污泥再生利用方案十篇

发布时间:2024-04-26 10:16:16

污泥再生利用方案篇1

关键词:污泥;重金属;污染;

abstract:thecurrentrapiddevelopmentofurbanenvironmentalimprovementbecomeanimportanttask,inwhichthesludgetreatmentareimportantissuestobesolved,thispaperanalyzessludgetreatmentanddisposalindifferentways,consideringthegeographicallocation,environmentalcharacteristics,economicstrength,sludgeandmudsourcesofvariousfactorsintianjin,localconditionstochoosesludgedisposalinlinewiththeactualsituationintianjin.Keywords:sludge;heavymetals;pollution

中图分类号:tU993文献标识码:a文章编号:2095-2104(2012)04-0020-02

引言

天津城区内所有的污泥,即排水管道疏通养护的污泥、污水厂污泥、水厂污泥、河道底泥,由于这几种污泥的来源和性质不同,因而在处理处置方式上也要区别对待。目前要同时解决所有城市污泥的问题是不可能的,一个分阶段有步骤的项目实施理念是必须的。

污泥的处理处置方式

1.1土地利用

污泥土地利用的风险在于污泥中有许多有毒有害物质。污泥含有的大量重金属大部分会在土壤表层累积,对植物有毒害作用,甚至造成地下水污染。污泥中含有较多的病原菌和寄生虫卵,可通过各种途径传播,造成环境污染。因此在污泥土地利用时候应当控制这些风险,避免对周围环境和人类食物链安全造成的负面影响。

1.2污泥填埋

污泥填埋是目前天津市污泥处置的主要方式。但是,毕竟污泥填埋不能彻底的解决污泥的二次污染,只是延缓了污染产生的时间,并且,随着各种污泥量的增加,现有垃圾填埋场的处理能力也不能满足污泥量的需要,而市区内可作为填埋厂的建设用地也非常有限,当污水处理厂污泥经过预处理之后可以满足填埋要求时,作为垃圾填埋场覆盖土或进行填埋亦可作为近期解决本市污泥处置方案之一。

1.3混合焚烧

受天津市市区内污水处理厂污泥中重金属含量、有毒有害物质含量限制,加上未来严格的环境保护法规要求和运输费用的制约,而且污水厂80%含水率污泥的性状明显不同于含水率45%以下的污泥,目前污水厂80%含水率污泥只能在循环流化床类型的锅炉中焚烧,因此只能部分运到某个发电厂的循环流化床锅炉混合焚烧。而当污泥含水率降至45%以下后,则可以作为燃料或者助燃材料,适合多种类型的锅炉焚烧。

1.4建材利用

污泥建材利用是污泥资源化方式的一种,其内容包含了利用污泥及其焚烧产物制造砖块、水泥、陶粒、玻璃、生化纤维板等。我国在污泥建材利用发展方面有些落后,虽然在污泥制砖方面的研究确实不少,但缺乏实际的工程应用,还处于研究及尝试的阶段,技术成熟和推广应用还需要一段很长的时间。

天津市污泥处理处置可行技术路线分析及建议

天津的城市规模较大,未来的污泥处理和处置方案要考虑到天津城区内排水管道疏通养护的污泥、污水厂污泥、河道底泥等。由于这几种污泥的来源和性质不同,在处理处置方式上需区别对待。按照国家标准规定的几种污泥处理处置方式,在此分别进行评估,以选择符合天津市实际情况的污泥处理与处置技术路线。

2.1首先处理处置污水处理厂污泥

由于天津的城市规模较大,污水厂污泥和河道污泥的产量巨大,这两点在做技术方案和物流运输方案时都应给予足够重视。目前要同时解决所有城市污泥的问题是不可能的,一个分阶段有步骤的项目实施理念是必须的。

