胺复合物)等;河南大学开发的KF系列等,如KF一100(非离子多羟基长碳链型抗静电剂)、KF-101(醚结构、多羟基阳离子永久型抗静电剂),另外还有聚氧乙烯醚类抗静电剂,聚乙烯、聚丙烯和聚氯乙烯专用抗静电剂202、203、204等;抗静电剂tm系列产品也是目前国内常用的,主要用于合成纤维领域。

从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。

三、结语

我国合成材料抗静电剂行业发展前景较好,针对目前国内研究、生产、应用与需求现状,对我国合成材料抗静电剂工业发展提出以下建议。

(一)加大新品种开发力度

近年来国外开发的高性能伯醇多聚氧化乙醚类非离子型表面活性剂;用于聚碳酸酯的脂肪酸单缩水甘油酯;用于磁带工业的添加了聚氯化乙烯醚醇的磷酸衍生物;适应于聚烯烃、聚氯乙烯、聚氨酯等多种合成材料的多元醇脂肪酸酯和三聚氰胺加成物等,总之国内科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。

(二)加快复合抗静电剂和母粒的研究与生产

今后要加快多种结构抗静电剂及其他塑料助剂的复配,向适应范围广、效率高、系列化、多功能、复合型等方向发展。另外合成材料多功能母粒作为助剂已经成为今后合成树脂加工改性的重要原材料,如着色、阻燃、抗菌、成核等母粒在国内开发方兴未艾,国内要加快抗静电母粒的开发与研究,促进我国抗静电剂工业发展。

参考文献

[1]高绪珊、童俨,导电纤维及抗静电纤维[m].北京:纺织工业出版社,1991.148154.

高分子材料的现状篇8

关键词:高分子材料;成型;控制

0前言

作为一种实际应用效果良好的材料,高分子材料在近期得到了广泛的应用。研究高分子材料成型及控制,能够更好地提升其实践水平,从而有效保证高分子材料的整体效果。本文从概述高分子材料的相关内容着手本课题的研究。

1概述

现阶段我国在高分子合成材料方面取得了很大的进步,相关行业的生产活动也在不断发展壮大,高分子材料成型加工技术被运用与汽车等工业生产活动之中。高分子合成材料行业已经发展成为我国的重要经济类产业,是国民经济的重要组成部分。由于高分子材料的特性,必须加强对高分子材料的系统性研究,了解高分子材料的成型过程以及控制对策,为高分子材料工业的发展提供依据,是我国科研工作的重要任务。高分子材料成型加工技术属于一门重要的科学,国内外著名的专家学者都对其予以高度关注,将与化学、物理等方面的专业内容融入到高分子材料成型加工技术中,为研究工作的开展提供科学依据。

2高分子材料的基本成型方法

2.1挤出成型

高分子材料的基础成型是通过螺杆旋转加压的方式,不间断的将已经成型的材料由有机筒挤出来,挤入到机头中去,熔融物料通过机头口模成型为与口模形状相仿的型坯,然后借助相应的牵引工具把成型的材料不断的在模具中提取出来,并对其进行冷却处理,进而得到相应的形状。挤出成型是一项系统性的工程,由入料、塑化、成型以及定性等过程,每个环节都对高分子材料的成型起到关键性的作用。

2.2吹塑成型

吹塑就是通过中空吹塑的方式来实现的,主要是依靠气体的压力,来促使处于闭合状态的热熔型胚发生鼓胀,进而形成中空制品的技术过程。吹塑成型是高分子材料成型的另一种主要方式,具有发展快、效率高的特点。吹塑成型的主要加工模式是挤出、注塑和拉伸,是目前常用的三种吹塑方法。

2.3注塑成型

一般情况下,我国高分子材料加工行业普遍采用的成型方法是注塑成型,其面对的生产对象大都是空间感强、立体式的材料形状,在塑料生产方面具有诸多的优势,受到了企业的广泛关注和应用。注塑成型方式应用的范围相对较广,成型操作所需时间短、多样的花色、生产效率高等等优点,是高分子材料成型最具实用性的方法。

3现阶段高分子材料成型技术的优化与创新分析

3.1聚合物动态反应加工技术及设备

现阶段,通过对国内外高分子材料成型技术的研究,大都采用反应加工设备来开展工作,但是,该反应加工设备的原理是在原有的混合、混炼设备上进行完善与优化所生产的产品,其还存在多方面的问题,处于不成熟阶段,传热、混炼过程等都是其中的典型问题。另一方面,设备引进和使用投资大、能耗高,噪音污染严重、密封困难。

