高分子材料分析方法十篇

发布时间:2024-04-26 01:47:19

高分子材料分析方法篇1

[论文关键词]高分子材料 专业英语 教学方法

[论文摘要]高分子材料专业英语中专业词汇较多、专业知识较强、中西文化差异大。本文在分析了科技英语特点的基础上,详细讨论了高分子材料专业英语的教学方法,提出了从扩大学生词汇量、分析句式结构、提高阅读理解和写作能力以及运用多种教学方法和手段等方面来提高学生高分子材料专业英语水平,使高分子材料专业大学生尽快适应社会需求。

高分子材料专业英语是一门以英语为工具的高分子材料专业课程,教学内容以高分子材料工程专业知识为主,以学术英语为辅,目的在于帮助高分子材料专业学生使用英语,直接学习和接触国外相关专业信息。这不仅要求顺利阅读、听懂英语,同时还要求以英语为工具获取专业信息。本文结合教学实践简述了科技英语的特点,以求在专业英语学习过程中准确理解原文,能够用目的语忠实而通顺地再现原文内容。

一、高分子材料专业英语特点

高分子材料专业英语的文体与修辞手段与文艺小说、新闻报道等迥然不同,具有以下特点:严谨周密,概念准确,逻辑性强,行文简练,重点突出,句式严整,少有变化。在阅读或翻译时要注意其行文特点和写作规律,以便更好理解高分子材料专业英语文章。其特点突出表现在以下几个方面:

(一)广泛使用被动语态

专业英语文章侧重叙事推理,强调客观准确。第一、二人称使用过多,会造成主观噫断的印象。因此尽量使用第三人称叙述,采用被动语态,例如:whenalow-molar-massby-productisformed,theadjective‘condensative’isrecommendedtogivethetermcondensativechainpolymerization[1]。(建议推荐,缩合连锁聚合)

(二)重要信息前置

专业英语表达方式往往和中文句式颠倒,常用前置性陈述,即在句中将主要信息尽量前置,通过主语传递主要信息。例如“……arechargedintoa500mlreactionkettleequippedwithamechanicalstirrerandarefluxcondenser”(向带有机械搅拌器和回流冷凝器的500ml反应釜内加入……)。

(三)动词的名词化

大量使用名词化结构(nominalization)是专业英语的特点之一。因为专业英语文体要求行文简洁、表达客观、内容确切、信息量大、强调存在的事实,而非某一行为。专业英语中名词化句子可作主语、宾语、介词宾语、表语、宾语补足语、定语、同位语和状语等,换言之,除了不能担任谓语外,可以用作句子其它一切成分。例如:Suchsolutionscanoftenbeconcentratedbyfreezedrying.thisisdonebybringingthesurfaceofthesolutioninclosecontactwithacoldcondenserandapplyinghighvacuumtotheentireapparatussothat……(冷冻干燥)[2]。

二、高分子材料专业英语教学实践

高分子材料专业英语课程为大学第三或第四学年课程,学生已经学习了大学英语课程和高分子物理、高分子化学和高分子材料工程等专业基础课程,笔者重点关注了以下几方面教学实践活动:

(一)扩大词汇量

英语单词的数量虽然庞大,但构成单词的元素———词根、前缀、后缀的数量却是有限的[3]。这就要求在英语单词的学习中,通过掌握词根、前缀与后缀来学习新的词汇。在高分子材料专业英语中,常见的词根主要包括各种元素等,如hydro(氢),chlor(氯),amino(氨基),carbo(碳),oxy(氧),fibro(纤维),kineto(运动)。常见的前缀主要包括各种基团、基团的数目、地位等的表示,如poly-(聚,多),deca-(十或癸),non(a)-(九或壬),mono-(单、一),macro-(大的、宏观),micro-(微的,小的),per-(高,过,全),ethyl-(乙基),phenyl-(苯基),benzyl-(苄基),aryl-(芳基),alkyl-(烷基),metyoxy-(甲氧基),iso-(异,等,同),ert-(叔),ortho-(邻,正,原),ultra-(超、极端),super-(过度、过多),co-(共同),ant(i)-(反,抗)。常见的后缀主要包括各类聚合物的表示等,如-ene(烯烃的后缀),-ylene(亚基),-ide(化合物的后缀),-ate(盐或酯基的后缀),-ester(酯),-ether(醚),-form(仿),-glycol(二醇),-one(酮),-nitrile(腈),-sulfone(砜),-wise(方式)。

polytetrafluorethylene(聚四氟乙烯)可以拆分成poly(聚)、tetra(四)、fluor(o)(氟)、ethyl(乙基)和ene(烯)几部分,分开理解则容易记忆。hydrogenperoxide(过氧化氢)中hydrogen表示“氢”元素,per表示“过、高”,oxide表示“氧化物”。

(二)分析句式结构

对于课文,应突出重点,讲究长句的翻译技巧[4]。系统地阐述和分析翻译的基本知识、理论和技巧,使学生中掌握翻译的技巧,有利于学生翻译水平的提高。当学生碰到具体的问题时,就能够从语法现象、专业内容、修辞等方面灵活处理。如看到一个长句,先不要急于逐字逐句去看这个句子,先找出这个句子的主干,即主语、谓语(或系动词)、宾语(或表语),然后再看其余的修饰成分(也许是几个修饰词,也可能是一个完整的句子),分析它们与中心词之间的关系,然后根据中文表达习惯在主干中加入这些修饰成分。这样的翻译技巧和步骤适合任何的长句翻译。

(三)补充学习方法与技巧,引导学生进行归纳总结

高分子材料专业英语教材的课文专业词汇量大,复杂句子多,如果死记硬背,学生会感到吃力也会没有兴趣继续学习。因此,在教学的过程中要补充学习专业英语的方法。对于高分子材料词汇规律性而言,如词头poly-是多和聚的意思;词尾-ane是指烷烃,-ene一般是指烯烃,-one酮等;一些基团如methyl(甲基),ethyl(乙基),propyl(丙基)都是以-yl结尾。那么在遇到生词polypropylene(聚丙烯)时,学生就可通过掌握的规律轻松记住单词,做到举一反三,达到事半功倍的效果。

(四)组织课堂讨论,注重给学生提供锻炼的机会

在教学实践中,为了给学生锻炼的机会,教师要善于“让位”,把讲台让给学生。例如,在学期的开始就将学生进行合理的分组,以每个小组为单位,提前布置课堂总体学习内容,让大家课下做一定准备,上课时临时抽查小组中的成员走上讲台给其他学生讲解指定段落,在学生讲解的过程中,教师也是听众;讲解完毕后,小组中的其他成员和其他小组的学生均可补充;教师做总结,对遗漏、错误的地方进行补充。一个学期结束,尽量使每位学生都至少有一次上台讲的机会。这样,一方面可以调动学生发现和解决问题的积极性,减轻学生对教师的依赖,更重要的一个方面,给学生一个在公众场合表达自己的锻炼机会。采取这样的方式后,学生普遍反应良好,特别是对于不敢在公众场合说话的同学,认为经过这样的参与,自己不仅学到了知识,而且也锻炼了人际交往能力,为以后的应聘求职奠定了良好的基础。

三、总结

总之,在高分子材料专业英语的教学中,应充分发挥学生的积极主动性,尽可能地多引导学生做规律性的总结,熟悉句法技巧,并在考核方式上有所侧重,这样才有可能使专业英语的教学更加有吸引力,取得良好的教学效果。

[参考文献]

[1]揣成智.高分子材料工程专业英语[m].北京:中国轻工业出版社,1999:18.

[2]曹同玉,冯连芳.高分子材料工程专业英语[m].北京:化学工业出版社,1999:203.

高分子材料分析方法篇2

[关键词]金属材料,化学成本,仪器分析

中图分类号:tG115文献标识码:a文章编号:1009-914X(2015)02-0000-01

金属材料的化学成分是决定材料性能和质量的重要因素,现行国家、行业标准对绝大多数的金属材料都规定了其必须保证的化学成分,有的甚至作为质量、品种的指标。金属材料的化学成分分析依据分析原理和分析条件不同,分为化学法和仪器法。化学法主要根据金属成分的化学反应来确定金属材料的组成成分,这种方法能够准确定性及定量分析金属化学成分,但存在着试剂消耗量大、过程复杂、效率低下的缺点。仪器分析法则根据元素的的光学、电学等化学性质,利用分析设备为依托,准确快速地实现成分分析。随着仪器分析学科的发展和越来越多先进分析设备的问世,紫外可见分光光度法、原子吸收光谱法、原子荧光光谱法、原子发射光谱法以及X射线荧光光谱法等仪器分析方法在金属材料分析领域应用越来越成熟。

一、紫外可见分光光度法

分光光度法的原理是利用重金属与显色剂发生络合反应,生成有色的分子团,反应后溶液的颜色深浅与浓度成正比。在特定的波长下与标准样品比色检测。目前分光光度分析主要有两种,一种是利用物质本身对紫外及可见光的吸收进行测定,另一种是生成有色化合物,即“显色”,然后测定。虽然不少无机离子在紫外和可见区都有吸收,但因一般强度较弱,所以直接用于分析的较少。加入显色剂使待测物转化为紫外和可见光区有吸收的化合物来进行光度测定,是目前金属材料分光光度分析方法最广泛的手段。通过分光光度法,可测定金属材料中的mn、p、Si、Cr、ni、mo、Cu、ti、V、al、w、nb、mg等化学成分。与传统化学法相比,紫外可见分光光度法具有灵敏度高,仪器设备操作简单,操作便捷、快速的有点,能够广泛应用在各种金属材料的化学成分分析中,但是相比较于化学法以及其他仪器分析方法,存在着样品需要显色处理、准确度不高的不足。