2.1.1污水处理厂污泥首先进行干化处理

无论填埋、焚烧、农业利用还是热能利用,污泥干化是污泥处理处置发展方向,是污泥处置第一步,是目前天津市污水处理厂污泥处理处置应该采用的主要技术路线。

污泥干化属于污泥处理范畴,可以显著降低污泥含水率,污泥干化能够使污泥显著减容,体积可减少4~5倍并形成颗粒或粉状稳定产品,污泥性状大大改善。干化后的污泥无臭且无病原体,减轻了污泥有关的负面效应,使处理后的污泥更易被接受并具有多种用途,如作肥料、土壤改良剂、替代能源等。所以无论填埋、焚烧、农业利用还是热能利用,污泥干化都是重要的第一步,这使污泥干化在整个污泥管理体系中扮演越来越重要的角色。天津市中心城区污水处理厂的污泥干化是污水处理厂污泥处置的主要途径之一。

2.1.2污水处理厂污泥土地利用

(a)污水处理厂污泥暂时不考虑农田利用

制约污泥农田和土地利用的主要因素是重金属和致病菌。但是,我国在污泥土地利用时,由于施用处理不到位,污泥在很多地区成为了一种污染源。污泥土地利用的安全性正在受到人们的质疑。由于污泥农用会与人类的食物链发生关系,我们应将污泥农用和其他形式的土地利用区别对待。目前市中心的污水处理厂污泥中的部分重金属含量超过了《农用污泥中污染物控制标准》的规定值,因此暂时不适于直接农用。

(b)园林绿化利用

我市由于城市发展需要,需要大量的园林绿化用土,但是面临着土地资源紧张的矛盾。

随着生活污水和工业污水逐渐分开,污泥中重金属含量可能会随之降低,当污水处理厂污泥中满足《城镇污水处理厂污泥处置园林绿化用泥质》的规定值时,污水处理厂污泥可以在园林绿化和土壤改良方面应该可以得到应用。

污水处理厂污泥处理之后作为园林绿化使用可作为优先处置途径之一。

2.1.3填埋

(a)单独填埋

污泥填埋不能彻底的解决污泥的二次污染,随着污泥量的增加以及填埋对土地资源的浪费,对污水处理厂的污泥进行单独填埋的处置方式应该逐渐摒弃,因此该种污泥处置方式只能作为本市污泥处置的过渡方案。

(b)混合填埋

天津市目前有四座垃圾填埋场,但受垃圾填埋场容量以及运输成本的限制,现有垃圾填埋场的处理能力不能满足污泥量的需要,而市区内可作为填埋厂的建设用地也非常有限,因此与垃圾混合填埋处理量有限。当污水处理厂污泥经过预处理之后可以满足填埋要求时,作为垃圾填埋场覆盖土可解决本市垃圾填埋场覆盖土短缺状况,节约大量的土地资源,因此可作为解决本市污泥处置方案之一。

2.1.4建材利用

污泥建材处置指在通用的建材生产装置如水泥、制砖、纤维板等工艺设备中,进行污泥热值利用并对产生的灰渣进行材料化利用的方式。这些技术应用通常需要与其它处理技术相结合。而由于污泥含水率高、需要添加辅助染料、臭气、二次污染等原因难以在现有的建材生产设备上直接进行符合环保要求的处置。该处置技术据实际应用还有些困难,但是污泥作为水泥原料、燃料在本市具备实现的条件,可以作为一种处置途径。

2.1.5污泥焚烧

因为污泥中有机物的存在,污泥也具有了一定的热值。根据污泥分析数据,污泥干基低位热值应该在3000以下,略低于褐煤热值,可直接焚烧,但需要添加燃煤,因此,干化后的污泥可以作为燃料作为热电厂、垃圾焚烧厂的燃料使用。从长远看,污泥混烧还有很多需要研究的问题,特别是烟气污染物排放标准和工程技术经济指标等问题。因此污水处理厂污泥混燃不作为天津污水处理厂污泥最终处理方案,仅可以作为临时性处理措施。

为实现污泥无害化、资源化的目标,针对天津市污水处理厂污泥的性质,近期应该将上游污染物控制、污泥干化作为污水处理厂污泥处理方案考虑重点,处置方式可考虑污泥园林绿化使用、建材利用、垃圾覆盖土利用,对于污染严重,不能实施资源化利用的污泥考虑干化加焚烧处理方法。

