集成电路的设计要求十篇

发布时间:2024-04-26 03:44:00

集成电路的设计要求篇1

【关键词】集成电路;设计方法;ip技术

基于CmoS工艺发展背景下,CmoS集成电路得到了广泛应用,即到目前为止,仍有95%集成电路融入了CmoS工艺技术,但基于64kb动态存储器的发展,集成电路微小化设计逐渐引起了人们关注。因而在此基础上,为了迎合集成电路时代的发展,应注重在当前集成电路设计过程中从微电路、芯片等角度入手,对集成电路进行改善与优化,且突出小型化设计优势。以下就是对集成电路设计与ip设计技术的详细阐述,望其能为当前集成电路设计领域的发展提供参考。

1当前集成电路设计方法

1.1全定制设计方法

集成电路,即通过光刻、扩散、氧化等作业方法,将半导体、电阻、电容、电感等元器件集中于一块小硅片,置入管壳内,应用于网络通信、计算机、电子技术等领域中。而在集成电路设计过程中,为了营造良好的电路设计空间,应注重强调对全定制设计方法的应用,即在集成电路实践设计环节开展过程中通过版图编辑工具,对半导体元器件图形、尺寸、连线、位置等各个设计环节进行把控,最终通过版图布局、布线等,达到元器件组合、优化目的。同时,在元器件电路参数优化过程中,为了满足小型化集成电路应用需求,应遵从“自由格式”版图设计原则,且以紧凑的设计方法,对每个元器件所连导线进行布局,就此将芯片尺寸控制到最小状态下。例如,随机逻辑网络在设计过程中,为了提高网络运行速度,即采取全定制集成电路设计方法,满足了网络平台运行需求。但由于全定制设计方法在实施过程中,设计周期较长,为此,应注重对其的合理化应用。

1.2半定制设计方法

半定制设计方法在应用过程中需借助原有的单元电路,同时注重在集成电路优化过程中,从单元库内选取适宜的电压或压焊块,以自动化方式对集成电路进行布局、布线,且获取掩膜版图。例如,专用集成电路aSiC在设计过程中为了减少成本投入量,即采用了半定制设计方法,同时注重在半定制设计方式应用过程中融入门阵列设计理念,即将若干个器件进行排序,且排列为门阵列形式,继而通过导线连接形式形成统一的电路单元,并保障各单元间的一致性。而在半定制集成电路设计过程中,亦可采取标准单元设计方式,即要求相关技术人员在集成电路设计过程中应运用版图编辑工具对集成电路进行操控,同时结合电路单元版图,连接、布局集成电路运作环境,达到布通率100%的集成电路设计状态。从以上的分析中即可看出,在小型化集成电路设计过程中,强调对半定制设计方法的应用,有助于缩短设计周期,为此,应提高对其的重视程度。

1.3基于ip的设计方法

基于0.35μmCmoS工艺的推动下,传统的集成电路设计方式已经无法满足计算机、网络通讯等领域集成电路应用需求,因而在此基础上,为了推动各领域产业的进一步发展,应注重融入ip设计方法,即在集成电路设计过程中将“设计复用与软硬件协同”作为导向,开发单一模块,并集成、复用ip,就此将集成电路工作量控制到原有1/10,而工作效益提升10倍。但基于ip视角下,在集成电路设计过程中,要求相关工作人员应注重通过专业ip公司、Foundry积累、eDa厂商等路径获取ip核,且基于ip核支撑资源获取的基础上,完善检索系统、开发库管理系统、ip核库等,最终对1700多个ip核资源进行系统化整理,并通过VSia标准评估方式,对ip核集成电路运行环境的安全性、动态性进行质量检测、评估,规避集成电路故障问题的凸显,且达到最佳的集成电路设计状态。另外,在ip集成电路设计过程中,亦应注重增设HDL代码等检测功能,从而满足集成电路设计要求,达到最佳的设计状态,且更好的应用于计算机、网络通讯等领域中。

2集成电路设计中ip设计技术分析

基于ip的设计技术,主要分为软核、硬核、固核三种设计方式,同时在ip系统规划过程中,需完善32位处理器,同时融入微处理器、DSp等,继而应用于internet、USB接口、微处理器核、UaRt等运作环境下。而ip设计技术在应用过程中对测试平台支撑条件提出了更高的要求,因而在ip设计环节开展过程中,应注重选用适宜的接口,寄存i/o,且以独立性ip模块设计方式,对芯片布局布线进行操控,简化集成电路整体设计过程。此外,在ip设计技术应用过程中,必须突出全面性特点,即从特性概述、框图、工作描述、版图信息、软模型/HDL模型等角度入手,推进ip文件化,最终实现对集成电路设计信息的全方位反馈。另外,就当前的现状来看,ip设计技术涵盖了aSiC测试、系统仿真、aSiC模拟、ip继承等设计环节,且制定了ip战略,因而有助于减少ip集成电路开发风险,为此,在当前集成电路设计工作开展过程中应融入ip设计技术,并建构amBa总线等,打造良好的集成电路运行环境,强化整体电路集成度,达到最佳的电路布局、规划状态。

3结论

综上可知,集成电路被广泛应用于计算机等产业发展领域,推进了社会的进步。为此,为了降低集成电路设计风险,减少开发经费,缩短开发时间,要求相关技术人员在集成电路设计工作开展过程中应注重强调对基于ip的设计方法、半定制设计方法、全定制设计方法等的应用,同时注重引入ip设计技术理念,完善aSiC模拟、系统测试等集成电路设计功能,最终就此规避电路开发中故障问题的凸显,达到最佳的集成电路开发、设计状态。

参考文献

[1]肖春花.集成电路设计方法及ip重用设计技术研究[J].电子技术与软件工程,2014,12(06):190-191.

[2]李群,樊丽春.基于ip技术的模拟集成电路设计研究[J].科技创新导报,2013,12(08):56-57.

集成电路的设计要求篇2

关键词:纳米尺度互连线集总参数模型电路仿真CmoS射频集成电路设计

中图分类号:tn402文献标识码:a文章编号:1007-9416(2016)10-0176-02

1引言

随着半导体技术的发展,纳米尺度的CmoS工艺射频集成电路(RFiC)在工业、科技、医药医疗的应用越来越广泛,且其工作频率已经进入微波、毫米波段,如X波段、Ku波段及60GHz应用等[1]。然而,当电路的工作频率进入到这种高频频段时,电路模型的精度是电路能否成功实现的关键所在。在电路版图设计之后,通常是利用assura和Calibre等工具来获得互连线的寄生电阻和寄生电容。然而,由于电路的寄生电感比寄生电阻和寄生电容复杂且精度低,很难利用版图验证设计工具得到寄生电感值,因此,需要借助于电磁场仿真软件对传输线进行准确模拟。然而,在电路设计初期通常需要考虑用于互连的微带传输线对电路性能的影响,传统单纯利用电磁场仿真软件进行参数提取的方法无法准确根据设计要求进行参数调整。本文构建了基于物理特性的互连线模型,该模型的寄生参数通过传输线物理特性和电磁场仿真软件得到,易于计算和电路设计分析。同时,该模型的参数和频率无关,易于电路分析,适用于射频集成电路的设计。最后,论文详细论述了将模型用于集成电路设计中的流程。

2互连线寄生参数仿真模型

射频集成电路设计中使用的互连线结构按照其类别可分为两类:第一类是微带线是以芯片衬底地作为其地平面,第二类是互连线是以某一金属层(通常是第一层金属m1)作为其地平面。对于这两类互连线结构而言,采用衬底地平面作为公共地平面的互连线比采用底层金属m1作为公共地的互连线更加灵活,因为在实际电路设计中受限于电路结构,其底层金属需要作为信号线进行器件之间互连,这种情况下需要采用第一种结构来实现信号互连。然而,使用底层金属m1作地线可以隔离衬底,减少衬底的损耗,因此在集成电路设计中两种传输线结构相互并存。

图1是互连线的模型图,该模型为单π集总参数模型,与常规的电感π模型相似[2]。图1中模型并联部分表示寄生电容和电阻,串联部分表示寄生电感和电阻。在设计窄带宽的电路时,尤其是进行放大器电路设计,关注的是工作频率附近的参数。所以,方框模型可以视为独立于工作频率,即模型在窄带电路设计中依旧可以使用。模型中,电感L2和电阻R2为互连线自身的分布电感和分布电阻,包含了集肤效应和邻近效应对电路的影响,而并联电容和电阻为导线和衬底之间等效电容和等效电阻。

对于该传输线模型,其离散参数的矩阵近似于模拟值和实际测量值。根据等效规则,电路的参数都可由Y参数推导得出[3]。在得到每一模块的参数后,串联电感值,电阻值和并联电容值都可以求出。

根据等效规则,工作频带的S参数应该与模拟和测试值相同。根据对Y矩阵的定义,可以推导出以下公式:

式中,为工作频率,函数real()和函数imag()分别代表着复数的实部和虚部。

以上的公式对于大多数传输线是可用的,无论传输线是否对称。在大多数情况下,传输线的Y1,Y3部分在结构上并不对称。但是,当两端口的反射系数的值相同时,将出现对称的特殊情况。此时传输线可化简为相同的部分,且可从电报方程中得出各元件的值。

在以上的分析中,电容,电感和电阻分别是频率的参数,而本模型中各部分数值处理成和频率无关的数值,这将在电路设计中产生误差。由于替换产生的误差可有下面公式得出:

是仿真实际S参数值,是模型的S参数值。

通常,当电路的频率与正常工作频率差异较大时,由于集肤效应和邻近效应,这个误差将会造成更加严重的影响。依照上述的模型,我们利用电磁场仿真软件aDS-momentum构建了互连传输线,该传输线采用第二类结构,该传输线位于的tSmC0.18um射频/混合信号工艺的第6层金属上,金属线宽6um,线长115um。工作频率为10GHz,根据公式(2)得到集总参数模型各个参数如下:

为比较模型和实际电磁场仿真数据之间差别,公式(4)中各个数据对应模型的S参数和电磁场仿真软件得到的S参数进行了对比,图2是采用电磁场仿真软件aDS-momentum和模型部分参数对比,从图中可以看出,电磁场仿真软件的模型和本模型S参数的误差远离工作频率段误差越大,这是由于公式(2)中对频率进行了近似处理,远离工作频率的点采用工作频率来代替,由于这种代替,数据之间误差越大。在其偏离中心频率50%位置处(即15GHz和5GHz),模型和momentum仿真数据的差异低于5%。在实际电路设计,通常需要电路设计师关注于传输线寄生参数对电路性能影响,此时工作频率点附近模型简易、准确是电路设计重点,而偏离工作频率点的模型误差在窄带电路设计是可以接受的。