二、原子吸收光谱法

原子吸收光谱法是20世纪50年代创立起来的一种新型仪器分析方法,依据金属材料中被分析的目标元素能够吸收特定波长的特征谱线,根据特定元素对光吸收量的多少从而利用朗博比尔定律去进行定量分析,实现金属材料中元素含量的分析。该种方法能够实现金属材料中70多种微量元素的成分分析。分析灵敏度根据原子化方式的不同有所不同,火焰原子吸收光谱法测定的金属材料相对灵敏度为1.0×10-8~1.0×10-10g・mL-1,非火焰原子吸收分光光度法的绝对灵敏度为1.0×10-12~1.0×10-14g。原子吸收光谱法作为一种成熟且应用广泛的分析方法,应用在金属材料化学分析领域具有不可替代的优点:首先,该方法分析范围广,能够分析金属材料中70多种主次微含量的元素;其次,原子吸收光谱法采用的是锐线光源,减少了目标元素之外的其他元素光谱干扰,有利于得到更为准确的分析结果,测定微、痕量元素的相对误差可达0.1%~0.5%,这点在基体复杂的金属材料分析中尤为明显;再次,该方法具有良好的稳定性和重现性,精密度好,一般的仪器分析结果相对标准偏差为1%~2%,性能好的仪器可达0.1%~0.5%。第四,该方法分析的速度快,分析一个样品只需要数十秒至几分钟。基于以上优点,该方法已经成为金属材料化学成分分析的主要手段。但是该法也存在每次测试只能分析一个目标元素,分析多元素时样品用量大,以及只能分析液体样品,金属材料需要化学前处理的不足。

三、原子荧光光谱法

原子荧光光谱法是1964年以后发展起来的,是通过测量待测元素的原子蒸汽在特定频率能激以下所产生的荧光发射强度,以此来测定待测元素含量的方法。原子荧光主要有5种基本类型:共振荧光、直跃线荧光、阶跃线荧光、敏化荧光和多光子荧光。大部分仪器分析工作时使用的是共振荧光因其跃迁的概率最大且普通线光源即可获得相当高的辐射密度。原子荧光光谱法在金属材料化学分析中应用最成功的是金属材料中易形成气态氢化物的as、Sb、Bi、Se、Ge、pb、Sn、te和Hg等8种元素的痕量分析,到20世纪末,又增加了Cd和Zn两种元素。目前有些国家标准中已经将原子荧光光谱法指定为金属材料中个别元素分析的标准方法。原子荧光光谱法分析金属材料,具备以下几个方面的优点:1、分析元素能够与可能引起干扰的样品基体分离,消除干扰;2、与溶液直接喷雾进样相比,氢化物法能够将待测元素充分预富集,进样效率接近100%;3、连续氢化物发生装置易于实现自动化;4、不同价态的氢化物发生条件不同,可进行金属材料中痕量元素的价态分析。但是基于原子荧光光谱法的原理,能够形成气态氢化物的元素有限,所以原子荧光光谱法仅能够实现金属材料中部分元素的分析,而不能实现所有成分元素的测定,存在一定的局限性。

四、原子发射光谱法

原子发射光谱法与原子吸收光谱法相辅相成,是金属材料中无机元素定性和定量分析的主要手段。分析的原理是依据处于激发态的待测元素原子回到基态时发射的特征谱线,对元素进行定性和定量分析。该方法分析目前最主要的仪器为iCp-aeS,此类仪器可实现70多个元素的微量、痕量分析。与原子吸收光谱法不同,使用该仪器分析方法分析金属材料时,一个样品一经激发,样品中各元素都各自发射出其特征谱线,从而可以实现一个金属材料样品同时测定其中的多个元素含量。使用原子发射光谱法分析的试样,大多数不需经过化学处理就可分析,且固体、液体试样均可直接分析,若用光电直读光谱仪,还可在几分钟内同时做几十个元素的定量测定。对于批量金属材料的分析,体现出了快速和样品使用量较少的优点。原子发射光谱法的仪器大多都具备检出限低,稳定性及重现性好的优点,但也存在一定的不足,在金属材料分析中,由于各个元素的发射谱线众多,各个目标元素有时会出现相互干扰的情况,影响结果准确性;分析金属材料中主元素含量时,由于含量过高,分析的准确性会变差;该类仪器分析方法,只能分析金属材料中的元素含量,而不能分析金属材料中的化合物含量或者元素的形态;虽然缺点明显,但是原子发射光谱法还是以其无法比拟的优点赢得众多金属材料化学成分分析者的欢迎,成为金属材料化学分析的首选手段。

五、结语

使用仪器分析方法进行金属材料的化学成分分析,每种方法适用的样品类型以及分析的目标不一致,优缺点明显。如何根据金属材料的性质以及分析的目标选取适当经济的分析方法,才是做好金属材料化学分析的关键。随着化学分析技术的进步以及仪器性能的不断提高,仪器分析手段将会更加广泛地应用到金属材料化学分析中。

参考文献

[1]孙汉文.光谱学与光谱分析,2003,23(2):386.

[2]那延富,郑健,冯国栋等.分析化学,2003,31(4):490.

[3]邓勃.现代仪器,2004,(2):1.

[4]GB/t12689.1~13689.12-2004锌及锌合金化学分析方法.

高分子材料分析方法篇3

要】本文探讨了工科实验室的“材料结构与显微分析”实训课程的改革,通过改革,优化了培养机制,激发了学生的兴趣,提高了学生的主动性、创新性,为培养创新性应用型人才打下了基础。

【关键词】工科实验室;创新性;应用型;管理机制;XRD

引言

随着科学技术的发展,国内外材料科学与工程专业的研究领域正从金属材料向无机非金属材料、有机高分子材料领域拓展;同时,随着计算机技术、微电子及制造技术的进步,“材料结构与显微分析”实训课程所需仪器不断向集成化、自动化、精密化方向发展,材料分析表征新技术不断涌现。

作为我校轻化工学院材料科学与工程专业实践教育实训课程的重要课程——“材料结构与显微分析”,正是为迅速适应这种新形势而推出及实施的。然而,通过对材料结构分析课程在国内的教学现状的调研后发现,该课程主要是作为理论课讲授的,有的学校再辅以一定的实验,学生在学习中常常感到课程内容零散,没有针对性和系统性,对具体仪器的使用不熟练,对其应用领域也不甚了解;或实验只为测试某一单项技术参数,为实验而实验,不知对材料结构的精细化剖析需要多种分析技术手段的科学集成。因此,常常是学过就忘,待走上工作岗位要真正用到时,就不知从何着手,动手能力差,应用能力差。目前,该课程教学手段相对迟后,特别是围绕应用型市场人才需求的培养方案研究甚少,为此,亟需加大投入,加快课程教学改革步伐,以迅速适应当今高科技新材料研究发展的时代要求。

1、体系构建的意义

材料测试技术是材料科学与工程专业研究以及应用的重要手段和方法,目的就是通过对材料的成分、细微组织结构进行了解,获知它们与材料性能的关系,即了解材料的基本性质和基本规律,同时为研究开发新材料提供新途径、新方法。在现代制造业中,测试技术具有非常重要的地位和作用,特别是基于电磁辐射及运动粒子束与物质相互作用的各种性质建立的各种分析方法已成为材料现代测试分析方法的重要组成部分,以光谱分析、电子能谱分析、衍射分析与电子显微分析等四大类方法,以及基于其他物理性质或电化学性质与材料的特征关系建立的色谱分析、质谱分析、电化学分析及热分析等方法也是材料现代分析的重要方法。

针对当前材料结构分析课程在教学及现实应用中存在的问题,结合我校材料科学与工程专业开设“材料结构与显微分析”实训课在实践中存在的不足,本课题提出要以培养适应社会发展、满足社会需求的创新型、应用型人才为目标,注重理论与实践的结合,通过材料结构与显微分析课程的科学、系统、集成化培养模式的构建,使同学们掌握扎实的基础,并结合理论知识,通过现有的教学测试仪器及分析手段的集成,让同学们真正全面掌握材料的综合分析方法,能从应用的角度设计实验分析方案,从微观上了解、研究材料,为新材料的研究开发及生产提供高水平、专业化、职业化服务,提高我校材料工程专业在业界的影响力,开创我校乃至我国“材料结构与显微分析”课程建设新局面。

2、如何构建体系

1)在教学思想和教学理念上,本课程的重点是通过理论学习材料结构表征及测试方法,结合实验掌握材料结构表征和测试方法的应用,按照“宽专业、厚基础、高素质、强能力”的人才培养模式要求,坚持“以学生为本,融知识传授、能力培养、素质教育于一体”的先进教学理念,既重视发挥教师的主导作用,又尊重学生在学习活动中的主体地位,实行启发式教学,全面激发和培养了学生的创新思维和创造能力。

2)本课程紧扣人才培养目标和课程定位,精选“X射线衍射分析”、“红外光谱分析”和“电子显微分析技术”为主要教学内容,遵循现代教育教学规律,科学地设计了课程体系,实现了科学性、先进性、应用型、创新性的有机统一。