2.2管网清通污泥和泵站污泥处理处置

天津市管网及泵站的疏通污泥比较分散,为便于集中处理,首先要在合适的地点建设若干污泥中转站。根据《市政污泥处置专项规划》,天津市将在南开区、河东区、河西区和北辰区建设4座中转站,分别就近接纳和处理市排水管理处所属八个排水管理所和各区属排水所或市政园林所在管网疏通中产生的市政污泥。天津市的市政疏通污泥预计到2015年将会增加到450吨以上。污泥经收集后拟采取的处理方案是:污泥首先通过粗格栅分离装置将杂物分离,再通过砾石粗分离机械将大于10mm的粗物质进行分离,经冲洗后外运,其余的污水混合物再通过后续的细砂分离器进行进一步分离,分离出来的细砂外运填埋,而污水则重新回到下水道。

2.3河道污泥处理处置

河道淤泥特点是有含有大量泥沙,有机质含量少,无机物含量高,不适合燃烧。污泥中很高的重金属含量又制约了其作为肥料使用。南方有很多城市已经采用河道污泥制砖和轻质陶粒,实现了规模化生产,但是在天津还没有这方面的工程实例。考虑到天津周边的陶粒厂和砖厂都离市区较远,物流组织和运输成本是制约其应用的关键因素。由于本市已经开始进行大沽排污河道的清淤工作,将有大量的淤泥急需得到妥善的处置,因此,填埋应是目前优先考虑的方式。据了解,本市目前已专门为处置河道淤泥在青凝侯建设了一座规模为45万方的填埋场,下一步需要解决的问题是如何将含水率高达99%以上的淤泥处理到含水率60%以下以满足污泥单独填埋的要求。结合河道淤泥含砂量大、杂物较多等特点,建议单独对管网清通污泥和河道淤泥处理,先对其进行预处理,再进行脱水和干化。

3.结语

目前,对于河道疏浚底泥或淤泥和城市污水处理厂污泥的处理处置成为困扰我国各大城市发展的重要环境问题,过去走单一化填埋的道路,对填埋场周边造成严重的二次污染,加上城市扩张对于土地的需求,已经不再可行。但是,我国对于城市污水处理厂的污泥的处理处置已经开始出台了一些指导性意见,各大城市正在开始进行研究、消化吸收。希望通过建立天津市淤泥处置技术指南和管理政策研究,配合政府相关部门出台指导文件,可以使天津市在淤泥处理处置方面的工作走在全国前列。

参考文献

[1]《城镇污水处理厂污泥处置园林绿化用泥质》(CJ248-2007)

污泥再生利用方案篇2

关键词:炼化废水;污水处理;生化系统;污泥培养与驯化abstract:therefinerywastewatertreatmentbybiochemicaldegradationdegreeislow,toxicandharmfulsubstancesincomplex,belongstotheindustrialwastewaterisdifficulttobetreated.withasetof300m3/hrefiningwastewatertreatmentfieldtotheoriginalrunintocolumns,carriesontheanalysistotheoriginalconstructionofsewagetreatmentandbiochemicalsystemdifficultproblemsintheprocess,andputsforwardsomeapplicablesolutions,focus,difficultiesoftheoriginalconstructionofbiochemicalsystems.

Keywords:oilrefiningwastewater;wastewatertreatment;biochemicalsystem;andacclimationofsludgecultivation

中图分类号:[tU992.3]文献标识码:a文章编号:2095-2104(2013)

1300m3/h炼化污水处理装置简介

该污水处理装置设计最大处理量为300m3/h,作为高硫重油炼化综合利用项目的环保设施配套工程,负责整个生产厂区的炼化废水和生活污水的处理和再利用。污水处理装置工艺流程:含油污水管网泵站格栅泵站含油污水集水池调节罐隔油池一级气浮池二级气浮池a1/o1池o1沉淀池o1出水池a2/o2池o2沉淀池o2出水池砂滤器监测水池达标排放(部分回用)。