3模型在射频集成电路设计中应用

CmoS射频集成电路设计是利用已有的有源器件和无源器件模型进行电路设计。传统的集成电路设计首先进行电路原理图设计,然后进行电路版图设计,再进行参数提取,在参数提取中主要利用Cadence系统自身已有的仿真工具assura来实现,在参数提取结束后再进行后仿真。当电路设计不满足要求时,需要重复上述过程,然而,在上述的传统集成电路中,由于参数提取过程的参数为分布参数,难以直接用于电路o计参数调整。同时,传统的参数提取方法只进行了电阻和电容的参数提取,而对寄生电感没有进行提取,这将导致电路设计的预期结果和实测结果出入较大。

为克服传统的射频集成电路设计的上述不足,可以将本论文的参数模型和集成电路设计相互结合。图4是本论文的模型应用于射频集成电路设计中流程图,在原理图和版图设计中依然类似于传统的集成电路设计方法,但版图设计及参数提取时将版图中的互连线单独分离出来,利用电磁场仿真软件aDS-momentum电磁场仿真,仿真结束后利用模型将其中的各个互连线参数提取出来,由于互连线的宽度、长度和图1中模型的各个参数密切相关,故将互连线得到的各个参数代入到版图后仿真设计中,检测互连线参数是否满足电路设计要求。如果互连线参数满足设计要求,则电路设计完成;否则,根据要求适当调整互连线参数,并判断调整后参数是否满足电路设计要求,如果满足电路设计要求,则依据重新设计的要求进行版图调整,完成电路设计。如果调整后的互连线参数依然不满足电路设计要求,则依据要求进行原理图设计调整,然后依次重复上述过程。如图3所示。

从上述的电路设计流程可以看出,在射频集成电路设计中应用本模型可以及时了解电路中的各个互连线参数,根据电路设计要求调整互连线参数,满足电路设计要求。在整个设计流程中,首先根据互连线提取参数判断是否满足电路设计要求,进而根据设计要求调整互连线参数来满足电路设计要求,这将简化传统电路设计循环,减少电路设计时间,同时通过互连线参数调整将互连线作为电路设计的一部分进行综合考虑,这将有助于提高电路综合性能。

4结语

本文提出了适用电路后仿真的纳米尺度互连线模型,该模型基于物理意义而构建,模型的各个参数皆为集总参数,各个参数都可以通过电磁场仿真软件而获得并在集成电路设计中进行调整。该集总参数的模型结构简单,易于使用,适合于CmoS射频集成电路设计分析中使用,同时文中给出了该模型应用于射频集成电路设计的流程并分析了其特点,分析表明采用文中模型可以根据电路设计要求进行调整互连线的尺寸,并可将互连线参数作为电路设计的一部分进行综合考虑,有助于提高电路综合性能。

参考文献

[1]a.niknejad,“Siliconizationof60GHz”,ieeemicrow.mag.,pp.78-85,Feb.2010.

[2]J.Rong,m.Copeland,“themodeling,characterization,anddesignofmonolithicinductorsforsiliconRFiCs”,ieeeJournalofSolid-stateCircuits,Vol.32,no.3,pp.357-369,march1997.

[3]廖承恩.微波技g基础,西安:西安电子科技大学出版社,1994.12.

收稿日期:2016-09-28

集成电路的设计要求篇3

关键词:微电子;集成电路;课程群;亲产业

中图分类号:G642.0文献标志码:a文章编号:1674-9324(2019)19-0163-02

一、引言

微电子(集成电路)被称为现代信息社会的“食粮”,是一个国家工业化和信息化的基础。自2014年我国《国家集成电路产业发展推进纲要》,设置千亿级的集成电路发展基金以来,南京、合肥、重庆、成都、武汉、厦门等地相应出台了区域性的集成电路发展政策。厦门依据毗邻台湾的区位优势,设立了500亿人民币的集成电路产业基金,并陆续了《厦门市加快发展集成电路产业实施意见》和《厦门集成电路产业发展规划纲要》,拟形成区域性的集成电路产业集聚地,打造集成电路千亿产业链,最终形成我国集成电路的东南重镇。

在此背景下,厦门政府在集成电路设计、生产制造、封测以及人才储备,全方位进行布局和规划。设计方面:紫光集团投资40亿元设立紫光展锐产业园、研发中心项目,引进展讯等国内通信芯片设计的龙头企业。厦门优讯、矽恩、科塔等集成电路设计企业也在高速、射频芯片领域取得可喜进展,仅2016年,厦门就新增加60余家集成电路设计企业。2017年整体产值达到140亿元;生产制造方面:与台湾集成电路巨头联华电子合资设立了联芯12寸晶圆厂项目,总投资达62亿美元,已于2016年12月正式投产;三安集成电路有限公司和杭州士兰微电子股份有限公司,主攻三五族化合物半导体芯片生产;泉州晋华12寸存储器厂则着眼于动态存储器的生产和销售;封测方面则引入通富微电子股份有限公司,力争打造一小时产业生态圈;人才储备方面:厦门政府与中国科学院微电子所共建中国科学院大学厦门微电子工程学院,辅以厦门大学、厦门理工学院、华侨大学等微电子学科,为厦门集成电路的生产和设计输送人才。

在此背景下,我校于2016年12月建立微电子学院,联合台湾交通大学、元智大学等微电子老牌名校,共同探索适合厦门及周边地区的微电子人才培养策略,力求建立较为完善的课程群体系,为在闽的微电子企业培养专业人才。

二、微电子工程专业特点

首先,微电子专业与传统的机械、化工、电子等专业不同,是一门交叉性很强的学科,需要该专业学生系统地学习数字、物理、电子、半导体器件、集成电路设计、电路封装、计算机等多方面的知识理论,并且能够将各门学科融会贯通,熟练运用。其次,微电子专业入门门槛高、知识体系更新速度快,贴近产业。这就要求学生在具有坚实理论基础的同时,实践动手能力较强,才能在短时间内将所学理论和实践结合,迅速融入工业界或者科学研究。第三,微电子是一个庞大的系统专业。从大类上可以分成工艺、器件、设计、封装、测试五个大方面。但每一個大类又可分为几个甚至数十个小门类。如设计类又可细分为模拟集成电路、数字集成电路、射频集成电路、混合信号集成电路等四个门类。而例如数字集成电路,又可继续分为数字前端、数字后端、验证、测试等小方向。各个方向之间知识理论差异较大,对学生素质提出了极高的要求[1]。

三、微电子工程课程群实践

(一)微电子工程专业培养策略

结合厦门微电子产业特点,以市场需求为导向,同时充分利用海峡两岸交流方面的优势,立足于我校“亲产业、重应用”的办校原则,我校微电子工程专业设置为工艺和设计两大类方向,应对周边产业需求,对该专业学生进行差异化培养。在本科前两年公共课的基础上,大三学年,根据学生兴趣及教师双向筛选,确定学生未来两年的学习方案,分别在器件/制造、模拟/数字集成电路设计两方面进行课程教授和实践锻炼,培养专业门类细化、适应企业实用化需要的高素质、实践型人才。同时,在一些专业课程讲授上,聘请台湾方面有经验的教师和工程师,结合产业现状进行教授和辅导。

(二)微电子工程专业培养目标

对于我校应用型本科院校的定位,区域产业经济和行业的发展是重要的风向标,因此在微电子专业人才培养上必须突出“工程型、实用型和快速融入型”的特点。主要培养目标如下:(1)掌握半导体器件及工艺的基本理论基础、电子线路的基本理论与应用、计算机使用、电子系统信号处理的基本知识、集成电路及板级设计的基本技能。(2)具备半导体及集成电路设计、制造,pCB板级设计、制造、测试的基本能力,工程项目管理、品质管理、设备维护的基本素养。(3)能在半导体、集成电路设计、制造行业,从事集成电路设计、制造、研发、测试、品质管理、厂务管理、设备维护等相关工作,毕业三到五年后通过自身学习逐步成长为本领域的骨干技术人员和具有较强工作能力的核心工程师[2]。

(三)微电子工程专业课程群制定实践

基于我校应用型本科“亲产业”的学校定位,在微电子专业课程群建设中,我们首先引入CDio的教学理念。CDio(Conceive-Design-implement-operate,即构思—设计—实施—运作)工程教育是以理论教学为基础,工程实际反馈互动为主要形式的培养方案[3,4]。基于此,课程群制定从知识逻辑(课程环节)和项目实施(工程实践)两个角度,对学生的综合素质进行培养、锻炼。

集成电路的设计要求篇4

关键词:电子科学与技术;集成电路设计;平台建设;iC产业

中图分类号:G642文献标志码:a文章编号:1674-9324(2014)08-0270-03

国家教育部于2007年正式启动了高等学校本科教学质量与教学改革工程(简称“质量工程”),其建设的重要内容之一就是使高校培养的理工科学生具有较强的实践动手能力,更好地适应社会和市场的需求[1]。为此,我校作为全国独立学院理事单位于2007年6月通过了iSo2000:9001质量管理体系认证[2],同时确立了“质量立校、人才强校、文化兴校”三大核心战略,深入推进内涵式发展,全面提高人才培养质量。对于质量工程采取了多方面多角度的措施:加强教学改革项目工程;鼓励参加校内学生创新项目立项,(大学生创新基金项目);积极参加国家、省级等电子设计大赛;有针对性地对人才培养方案进行大幅度的调整,增大课程实验学时,实验学时占课程的比例从原来的15%提高到25%以上,并且对实验项目作了改进,提高综合性和设计性实验的比重;同时增加专业实践课程,强调学生的应用能力和创新能力;课程和毕业设计更注重选题来源,题目比以前具有更强的针对性,面向专业,面向本地就业市场。不仅如此,学院还建立了创业孵化中心、建立了实验中心等。通过这些有效的措施,努力提高学生的综合素质、创新和应用能力。除了学校对电子信息类专业整体进行统筹规划和建设外,各个二级学院都以“质量工程”建设为出发点和立足点,从专业工程的角度出发,努力探索各个专业新的发展思路和方向。由于集成电路设计是高校电子科学与技术、微电子学等相关专业的主要方向,因此与之相关的课程和平台建设成为该专业工程探索的重点。通过对当前国内外高校该专业方向培养方案分析,设置的课程主要强调模拟/数字电路方向,相应的课程体系为此服务,人才培养方案设置与之相对应的理论和实践教学体系;同时建立相应的实习、实践教学平台。由此,依据电子科学与技术专业的特点,结合本专业学生的层次和专业面向,同时依据本地的人才需求深度和广度,对以往的人才培养方案进行革新,建立面向中山iC产业的集成电路设计专业应用型的设计平台。另外,从课程体系出发,强化iC设计的模拟集成电路后端版图设计和验证,使学生在实践教学环节中得到实际的训练。通过这些改革既可有效地帮助学生迅速融入iC设计业,也为进入iC制造行业提高层次到新高度。