利用聚合物动态反应加工技术及设备来创新与优化高分子材料成型加工工作,相较于传统的技术有了很大的进步,加工原理以及设备的组成都有所不同。此种技术的应用,其核心内容是将电磁场条件下的机械振动厂投入到高分子材料的机头挤出操作中,能够实现对化学反应、生成物的聚合结构、制品的各项变化等的控制,起到了良好的应用效果。

3.2新材料制备新技术

信息与科学技术的不断发展,在各个领域都得到了广泛的应用,为了优化和升级高分子材料成型加工技术,可将信息存储光盘应用到加工技术中,利用盘基来直接实现反应成型技术的构建,整个成型技术形成动态式、链条式的操作流程,树脂的生产与加工、储备与运送,再到盘基的成型,探索出酯交换的链条式生产与加工技术,能有效控制能源的使用率、提高成品的质量。

新材料制备新技术的出现,为高分子材料加工行业的发展提供了发展契机,动态全硫化制备技术也是其中的代表,是我国科学技术不断发展的重要体现,新技术的应用与振动力场具有密切的联系,可以更为直观有效的控制硫化的整个过程,能很好的应对硫化过程中所遇到与相态有关的反转类问题。针对此项技术,科学家应致力于研究与技术相匹配的更具全面化的设备,为我国高分子材料加工水平提供技术支撑。

4高分子材料在成型过程中的控制

近年来,我国由于综合国力的提升,在科学领域取得了一项又一项瞩目的成绩,其中高分子材料在成型过程中的控制是研究的主要课题之一。高分子材料在一定条件下极易发生结构上变化,温度、外力等都是影响高分子材料所形成的聚合物的结构与形态,同时在外部条件的影响下,高分子材料还会发生聚集形态上的变化,一系列的问题都是现阶段科学家研究的主要问题。通过不断的研究,科学家得出了一系列的成果,实现对新型高分子材料的开发,形成了多元化的高分子材料群体,并投入实际的应用之中,促进了高分子材料工业的发展。通过研究,科学家发现,大部分聚合物多相体系存在不相溶的现象,制约着成型过程中的控制工作,为了改善此类情况,可以适当的融入第三组分。在聚合物生产与加工的过程中,所研制出的产品会处于温度不稳定的环境中,由于制品极易受到温度的影响而发生形态和结构上的变化,进而影响其性能,应加强对制品温度的控制。由于制品的温度会随着时间推移为发生动态上的变化,可见,了解在非等温场条件下,聚合物、共混物制品温度与时间的变化关系是非常关键的,并对变化的规律进行总结,可为成型过程中的形态结构控制提供依据。

5结语

本文以高分子材料成型方法和控制进行了具体性的分析,我们可以发现,高分子材料的多项优势决定了其在实践中的应用地位,有关人员应该从其客观实际需求出发,充分利用自身有利条件,研究制定最为符合实际的成型及控制实施方案。

参考文献:

[1]杨帆.浅析高分子材料成型加工技术[J].应用科学,2011(08):66-68.

高分子材料的现状篇9

高聚物表面聚集的电荷量取决于高聚物本身对电荷泄放的性质,其主要泄放方式为表面传导、本体传导以及向周围的空气中辐射,三者中以表面传导为主要途径。因为表面电导率一般大于体积电导率,所以高聚物表面的静电主要受组成它的高聚物表面电导所支配。因此,通过提高高聚物表面电导率或体积电导率使高聚物材料迅速放电可防止静电的积聚。抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消除静电产生的化学添加剂,添加抗静电剂是提高高分子材料表面电导率的有效方法,而提高高聚物体积电导率可采用添加导电填料、添加抗静电剂或与其它导电分子共混技术等。

(一)添加导电填料

这类方法通常是将各种无机导电填料掺入高分子材料基体中,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。

(二)与结构型导电高分子材料共混

导电高分子材料中的高分子(或聚合物)是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、成型困难、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。

(三)添加抗静电剂法

1.有机小分子抗静电剂。有机小分子抗静电剂是一类具有表面活性剂特征结构的有机物质,其结构通式为RYx,其中R为亲油基团,x为亲水基团,Y为连接基。分子中非极性部分的亲油基和极性部分的亲水基之间应具有适当的平衡与高分子材料要有一定的相容性,C12以上的烷基是典型的亲油基团,羟基、羧基、磺酸基和醚键是典型的亲水基团,此类有机小分子抗静电剂可分为阳离子型、阴离子型、非离子型和两性离子型4大类:阳离子型抗静电剂;阴离子型抗静电剂;非离子型抗静电剂;两性型抗静电剂。