2生化系统原始开工方案的选择与实操

2.1a/o生化处理工艺技术分析

a/o工艺是缺氧—好氧系统,是常规二级生化处理基础上发展起来的生物除氮技术,是考虑污水脱氮采用较多的一种处理工艺。其优点是对CoD、BoD有较高的去除率,处理深度较高,剩余污泥量较少,但在实际生产操作过程中,如何成功实现在保持有机物较高去除率的前提下,充分利用硝态液回流系统,保持较高氨氮去除率,成功到达高效脱碳、脱氮效果是该生化系统原始开工过程中系统构建的核心点。

2.2生化系统活性污泥接种方案的选择

(1)活性污泥培养接种污泥选择的多样性。通常情况下接种污泥的选择大概可分为四类:①生活污水(粪水)接种原始培养。②活性污泥混合液直接接种培养。③离心脱水活性污泥稀释后接种培养④自培菌接种培养。不同接种污泥选择方案都有各自的优缺点,最主要的是,操作者要结合实际、综合考虑,谨慎选择。

(2)不同接种污泥选择方案优缺点分析。①生活污水(粪水)接种原始培养的优点是接种成本低,供微生物生长繁殖的营养源种类齐全,不需要过多的投加营养源,微生物繁殖快,污泥成型时间短。缺点是工人工作环境差劳动强度大,微生物种类繁多,生物进化提纯难度大,活性污泥对工业废水的适应能力差,污泥驯化困难。②活性污泥混合液直接接种培养。优点是选用成熟的工业污水活性污泥混合液直接导入系统,最大限度的缩短污泥培养时间,切对工业废水适应性较强,易驯化,但存在污泥混合液输运量的问题,运费成本较高。③离心脱水活性污泥稀释后接种培养。在技术上与混合液接种相似,解决了输运量的问题,但一般炼化行业污泥脱水系统多采用油泥、浮渣、剩余活性污泥共有一套脱水系统,所以防止脱水活性污泥混入油泥、浮渣杂质是该方案在实施过程中的控制重点。④自培菌接种培养。技术人员对工业废水进行水质化验分析,根据分析数据,直接在工业废水中进行、接种培训,通过生物进化提纯,也可以通过购置纯度较高的生物制剂,利用生物增效作用,达到完成活性污泥培养的目的。优点是有效微生物选择性较强,污泥对工业废水的适应性较好,但污泥培养启动费用投用巨大,经济性相对较差。

(3)接种污泥选择方案的选定。在对接种污泥选择方案进行深入分析后,综合污泥培养时间、污泥对环境的适应性、污泥培养经济性等多方面因素,最终选定采用离心脱水活性污泥稀释后接种培养和生物增效接种相结合的方案,在实际操作中应重点做好离心脱水活性污泥加工存储方案的制定、生物增效剂的选购和投加。

2.3活性污泥培养与驯化期间的运行管理与控制

活性污泥培训与驯化期间的运行管理与控制工作的重点是解决好污泥培样期间的微生物营养源均衡问题和做好活性污泥生长情况的观察与控制。

(1)微生物营养源均衡控制。活性污泥培养前期,炼化厂上游装置排水多为管道冲洗水,其营养源不足,需要外投营养源,故营养源配比和营养源种类选择至关重要。在营养配比方面按照微生物生存营养比例C:n:p=100:5:1和食微比≈0.3,人工配置营养液,投加各种营养源化工辅料。而常用营养源化工辅料的选择,见下表:

表1活性污泥培养期间营养源化工辅料选择表

(2)活性污泥生长观察与控制。培养驯化期的活性污泥应每天通过生物镜检观察,其生长情况,从而判断污泥对外部环境的适应性。整个镜检观察期大致可分为四个时期:①培养早期,活性污泥几乎无絮状体,泥性较散,无机杂质较多,观察不到原生、后生动物的活动迹象。②培养中期,活性污泥菌胶团,具备絮凝性,存在游离细菌,显微镜下可以观察到一些中间性活性污泥类生物,多以慢速游动型为主。③培养中后期,污泥培养过程中观察到钟虫。微生物种群中出现了活性污泥有的原生动物。这类生物大都附着在菌胶团上,增加了污泥的絮凝性,表明污泥培养进行良好,接近成熟。④培养的成熟期,后生动物的出现标志着活性污泥的培养的成熟。其中每个时期都存在特有表征生物体。