一、软件设计平台在集成电路设计业的重要性

自从1998年高等学校扩大招生以来,高校规模发展很快,在校大学生的人数比十五年前增长了10倍。高校的基础设施和设备的投入呈现不断增长的趋势,学校的办学条件不断改善,同时,各个高校对实验室的建设也在持续增大,然而在实验室建设的过程中,尽管投入的资金量在不断增大,但出现的现象是重视专业仪器和设备的投入,忽视专业设计软件的购置,这可能是由于长期以来形成的重有形实体、轻无形设计软件,然而这种意识给专业发展必将带来不利影响。对于iC专业来说,该专业主要面向集成电路的生产、测试和设计,其中集成电路设计业是最具活力、最有增长效率的一块,即使是在国际金融危机的2009年,中国的iC设计业不仅没有像半导体行业那样同比下降10%,反而逆势增长9.1%;在2010年,国际金融危机刚刚缓和,中国iC设计业的同比增速又快速攀升到45%;2011年全行业销售额为624.37亿元,2012年比2012年增长8.98%达到680.45亿元,集成电路行业不仅增长速度快,发展前景好,而且可以满足更多的高校学生就业和创业。为了满足iC设计行业的要求,必须建设该行业需求的集成电路软件设计平台。众所周知集成电路行业制造成本相对较高,这就要求设计人员在设计电路产品时尽量做到一次流片成功,而要实现这种目标需要建设电路设计验证的平台,即集成电路设计专业软件设计平台。通过软件平台可以实现:电路原理拓扑图的构建及参数仿真和优化、针对具体集成电路工艺尺寸生产线的版图设计和验证、对版图设计的实际性能进行仿真并与电路原理图仿真对照、提供给制造厂商具体的GDSii版图文件。软件平台实际上已经达到验证的目的,因此,对于集成电路设计专业的学生或工作人员来说,软件设计平台的建设特别重要,如果没有软件设计平台也就无法培养出真正的iC设计人才。因此,在培养具有专业特色的应用型人才的号召下,学院不断加大实验室建设[3],从电子科学与技术专业角度出发,建设iC软件设计平台,为本地区域发展和行业发展服务。

二、建设面向中山本地市场iC应用平台

近年来,学校从自身建设的实际情况出发,减少因实验经费紧张带来的困境,积极推动学院集成电路设计专业方向的人才培养。教学单位根据集成电路设计的模块特点确定合适的软件设计平台,原理拓扑图的前端电路仿真采用pSpiCe软件工具,熟悉电路仿真优化过程;后端采用L-eDit版图软件工具,应用实际生产厂家的双极或CmoS工艺线来设计电路的版图,并进行版图验证。这种处理方法虽然暂时性解决前端和后端电路及版图仿真的问题,但与真正的系统设计集成电路相对出入较大,不利于形成iC的系统设计能力。2010年12月国家集成电路设计深圳产业化基地中山园区成立,该园区对集成电路设计人才的要求变得非常迫切,客观上推进了学院对iC产业的人才培养力度,建立面向中山iC产业的专业应用型设计平台变得刻不容缓[4],同时,新的人才培养方案也应声出台,促进了具有一定深度的教学改革。

1.软件平台建设。从目前集成电路设计软件使用的广泛性和系统性来看,建设面向市场的应用平台,应该是学校所使用的与实际设计公司或其他单位的软件一致,使得所培养的iC设计人才能与将来的就业工作实现无缝对接,从而提高市场对所培养的集成电路设计人才的认可度,同时也可大大提高学生对专业设计的能力和信心[5]。遵循这个原则,选择Cadence软件作为建设平台设计软件,这不仅因为该公司是全球最大的电子设计技术、程序方案服务和设计服务供应商,eDa软件产品涵盖了电子设计的整个流程,包括系统级设计,功能验证,iC综合及布局布线,模拟、混合信号及射频iC设计,全定制集成电路设计,iC物理验证,pCB设计和硬件仿真建模,而且通过大学计划合作,可以大幅度的降低购置软件所需资金,从而从根本上解决学校实验室建设软件费用昂贵的问题。另外,从中山乃至珠三角其他城市的iC行业中,各个单位都普遍采用该系统设计软件,而且选用该软件更有利于刚刚起步的中山集成电路设计,也更加有利于该产业的标准化和专业化,乃至进一步的发展和壮大。

2.针对中山iC产业设计。定位于面向本地产业的iC应用型人才,就必须以中山iC产业为培养特色人才的出发点。中山目前有一批集成电路代工生产和设计的公司,主要有中山市奥泰普微电子有限公司、芯成微电子公司、深电微电子科技有限公司、木林森股份有限公司等,能进行iC设计、工艺制造和测试封装,主要生产功率半导体器件和iC、应用于家电等消费电子、节能照明等。日前奥泰普公司的0.35微米先进工艺生产线预计快速投产,该单位的发展对本地iC人才需求有极大的推动力,推动学生学习微电子专业的积极性,而这些也有力地支持本地iC企业的长远发展。因此,建立面向本地集成电路产业的软件设计平台,有利于专业人才的培养、准确定位,并形成了本地优势和特色。

3.教学实践改革。为了提高人才培养质量,形成专业特色,必须对人才培养方案进行修改。在人才培养方案中通过增加实践教学环节的比例,实验项目中除了原有验证性的实验外、还增加了综合性或设计性的实验,这种变化将有助于学生从被动实验学习到主动实验的综合和设计,提高学生对知识的灵活运用和动手能力,从而为培养应用型的人才打下良好的基础。除此之外,与集成电路代工企业及芯片应用公司建立合作关系。学生在学习期间到这些单位进行在岗实习和培训,可以将所学的专业理论知识应用于实际生产当中去,形成无缝对接;而从单位招聘人才角度上来说,可以节约人力资源培训成本,招到单位真正需要的岗位人才。因此,合作双方在找到相互需求的基础上,形成有效的合作机制。①课程改革。针对独立学院培养应用型人才的特点,除了培养方案上增加多元化教育课程之外,主要是强调实践教学的改革,增加综合实验课程,如:《现代电子技术综合设计》计32学时、《微电子学综合实验》计40学时、《eDa综合实验》为32学时、《集成电路设计实验》为40学时,其相应的课程学时数从以验证性实验为主的16个学时,增加到现在32学时以上的带有综合性或设计性实验的综合实践课程。这种变化不仅是实践教学环节的课时加大,而且是实验项目的改进,也是实践综合能力的增强,有利于学生形成专业应用能力。②与单位联合的iC设计基地。iC设计基地主要立足于两个方面:一是立足于本地iC企业或设计公司;二是立足于iC代工和集成电路设计应用。前者主要利用本地资源就近的优势,学生参观、实习都比较方便,同时也有利于学校与用人单位之间的良好沟通,提高双方的认可度和赞同感。如:中山市奥泰普微电子有限公司、木林森股份有限公司等。后者从生产角度和设计应用出发,带领学生到iC代工企业参观,初步了解集成电路的生产过程,企业的架构、规划和发展远景。也可根据公司的人才需要,选派部分学生到公司在岗实习[6]。如:深圳方正微电子有限公司、广州南科集成电子有限公司等。通过这些方式不仅可以增强学生对专业知识的应用能力,而且有利于学生对iC单位的深入了解,为本校专业应用型人才找到一种行之有效的就业之路。

三、集成电路设计平台的实效性

从2002年创办电子科学与技术专业以来,学校特别重视集成电路相关的实验室建设。从初期的晶体管器件和集成块性能测量,硅片的少子寿命、C-V特性、方阻等测量,发展到探针台的芯片级的性能测试,在此期间为了满足更多的学生实验、兴趣小组和毕业设计的要求,微电子实验室的已经过三次扩张和升级,其建设规模和实验水平得到了大幅度的提升。另外,为培养本科学生集成电路的设计能力,提高应用性能力,学校还建立了集成电路CaD实验室,以电路原理图仿真设计为重点,着重应用L-edit版图软件工具,进行基本的集成电路版图设计及验证,对提升学生集成电路设计应用能力取得了一定的效果。目前,为了大力提高本科教学质量,提升办学水平,重点对实践课程和iC软件设计平台进行了改革。学校开设了专门实践训练课程,如:集成电路设计实验。从以前的16学时课内验证设计实验提升为32学时独立的集成电路设计实验实践课程,内容从以验证为主的实验转变为以设计和综合为主的实验,整体应用设计水平进行了大幅度的提升,有利于培养学生的应用和动手能力。不仅如此,对集成电路的设计软件也进行了升级,从最初的用pspice和Hspice软件进行电路图仿真,L-edit软件工具的后端版图设计,升级为应用系统的专业软件平台设计工具Cadence进行前后端的设计仿真验证等,并采用开放实验室模式,使得学生的系统设计能力得到一定程度的提升,提高了系统认识和项目设计能力。通过iC系统设计软件平台的建设和实践教学课程改革,使得学生对电子科学与技术专业的性质和内容了解更加全面,对专业知识学习的深度和广度也得到进一步提高,从而增强了专业学习的兴趣,提高了自信心。此外,其他专业的学生也开始转到本专业,从事集成电路设计学习,并对集成电路流片产生浓厚的兴趣。除此之外,学生利用自己在外实践实习的机会给学校引进研究性的开发项目,这些都为本专业的发展形成很好的良性循环。在iC设计平台的影响下,本专业继续报考硕士研究生的学生特别多,约占学生比例的45%左右。经过这几年的努力,2003、2004、2005、2006级都有学生在硕士毕业后分别被保送或考上电子科技大学、华南理工大学、复旦大学、香港城市大学的博士。从这些学生的反馈意见了解到,他们对学校在iC设计平台建设评价很高,对他们进一步深造起到了很好的帮助作用。不仅如此,已经毕业在本行业工作的学生也对iC设计平台有很好的评价:通过该软件设计平台不仅熟悉了集成电路设计的工艺库、集成电路工艺流程和相应的工艺参数,而且也熟悉版图的设计,这对于从事iC代工工作起到很好的帮助作用。现在已经有多届毕业的学生在深圳方正微电子公司、中山奥泰普微电子有限公司工作。另外,还有许多学生从事集成电路应用设计工作,主要分布于中山LeD照明产业等。