3)在理论教学上,以材料结构与显微分析表征及测试技术为主线,恪守“表征为核心、仪器重操作、技术抓应用”的原则,采用案例教学法,将主讲教师承担科研项目获得的典型实验结果、流程引入课堂,并不断引入国内外最新研究成果和老师科研工作中获得的材料结构分析测试图谱,扩大了学生的知识面,促进了学生对教学内容的深入理解和掌握。这样既正确处理好经典与现代的关系,又能确保教学内容的基础性、研究性和前沿性。

4)在实验教学上,科学、系统设置“基础型”实验3项,“综合设计型”实验4项,“研究创新型”实验2项,覆盖X射线衍射分析技术、红外光谱分析和电子显微分析技术的实验原理、技术与应用,制订并引导学生参加课外科技创新实验和科学研究的办法,形成了“课程实验+课外创新实验+毕业论文”四年不断线的实验教学格局,在系统传授知识的同时能有效培养学生的实践能力和创新能力。

5)教学内容上,注重夯实基础、把握前沿,施行并凝炼了“课前预习+学生发问+难点讲解+老师质疑+小组报告+学生汇报讲演”教学法。理论教学以材料结构表征、分析仪器及测试技术为主线,恪守“表征为核心、仪器重操作、技术重应用”的原则。实验教学内容丰富,针对“基本操作”、“测试手段”和“研究方法”三大训练模块,通过扎实的理论教学和过硬的实验训练,学生的综合知识水平和实验技能得到了很大地提高。

结束语

本体系的构建,重视发挥教师的主导作用,又尊重学生在学习活动中的主体地位,实行启发式教学,全面激发和培养了学生的创新思维和创造能力;同时遵循现代教育教学规律,科学地设计了课程体系,实现了科学性、先进性、应用型、创新性的有机统一,正确处理好了经典与现代的关系,又确保了教学内容的基础性、研究性和前沿性。激发了学生的学习兴趣,明显地提高了教学质量,有效促进本科生形象思维和创新能力的培养,为培养地方性人才打下了夯实的基础。

参考文献

[1]张庐陵,蒋天弟,郑建鸿等.高等院校建立“多学科共享实验研究中心”的意义和探索

[J].江西农业大学学报,2002,1(4):157一161.

[2]张晓力.开放性工程实验室规划建设的几点认识〔J].北京市高教学会技术物质研究会第九次学术年会:228一232.

[3]张晓丽,黄小玲,曹宇东.创新实验室体系,促进实验教学改革[J].医学教育探索,2006,5(6):532一533.

高分子材料分析方法篇4

(一)优化人才培养方案,加强课程体系建设专业学位硕士研究生的人才培养方案应更加突出行业、企事业单位的职业性质和特点的要求[5]。按照行业特点或职业需要优化人才培养方案,构建课程体系。在课程设置中尽可能体现出与学术型硕士研究生的区别,在课程设置上突出实用化、工程化、技术化和职业化特点,改变课程设置僵化、强调统一、灵活性差等缺点。

1.课程体系的构建要打破原有全日制学术型研究生课程体系的框框,在重视基础理论能力培养的同时,要适度增加通用型理论课程模块,即“大学科、大平台”课程。材料工程专业学位研究生应掌握各种材料的制备技术、材料的各种分析手段和表征方法,以及工程技术与实践能力。因此,作为专业学位课,我们设置了《材料工程案例分析》、《材料制备技术》和《材料现代分析方法》三门课程。其中,《材料工程案例分析》是一门综合性工程技术性很强的课程,内容涉及金属材料、无机材料、高分子材料以及复合材料在实际工程应用中的特点及技术指标要求,例如金属材料的失效原因分析及采取的措施;电子陶瓷材料在高温烧结时颜色变黑的原因;钛酸钡本应为绝缘材料,但添加稀土元素变为半导体材料;等等。与其他基础课程相比,与企业生产实践的联系更为密切,重点在于培养学生分析和解决实际工程技术问题的能力。《材料制备技术》涉及各种材料的制备原理、制备方法与应用特点,是材料工程研究生必须掌握和了解的基础理论知识。《材料现代分析方法》是一门重要的工具课,既涉及到基础理论知识,又侧重于方法的具体实践应用,是必须掌握的专业学位课程。其内容包括X-射线衍射、扫描电镜、透射电镜、能谱分析、光电子能谱、原子力显微镜、差热分析、红外光谱、核磁共振、激光粒度分析、比表面测试等各种表征和分析测试方法。这些核心课程的设立将奠定专业学位研究生解决实际工程和技术问题的理论基础。

2.根据培养方向不同,灵活设置研究生课程模块,即“小方向”课程。例如,根据材料工程方向发展的特点和结合材料学院的科研基础,材料工程专业硕士研究生的培养方向主要有材料加工成型与模具设计、电子功能材料与器件、新能源材料与电源技术、高分子材料合成与改性等四个方向。在这四个方向上可灵活设置专业方向模块课程,即每个方向设置两门任选课程。材料加工成型与模具设计方向主要课程有《材料成型技术与模具》和《材料表面工程技术》,电子功能材料与器件方向主要有《先进无机材料与物理性能》和《光电转换材料与器件》,新能源材料与电源技术方向主要有《电化学原理及测试技术》和《新型能源材料》,高分子材料合成与改性方向主要有《高分子材料选论》和《有机波谱分析》。按不同的培养方向灵活设置研究生课程,可为专业学位研究生提供更大的自主选择性,有利于培养其职业素养,提高学习效率。

3.除了专业学位课和选修课外,为了提高研究生的解决实际工程和技术问题的能力,强化专业实践能力,作为必修课程,设置了《材料科学与工程实验》和《专业实践》这两门课程,以更好地凸显专业学位研究生职业取向和过硬的专业实践的特色。同时,还设置了学术讲座、知识产权、信息检索、技术经济分析等课程,以期全面培养专业学位研究生的信息获取能力和企业技术管理等能力。总之,课程设置要联系企业实际需求,考虑专业学位硕士研究生学习工作和研究背景等实际因素,根据企业技术创新的需求,整合教学资源,开发出一套以因材施教、体现学科前沿和实践性的专业学位研究生课程体系,不断提高研究生解决实际技术问题的科研攻关能力。比如,在材料工程专业学位硕士研究生的培养过程中,我们让研究生学习典型的数据处理软件origin和CaD、proe等工程制图软件,而该类实用工程软件的学习无疑将提高专业学位研究生的实践技能。

(二)加强师资队伍建设专业学位研究生的硕士论文选题应来自于企业和科研课题,工程背景明确,应用性强。因此,专业硕士研究生导师要求双导师制。一位是校内的导师,另一位是企业导师。学校导师主要负责研究生的课程学习、开题报告、学位论文理论部分的指导等;企业导师负责专业学位研究生的选题、工作安排、专业实践能力的培养、学位论文实践部分的指导等。学校、企业导师要共同制定研究生培养方案,从而保证专业学位研究生培养的质量。在实际操作中,要注意以下问题:

1.在导师遴选上,既要对导师的学历、职称、科研成果等进行量化评定,又要从工程实践经验、基础理论和指导能力及精力等方面对导师进行全方位综合测评。只有达到要求的校内外导师才有资格被聘为专业学位研究生导师。此外,要弱化对导师学历的要求,强化对导师工程实践能力和专业技术能力的要求。

2.加强专业学位研究生导师素质建设。随着专业学位硕士生规模的不断扩大,现有校内导师有相当数量是从学校到学校的年轻导师,他们虽然学历高,但大多缺乏实际工程经验。为此我们有计划地选派年轻教师到设计院、高新技术企业去挂职锻炼。同时,通过承担企业的横向研究,使年轻教师了解工程实际,参加企业的产品开发、设计、技术改造以及企业的运行、营销和管理,从而了解企业的需求。同时,在稳定现有导师资源的同时,我们从企业聘请或引进有工程技术背景的技术人员和专家作为专任的专业学位研究生指导教师,根据学科方向相近或相似的原则,成立3~5人由校内和校外导师组成的导师指导团队,这样可有效发挥各自导师的作用。

3.聘请企业专家担任相关课程任课教师。例如,《材料工程案例分析》这门学位课,可以聘请行业技术专家以专题讲座形式讲授新技术、新工艺和新设备,分析企业面临的技术难题或企业实际发生的技术难题如何攻关解决等,强化研究生解决实际工程技术问题的意识和能力;加大实践领域专家承担专业课程教学的比例,明确实习实践导师和论文导师的职责。

(三)深化校企合作,建立研究生联合培养基地结合专业和行业的特点,选择条件好的企事业单位、科研院所等共建研究生联合培养实习实践基地,强化产学研用人才培养链条。材料学院已与行业部门共建实习实践基地十多个。2012年,桂林电子科技大学材料学院和桂林电器科学研究院有限公司共建了研究生联合培养基地,该基地被批准为省级研究生联合培养基地。上级有关部门拨专款用于该基地的建设。材料学院的专业学位研究生可方便地到该基地实习实践,企业的导师和校内导师组成导师指导团队共同指导专业学位研究生。同时,联合培养基地拿出专项资金用于改善研究生的实习实践条件以及资助专业学位研究生的科研课题。经过实践发现专业学位研究生的工程实践能力和职业技能明显提高。目前已基本形成了培养单位和行业部门良性互动的包括课堂实践、科研实践和企业实践的实践教学体系。

二、结语

高分子材料分析方法篇5

abstract:electronicpackagingtechnologyisnewspecializedfieldinHarbininstituteoftechnologyatpresenttime.asthefundamentalcourse,《electronicpackagingmaterials》playedanimportantroleinimprovementoftheteachingforelectronicpackagingtechnology.enrichingnewlycontents,collectingnewdataandreferances,jumpingoutthetraditionalmodes,enhancingtheoreticalanalysis,stimulatinginterestsofstudents,improvingabilityofanalysisandsolvingproblemswerediscussedinthispaper.Someindividualexperiencesarealsointroduced.