3生化系统实现脱碳、脱氮的运行构建。

在炼化行业污水处理场生产运行控制中,出水水质的CoD、BoD、nH3-n值是表征污水处理生化系统脱碳、脱氮的效果优劣的重要依据。

3.1实现“双脱”生产运行机理分析

(1)脱碳。碳源有机物降解过程中,在污水处理场a和o池中都存在进行,但主要以好氧为主,目标微生物多为异养型微生物。大分子有机物在好氧状态下,通过微生物的生化作业,经过水解、酵解、三羧酸循环最终彻底氧化为氨、Co2、H2o,已到达脱碳效果,降低废水CoD、BoD值。但完成以上作用的有效微生物的特点是:生物新陈代谢周期短、能量利用率高,生物世代繁殖时间短,约20-30分钟繁殖一代。

(2)脱氮。生化系统脱氮的过程可分为:氨化反应、硝化反应、反硝化反应过程三个过程。其过程中的有效微生物为硝化细菌和反硝化细菌,通过氨化反应将有机氮转化为氨态氮,通过硝化反应氨态氮转化为亚硝酸盐和硝酸盐,再通过反硝化反应亚硝酸盐和硝酸盐还原成氮气的过程。但完成以上反应和作用的有效微生物的特点是:微生物多为自养型细菌,能量利用率较低,生长缓慢,其平均世代为10个小时以上。

3.2实际生产中“双脱”控制疑难点分析。

通过以上对“双脱”生产运行机理分析,要想达到同步降解CoD、BoD和nH3-n的疑难点,可有下图做简要说明:

图1“双脱”控制疑难点控制图

3.3实际生产中实现“双脱”控制解决措施。

(1)在活性污泥培养前、中期控制生化进水有机物含量,确保较低的有机物负荷和较高氨氮值,为硝化和反硝化细菌的生长繁殖创造有利条件,在污泥培养后期和成熟期开始逐步增加生化进水有机物负荷,为碳源降解微生物创造有利条件,通过生物镜检和水质数据相结合,确定实现“双脱”效果的临界水质数据范围值和生产运行参数值。

(2)在日后正常生产运行管理中,对污水处理场预处理段的生产运行严格控制,保证浮选出水水质符合生化系统微生物正常生存需要。

(3)对活性污泥的污泥龄进行控制,剩余活性污泥的排泥时间、频率适中,确保系统中两大类微生物生存比例均衡。

(4)对于生化系统正式投入运行后,将来可能出现的高浓度CoD废水的运行,需要及时调整工艺流程,采用一级a/o以降CoD、BoD为主,二级a/o以降nH3-n为主的生产运行措施。

3.4采用“双脱”控制措施后,效果分析。

将“双脱”控制措施应用与活性污泥培养驯化全过程,通过对o池污泥沉降比取样量筒中上清液进行水质化验分析,其水质数据变化情况如下表:

污泥培养时间段

备注污泥培养10天左右人工补充了碳源,20天左右,进行了人工补充氮源

表2o池污泥沉降比上清液水质分析表

通过以上数据可以看出:污泥培养期间SVi、CoD、nH3-n都由原来培养初期的异常较高值,逐渐趋于平稳正常,都表现出一个先降后升再降的过程,这是由于人为投加营养源,逐步完成活性污泥驯化过程的正常表现,同时在培养驯化期间,工艺控制上保证较长污泥龄,有利于培养硝化细菌的培养和驯化,创造较好的生化系统脱氮条件,实现“双脱”,并成功完成了生化系统原始构建。