通过iC软件设计平台建设,配合以实践教学改革,使得学生所学理论知识和实际能力直接与市场实现无缝对接,培养了学生的创新意识和实践动手能力,增强了学生的自信心。另外,利用与企业合作的生产实习,可以使得学生得到更好的工作锻炼,为将来的工作打下良好的基础。实践证明,建设面向中山iC产业的集成电路设计实践教学平台,寻求高校与公司更紧密的新的合作模式,符合我校人才培养发展模式方向,对iC设计专业教学改革,培养满足本地区乃至整个社会的高素质应用型人才,具有特别重要的作用。

参考文献:

[1]许晓琳,易茂祥,王墨林.适应“质量工程”的iC设计实践教学平台建设[J].合肥工业大学学报(社会科学版),2011,25(4):[129-132.

[2]胡志武,金永兴,陈伟平,等.上海海事大学质量管理体系运行的回顾与思考[J].航海教育研究,2009,(1):16-20.

[3]毛建波,易茂祥.微电子学专业实验室建设的探索与实践[J].实验室研究与探索,2005,24(12):118-126.

[4]鞠晨鸣,徐建成.“未来工程师”能力的集中培养大平台建设[J].实验室研究与探索,2010,29(4):158-161.

[5]袁颖,董利民,张万荣.微电子技术实验教学平台的构建[J].电气电子教学学报,2009,(31):115-117.

[6]王瑛.中低技术产业集群中企业产学研合作行为研究[J].中国科技论坛,2011,(9):56-61.

集成电路的设计要求篇5

【关键词】集成电路布图设计知识产权

引言:随着集成电路制造工艺的迅猛发展,集成电路规模已发展到超大规模。由此带来的利益促使一些厂商通过各种方式获取他人技术,利用他人的技术成果牟取非法利益。因此,保护集成电路布图设计成为有关各界关注的问题。我国一直采取积极的态度对待集成电路知识产权保护问题,在一九五月通过的世界知识产权组织《关于集成电路的知识产权条约》文本上签字,并于2001年制定了《集成电路布图设计保护条例》。这一条例初步建立了我国集成电路布图设计的知识产权保护的理论体系,进一步完善了我国的知识产权法律制度。

一、集成电路布图设计的知识产权的特点

布图设计作为人类智力劳动的成果,具有知识产权客体的许多共性特征,应当成为知识产权法保护的对象,其特点主要表现在以下方面:

(一)无形性。

集成电路布图设计是指集成电路中各种元件的连接与排列,它本身是设计人员智慧的体现,是无形的。只有当这种设计固化到磁介质或掩膜上,才具有客观的表现形式,能够被人们感知、复制,从而得到法律的保护。

(二)创造性

集成电路布图设计具有创造性,是设计人自己创作的,有自己的独特之处。当今,要使每次的集成电路布图设计都达到显著的进步是不可能的,新的集成电路产品仅表现为集成度的提高。所以,已颁布集成电路保护法的国家,均不直接采纳专利法中的创造性和新颖性的标准,而是降低要求,以适应实际情况。

(三)可复制性

集成电路布图设计具有可复制性。对于集成电路成品,复制者只需打开芯片的外壳,利用高分辨率照相机,拍下顶层金属联接,再腐蚀掉这层金属,拍下下面那层半导体材料,即可获得该层的掩膜图。

由以上特点可以看出,布图设计是独立的知识产权客体,有着自己的特点。布图设计的无形性是知识产权客体的共性,创造性是专利权客体的特性,可复制性是著作权客体的一个必要特征,因此,传统的知识产权法律保护体系难以对布图设计进行保护。因而,很多国家基本上不引用著作权法或专利法来保护它,而是依据其特点,单独制订法规,将之作为独立的客体予以保护。

二、集成电路布图设计知识产权与其他知识产权的区别

1、与版权的区别

集成电路的布图设计,是一系列电子元件的立体布局,由一系列电子元件及连结这些元件的导线构成,既不是由语言文字,也不是由任何图形符号构成。而版权只对作品提供保护。作品是由语言、文字、图形或符号构成的,表现一种思想的智力成果。不论对各国立法及有关版权条约中的作品做多么广泛的解释,均不包括集成电路的这种封装在密封材料中,无法用肉眼分辨的立体布图设计。

2、与专利的区别

集成电路的布图设计是产品的中间形态,不具有独立的产品功能,复杂的布图设计,受保护的范围难以用文字描述的方式在权利要求书中说明。而专利是一种关于产品或方法或其改进的新的技术方案,对发明要求具有新颖性、创造性和实用性,并且专利权的范围以权利要求书的内容为准。因此,对于布图设计来说,一般难以受到专利法保护。目前大多数国家对专利实行实质审查。由于集成电路的技术复杂性,对于布图设计的新颖性、创造性和实用性的审查,将极为困难,使得实质审查很难进行。

综上所述,集成电路布图设计知识产权与传统的知识产权相比,有其特殊性,传统的知识产权法无法为集成电路提供充分有效的保护。但是集成电路的广泛应用又急需法律来提供保护,因此,必须突破现有知识产权法的界限,以专门立法来保护集成电路,于是产生了集成电路法。

三、国际上几个主要的集成电路知识产权立法

1、美国《半导体芯片法》

美国1984年的《半导体芯片法》内容详尽,包括:定义、保护的对象、所有权及其转让与许可、保护期限、掩膜作品的专有权、专有权的限制、申请登记、专有权的实施、民事诉讼、与其他法律的关系、过渡条款及国际过渡条款等。

2、日本《集成电路的电路布局法》

日本《电路布局法》共六章五十六条,并一个附则。由于日本是世界上第二个制定集成电路保护之专门立法的国家,当时,除了美国的《半导体芯片法》之外,并无任何国家的相关立法可供借鉴,因而其立法深受美国法的影响,在主要内容上与美国的《半导体芯片法》大致相似。

3、欧洲共同体《理事会指令》

在美日相继通过专门立法保护集成电路布图设计以后,一方面出于保护布图设计的需要,另一方面也迫于美国的压力,欧共体于1986年12月16日通过了《关于半导体产品布图设计法律保护的理事会指令》(87/54/eeC)(以下简称共同体指令)。该指令共4章12条,对于共同体各成员国的集成电路布图设计立法有着重大影响。

4、中国《集成电路布图设计保护条例》

我国早在1991年国务院就已将《半导体集成电路布图设计保护条例》列入了立法计划,经过10年的酝酿,我国的《集成电路布图设计保护条例》于2001年3月28日由国务院第36次会议通过,并于2001年10月1日起施行。

总而言之,集成电路的迅速发展已经使集成电路布图设计保护的问题客观地摆在了我们面前,这是技术进步和社会发展的必然。本文通过对布图设计特点、与其他知识产权的区别进行分析,期望使读者能够初步的了解布图设计知识产权产生的必然性及合理性,为今后在工作中有效地利用《集成电路布图设计保护条例》保护布图设计打下基础。

参考文献

[1]郭禾著.《试论我国集成电路的法律保护》.《计算机与微电子发展研究》1992年第3期

集成电路的设计要求篇6

高校专业及课程的设置应该与社会发展相适应,才能更好地发挥学校的功能,源源不断地为相关产业输送所需的人才,推动社会快速地发展。《国家集成电路产业发展推进纲要》明确指出:“集成电路产业是信息技术产业的核心,是支撑经济社会发展和保障国家安全的战略性、基础性和先导性产业,当前和今后一段时期是我国集成电路产业发展的重要战略机遇期和攻坚期。”因此,高校有必要加大集成电路相关专业及课程的改革力度,以满足国家集成电路产业的发展需求。

1集成电路设计相关教学的重要性

虽然改革开放以来,我们国家在几乎各个领域都取得了举世瞩目的成就,甚至很多高技术电子产品也都可以自主研发。但是事实上,由于我们自己不能自主设计制造作为核心技术的集成电路,必须从国外购买,所以一方面给我们的国防、关键基础行业等增加了不可预知的风险,另一方面也使我们相关产业的公司利润极低,极大地制约了其发展。客观地讲,我国在集成电路技术研究方面的起步不算太晚,但是由于各种原因,前期进展缓慢,相反欧美日等发达国家却抓住契机飞速发展,因此导致我们与这些发达国家的差距越来越大。1999年从德国学成归来的王志功教授起草了《关于国家设立集成电路设计人才培养专项基金,开展中国芯片工程的建议》,呈送给中央相关部委,得到了李岚清副总理等中央领导的高度重视,进而制定了正确的发展战略,从而使我国在集成电路领域掀起一轮研究热潮。经过十余年的发展、积累,我国集成电路相关的产业链逐渐完善,且培养了大批具有相关知识背景的高素质人才。随后,国家也在政策资金等方面,不失时机地给以引导培育。《国家中长期科学和技术发展规划纲要(2006-2020年)》《、电子信息制造业“十二五”发展规划》《、集成电路产业“十二五”发展规划》等重要文件中强调了要大力发展集成电路。尤其,在2014年6月工业和信息化部公布了《国家集成电路产业发展推进纲要》,并随后设立了“国家集成电路产业投资基金”。高校肩负着为社会输送所需的高素质人才的使命,因此为了配合国家集成电路产业发展的大战略,高校应该及时了解集成电路产业发展对人才素质的需求变化,不断审查、完善、革新集成电路相关的课程及教学。