关键词:电子封装;材料;教学方法;措施

Keywords:electronicpackaging;materials;teachingmethods;measures

中图分类号:G642.0文献标识码:a文章编号:1006-4311(2010)14-0221-02

0引言

电子封装是为基本的电子电路处理和存储信息建立互连和一个合适的操作环境的科学和技术,具有多学科交叉、尖端技术的性质。国内电子工业的飞速发展对封装技术专门知识和人才具有迫切的需求。

哈尔滨工业大学(威海)材料科学与工程学院为响应如上需求,在2008年高校招生中开始招收电子封装技术专业的首批本科生,从现有的本科教学2006级和2007级学生中各调剂了30名左右的学生组建了全新的电子封装技术专业本科教学班级,同时开展了相关课程教学工作。2010年7月,哈尔滨工业大学将有第一批电子封装技术专业的学生毕业。《电子材料》的课程设置就是为完成如上学习和教学任务,而开设的电子封装技术专业最重要专业主干课程之一。本文就这一新开课程的教学工作展开探讨和剖析,一方面为该课程的从无到有积累一定的教学经验,另一方面,使学生通过这一课程的学习掌握应有的学习技能,为其进一步学习深造或提高工作能力打下良好基础。作者承担了首届电子封装技术专业《电子材料》的教学工作,总结了点滴体会。在此,对《电子材料》课程教学方法进行初步探索,提出了一些有利于提高本课程教学效果的有力措施。

1《电子材料》的教学目标

电子封装技术专业培养目标是掌握先进电子制造工艺技术;注重基础研究和理论、密切结合生产实践;掌握先进封装结构设计方法、掌握封装的可靠性理论与工程技术、掌握电子产品的国际质量标准和可靠性标准。掌握先进电子封装制造设备的设计、分析、优化、控制、测试等基础理论与关键技术。开设相应的专业课程,是完成以上教学和学习目标的必要条件。材料、信息技术与能源称为现代人类文明的三大支柱。应特别指出的是,在材料、信息、能源三大基础产业中,材料最为基础。以目前迅速发展的电子材料为例。日本在金属超细粉、表面活性剂、有机粘结剂、有机溶剂、电子浆料、液晶材料、光学玻璃、偏光板、玻璃粉料、陶瓷粉料、封接玻璃、电子陶瓷、各种薄膜、各种基板、光刻制板、精细印刷、焊料焊剂、pCB基板、多层基板、微细连接、封接封装技术及各类相关设备等方面的中小型企业遍布全国,都有其独特的技术和很强的生产能力,且科研力量、开发能力都很强。这些中小型企业作为产业基础是必不可少的,日本、韩国微电子产业的腾飞正是得益于此。以材料的研发带动电子产业的进步效果尤为显著。

由此可见,电子封装技术的发展和进步是与相关材料的发展和进步为基础的。因此,电子封装材料的相关知识学习,贯穿于整个电子封装技术专业课程,必须抓住电子材料的发展和进步,从而掌握整个电子封装技术的发展主线。所以,《电子材料》这一门课程在专业教学中占有重要的地位,起到很关键的作用。

2《电子材料》的课程教学方法

2.1加强理论分析,做好课程关联相当部分的电子封装类别的参考书,甚至不少论文,常常体现“论点加数字”的传统格式――在陈述观点之后,即以数据加以佐证,缺乏理论上的深入分析。在教学中,为了对论点进行展开分析,用数字来加以佐证,确有必要。但若一味重复“论点加数据”的模式,势必使学生感到枯燥、乏味。应当对微电子器件的构造进行剖析,使电子封装用材料的应用范围进行落实,将理论与实际相结合,对教学进行理论升华,使课堂教学具有一定的理论性。

同时,还要注意上下游课程的关联性,融进邻近学科的知识。电子封装与金属材料、陶瓷材料、高分子材料及复合材料等课程有着千丝万缕的联系,若在教学中应用相关学科的知识来分析问题,则会使教学内容丰富,理论剖析达到一定的深度。这样不仅有利于学生从理论上更好地理解和把握电子封装材料的知识点,而且有利于学生将学过的课程与本门课程的学习联系起来,为今后其他专业课的学习打下基础。

2.2充实新内容由于新开设专业,是刚起步阶段中的学科,新的事物、现象不断出现,而没有合适的教材可以跟上实际的变化,所以在讲授《电子材料》课时,还没有特别适用的教材,如果仅仅是按照一本参考书照本宣科,并不能取得很好的教学效果,而是要注重充实新内容、新数据资料,紧跟电子封装技术的发展潮流。比如,在讲授绪言时,集成电路芯片发展与制造中罗列的最新数据要及时更新,作为教师,应该及时补充这方面的知识。又如,讲解半导体材料发展现状时,只是依照旧课本引用2006年的数据就没有说服力,最好引用近一、两年的数据。必要的数据更新,需教师花费精力去寻找,应尽量使用各国官方、国际组织公布的数据,以保证新数据的来源准确、可靠。经常与同领域的专家学者进行探讨和学习,掌握最新的研究前沿数据。传统教学一般是按照发展现状、各种材料基础、电子封装工艺、封装技术原理等分成各个独立的章节,如果教师按照传统的顺序进行教学,那么在一段时期内学生学习完所有内容后,印象不深刻,往往是学习了后面的知识又忘记了前面学习的内容,容易混淆概念。到实际应用时,又得重新对所涉及的内容进行学习,效率不高,甚至使学生失去对本专业的学习兴趣。因此,实施教学任务时,要根据最新发展趋向,准备教学内容,以具体实物为教学内容的出发点,激发学习兴趣,充实知识点。

2.3实物教学,激发学习兴趣用实物教学法是一种理论联系实际、启发式的、教学相长的教学方法。它要求根据教学大纲规定的教学目的要求,以实物器件为基本素材,在教师的指导下,运用多种形式启发学生独立思考,对实物器件结构进行剖析、研究,提出见解,藉以提高学生分析、解决问题的能力。

在《电子材料》课的学习中,教师应适当采用实物教学,让学生在实物剖析过程中,激发学生的学习兴趣。另外,实物的选择要有针对性和实际性。因此,要求教师对搜集的资料进行合理加工,选出适用于教学的素材,进行修正和更新,使实物适合于电子封装教学的要求。这从另一方面使教师的教学、科研水平得到提高,起到教学相长的效果。

课堂讲授与讨论并行,学习和讨论相结合的讨论教学方法提倡教师与学生讨论问题,启发学生的思维,使学生主动地去分析、思考、解决问题。它改变了传统“填鸭式”教学的呆板,丰富了课堂的信息量,使整个课堂教学成为学生与学生、教师与学生互动的网络结构。教师根据教学安排,可适当增加讨论课的次数,提前将讨论的题目布置给学生,让学生课后查阅资料,撰写发言材料。在讨论课上,让学生陈述观点,提出问题,与教师和其他同学进行讨论,共同学习。

材料类专业属于实验性学科,因此对于我们的学生来说要锻炼文献检索与动手的能力。在实验课堂教学中为学生提供了讨论和分析的机会,并安排学生动手实验,可以锻炼学生的动手能力。书面作业或者小论文则是锻炼学生检索文献的能力。因此,在《电子材料》课的教学中,适当让学生写一些课程作业或小论文,不仅可以训练学生查找、搜集资料的技能,而且可以培养学生书面表达的能力。

2.4运用多媒体教学,充分利用网络辅助教学在现在的教学中,多媒体教学似乎成为一种不可缺少的教学方式,甚至有的教师整堂课都不用粉笔,都在课件中体现出来。多媒体教学固然有诸多好处,如方便快捷,特别是针对一些烦琐的表格可以直接展现在学生的眼前,便于教师的讲解。但经过这几年的教学实践,学生反映,用多媒体教学有时感觉像放电影,记不住。因此,在《电子材料》课的教学中应适当运用多媒体教学,制作的课件力求简单美观,充分体现教师的授课内容,而不可全盘用多媒体教学。在网络时代,教学方法也可以网络化。教师可以利用网络向学生提供一些学习素材,如教师在讲授后,可以向学生提供一些相关网站,让学生去进一步了解相关内容。此外,教师还可以申请一个共享的信箱或者网络U盘,将一些与教学内容有关的素材放上去,让学生阅读。这些为学生加深对课堂讲授知识的理解,提供了一条新的途径。

2.5教学与科研相辅相成教学必须与科研相结合,教学不能脱离科研,科研可充实教学内容。作者在讲课过程中发现,一般自己感兴趣的地方,研究过的问题,讲起来不仅内容丰富、思路清晰,而且效果较佳;如本人缺乏研究的部分,讲起课来总觉得十分别扭,费力并且教学效果不佳。因此,作为讲授《电子材料》课的教师,要重视与该课程相关的科研,并将其科研成果充实到课堂教学中,可有效地提高教学质量。

3总结和展望

以上是本人从事《电子材料》课程教学工作的点滴体会。由于电子封装技术的自身特点,决定了教学方法与其他学科相比,有其特殊的要求。所以,教师在授课过程中,要根据学科特点、学生情况因材施教,通过合理的教学方法,使教学达到预期效果。

随着电子封装技术领域的进一步发展,《电子材料》的课程教学也会不断完善和进步,新的教学和科研工作方面的问题也会不断出现,因此,教师在授课时要根据时期的发展不断更新教学内容,使之适应社会发展和科技进步的要求。提高《电子材料》教学效果措施包括:充实新内容;加强理论分析;运用实物和多媒体教学互补提高学生学习兴趣;同科研方向相结合,互补共长。随着《电子材料》教学工作的开展,教与学双方面互相促进,相信这一课程会适应学科的发展及科技的进步。

参考文献:

[1]李奋荣,宗哲英.关于提高《电工学》课程教学效果的思考.中国电力教育,2008,127,(12):28-29.