导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下4种:(1)抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成“海一岛”型水性的导电膜。(2)离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。(3)介电常数大的抗静电剂可增加摩擦体间隙的介电性。(4)增加制品的表面平滑性,降低其表面的摩擦系数。概括起来一是降低制品的表面电阻,增加导电性和加快静电电荷的漏泄;二是减少摩擦电荷的产生。

2.永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。

二、我国高分子材料抗静电技术的发展状况

我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、aBpS(烷基苯氧基丙烷磺酸钠)、Dpe(烷基二苯醚磺酸钾);上海助剂厂开发目前多家企业生产的抗静电剂Sn(十八烷基羟乙基二甲胺硝酸盐),另外该厂生产的抗静电剂pm(硫酸二甲酯与乙醇胺的络合物)、抗静电剂p(磷酸酯与乙醇胺的缩合物);北京化工研究院开发的aSa一10(三组份或二组份硬脂酸单甘酯复合物)、aSa一150(阳离子与非离子表面活性剂复合物),近年来又开发出aSH系列、aSp系列和aB系列产品,其中aSa系列抗静电剂由多元醇脂肪酸酯、聚氧乙烯化合物等非离子表面活性剂;aSB系列产品则为有机硼表面活性剂(主要是硼酸双多元醇脂与环氧乙烷加成物的脂肪酸酯)与其他非离子表面活性剂复合而成;aSH和aSp系列主要是阳离子与非离子表面活性复合而成,杭州化工研究所开发的HZ一1(羟乙基脂肪胺与一些配合剂复合物)、CH(烷基醇酰胺);天津合成材料工业研究所开发的iC一消静电剂(咪唑一氯化钙络合物);上海合成洗涤剂三厂开发生产的SH系列塑料抗静电剂,已经形成系列产品,在使用效果和性能上处于国内领先地位,部分品种可以替代进口,如SH一102(季铵盐型两性表面活性剂)、SH一103、104、105等(均为季铵盐型阳离子表面活性剂),SH抗静电剂属于结构较新的带多羟基阳离子表面活性剂;济南化工研究所JH一非离子型抗静电剂。(聚氧乙烯烷基胺复合物)等;

河南大学开发的KF系列等,如KF一100(非离子多羟基长碳链型抗静电剂)、KF-101(醚结构、多羟基阳离子永久型抗静电剂),另外还有聚氧乙烯醚类抗静电剂,聚乙烯、聚丙烯和聚氯乙烯专用抗静电剂202、203、204等;抗静电剂tm系列产品也是目前国内常用的,主要用于合成纤维领域。

从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。

三、结语

我国合成材料抗静电剂行业发展前景较好,针对目前国内研究、生产、应用与需求现状,对我国合成材料抗静电剂工业发展提出以下建议。

(一)加大新品种开发力度

近年来国外开发的高性能伯醇多聚氧化乙醚类非离子型表面活性剂;用于聚碳酸酯的脂肪酸单缩水甘油酯;用于磁带工业的添加了聚氯化乙烯醚醇的磷酸衍生物;适应于聚烯烃、聚氯乙烯、聚氨酯等多种合成材料的多元醇脂肪酸酯和三聚氰胺加成物等,总之国内科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。

(二)加快复合抗静电剂和母粒的研究与生产

今后要加快多种结构抗静电剂及其他塑料助剂的复配,向适应范围广、效率高、系列化、多功能、复合型等方向发展。另外合成材料多功能母粒作为助剂已经成为今后合成树脂加工改性的重要原材料,如着色、阻燃、抗菌、成核等母粒在国内开发方兴未艾,国内要加快抗静电母粒的开发与研究,促进我国抗静电剂工业发展。

参考文献:

[1]高绪珊、童俨,导电纤维及抗静电纤维[m].北京:纺织工业出版社,1991.148154.

[2]张淑琴,抗静电剂,化工百科全书,第1版,化学工业出版社,1995(4):667.

[3]陈湘宁、王天文,用于最佳静电防护的本征导电聚合物的最新进展[J].化工新型材料,2002,30(11):4750.