2集成电路设计相关课程配置的协调性

无生产线设计模式称为大陆集成电路产业的基本模式,更具体地讲,当前集成电路产业主要分为设计、制造、封装和测试几个相对独立的部分,相应地,高校就应该设立相应的专业方向及课程,使学生能够掌握相应的专业技能,以便于毕业后能够胜任相关领域的工作。然而,作为一个大学生来讲,由于大学期间课程学时有限,不可能仅仅通过课堂的学习掌握所有知识,所以应该有针对性地、系统地协调相关课程的学期安排及课程类型安排,一方面要保证每一方向课程体系的完整连贯性,另一方面又能给学生以足够的自由选修其它的相关方向的课程。比如,大一可以安排认知实习或相关课程,通过深入浅出的讲解,可以让学生对整个集成电路产业链及技术链有一个宏观的系统认识,也利于学生有目的性地选择感兴趣的、想深入学习研究的专业方向及其所需的相应课程;大二、大三则应该安排一些专业基础课及专业选修课,一方面要考虑到覆盖面、保证每个方向的课程完整性,另一方面要确保课程安排的顺序正确,课程类型合适;大四可以安排方向性更强的专业限选课及毕业设计。集成电路设计、制造、封装和测试又是密不可分的,王志功教授认为一个合格的集成电路设计人员应该具备系统、电路、器件、工艺及工具几个方面的知识。下面我们主要从具有代表性的集成电路设计角度来讨论。具体到特定高校,特别是集成电路相关专业开设时间不长的高校,由于学科及课程设置的历史原因以及集成电路相关师资力量、实验环境建设需要时间周期较长,所以不可能一蹴而就地开设所有相关的课程。通常,传统通信系统专业比较强的院系课程会偏重系统、电路以及工具等,而传统微电子专业比较强的院系则课程会更偏重工艺、器件、电路及工具等。总而言之,电路及其设计工具是集成电路设计的核心知识,因此我们也将以其为核心来讨论,兼顾一下其它相关的课程。

3集成电路设计相关教学的实施建议

从目前大学本科教育来看,集成电路设计相关的课程大体可以分为三类:模拟集成电路设计、数字集成电路设计、可编程逻辑器件的开发。至于射频/微波集成电路设计、光纤/超高速集成电路设计以及功率集成电路设计,设计流程及工具基本类同于模拟集成电路设计,但需要更专的专业知识,比较适合作为大四的专业限选课,甚至研究生的专业课程。图1给出了集成电路相关课程的简略关系。aRm/DSp/单片机等嵌入式设计虽然传统上不被包括进集成电路设计的范畴,但是两者存在很大相关性,且目前很多CpLD/FpGa器件中也包含各种类型可配置的处理器核,因此在也把嵌入式开发加了进去。需要说明的是,图1所示的课程名在不同学校的可能有不同的叫法,其实即使名称相同的课程所讲授的内容也可能不尽相同,甚至大相径庭。模拟集成电路设计相关课程在各高校应该差异不大,一般都是先开设了模拟电路设计,然后再开模拟集成电路设计,当然通常都是CmoS模拟集成电路设计。关于数字集成电路设计,虽然可能各高校的课程名甚至教材名称也很相近,但课程或教材讲授的内容却可能差别很大,有些偏重于底层电路逻辑,有些偏重于上层硬件描述语言,还有些可能偏重于eDa工具的使用。如果从产业对数字集成电路人才需求的角度来看,由于数字集成电路自动化程度很高,除了标准单元库或光纤/超高速集成电路等特殊设计外,基本上都是靠硬件描述语言甚至更高级的语言通过自动化综合一步一步实现的,很少直接接触到底层的逻辑实现,所本科数字集成电路教学应该偏重实用的硬件描述语言和自动化设计原理及工具,以适应eDa技术的发展及产业的需求。关于CpLD/FpGa可编程逻辑器件的开发,实际上其前端流程与基于标准单元的数字集成电路设计的前端流程基本相同,所以相关课程可以共享,而对于后端设计则差异较大,不过从所需知识来讲,数字集成电路后端步骤更全面,CpLD/FpGa器件的后端开发相当于前者的有限简化。通常在开发数字集成电路时,也经常采用CpLD/FpGa器件来验证。集成电路与CaD课程其实是与模拟集成集成电路设计和数字集成电路设计相配套的仿真工具相关的理论及实践课程,讲解集成电路电路设计的详细流程及每个步骤的作用及原理;讲授集成电路相关的描述语言比如模拟集成电路的SpiCe语言,数字集成电路的Verilog/VHDL语言;让学生熟悉常用软件,如Cadence、Synopsys公司集成电路设计软件的操作;能用这些工具仿真验证模拟集成集成电路设计和数字集成电路设计理论课程所讲授的电路理论,或者可以利用eDa工具结合所学到的集成电路理论,设计简单的集成电路,达到理论与实践的统一。总而言之,个人认为集成电路设计相关课程教学要注意以下几点:

1)注意课程体系设置的协调性。一方面要避免知识体系彼此断裂,另一方面也要避免不同的课程所讲授的内容重叠过多。当然适度的内容交叉有利于课程之间的衔接,且如果课程有涉及较多相同内容的话,也可以在内容难度上拉开差距。

2)要注意理论课程与实践课程的结合。集成电路设计的工程性极强,一方面要注意理论学习的系统性与实用性,另一方面理论必须与实践结合才不至于僵化变成死知识。当然由于流片成本很高、周期很长,所以这里的实践更多指的是仿真验证。

3)要及时更新教材及授课内容。虽然电路的基本理论大体已经成熟,但是由于集成电路工艺以及工具发展日新月异,所以授课的内容就应该紧跟技术发展的步伐。比如,目前从C语言到Verilog语言的高级综合已经成熟并市场化,那么课堂教学就应该包括这些内容。

4)鼓励学生假期去实习或参加研究生的科研项目。

4小结

集成电路的设计要求篇7

关键词:SoC单片机嵌入式系统

引言

现场电子技术应用中包含了硬件(Hw)、硬件加软件(Hw+Sw)、固件(Fw)3个层次。这3个层次也可以说是现代电子技术应用的3人发展阶段。自1997年以来,电子技术应用又增加了一个新的层次——片上系统(SoC)层次。SoC技术概念和应用技术层次的出现,标志着现代电子技术应用进入了SoC阶段。

从各个发展阶段看,自Hw+Sw阶段开始,电子技术应用就与单片机紧密地联系在一起。在Fw阶段,作为固件系统的重要核心技术,单片机又以嵌入式技术为基础,再次成为现代电子应用技术的核心技术之一,并为SoC应用技术提供了紧实的基础。

SoC为各种应用提供了一个新的实现技术。这种新的电子系统实现技术促使工业界在近3年中发生了巨大的变化,为信息技术的应用提供坚实的基础,因此,完全可以称之为SoC革命。同时,SoC也为单片机技术提供了更广阔的应用领域,使单片机应用技术发生了革命性的变化。

本文根据几年来对SoC技术和单片机应用技术发展的研究,对SoC的基本技术概念以及单片机与SoC技术的关系进行了讨论,指出了SoC中单片机嵌入式应用的技术特点。

一、SoC技术与应用概念

所谓SoC技术,是一种高度集成化、固件化的系统集成技术。使用SoC技术设计系统的核心思想,就是要把整个应用电子系统全部集成在一个芯片中。在使用SoC技术设计应用系统,除了那些无法集成的外部电路或机械部分以外,其他所有的系统电路全部集成在一起。

1.系统功能集成是SoC的核心技术

在传统的应用电子系统设计中,须要根据设计要求的功能模块对整个系统进行综合,即根据设计要求的功能,寻找相应的集成电路,再根据设计要求的技术指标设计所选电路的连接形式和参数。这种设计的结果是一个以功能集成电路为基础,器件分布式的应用电子系统结构。设计结果能否满足设计要求不仅取决于电路芯片的技术参数,而且与整个系统pCB版图的电磁兼容特性有关。同时,对于须要实现数字化的系统,往往还须要有单片机等参与,所以,还必须考虑分布式系统对电路固件特性的影响。很明显,传统应用电子系统的实现,采用的是分布功能综合技术。

对于SoC来说,应用电子系统的设计也是根据功能和参数要求设计系统,但与传统方法有着本质的差别。SoC不是以功能电路为基础的分布式系统综合技术。而是以功能ip为基础的系统固件和电路综合技术。首先,功能的实现不再针对功能电路进行综合,而是针对系统整体固件实现进行电路综合,也就是利用ip技术对系统整体进行电路结合。其次,电路设计的最终结果与ip功能模块和固件特性有关,而与pCB板上电路分块的方式和连线技术基本无关。因此,使设计结果的电磁兼容特性得到极大提高。换句话说,就是所设计的结果十分接近理想设计目标。

2.固件集成是SoC的基础设计思想

在传统分布式综合设计技术中,系统的固件特性往往难以达到最优,原因是所使用的是分布式功能综合技术。一般情况下,功能集成电路为了满足尽可能多的使用面,必须考虑两个设计目标:一个是能满足多种应用领域的功能控制要求目标;另一个是要考虑满足较大范围应用功能和技术指标。因此,功能集成电路(也就是定制式集成电路)必须在i/o和控制方面附加若干电路,以使一般用户能得到尽可能多的开发性能。但是,定制式电路设计的应用电子系统不易达到最佳,特别是固件特性更是具有相当大的分散性。

对于SoC来说,从SoC的核心技术可以看出,使用SoC技术设计应用电子系统的基本设计思想就是实现全系统的固件集成。用户只须根据需要选择并改进各部分模块和嵌入结构,就能实现充分优化的固件特性,而不必花时间熟悉定制电路的开发技术。固件基础的突发优点就是系统能更接近理想系统,更容易实现设计要求。

3.嵌入式系统是SoC的基本结构

在使用SoC技术设计的应用电子系统中,可以十分方便地实现嵌入式结构。各种嵌入结构的实现十分简单,只要根据系统需要选择相应的内核,再根据设计要求选择之相配合的ip模块,就可以完成整个系统硬件结构。尤其是采用智能化电路综合技术时,可以更充分地实现整个系统的固件特性,使系统更加接近理想设计要求。必须指出,SoC的这种嵌入式结构可以大大地缩短应用系统设计开发周期。