[2]汪琼译.教学系统化设计(第五版).高等教育出版社,2004.

高分子材料分析方法篇6

关键词:辉光放电质谱深度分析应用定量分析

辉光放电质谱法(GDmS)被认为是目前对固体导电材料直接进行痕量及超痕量元素分析的最有效的手段。由于其可以直接固体进样,近20年来已广泛应用于高纯金属、合金等材料的分析。

1、基本原理

辉光放电(G10wDischarge)是一种低压气体放电现象,由于气体放电的操作简单,可以产生很强的离子流,所以在早期的质谱研究中,气体放电就被用作离子源。在真空火花源发展之前,气体放电源体现了巨大的实用价值。火花源质谱(SSmS)得到发展后,表现出了很强的分析能力,在相当长的一段时间里,辉光放电淡出了研究者的视野。然而,随着火花源研究的不断深入,这种离子源的局限性也逐渐显露,而辉光放电源则以自身出色的稳定性重新获得了重视。

2、辉光放电质谱的特点

2.1辉光放电质谱的工作原理

辉光放电质谱由辉光放电离子源和质谱分析器两部分组成。辉光放电离子源(GD源)利用惰性气体(一般是氩气,压强约10-100pa)在上千伏特电压下电离产生的离子撞击样品表面使之发生溅射,溅射产生的样品原子扩散至等离子体中进一步离子化,进而被质谱分析器收集检测。辉光放电属于低压放电,放电产生的大量电子和亚稳态惰性气体原子与样品原子频繁碰撞,使样品得到极大的溅射和电离。同时,由于GD源中样品的原子化和离子化分别在靠近样品表面的阴极暗区和靠近阳极的负辉区两个不同的区域内进行,也使基体效应大为降低。GD源对不同元素的响应差异较小(一般在10倍以内),并具备很宽的线性动态范围(约10个数量级),因此,即使在没有标样的情况下,也能给出较准确的多元素半定量分析结果,十分有利于超纯样品的半定量分析。

2.2GD源的供电方式

GD源的供电方式可分为直流辉光放电(DC-GD)、射频辉光放电(RF-GD)和脉冲辉光放电(pulsed-GD)。后二者与质谱的结合还处于实验室阶段,尚无商品化的仪器出现。部分DCGDmS配备四极杆质谱,其结构简单,质谱与辉光放电离子源的结合较容易实现,但由于四极杆质谱为单位质量分辨,测定干扰较大,检出限也不理想。thermoelemental公司于80年代中期推出了第一台高分辨辉光放电质谱仪VG9000,采用了反向双聚焦磁质谱仪,常规质量分辨率为4000,最高可达到10000,元素典型检出限可达0.01ng/g。VG9000配备Faradycup和Daly两种检测器,可同时给出从主量到痕量元素的分析结果。这也是目前唯一采用高分辨磁质谱仪的商品化GDmS。

3、辉光放电质谱的应用

直流辉光放电质谱(dc―GDms)主要的用途是高纯金属、半导体等导电材料的痕量杂质分析,由镀层、电沉积、渗透等工艺制备的层状样品的深度分析。除此之外,还可以用于沉积物、氧化物等非金属材料的杂质分析以及对精确度要求不高的同位素丰度分析中。

国内有elementGD辉光放电质谱仪十余台,多个研究单位能够进行GDms分析与测试,例如中国计量科学研究院、国家有色金属及电子材料分析测试中心、中国科学院福建物质结构研究所、金川集团镍钴合金研究院等,在高纯基准物质研究,有色金属、太阳能级硅材料、金属合金检测等方面发挥着重要的作用。

3.1高纯材料分析

高纯材料杂质分析主要有两个难点:其一是杂质的浓度很低,对仪器的检测能力、本底控制、消除干扰等要求较高;其二是基体元素浓度很高,容易对被测元素造成干扰。高分辨GDms去除干扰能力强,动态范围宽,可以实现常量、微量、痕量、超痕量分析,较容易克服以上困难,因此特别适合高纯物质的分析。

3.2深度分析

GDmS的溅射进样方式决定了它可以进行深度分析。辉光放电非常稳定,可以在样品表面获得几乎相同的取样坑,而且通过控制放电条件可以对溅射的速率进行控制。已有很多文献报道了GDms在深度分析方面的应用。深度分析在研究薄层材料方面有着重要的意义,有助于对一些表面化学或物理现象的原理进行研究,对防腐、表面材料的生产工艺提供指导。

3.3导体材科分析

dc―GDms不能直接分析非导体材料,常用的用于分析非导体材料处理方法主要有两种:第二阴极法和混合法。第二阴极法对第二阴极的材料要求较为苛刻,一般情况下基体信号强度比导体弱,稳定性较差,而且无法区分第二阴极杂质本底和样品杂质;对于粉末样品,可与导电物质混合,如石墨、金、铜、钽、银粉,压制成型,然后进行分析。这种方法容易产生污染,同样添加物会增加背景信号,而且会稀释样品降低灵敏度。

4、定量分析

4.1辉光放电质谱定量测量的原理

GDmS可以对常量、微量、痕量元素进行分析。灵敏度是在定量测量中经常涉及的概念,对于元素L的灵敏度(SFL),可以用其质量数为肘的同位素定义:

SFL=

式中,i是质量数为m的同位素的离子计数,CL是元素L的浓度,b是同位素丰度。灵敏度受到很多因素的影响,随着测量条件、环境、仪器条件等因素的变化而变化。

4.2定量分析方法

常见的GDmS定量分析方法主要有:通过测量基体匹配的标准物质获得相对灵敏度因子(RsF)值,用RSF进行定量测量;利用标准物质或人工合成的校正样品绘制标准曲线,借助标准曲线进行定量分析。

5、结论

GDmS虽然已经在很多领域得到了广泛应用,并在金属和半导体分析中显示出它的优越性,但是它的潜力仍然没有得到完全开发,对绝缘体、粉末、液体、有机物和生物样品的分析应用正在积极进行研究和完善,类似的工作将开创GDmS应用的新领域。

参考文献:

高分子材料分析方法篇7

【关键词】检验方法;样品的制备

0.前言

金属材料广泛应用于社会的各个方面,对工业、农业及社会经济的发展起着非常重要的作用。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础[1]。

不同金属材料的性能不同,如常见的钢、铜和铝等金属材料,它们的硬度和力学性能均不同,因此其应用的范围也不同。由于铜具有较低的电阻及较好的电传输性能,因此在电线电缆的制造中用铜金属作为原料。电线电缆是用户在用电过程中必不可少的材料,其质量的好坏,直接关系到千家万户的用电安全。因此,在购买或选用时,如何快速、准确检查电线(补偿导线,补偿电缆,屏蔽补偿导线,屏蔽补偿电缆,耐高温补偿导线,耐高温补偿电缆,计算机屏蔽电缆,K型补偿导线,S型补偿导线等电线电缆)质量的好坏,是广大电工及用户必须掌握的技能。

作为质检系统,有职责任对市场上的产品质量进行监督和检验。在例行市场抽检的过程中,针对市场上存在的大量的电线电缆,随机抽取了三种不同规格的电线,拿回质检所实验室进行检验。

1.检验方法的选择

对金属材料化学元素成分的检测方法有很多,主要有化学法和仪器法。针对不同的产品,选择合适的方法进行检测。由于化学方法制样比较复杂,因此现在一般都采用仪器法。仪器法检测金属材料化学成分最常用的方法有湿法和干法两种:湿法常用的有化学滴定法、分光光度法、原子吸收光谱法、电感耦合等离子发射光谱法等;干法常用的有火花源发射光谱法、手持X射线荧光光谱法、能谱法等;湿法的前提是将材料溶化配成溶液再进行检测,这对取样的要求和样品制备过程很严格,操作过程中对分析结果影响很大,而且分析速度慢,不确定度高。并且由于制样会对样品的组织结构造成破坏,会造成对其结构检测或者留样复检等造成影响;干法检测则只需要取材料的一块固体样品,检测后不会对样品造成破坏。火花源发射光谱法和手持X射线荧光光谱法是使用激发源在样品表面激发,通过检测激发信号来检测其化学成分,其激发范围一般在1平方厘米左右,尤其是火花源发射光谱法,在检测完材料后会在材料表面留下一个很大的激发痕迹,因此用火花源发射光谱仪、手持X射线荧光光谱仪需要金属材料有一个较大较平的表面,如果是粉末状或金属丝状的材料,则需要进行高温熔炼或其他复杂的制样过程,这样比化学法检测更为复杂。而本次抽取的电线,其金属丝都非常细,因此用火花源发射光谱法、手持X射线荧光光谱法不合适。能谱分析也是干法分析的一种,但能谱仪分析元素的最大特点是微曲分析,最小可以对选定的几个平方纳米的区域进行元素成分分析。因此用能谱仪分析金属丝的主要化学成分是最佳选择[2]。