高分子材料的现状篇10

【关键词】功能材料;特点;发展现状

一、引言

功能材料的概念是美国mortonJa于1965年首先提出来的。功能材料是指具有一种或几种特定功能的材料,如磁性材料、光学材料等,它具有优良的物理、化学和生物功能,在物件中起着“功能”的作用。随着社会的不段发展,功能材料的作用越来越大。下面对几种功能材料做一些简单的介绍。

二、铁电材料

在具有压电效应的材料中,具有自发极化(自发极化包括二部分:一部分来源于离子直接位移;另一部分是由于电子云的形变),且自发极化能够为外电场所转向的一类材料称为铁电材料。铁电材料的发展大体可以分为四个阶段:罗息盐时期—发现铁电性;KDp时期—铁电热力学理论;钙钛矿时期—铁电软模理论;铁电薄膜及器件时期—小型化(铁电液晶、聚合物复合材料、薄膜材料和异质结构等非均匀系统)。

现代功能材料的应用非常广泛,可作信息存储、图象显示;可以做成小体积大容量的陶瓷电容器;铁电薄膜能用于不挥发存贮器外,还可利用其压电特性,用于制作压力传感器,声学共振器,还可利用铁电薄膜热释电非致冷红外传感器研究等。

虽然应用广泛,但铁电材料的研究面临很多困难,例如薄膜化引起的界面问题,小型化带来的尺寸效应和加工、表征问题,集成化导致的兼容性问题等等。同时,与铁电材料及器件相关的新原理、新方法、新应用都值得我们去研究和开发。

三、铁磁材料

随着材料科学的发展,铁磁材料已成为一种重要的智能材料。铁磁材料主要包括软磁材料、硬磁材料、和矩磁材料。

软磁材料是具有低矫顽力和高磁导率的磁性材料。软磁材料易于磁化,也易于退磁,广泛用于电工设备和电子设备中。例如变压器,变压器是利用电磁感应的原理来改变交流电压的装置,主要构件是一级级线圈、二级线圈和铁心。在电器设备和无线电路中,常用作升降电压、安全隔离等。其中铁芯芯便是软磁体。

硬磁材料是指磁化后不易退磁而能长期保留磁性的一种铁氧体材料,也称为永磁材料或恒磁材料。硬磁材料可用于永久扬声器、扩音器、电话等。扬声器纸盆背面是磁铁,外磁式扬声器用金属螺丝刀去接触磁铁时会感觉到磁性的存在;内磁式扬声器中没有这种感觉,但是外壳内部确有磁铁,便是硬磁体。

矩磁材料,是指具有矩形磁滞回线的铁氧体材料。它的特点是,当有较小的外磁场作用时,就能使之磁化,并达到饱和,去掉外磁场后,磁性仍然保持与饱和时一样。

四、热电材料

热电材料又叫称温差电材料,是一种利用固体内部载流子的运动实现热能和电能直接相互转换的功能材料,主要用于热电发电和制冷。

热电材料根据运作温度可分为三类:碲化铋及其合金,这是被广为使用于热电致冷器的材料,其最佳运作温度

五、形状记忆材料

具有一定形状的固体材料,在某一低温状态下经过塑性变形后,通过加热到这种材料固有的某一临界温度以上时,材料又恢复到初始形状的现象,称为形状记忆效应。具有形状记忆效应的材料称为形状记忆材料。形状记忆材料分为三类:形状记忆合金(钛-镍系形状记忆合金,铜基系形状记忆合金和铁系形状记忆合金);形状记忆陶瓷;形状记忆聚合物。

形状记忆材料作为新型功能材料在航空航天、自动控制系统、医学、能源等领域具有重要的应用。形状记忆合金已广泛用于人造卫星天线、机器人和自动控制系统、仪器仪表、医疗设备和能量转换材料。近年来,又在高分子聚合物、陶瓷材料、超导材料中发现形状记忆效应,而且在性能上各具特色,更加促进了形状记忆材料的发展相应用。

六、纳米材料

纳米是一个长度单位,1nm=10-9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1-100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。

纳米材料的发展大致可划分为三个阶段:

第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能。

第二阶段(1990-1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料。

第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。

纳米材料的特性主要有:小尺寸效应、表面和界面效应、量子尺寸效应和宏观量子隧道效应。

纳米材料的应用非常广泛,比如纳米陶瓷材料、纳米传感器、纳米倾斜功能材料、纳米半导体材料、纳米催化材料以及在家电、纺织工业和机械工业上的应用。

材料是现代科技和国民经济的物质基础。一个国家生产材料的品种、数量和质量是衡量其科技和经济发展水平的重要标志。随着新技术将更迅猛地发展,我们对功能材料的需求也日益迫切。因此,我们要加强对功能材料的研制和开发应用,把新成果应用于劳动生产。