4.ip是SoC的设计基础

传统应用电子设计工程师面对的是各种定制式集成电路,而使用SoC技术的电子系统设计工程师所面对的是一个巨大的ip库,所有设计工作都是以ip模块为基础。SoC技术使应用电子系统设计工程师变成了一个面向应用的电子器件设计工程师。由此可见,SoC是以ip模块为基础的设计技术,ip是SoC应用的基础。

5.SoC技术中的不同阶段

用SoC技术设计应用电子系统的几个阶段如图1所示。在功能设计阶段,设计者必须充分考虑系统的固件特性,并利用固件特性进行综合功能设计。当功能设计完成后,就可以进入ip综合阶段。ip综合阶段的任务利用强大的ip库实现系统的功能i。p结合结束后,首先进行功能仿真,以检查是否实现了系统的设计功能要求。功能仿真通过后,就是电路仿真,目的是检查ip模块组成的电路能否实现设计功能并达到相应的设计技术指标。设计的最后阶段是对制造好的SoC产品进行相应的测试,以便调整各种技术参数,确定应用参数。

二、SoC的应用概念

现代科学技术应用的重要特点之一,就是技术多样性、智能多变性和面向对象的系统设计性。所谓技术多样性,就是实现同一个应用电子系统可以有许多不同的设计方案供选择;而不同的设计方案就意味着必须使用不同的设计和生产技术。所谓知识多变性,是指在现代电子技术应用系统中,实现系统目标的基础理论和方法随着新知识的出现不断地在变化。这种变化不仅使应用电子系统技术指标发生变化,甚至改变了系统的整体结构。

随着现代信息和电子技术应用领域的不断拓宽,越来越多的应用领域提出了各种特殊要求。例如,航空航天领域要求的小体积大系统,信息应用领域提出的个性化等要求,都使得一般固件技术难以胜任。特别是在民用领域,重视个性化的产品设计概念使应用电子产品的更新速度极快,而且小批量多品种的要求也越来越高。这就是提出了小批量产品与成本、集成化与成本、产品研制周期与成本等一系列的问题。

SoC正是成为满足现代科学和工程技术发展的要求而产生的现代应用电子技术。传统的观念认为,只有大批量的产品才有集成的可能,才具有价格竞争优势。因此,到目前为止,大多数小批量产品,特别是研究性质的应用电子系统,一般都采用Hw,Hw+Sw或Fw技术实现。但随着SoC的出现、发展和成熟,这种现状已经发生极大的变化。SoC为现代电子工程师提供了一个快捷经济的系统设计方法,使那么传统观念上认为高性能、高复杂度、高成本的嵌入式结构,能够通过低成本的单片芯片实现。

1.SoC的设计观念

SoC的设计观念与传统设计观念完全不同。在SoC设计中,设计者面对的不再是电路芯片;而是能实现设计功能的ip模块库。设计者不必要在众多的模块电路中搜索所须要的电路芯片,只需要根据设计功能和固件特性,选择相应的ip模块。这种电路的设计技术和综合方法,基本上消除了器件信息障碍,因为每一个应用设计都是一个专用的集成系统,都是一个专用的集成电路。换句话说,SoC的设计观念是“设计自己的专用集成电路”。从某种意义上讲,就是把用户变成了集成电路制造商。

2.高效便利的设计工具

由于ip是SoC的基础,所以,必须采用相应的eDa软件才能完成设计技术。如果没有高效便利的设计工具,SoC设计就是一句空话。实际上,传统应用电子系统设计工作对eDa和其他相应的设计软件并没很高的要求,只要求能提供相应的便利条件;而SoC设计则必须建立在eDa基础之上。例如,使用SoC技术设计一个智能温度控制系统,由于整个系统集成在一个芯片中,用户就必须能对其中的CpU核、存储器、a/D、模拟放大器等电路进行综合仿真,显然,必须要有一个高效便利的eDa工具才能完成这些工作。

三、SoC技术中的单片机

单片机现代电子技术应用中的主流技术,特别是在工业和民用的独立电子系统中,单片机起着系统核心的作用。由于单片机系统特有的固件特性,使单片机在SoC技术中占有重要的地位。

1.SoC中的单片机嵌入技术

随着电子技术的发展,特别是应用技术的飞速发展,单片机应用系统已经形成了常用的、独特的嵌入式结构。如不同系列的单片机,都是通过嵌入不同的CpU和其他辅助电路而形成的。目前,单片机已经成为CpU和其他辅助电路而形成的。目前,单片机已经成为ip库中的重要成员,而其嵌入式结构正是SoC的一种重要实现技术和方法。

用SoC设计单片机系统嵌入式结构,为设计者提供了现有技术所无法比拟的优越条件。设计者必在选择单片机的型号上下功夫;只须要根据所设计系统的固件特性和功能要求,选择相应的单片机CpU内核,再根据需要选择其他的ip模块,就可以实现完整的系统。从某种意义上看,SoC为单片机应用提供了更广阔的应用技术,并赋予了单片机更强大的生命力。试想,如果整个SoC目标系统的核心是一个单片机CpU,那么,这个系统设计成功之后就不仅是真正意义上的单片机,而且还实现了真正的系统单片机。这正是单片机强大生命力的根源。

2.SoC中单片机系统优化

目前在单片机应用中,有相当一部分实际上并不能叫做单片机。因为许多应用中需要形成单片机的外部系统总线。因此,单片机资源的充分利用和避免形成外部总线,往往是单片机应用设计的主要追求目标。换句话说,优化问题是单片机应用中的一个重要问题。

例如,设计一个具有多个传感器的测试系统,往往须要根据单片机的特点设计相应的外部总线,应用系统由此而庞大。采用SoC技术后,系统不再需要外部总线,所选用单片机中不需要的资源也可以去除掉,只保留所需要的CpU等功能模块。这两种设计方法的方框图如图2所示。

从图2中可以看出,设计人员不必为如何最大限度地利用单片机资源而发愁,可以根据自己的需要选择所需的电路,并与所熟悉单片机的CpU内核相结合。同时还把现有技术需要精密调整的前置电路(模拟信号处理部分)也全部安放在一块芯片中,从而避免了大量的pCB板调试工作。从“单片机必须实现系统单片化”的角度看,这种系统正是用户自己设计的专用单片机系统,而且是一个能实现全部系统功能的优化系统。这种系统的调试、测试方法与传统的单片机系统完全不同,已经成为一个能处理模块-数字混合信号的全新系统。因此,SoC技术使单片机应用系统实现了更高层次上的集成。

概括地说,SoC使单片机应用技术发生了革命性的变化,这个变化就是应用电子系统的设计技术,从选择厂家提供的定制产品时代进入了用户自行开发设计器件的时代。这标志着单片机应用的历史性变化,一个全新的单片机应用时代已经到来。

结束语

集成电路的设计要求篇8

以集成电路为龙头的信息技术产业是国家战略性新兴产业中的重要基础性和先导性支柱产业。国家高度重视集成电路产业的发展,2000年,国务院颁发了《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(18号文件),2011年1月28日,国务院了《国务院关于印发进一步鼓励软件产业和集成电路产业发展若干政策的通知》,2011年12月24日,工业和信息化部印发了《集成电路产业“十二五”发展规划》,我国集成电路产业有了突飞猛进的发展。然而,我国的集成电路设计水平还远远落后于产业发展水平。2013年,全国进口产品金额最大的类别是集成电路芯片,超过石油进口。2014年3月5日,国务院总理在两会上的政府工作报告中,首次提到集成电路(芯片)产业,明确指出,要设立新兴产业创业创新平台,在新一代移动通信、集成电路、大数据、先进制造、新能源、新材料等方面赶超先进,引领未来产业发展。2014年6月,国务院颁布《国家集成电路产业发展推进纲要》,加快推进我国集成电路产业发展,10月底1200亿元的国家集成电路投资基金成立。集成电路设计人才是集成电路产业发展的重要保障。2010年,我国芯片设计人员达不到需求的10%,集成电路设计人才的培养已成为当前国内高等院校的一个迫切任务[1]。为满足市场对集成电路设计人才的需求,2001年,教育部开始批准设置“集成电路设计与集成系统”本科专业[2]。

我校2002年开设电子科学与技术本科专业,期间,由于专业调整,暂停招生。2012年,电子科学与技术专业恢复本科招生,主要专业方向为集成电路设计。为提高人才培养质量,提出了集成电路设计专业创新型人才培养模式[3]。本文根据培养模式要求,从课程体系设置、课程内容优化两个方面对集成电路设计方向的专业课程体系进行改革和优化。

一、专业课程体系存在的主要问题

1.不太重视专业基础课的教学。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”是集成电路设计的专业基础课,为后续更好地学习专业方向课提供理论基础。如果基础不打扎实,将导致学生在学习专业课程时存在较大困难,更甚者将导致其学业荒废。例如,如果没有很好掌握moS晶体管的结构、工作原理和工作特性,学生在后面学习CmoS模拟放大器和差分运放电路时将会是一头雾水,不可能学得懂。

但国内某些高校将这些课程设置为选修课,开设较少课时量,学生不能全面、深入地学习;有些院校甚至不开设这些课程[4]。比如,我校电子科学与技术专业就没有开设“晶体管原理”这门课程,而是将其内容合并到“模拟集成电路原理与设计”这门课程中去。

2.课程开设顺序不合理。专业基础课、专业方向课和宽口径专业课之间存在环环相扣的关系,前者是后者的基础,后者是前者理论知识的具体应用。并且,在各类专业课的内部也存在这样的关系。如果在前面的知识没学好的基础上,开设后面的课程,将直接导致学生学不懂,严重影响其学习积极性。例如:在某些高校的培养计划中,没有开设“半导体物理”,直接开设“晶体管原理”,造成了学生在学习“晶体管原理”课程时没有“半导体物理”课程的基础,很难进入状态,学习兴趣受到严重影响[5]。具体比如在学习moS晶体管的工作状态时,如果没有半导体物理中的能带理论,就根本没办法掌握阀值电压的概念,以及阀值电压与哪些因素有关。

3.课程内容理论性太强,严重打击学生积极性。“专业物理”、“固体物理”、“半导体物理”和“晶体管原理”这些专业基础课程本身理论性就很强,公式推导较多,并且要求学生具有较好的数学基础。而我们有些教师在授课时,过分强调公式推导以及电路各性能参数的推导,而不是侧重于对结构原理、工作机制和工作特性的掌握,使得学生(尤其是数学基础较差的学生)学习起来很吃力,学习的积极性受到极大打击[6]。