能谱仪(energyDispersiveSpectrometer)是用来对材料微区成分元素种类与含量分析,配合扫描电子显微镜与透射电子显微镜的使用。其最大的缺点是设备比较贵,一般的实验室可能没有这么昂贵的设备。

2.样品的制备

将电线皮剥开,用小钳子或者剪子将电线剪下长度在3mm左右的小块,标好记号。用导电胶带将电线粘在扫描电子显微镜专业样品座上,放入样品仓中,准备分析样品。

3.结果与分析

调节设备的参数,对电线金属丝进行检测。选择扫描电子显微镜加速电压为20KV,工作距离为10mm,对铜丝的截面进行观察,其形貌如图1。

图1金属丝的截面结构

图1是金属丝的截面结构,其中标注谱图1处是准备做能谱分析的区域。其能谱图如图2。

图2金属丝的能谱图

图2是样品的能谱图,其中横坐标是激发的X射线能量,单位是KeV,不同元素激发特征峰的位置不同,据此计算机软件根据横坐标的位置定性的判断是何种元素;纵坐标是强度,根据强度大小计算各种元素的含量[3]。从图2中可以看出,金属丝的主要化学成分是al,含有少量的mg,Cu和Fe元素。其中al的含量高达96%。而同时用能谱仪检测该金属丝表面(非截面)的化学成分,结果显示其表面的化学元素主要是Cu,含量高达98%。因此可以断定该金属丝是铝丝表面镀了一层铜。由于铝不适合做电线,而且还在表面镀了一层纯铜,因此可以判断该电线是不合格产品。

对另外2根电线进行检测,检测结果是:只有一根电线化学元素是Cu和Zn,也就是黄铜材料,另外一根电线的化学元素主要是Fe,并且其表面镀了一层铜。

4.结论

选用能谱仪对电线金属丝进行化学成分的检测相对其他方法快速方便,其缺点是设备太贵。检测结果表明三种不同的电线金属丝其化学成分不同,分别是黄铜、铝和铁金属材料。因此广大消费者在购买电线电缆产品时要注意辨明产品质量好坏,尽量选择正规公司的产品,发现有假劣伪冒产品及时向工商部门或者质检部门反应。

【参考文献】

[1]刘培生,李铁藩,傅超.多孔金属材料的应用[J].功能材料,2001(01).

高分子材料分析方法篇8

一、名人名言材料,由点及面

名人名言往往具有一定的针对性,有短小精悍的特点,教师可以指导学生对名人名言类的材料进行思辨分析,由点及面,根据不同类型的名人名言材料来具体分析。在这里训练的是学生的分析能力和推演能力,学生要尝试分析出名人名言所对应的观点,并且从这个观点出发进行推演,论述出自己的观点。

有的名人名言材料是对立式的,如:“有人说没有什么是不朽的,只有青春是不朽的,也有人说我们自欺欺人地抱着一种像自然一样长存不朽的信念。”教师可以指导学生分析例子里说的不朽和短暂分别是针对什么而言的,学生在分析后发现原来第一句的“不朽”说的是人的精神,而第二句的“短暂”说的是肉体,由此可见,这个材料并不存在自相矛盾的地方,只要找到矛盾点的合理性,就能准确立意。还有些材料是并列式的,如:“鲁迅说即使慢,驰而不息,总会达到目标;沈从文说人生是一本复杂的书,要慢慢地翻;伊朗的谚语说快马只能跑两个驿亭,从容的驴子才能日夜兼程。”从这里可以发现这三个名人名言的主题是相同的,都是“慢”,教师要让学生尝试由点及面地分析,从“慢”这个点入手,进行扩展,了解到三则材料从不同的角度说明了从容踏实的生活态度是十分重要的。

通过由点及面的分析能让学生从名人名言材料中找到突破口,从而找到文章立意的关键之处,促进写作能力的提高。

二、新闻热点材料,由果溯因

教师在选择材料时可以选择一些贴近社会现实的文章,如社会热点新闻,着重训练学生如何运用因果分析的方法来读懂材料,并进行分析。这是训练学生的因果推理能力,从已知结果出发,顺势推理,分析原因。

例如,教师可以找到“941路司机杨勇突发疾病,死亡前他踩住最后一脚刹车”的新闻,让学生分析。教师可以让学生由果溯因分析,从这个新闻中找到了几组不同的因果关系,分别是:由于司机杨勇突发疾病,结果导致车祸发生,杨勇死亡;由于司机杨勇及时踩住了刹车,结果保住了一车人的生命。在对这两组因果关系进行分析之后,学生发现从第一组因果关系不适合进行写作,因为根据材料内容可知杨勇的疾病的确是突发事件。而从第二组因果关系中可以挖掘出杨勇为了保护乘客安全而忍痛刹车的事迹,体现了牺牲自己保护他人的精神,同时也体现了他重视乘客生命,到生命的最后一刻依然坚守岗位的作风,具有一定的教育意义,所以,第二组因果关系才是这篇文章的关键,也符合文章标题中“突发”“最后”等关键词的寓意。在经过讨论后,学生决定将写作的重点放在第二组因果关系上。

用由果溯因的方法进行分析有助于学生理清线索中的各种因果关系,找到最切题、也最能反映材料主旨的观点。

三、寓言故事材料,由此及彼

寓言故事往往言简意赅、富有深意,教师在训练学生写作技能的时候可以选择合适的寓言故事作为材料,让学生练习如何从材料中找到关键词句,透过寓言那通俗词句的表象挖掘出内在本质。在这里训练的是学生对隐喻的逻辑推理能力,学生要学会组构、选择、推理,学会举一反三地进行分析。

如:“有一只瘦弱的小松鼠看见山崖上长着一颗红红的果子,于是就想要去摘取,它的同伴劝告它说,你的身子太虚弱了,你摘不到这果子的,会有危险,还是别去了。但是那瘦弱的松鼠却不肯听,反而嘲笑自己的同伴胆小,它飞扑过去采果子,但是却摔了下来,弄得鼻青脸肿。”教师可以指导学生分析这则寓言故事,找到故事的对象、事件和情感倾向。学生很快就找到了答案,这个寓言故事的主角是那只瘦小的松鼠,事件就是它不听劝告,去摘果子,情感倾向就是批评那只小松鼠不能正确地认识自己,太过于盲目。

教师接下来就要指导学生从表象中深入下去,由此及彼地总结教训,看能从这个故事中得到什么启迪。学生在思索后提出了“要学会自省,要让理智指导人们前进”,“要抵挡住诱惑”,“要学会倾听他人的建议”等观点。透过表象进行分析,学生可以找到最能够反映材料内涵的观点,提高了逻辑推理解构能力。

高分子材料分析方法篇9

【关键词】计算机材料科学应用

计算机作为电子信息时代的基本工具,在我们生活的各个领域均起着极为重要的作用,在材料科学的相关研究中发挥的作用也越来越重要,例如钢铁行业的测量高炉内的温度、监控高炉内流体的运动以及对高炉使用寿命的推测等都依赖于计算机的操控。现如今我国各产业大多向精细化和完整化的趋势发展,对计算机的需求不断提高。由此,不难看出计算机在材料科学中的应用有着广阔的前景。那么,如何充分利用计算机使材料科学的研究发展达到一个新的高度呢?这就要求我们对计算机、材料科学以及二者关系有充分的认知,并认真分析探索计算机在材料科学研究领域的应用方向,结合计算机的优势,更好地发展材料科学。

1计算机在材料科学中的应用领域

1.1计算机用于新材料的设计

通常情况下,新材料的设计与制作是通过理论分析和计算,对新材料的组成成分、结构外观及性能等方面进行预报,然后结合材料设计方案制作具有特定性能或结构的新材料。材料设计主要通过多次重复实验,进行大面积筛选的方式来完成的,时间周期较长,且大量消耗人力、物力。因此,运用人工智能方法识别计算机中预先建立的知识库、数据库,归纳大批量的物理化学理论和实验资料,并以此作为理论辅助,再结合实验验证的手段进行材料设计的方法受到人们的青睐,是材料科学领域内进行研究探索的主要方向。材料设计按照空间尺寸以及设计的对象,通常分为微观设计层次、介观设计层次、宏观设计层级三个层级。其中,微观设计层次的尺度大致为1nm数量级,属于电子、原子或分子层次的微观结构设计;介观设计层次的尺度大致为1um数量级;宏观设计层级的尺度与宏观材料相对应。

1.2材料科学中的计算机模拟

现今,在许多新颖算法的模拟技术基础上,利用具有强大计算能力的计算机,能够大幅度提高材料科学中的细致程度和精确程度,可对物质内部情况有更深层次的研究。因此,计算机在材料科学研究中的应用越来越受到重视,并衍生出计算材料科学这一学科。材料科学相关研究人员常应用计算机对真实系统进行相关模拟实验,并利用计算机所提供的模拟实验结果,以展开新材料的研究工作。另一方面,计算机模拟在材料科学中的应用十分广泛,模拟对象涉及材料研制到材料使用的各个过程,例如材料合成、材料结构、材料性能以及制备和使用等。计算机模拟技术应用于材料科学研究中具有极大优势,不但可进行各类实验的模拟,还可对材料内部微观性质、宏观力学行为均有跟深层次的了解,且可在制备前提前预测新材料的性能,提供强大的理论指导。