污泥再生利用方案篇3

某城镇再生水厂总服务流域面积约5km2,日处理总规模6万m3(分期建设,其中一期工程为4万m3,二期工程为2万m3),再生水厂以处理生活污水为主,工业废水量约占总处理水量的30%。再生水厂总投资20200万元。总占地面积8.367ha,其中一期占地面积5.916ha。项目计划2016年10月建成投产。再生水厂主体规模按近期设计,预留远期工程条件;一级处理构筑物按远期设计,设备按近期设计,预留远期条件;二级生化处理构筑物和设备按近期设计,预留远期条件。本文在考虑再生水厂进水稳定性、灵活性及节能降耗方面,对原方案中的工艺流程及方案进行了优化,优化后的方案运行稳定、灵活、可操作性强、运行成本低。

2设计进出水水质及去除率

根据对现状污水水质监测情况,参照邻近和当地污水处理厂进水水质,确定该再生水厂进水水质。根据对该项目尾水受纳水体功能类别、再生水供水范围及水质要求等综合分析,确定再生水厂出水水质指标。具体设计进出水水质及去除率见表1。

3原工艺流程

项目原工艺流程采用a2/o+mBR工艺,工艺流程见图1。

4调整后工艺流程

项目调整后工艺流程采用a2/o+二沉池+高效澄清池+砂率/超滤工艺,工艺流程见图2。

5工艺流程及方案的优化

5.1增加初沉池

初沉池的主要功能是去除SS中的可沉固体物质及飘浮物质,BoD5可去除20%~30%,同时可均匀水质,便于后续生化处理。由于本项目进水SS为350mg/L,较常规污水处理厂偏高。为了有效去除部分可沉悬浮物,降低后续SS和有机污染物负荷,减少曝气系统堵塞,在生化池前增加初沉池。考虑到旱季和雨季进水水质有一定的差异,故设置初沉池超越管线,可根据进水水质灵活运行调整。

5.2优化深度处理流程

在深度处理工艺流程上,原工艺流程采用a2/o处理后,直接进入mBR膜池,在mBR产水泵的抽吸作用下,使用膜过滤的方式实现固液分离。鉴于mBR膜具有工程投资较高、运行费用较高、mBR部分日常维护工作量大、管理复杂等特点,对原深度处理工艺流程进行了优化和调整,最终将深度处理流程调整为二沉池+高效澄清池+砂滤/超滤工艺,在原工艺流程上增加二沉池+高效澄清池+砂滤工艺,确保出水水质稳定达标。增加二沉池后,将生物处理后的混合液进行固液分离,降低出水SS,减少后续辅助化学除磷加药量和减少沉淀污泥量,降低高效澄清池负荷。深度处理过滤部分以气水冲洗滤池为主,辅以外置超滤,进水水质较差时同时启用气水冲洗滤池和超滤,在确保出水水质达标的前提下尽量节省工程投资和运行费用。

5.3沉砂池的优化和调整

将原旋流沉砂池调整为曝气沉砂池,除砂效率高,且砂砾较为清洁便于后续生化处理。由于曝气沉砂池内水流呈旋转态流动,无机颗粒之间相互碰撞与摩擦频率增加,可将颗粒表面附着的有机物“剥离”,达到洗净砂砾的目的,使排除沉沙中的有机物含量低于10%。通过调节曝气量,可以控制污水的旋流速度,保证稳定的除砂效率,受流量变化影响小。同时曝气沉砂池还具有一定的除油功能。

5.4生化反应池(a2/o)优化和调整

a2/o生物池作为生化处理的主要构筑物,是再生水厂的核心部分,其设计和运行的优劣直接关系到全厂的出水水质能否稳定达标。为此,对原a2/o处理工段进一步分析、论证和优化调整。在原方案基础上增加一级缺氧和好氧,即每组生物池分为6个区,按水流方向依次为预缺氧区、厌氧区、缺氧区1、好氧区1、缺氧区2和好氧区2,各功能区之间设置隔墙分隔,以保持各区内相对稳定的生化反应环境及稳定的水力推流状态,同时可避免进水及回流污泥发生短流现象。采用多级a2/o型设计,可强化生物脱氮和生物除磷,确保氨氮、总氮在生化池去除,以及最大限度生物除磷,减少化学除磷药剂量和化学污泥量。水力停留时间增加,有效池容增加约10%,改善了生化池的处理效果,除磷脱氮处理效果明显。