二、专业课程体系改革的主要措施

1“。4+3+2”专业课程体系。形成“4+3+2”专业课程体系模式:“4”是专业基础课“专业物理”、“半导体物理”、“固体物理”和“晶体管原理”;“3”是专业方向课“集成电路原理与设计”、“集成电路工艺”和“集成电路设计CaD”;“2”是宽口径专业课“集成电路应用”、“集成电路封装与测试”,实行主讲教师负责制。依照整体优化和循序渐进的原则,根据学习每门专业课所需掌握的基础知识,环环相扣,合理设置各专业课的开课先后顺序,形成先专业基础课,再专业方向课,然后宽口径专业课程的开设模式。

我校物理与电子科学学院本科生实行信息科学大类培养模式,也就是三个本科专业

大学一年级、二年级统一开设课程,主要开设高等数学、线性代数、力学、热学、电磁学和光学等课程,重在增强学生的数学、物理等基础知识,为各专业后续专业基础课、专业方向课的学习打下很好的理论基础。从大学三年级开始,分专业开设专业课程。为了均衡电子科学与技术专业学生各学期的学习负担,大学三年级第一学期开设“理论物理导论”和“固体物理与半导体物理”两门专业基础课程。其中“固体物理与半导体物理”这门课程是将固体物理知识和半导体物理知识结合在一起,课时量为64学时,由2位教师承担教学任务,其目的是既能让学生掌握后续专业方向课学习所需要的基础知识,又不过分增加学生的负担。大学三年级第二学期开设“电子器件基础”、“集成电路原理与设计”、“集成电路设计CaD”和“微电子工艺学”等专业课程。由于“电子器件基础”是其他三门课程学习的基础,为了保证学习的延续性,拟将“电子器件基础”这门课程的开设时间定为学期的1~12周,而其他3门课程的开课时间从第6周开始,从而可以保证学生在学习专业方向课时具有高的学习效率和大的学习兴趣。另外,“集成电路原理与设计”课程设置96学时,由2位教师承担教学任务。并且,先讲授“CmoS模拟集成电路原理与设计”的内容,课时量为48学时,开设时间为6~17周;再讲授“CmoS数字集成电路原理与设计”的内容,课时量为48学时,开设时间为8~19周。大学四年级第一学期开设“集成电路应用”和“集成电路封装与测试技术”等宽口径专业课程,并设置其为选修课,这样设置的目的在于:对于有意向考研的同学,可以减少学习压力,专心考研;同时,对于要找工作的同学,可以更多了解专业方面知识,为找到好工作提供有力保障。2.优化专业课程的教学内容。由于我校物理与电子科学学院本科生采用信息科学大类培养模式,专业课程要在大学三年级才能开始开设,时间紧凑。为实现我校集成电路设计人才培养目标,培养紧跟集成电路发展前沿、具有较强实用性和创新性的集成电路设计人才,需要对集成电路设计方向专业课程的教学内容进行优化。其学习重点应该是掌握基础的电路结构、电路工作特性和电路分析基本方法等,而不是纠结于电路各性能参数的推导。

在“固体物理与半导体物理”和“晶体管原理”等专业基础课程教学中,要尽量避免冗长的公式及烦琐的推导,侧重于对基本原理及特性的物理意义的学习,以免削弱学生的学习兴趣。moS器件是目前集成电路设计的基础,因此,在“晶体管原理”中应当详细讲授moS器件的结构、工作原理和特性,而双极型器件可以稍微弱化些。

对于专业方向课程,教师不但要讲授集成电路设计方面的知识,也要侧重于集成电路设计工具的使用,以及基本的集成电路版图知识、集成电路工艺流程,尤其是CmoS工艺等相关内容的教学。实验实践教学是培养学生的知识应用能力、实际动手能力、创新能力和社会适应能力的重要环节。因此,在专业方向课程中要增加实验教学的课时量。例如,在“CmoS模拟集成电路原理与设计”课程中,总课时量为48学时不变,理论课由原来的38学时减少至36学时,实验教学由原来的10学时增加至12个学时。36学时的理论课包含了单级运算放大器、差分运算放大器、无源/有源电流镜、基准电压源电路、开关电路等多种电路结构。12个学时的实验教学中2学时作为eDa工具学习,留给学生10个学时独自进行电路设计。从而保证学生更好地理解理论课所学知识,融会贯通,有效地促进教学效果,激发学生的学习兴趣。

集成电路的设计要求篇9

 

―、构建课程体系的总体思路

 

构建微电子技术专业课程体系的总体思路是以微电子行业职业岗位需求为依据,以素质培养为基础,以技术应用能力为核心,构建基于工作过程的课程体系。实施学院“四环相扣”的工学结合人才培养模式,将“能力标准、模块课程、工学交替、职场鉴定”的四个环节完整统一,环环相扣,充分体现了高职教育工学结合的人才培养思想,努力为社会培养优秀高端技能型人才。

 

1.行业、企业等用人单位调研。通过调研国内“成渝经济区”为主)微电子技术行业、企业等用人需求和要求,了解现有高职微电子技术专业学生就业情况、用人单位反馈意见及人才供需中存在的问题。电子信息产业是重庆市国民经济的第一支柱产业。重庆市“十二五”规划建议提出,培育发展战略性新兴产业。把新一代信息产业建设为重要支柱产业,建设全球最大的笔记本电脑加工基地、建设通信设备、高性能集成电路、光伏组件及系统、新材料等重点产业链(集群),建成国家重要的战略性新兴产业基地。以集成电路产业的重点项目为牵引,建成包括芯片制造、封装、测试、模拟及混合集成电路设计和制造等项目的产业集群,形成较为完善的集成电路产业链;四川电子信息产业未来5年将迈万亿元,成渝经济区将打造成西部集成电路的产业高地。随着惠普、富士康、英业达、广达集团等世界级的it巨头进入成渝,未来几年it人才需求在20万以上,而现在成渝地区每年培养的相关人才不过2万人左右,远远不能满足社会需求。市场需求的调查表明,近年来成渝地区iC制造、iC封装及测试、iC版图设计等岗位的微电子技术应用型人才紧缺。同时调研表明半导体行业企业却难以招到满意的人才,学生在校学非所用,用非所学,实践动手能力、社会适应能力、责任意识、职业素养难以满足企业要求。

 

2.基于工作过程的课程体系的理论基础。基于工作过程的课程体系的理论基础,主要从德国“双元制”职业教育学习论和教学论的角度阐述构建基于工作过程的课程体系的理论依据。工作过程系统化的课程体系必须针对职业岗位进行分析,整理出具体的、能够涵盖职业岗位全部工作任务的若干典型工作过程,按照人的职业能力的形成规律进行序列化,从中找出符合职业岗位要求的技术知识和破译出隐性的工作过程知识,并以工作任务为核心,组织技术知识和工作过程知识[2]。通过完全打破原有学科体系,按照企业实际的工作任务、工作过程和工作情境组织课程,形成围绕工作过程的新型教学项目的“综合性”课程开发。

 

3.形成专业定位,确定培养目标。根据存在的问题及半导体产业链过程:集成电路设计—裸芯片精细加工^封装测试—芯片应用—pCB设计制造,充分掌握现有微电子技术专业课程体系建设的基础及存在的问题,形成重庆电子工程职业学院微电子技术专业定位,确定培养目标:培养德、智、体、美全面发展;掌握微电子技术专业领域必备的基础知识、专业知识;有较强的岗位职业技能和职业能力;面向集成电路设计、芯片制造及其相关电子行业企业,满足生产、建设、服务和管理第一线的优秀高端技能型专门人才。毕业生应该既掌握微电子方面的基本技术,又具有很强的实际操作能力。具体可从事岗位:集成电路版图设计;半导体器件制造;iC制造、测试、封装;电子工艺(半导体)设备运行、维护与管理;简单电子产品的设计与开发;电子产品的销售与售后服务,并为技术负责人、项目经理等后续提升岗位奠定良好基础。

 

二、构建基于工作过程的学习领域课程体系

 

对专业核心课程的构建采用“微电子行业专家确定典型工作任务—学校专家归并行动领域—微电子行业专家论证行动领域—学校专家开发学习领域—校企专家论证课程体系”的“五步工作机制”,实现校企专家共同参与课程体系设计。通过工作任务归并法,实现典型工作任务到行动领域转换,通过工作过程分析法,实现从行动领域到学习领域转换,通过工作任务还原法,实现从学习领域到学习情境转换的“三阶段分析法”,构建基于工作过程的微电子技术专业课程体系和教学内容,获得人才培养目标、课程体系、课程教学方案“三项主要成果”。即“533”课程设计方法。

 

1.确定行动领域。工作过程系统化课程是按照工作过程要求序化知识、能力和素质,是以工作过程为参照物,将陈述性知识与过程知识整合、理论知识与实践知识整合,在陈述性知识总量没有变化的情况下,增加经验以及策略方面的“过程性知识”3]。对典型工作任务进行归纳,确定行动领域。将本专业52个典型工作任务归纳为6个行动领域,即集成电路版图设计、晶圆制造、集成电路芯片制造技术、芯片封装、芯片测试、Smt技术。

 

2.确定典型工作任务。所谓典型工作任务是指一个复杂的职业活动中具有结构完整的工作过程,它是职业工作中同类工作任务的归类,能表现出职业工作的内容和形式,并具有该职业的典型意义。我院召集企业专家和工作在一线的工程师、技术员,与学院的微电子技术专业教师一起,召开课程开发座谈会,进行微电子技术课程体系开发:以“集成电路(版图)设计—晶圆制造—封装测试—表面贴装”工作过程为主线,与行业企业一线技术骨干、专家解析微电子技术专业岗位中版图设计师、半导体芯片制造工、iC测试助理工程师、Smt工程师、FpGa助理工程师等典型岗位,得出行动领域所具有的专业素质、知识与能力。

 