1.3材料与工艺过程的优化及自动控制

在材料科学研究中,相关加工技术的发展主要通过控制技术的发展进步来体现,由电子计算机和可编程控制器等电子设备在材料加工过程中应用越来越广泛便可明显看出这一发展趋势。在材料的加工制作过程中,充分使用计算机技术可有效降低劳动强度,提高材料产品的精度和质量,同时增加产量。除此之外,还可通过计算机来优化控制材料加工制备的工艺过程,例如,建立有关材料的工艺数学模型后,利用计算机对其进行模拟,可通过计算机精确有效地控制渗碳渗氮的全过程。在材料制备过程中,可通过计算机精确控制相关制备过程,如在对材料表面进行热处理过程中,对炉温进行精确的自动控制等。

1.4计算机用于数据与图像处理

材料科学因其本身的特性,借助计算机的存储功能、数据和图像处理功能,可以在大量保存数据基础上,对这些数据进行高效的归纳、整理,例如计算、绘图等。另外,可进行快速查询,如材料的性能与其聚集状态的关系十分密切,通常需利用光学显微镜和电子显微镜技术,以二维图像的形式显示材料的凝聚结构状态。在此过程中,可利用计算机的图像分析处理功能进行材料功能的相关研究,获取晶体大小、聚集方式等有效的结构信息,并将其与涉及的性能相联系,对材料的结构研究具有指导意义。目前,存在大量进行材料数据处理的软件,如X衍射数据处理、最小二乘法数据处理、DpS数据处理、origin、excel等。

2计算机在材料科学中的实际应用

2.1有效差分法

有限差分法是利用泰勒级数展开等方式,用网格节点上的函数值的差商来代替控制方程中的导数,并利用此方法实现连续函数的离散化,并利用有限的、离散的数值代替原有的连续函数分布。

2.2材料数据库与知识库

因工程材料种类多且特性强的特点,材料的组成成分、结构特点及特殊性能等信息共同构成了一个极为庞大的体系,给材料研究人员的查询和研究工作带来极大不便,因此利用计算机建立不同类型的材料数据库就显得尤为重要。数据库储存具体的数据值,有智能查询功能,便于材料工作者进行查询;知识库主要存储规则、规律等信息,可通过相应的数理模型进行推理、运算,提供材料的性能等方面的数据,便于工作者对材料性能的把控。

2.3材料科学研究中主要物理场的数值模拟

利用计算机可结合材料加工过程中的传热、力学问题和内部原子的迁移等方面内容,进行模拟场设计;并采用模拟场的方式,利用有限元分析法进行“传热传质过程”的数值模拟。

3结语

综上所述,材料科学作为发展尚未成熟的新兴学科,目前其研究大多依靠事实及经验的积累,没有较为完备的系统。而计算机在材料科学中的充分应用,可使材料科学的研究发展更为系统化,达到一个新的高度。因此,科学研究工作者应提高对计算机、材料科学以及二者关系的认知,并认真分析探索计算机在材料科学研究领域的应用方向,结合计算机的优势,更好地发展材料科学。

参考文献

[1]张志涌.精通matlab6.5版[m].北京:北京航空航天大学出版社,2003.

[2]卢百平,钟仁显.分子动力学在材料科学中的应用[J].铸造技术,2007,28(1):146-148.

高分子材料分析方法篇10

关键词:防火涂料、热降解、测试技术

引言

防火涂料是指涂敷于可燃性基材表面,能降低被涂材料表面的可燃性、阻滞火灾的迅速蔓延,或是涂敷于结构材料表面,用于提高构件耐火极限的一类物质[1].近年来,防火涂料的研究进展很快,研究者不仅采用多种技术针对于防火涂料的耐火性能进行测试,以优选防火涂料配方;而且还采用多种新型技术对防火涂料的热降解过程进行测试,试图揭示防火涂料热降解的过程,或研究改性材料对防火涂料产生增效作用的原因。由于以成炭催化剂/炭化剂/发泡剂和以可膨胀石墨(eg)为阻燃体系的膨胀型防火涂料是目前防火涂料的主要研究方向,因此本文主要列举近年膨胀型防火涂料的部分研究成果,综述用于研究防火涂料热降解过程的新型测试研究技术。

1、用于防火涂料热降解的测试研究技术

1.1热分析法热分析是连续改变物质的温度,测量物质的物理性质与温度关系的技术。热分析虽是一种古老的分析技术,但因为随着电子技术的进步,操作变得更简单、分析精度更高和数据处理更加快捷,所以在防火涂料热降解机理研究中被广泛采用[2].目前的热分析技术很多,其中热重(tga)、差热分析(dta)、差示扫描量热(dsc)在防火涂料热降解研究中使用最为普遍。tga是在程序控制温度下,测量物质的质量与温度的关系,得到降解过程中质量变化及失质量速度,进而可以初步对防火涂料的热稳定性予以评估。dsc是在程序控温下,测量输入到物质和参比物的功率差与温度的关系的技术,可以用来测定防火涂料热降解过程中的反应热、转变热及反应速度等。dta是在程序升(降)温td(线)下一步脱水生成焦磷酸和多聚磷酸所产生的吸热峰;per在364.8~360.8℃开始分解,温峰为341.3℃;mel在300.1~381.2℃出现一个较窄的吸热峰,温峰为357.9℃。由此可见,app、per和mel的分解温度接近,便于协同成炭。肖新颜[4]对app/per体系采用dsc测试,从202.6℃开始,体系出现一系列的吸热或放热现象,推测热降解过程包括app分解产生水和氨气,同时发生交联反应形成多聚磷酸,它再与per发生酯化反应,per也直接与app发生磷酯化反应,而稳定性差的酯经过脱水炭化等复杂反应,最后形成炭质层结构。

1.1.2研究改性材料对膨胀防火涂料的作用近年来,不少研究针对app/per/mel膨胀防火涂料残炭率低和残炭热稳定性低等问题,采用多种材料进行了改性研究。在研究过程中,热分析是必需的测试技术。sophieduquesne[5]在研究聚氨酯(pu)涂料中添加可膨胀石墨(eg)的效果时,采用tg和dtg表明,eg小幅提高了残炭率,从微商热重(dtg)分析上看,eg的添加,没有改变pu涂料的热降解过程。王振宇[6]在app/per/mel膨胀防火涂料中添加10%的200目eg,采用dta和tg研究其影响,发现eg对防火涂料的dta曲线没有改变,但使涂料800℃的残炭率增加了10%.这些研究都表明eg是一种不参与防火涂料热降解化学反应,仅产生物理协同效应而增效的材料。zhenyuwang[8-9]在研究纳米颗粒氢氧化镁、氢氧化铝及二氧化硅对app/per/mel膨胀防火涂料的影响,杨秦莉[17]在研究三氧化钼对app/per/mel膨胀防火涂料残炭的影响时都用到了热分析技术,目的在于表明改性材料对基准防火涂料残炭率、热降解温度及热降解过程中吸热/放热过程的影响。热分析技术还可以对防火涂料的热降解进行热分析动力学研究,即采用多重扫描tg或dsc得到一系列的曲线图,可对防火涂料分阶段进行讨论,计算热降解过程的表观活化能,并可推导热降解机理模型。abhargava[10]、徐晓楠[11]、杨守生[12]和李国新[7]均对膨胀型防火涂料的热分解动力学进行了尝试性研究,但是由于膨胀防火涂料的热降解过程包括化学反应、扩散、成核等多类机理,而每类中又涉及不同的机理模型,因此要准确和科学地研究膨胀防火涂料的热分解动力学,还需要进一步探讨和研究。综上所述,热分析法具有多方面的优点,能够表征阻燃体系各组分的热降解过程、涂料的残炭、改性材料对涂料热降解残炭和吸热/放热的影响,这也表明热分析是一种科学的、可用于防火涂料改性材料研究的测试技术。但是该技术对于分析防火涂料热降解的机理仅停留在推测的层次,若要对防火涂料的热降解机理进行深入的研究,必须辅以其他的测试技术。

1.2红外吸收光谱法分子均具有各自的固有振动,而将改变波长的红外线(ir)连续照射到分子上时,与分子固有振动能相对应的红外线将被吸收,则可得到相应于分子结构的特有光谱(红外吸收光谱法)。将红外吸收光谱法用于防火涂料的热降解研究,可以依靠对光谱和化学结构的理解,通过与标准谱图的对照,灵活运用基团特征吸收峰及其变迁规律,逐步推导残炭物质的正确结构,从而推测防火涂料的热降解过程[2]. 

1.2.1研究防火涂料热降解的历程对防火涂料样品在不同温度下进行凝聚相的动态ft-ir测试,可以推断防火涂料热降解过程中键的断裂和新键的生成,并可以由此推断炭质层的稳定性,或用来说明改性材料是否与防火涂料发生了化学反应。如sophieduquesne[5]研究了pu涂料和pu/eg涂料,通过对20~450℃不同温度下两种涂料的红外光谱图进行对比分析后,得到eg并未改变pu涂料的热降解产物的ft-ir特征光谱的结论,因此说明eg并未与pu涂料发生化学反应,而只是物理作用,与热分析dta的结论相吻合。

1.2.2与热分析技术联用分析热降解机理热分析技术与红外联用有两种情况。其一为对残炭凝聚相的分析,对不同温度段下的残炭进行ft-ir分析,对应于该温度段下的热失质量,分析热降解机理;其二为对热分解气体的分析,结合不同温度段时的热失质量情况,分析热降解机理。葛岭梅[13]采用热分析技术对xkj饰面型防火涂料进行分析,发现在150~250℃之间,失质量16.96%,并在204.34℃出现第一个峰值,推测为苯丙乳液基料的某些基团放出小分子;在340~450℃阶段,失质量约38%,并在397.38℃出现第二个峰值,推测聚磷酸铵分解出大量的氨和水,生成偏磷酸和磷酸,并促进季戊四醇和有机物脱水炭化,同时三聚氰胺分解出氨气;在450℃以后,失质量缓慢,表明在此阶段之前生成的膨胀炭质层具有较好的热稳定性。dsc测试表明,在377116℃和417.02℃出现两个放热峰,推测有新的物质或基团生成。对该涂料的残炭物质进行红外光谱测试,发现500cm-1、1105cm-1为po3-4的特征吸收峰,表明残炭物中含有磷,说明磷化物在固相中能通过热解过程中的架桥反应,促进某些有机物发生剧烈的无规则降解,促进季戊四醇的脱水成碳;1000cm-1附近为p—o—c的特征峰,1630cm-1为与三嗪相连的—nh2的特征峰,表明在450℃下磷、氧、氮等元素进入炭质层,形成了热稳定性较好的炭质层,使450℃以后失质量率很小。

采用tg-ftir联用测试技术,对膨胀涂料进行了测试,根据tg-dtg可以将膨胀涂料的热降解过程分成若干阶段,对各阶段的分解气体进行ft-ir测试分析,可以得到气体释放种类及强度相对于温度(或时间)的关系,以此来推测热降解过程中不同温度段的降解机理。

1.3光电子能谱分析法光电子能谱(xps或esca)是以x射线作为激发源的光电子能谱分析法。其主要原理是物质受光作用会发生光电效应而放出电子;原子中不同的电子具有不同的结合能(即将电子从所在能级移到真空能级所需的能量)。在实验中只要测出电子的动能,就可以确定电子的结合能,然后通过对照未知样品的峰值和所发表的文献的结合能的值,对未知样品所含的元素进行鉴定,同时通过波形解析获得有关官能团种类和数量的信息。并可能由此推导防火涂料中改性成分对残余炭质层热稳定性的影响。

sergebourbigot[15]将xps用于研究app/per/乙烯三元共聚物(lram3.5)中,分析不同配比(lram3.5/app/per和lram3.5/app/per/4a分子筛)、不同温度(280℃、350℃、430℃和560℃)下残余物中p、c、o、n等各元素的比例关系,并由各元素结合能,推断残炭物中各元素存在的形式。如文中o1s的结合能有两种:532.5ev和533.5ev,其中前者可能存在于磷氧键或羰基中,后者存在于c—o—c、c—o—p或c—oh中。c1s的结合能有四种:285ev对应于脂肪烃和芳香烃中的c—h和c—c,286.3ev可能是醚基、c—o—p或c—n中的c—o,287.5ev对应于羰基,289.5ev对应于羧基。根据测定的不同结合能基团的比例,并将不同温度下与氧结合的c和与脂肪烃或芳香烃结合的c的比例(cox/ca)进行计算,从而可以推导不同温度下炭质层被氧化的难易程度。试验结果表明4a分子筛延缓了炭质层的氧化。

xps技术虽然可以推定炭质层中含有的各元素组成及结合的比例关系,但是其推导结果为一结合能可能对应多种官能团,因此要推断残炭物质的准确结构,还需要结合红外光谱的测试结果。

1.4扫描电镜分析防火涂料残炭物质的形貌,可用扫描电镜(sem)观测。该技术是利用细聚焦的电子束在样品表面逐点扫描,用探测器收集在电子束作用下,样品中产生的电子信号,再把信号转变为能反映样品表面特征的扫描图像。扫描电镜具有可进行微区成分分析、分辨率高、成像立体感强和视场大等优点,在防火涂料研究方面使用越来越广泛。

采用sem可以测试残炭物质的形貌(是否均匀、致密或疏松等),观察炭层中孔的状态及大小,观察炭质层表面物质的形貌。如王振宇[8]在使用纳米sio2改性app/二季戊四醇(dper)/mel膨胀防火涂料时,发现纳米sio2在炭质层上形成了类似陶瓷质的保护层,使涂料的耐高温性得以改善;李国新[16]在采用moo3和eg改性app/per/mel防火涂料时,发现eg使炭质层中具有大量的“蠕虫”状结构,其尺寸较小的规则的多孔状结构可有效地降低炭质层的导热系数;而eg产生的炭质层易于氧化,在添加moo3后,该“蠕虫”状炭层上覆盖了一层熔融物质,该物质阻止了热和氧气向eg形成的炭层扩散,因此表现出moo3和eg良好的协同性,提高了涂料的耐火极限。

1.5x射线衍射分析法x射线衍射分析(xrd)的基本原理是x射线照射晶体,电子受迫振动产生相干散射;同一原子内各电子散射波相互干涉形成原子散射波。由于晶体内各原子呈周期排列,因而各原子散射波间也存在固定的相位关系而产生干涉作用,在某方向上发生相长干涉,形成衍射波。利用衍射波的基本特征———衍射线在空间分布的方位(衍射方向)和强度,与晶体内原子分布规律(晶体结构)的密切关系,来实现材料成分、结构分析。该技术在防火涂料研究中既可以用来研究原材料的物相,也可以研究防火涂料热降解残炭物质的晶体组成。如掺有tio2的膨胀防火涂料,其炭质层表层有白色的稳定物质,通过采用xrd分析,确定该物质为tip-o7和锐钛型tio2的混合物[1].采用moo3改性的膨胀防火涂料,xrd分析其炭质层中含有moo2和moopo4,可能是提高防火涂料残炭率的主要原因[17]. 1.6锥形量热仪法该技术是以氧消耗原理为基础的新一代聚合物燃烧测定仪,氧消耗原理是指每消耗1g的氧,材料在燃烧中所释放出的热量是13.1kj,且受燃烧类型和是否发生完全燃烧影响很小。只要能精确地测定出材料在燃烧时消耗的氧量就可以获得准确的热释放速率。该技术可以获得多种燃烧参数:释热速率(rhr)、总释放热(thr)、有效燃烧热(ehc)、点燃时间(tti)、烟及毒性参数和质量变化参数(mir)等。锥形量热仪法由于具有参数测定值受外界因素影响小、与大型试验结果相关性好等优点,而被应用于阻燃领域的研究中,也可以用于防火涂料的热降解研究。

如徐晓楠[18]利用锥形量热仪(cone)实验获得可膨胀石墨防火涂料和传统的膨胀型防火涂料的热失质量速率(mlr)、热释放速率(hrr)、有效燃烧热(ehc)、比消光面积(sea)、co2、co和点燃时间(tti)等参数,对阻燃性能、烟毒释放、阻燃机理进行了对比研究。相比而言,eg防火涂料的pkhrr/tti和thr下降,在火灾中的危险性减小,防火涂料的阻燃性能更为优异;eg防火涂料保护基材烟、毒释放较少,符合阻燃材料少毒的要求,安全性能更好。这也与eg在其他材料的阻燃研究中的结果吻合[5,19,21],表明了cone技术研究防火涂料热降解的科学性。

1.7动态黏度测试技术[19-20]因为膨胀防火涂料的膨胀炭层中包含有固体物(炭)和液体物(焦油),所以可表现出黏-弹性特点。黏-弹性材料具有复杂的动态黏度,它的贮存模量g′与在弹性变形下贮存的能量相关;而损失模量g″则与黏性能量消耗相关。g与g的比值确定另一参数———消耗因子(dissipationfactor),可以表示材料抵抗变形的能力。研究这些参数可以作为温度或应力的函数,用来对不同材料的燃烧性能(特别是膨胀过程),提供重要信息。当温度升高且处于一应变之下,聚合物材料可能产生变形或裂开,一旦裂缝产生,氧气和热量/质量将在基体材料和炭质层之间扩散和传输,从而导致基体材料的快速降解。因此,对于炭质层,应该是产生变形而不开裂,才能保证炭质层的防护功能。动态黏度测试技术在膨胀防火涂料中使用时,既可以表征膨胀过程,又可以测试炭层的强度。

该测试技术是采用热扫描黏度计来监控材料随温度或时间随炭层的变化,并最终确定涂料炭层弹性的和黏性的行为。应变5%,频率10rad/s,升温速度10℃/min,测试温度范围20~500℃,压力2000pa.在测试pu/eg涂料时,发现体系的黏度变化为三个阶段。在200~300℃,黏度小幅度上升,其原因为此阶段涂料降解产生了气态物质、液态物质,与固态物质共存,产生膨胀炭质层,从而造成黏度的小幅度上升;300~400℃,黏度大幅度上升,原因为炭质层形成后,碳化过程继续进行;在400~500℃阶段,因为炭质层开始破坏,所以黏度下降。该测试结果与板间间距和tga的测试结果吻合。

炭质层的强度与板间距(gap)的关系可以更好地用来分析热降解条件下膨胀炭质层的性能,该条件既不同于燃烧条件,也不同于炭质层冷却后的条件,所以显得更为重要。

1.8其他测试技术随着对防火涂料热降解机理研究的不断深入,会有不同的测试技术被使用。如对热降解气体的种类和相对含量的测试技术[21];核磁共振技术用来分析防火涂料的原材料和炭质层[22].