3.将行动领域转化成学习领域。对完成典型工作任务必须具备的基本职业能力(包括社会能力、方法能力、专业能力)进行分析。通过归纳形成专业职业能力一览表。这些职业能力就是学习领域(即课程)中学习目标制定的依据。打破原有16门专业理论课程和9门实践课程组成的课程体系,按照以工作过程为导向,进行课程的解构与重构,将6个行动领域转换为9个学习领域,即集成电路版图设计、集成电路芯片制造技术、微电子封装与测试、表面贴装工艺与实施、电子线路板实用技术、电子测量仪器使用与维护、语言、单片机应用技术、FpGa应用技术及实践。根据微电子技术专业岗位群的职业能力和工作过程要求,重新构建基于工作过程的课程体系。第一、二学期:电路分析、电子技术等基础课程;第三、四、五学期:集成电路制造技术、电子测量仪器使用与维护、FpGa应用开发实用技术、微电子封装与测试、Smt技术、集成电路版图设计等专业核心课程。

 

4.形成学习情境模式。学习情境是实施基于工作过程系统化的行动导向课程的教学设计,由教师根据学校教学计划,结合学校的教学设施条件、教师执教能力和专长,由教师按照“资讯、计划、决策、实施、检查、评估”的行动方式来组织教学,从而促进学生对职业实践的整体性把握4]。微电子技术专业核心课程形成的学习情境模式为:①集成电路版图设计课程以任务为载体形成6个学习情境:n/pm0S晶体管版图设计、反相器、与非门、或非门版图设计、触发器版图设计、电压取样电路版图设计、比较器版图设计、DC-DC版图设计;②集成电路芯片制造技术课程以设备为载体形成8个学习情境:集成电路芯片制造技术工艺流程、硅晶圆制程、硅晶薄膜制备、氧化工艺、掺杂技术、光刻工艺、刻蚀工艺、集成电路芯片品检;③微电子封装与测试课程以工艺为载体形成4个学习情境:Dp封装、BGa封装、CSp封装、mCm封装;④表面贴装工艺与实施课程以工艺流程为载体形成5个学习情境:Smt工艺流程的基本认知、表面贴装生产准备、表面贴装设备操作与编程、表面贴装品质控制、Smt生产线运行及工艺优化5个学习情境;⑤电子线路板实用技术课程以项目为载体形成3个学习情境:单面板的制图与制板、简单双面板的制图与制板、复杂双面板的制图与制板;⑥电子测量仪器使用与维护课程以电路设备为载体形成9个学习情境:收音机元件准备、收音机电路测试、收音机电路工作状态检测、收音机整机调整、收音机装调使用仪器的保养与维护、电视机元件检测、电视机电路检测、电视机的质量检查、电视机装调使用仪器的保养与维护;⑦C语言课程以项目为载体形成6个学习情境:编程的基本概念、C语言上机步骤C语言上机步骤、算法的概念、基本数据类型、结构化程序设计、函数的概念;⑧单片机技术及应用课程以任务为载体形成6个学习情境““跑马灯”电路分析与实践、单片机做算术、逻辑运算并显示、开关信号状态读取与显示电路的制作、交通信号灯电路的设计与制作、产品数量统计电路的设计与制作、两台单片机数据互传;⑨FpGa应用技术及实践课程以项目为载体形成6个学习情境:课程概述、基于Qualusii的原理图输入设计、宏功能模块应用、基于Quarusii软件的VHDL文本输入设计、VHDL设计、实用状态机设计。

 

三、试点实施效果分析

 

在教学实施上,重点是加强教师执教能力:教师在教学中的角色应由主宰者转化为引导者。教师应该主动地引导、疏导和指导学生,学生可以根据自己的兴趣爱好,在教师的指导下,充分利用各种资源,相互协作开展对某一问题的学习探讨,从而获得新知识,得到探索的体验及情感,促进能力全面发展。经过我院近3年的教学实践,课程教学效果得到显著提高,学生专业核心能力、岗位适应能力、社会能力显著提高,“双证书”提高到100%,专业对口率从原来的48%上升到92%,用人单位满意度达90%以上。

 

高职院校在办学过程中要形成特色鲜明的高职办学模式,课程体系是重要的载体。办学特色正是通过课

 

程体系的实施来实现的。基于工作过程系统化的课程体系,跟随产业的发展,调整专业的课程设置,符合职业岗位要求,学生技能显著提升,同时结合我院的办学特色,努力探索基于工作过程的高职微电子技术专业课程体系的构建思路和构建策略。

 

参考文献:

 

[1]姜大源.关于工作过程系统化课程结构的理论基础〇].职教通讯,2006,(1).

 

[2]余国庆职业教育项目课程的几个关键问题ffl.中国职业技术教育,2007,(4).

 

[3]首珩,周虹基于工作过程的课程体系开发与实施m职教论坛,2008,(9).

 

[4]姜大源,吴全全当代德国职业教育主流教学思想研究[m].北京:清华大学出版社,2007.

集成电路的设计要求篇10

总的来说,高速公路机电工程由监控、收费、通信和供电照明系统四个部分组成。具体来说,收费系统就是依据相关部门的收费政策,构建一个全省联网的收费平台。监控系统是通过对路况信息、突发交通事件、气象等信息的收集和归纳,并为相关人员传输准确信息或将信息公布于众。监控系统是司乘人员了解交通信息以及工作人员领导和控制交通的重要渠道。通信系统是监控、收费系统得以顺利运行的重要保障。它可以通过相关设备来传输监控图像、语音及相关数据,并对这些数据进行准确、恰当的处理。供电和照明系统是高速公路顺利运营的重要基础和保障,它一方面为整个机电工程的顺利运行提供动力;另一方面还为收费站及附近工作区域、隧道的照明提供能源,以确保满足收费人员及司乘人员的照明要求。总而言之,监控系统、收费系统、通信系统以及供电照明系统作为高速公路机电工程的重要组成部分,在高速公路运营的过程中是缺一不可的。

2高速公路机电工程主要内容的设计工作

2.1高速公路的监控系统设计

高速公路的监控系统实现了对整个高速公路管理及运营的全景监控和展示,有效地完成了高速公路管理的及时性和互动性,促进了高速公路应急管理的智能化及集成化,在整个高速公路的运营管理中发挥着重要的作用。对于高速公路监控系统的设计应该严格秉承以下两个方面的原则:首先,监控方案必须与国家及相关部门的标准和政策要求保持一致;其次,从整个系统的经济性和先进性出发,力争用最低的运营成本设计出最成熟、完善的监控系统,以满足高速公路近期及长期范围内对监控系统的需求。此外,还要充分考虑本区域监控系统与相邻路段其他高速公路监控系统之间的协调合作。总之,高速公路的监控系统设计要从以上两个方面的原则出发,方能发挥监控系统的汇集信息、显示信息、控制信息、处理信息、统计数据、视频监控、预警管控、路网协调处理、报警处理等基本功能。具体设计要求如下:高速公路监控系统应是一个集应急指挥中心、运营管理中心、信息监控中心为一体的集合系统,具体来说,一个完整的高速公路监控系统要由视频集中监控子系统、智能交通信息子系统、预警管控子系统构成,因而对于高速公路监控系统的设计也应该从这三方面入手:首先是视频集中监控子系统,通过在道路、收费站、桥梁、隧道等区域安装监控设备,并将来自这些区域的视频、图像和数据集中上传到信息监控中心,经过统一分析和归纳后,实现对高速公路的集中监控管理;其次是预警管控子系统,预警管控子系统是针对突发性、恶劣天气、危化品处置、信息采集、重大交通事故等突发性事件而设计的应急处置系统。通过对事件及预警级别的分类,在预警软件上设计出相应的控制方案,包括恶劣天气或交通拥堵等紧急事件处置方案,进而提高高速公路应急处置能力,尽可能减少损失、避免伤害;最后是智能交通信息子系统,它是以现代电子信息技术为依托,为服务于交通运输而设计出的系统,主要通过高新技术汇集、分析、处理信息的方式,为高速公路提高丰富的智能服务。

2.2高速公路收费系统设计

高速公路的收费系统设计应该从我国具体国情及区域道路的实际情况出发,符合区域公路近期、远期的使用要求及相关部门的具体规划,并最大限度提高资源利用率。对于高速公路收费系统的设计,除了要严格遵守以上原则外,还要充分发挥其收费稽查、收费监督、票卡管理及收费机电设备维护、管理的功能,从联网收费管理中心、收费分中心、各收费站三个不同层面来入手对高速公路收费系统进行系统设计,并加强与其相关的其他界面的设计。具体来说,一个完整的高速公路收费系统的设计方案要涉及到数据通信管理子系统、报表管理子系统、卡号查询子系统、图像稽查子系统、票务管理子系统、iC卡管理子系统、数据备份和恢复子系统等内容的设计。目前大部分高速公路收费站主要采取人工半自动收费方式,以现金形式支付通行费。在该方式下,用户一次缴纳的通行费数额较大。同时,点数、核对现钞延长了服务时间,降低了通行效率和服务水平,也容易在收费过程中发生倒卡、换卡的作弊行为,产生财务漏洞。因此,迫切需要启用新技术提高收费业务管理水平和服务水平。非现金支付(包括etC)技术应运而生,目前在全国各地得到了一定的应用,社会效益和经济效益初步显现,正在高速公路收费系统中快速发展。

2.3高速公路通信系统设计

高速公路通信系统通信网由光纤数字传输系统、程控交换+软交换系统、光缆工程、电缆工程、通信电源系统等构成。为了能够有效、准确地对各个路段实现监控管理,传输监控、收费等系统的图像、语音、数据等方面资料,在通信系统设计过程中应该严格遵守以下两方面的原则:首先,高速公路通信系统的设计要严格符合国家及相关部门对通信技术的规范及标准要求,在满足路段公路管理和运营需要的前提下最大限度利用目前既有通信设施,同时根据《高速公路通信技术要求》及地区规划的要求,重点考虑项目与其他相邻高速公路通信系统的互联互通,充分考虑高速公路所在区域的经济状况及当前先进技术的发展水平,提高高速公路通信系统的经济效益和先进性。保证系统多元化互联,各类信息都能高效地接入网络;其次,传输等级的制定,必须满足语音、数据、图像等信息的高质量传输要求,并与其他系统协调一致。在原有通信设备的基础上充分发挥新装设备的兼容性及拓展性,使其既能满足当前需要,又具有满足未来发展需求的潜力。此外,综合目前国内、外高速公路通信技术的发展,综合考虑设备和运行成本,采用先进技术,保证系统的可靠性、可维护性。只有从以上两方面的原则出发,才能充分发挥图像业务、电视电话会议业务、语音业务、数据传输业务等方面的功能。

2.4高速公路供电及照明系统设计