5.5储泥池的优化和调整

将原有常规储泥池调整为污泥斜板浓缩储泥池。污泥浓缩采用侧向流斜板浓缩池,对剩余污泥进行快速浓缩处理,这类池型在类似的污水处理工程中应用良好,不仅水力停留时间短,有效避免了磷的释放,而且可将污泥含水率降至97%以下,污泥减量明显(污泥减量4~5倍),有利于污泥后续深度脱水处理。

5.6污泥脱水设备的优化和调整

将原有离心浓缩脱水一体机优化为高干度隔膜压榨机,深度脱水后成为块状污泥,运输方便。原方案浓缩脱水一体机脱水后污泥含水率为80%,脱水后污泥量为68m3/d;调整后的高干度隔膜压榨机脱水后污泥含水率为60%,脱水后污泥量为34m3/d,较调整前减少1倍,污泥减量化及由此带来的运输费用和处置费用大大降低。

5.7消毒工艺的优化和调整

原消毒工艺采用普通自动型高效复合二氧化氯发生器制备二氧化氯进行消毒。结合污水处理厂运行经验,对消毒剂消毒效果、运行成本、运营管理、附属设施建设等进行了综合分析,考虑次氯酸钠具有“高效、高速、广谱、无毒、无害、无残留物污染,运输、储藏更安全,操作管理更简便可直接购买成品”等优点,确定消毒工艺采用次氯酸钠。

6厂区总图布置的优化和调整

污泥再生利用方案篇4

关键词:城市污水厂污泥减量化稳定化无害化资源化

浙江省随着工业化与现代化建设步伐加快,为保护环境,为建设生态省,确保社会经济可持续发展的需要,近年来加快了城市污水治理工程的建设。自2000年以来,至今年上半年,全省已建成投产和试运行的城市污水处理工程项目共达35个,总的处理规模达340万m3/日,城市污水处理率达42.3%,35个污水厂所在地估算每天产生干泥量达1286吨,其中得到不同程度处理与处置的为544吨/日;计划到2005年年底城市污水处理工程建成个数增加到55个,总的处理规模达440万m3/日,城市污水处理率达到53.0%;到2007年年底,城市污水处理工程个数增加到73个,总的处理规模为500万m3/日,城市污水处理率为58%,到时全省实现县县建有污水处理厂。

我省城市污水厂建设与运行管理历史较短,经验不足,遇到不少新问题,当前较为突出的一个问题,是城市污水厂污泥处理处置建设滞后,运行管理经验不足,污泥对环境带来的二次污染情况较普遍。

一、必须按照科学发展观全面指导城市污水厂污泥处理与处置建设与管理

“坚持以人为本,全面发展、协调发展、可持续发展”的科学发展观是我国社会主义建设的科学总结,是社会主义建设客观规律的反映,也是各行各业必须共同遵循的准则。回忆我省近年来城市污水治理工程的历史,凡是按照科学以展观建设的工程,就能充分发挥投资效益,工程的综合效益好;凡是违背科学发展观建设的,工程投资效益就不能充分发挥,综合效益差,有的甚至起到“负面”作用。

城市污水厂污水处理与污泥处理及处置是两个独立的不同阶段又相互紧密联系的一个完整的体系。污水处理,是把城市原生污水通过“物化”处理与“生化”处理等措施,把原生污水中固相污染物质从污水中分离出来(被分离的污染物质称为原生污泥)。污水经处理后的出水称为“尾水”,达标后排放或回用。污泥处理是把含水率较高的原生污泥通过浓缩、脱水“减量”化处理,和后续通过“生化”处理,进一步减少污泥中有机物含量达到“稳定”化处理,上述两个阶段统称为污泥处理,污泥处置是在上述污泥处理后,最终进行“无害化”和“资源化”处置。由此可见,污水处理是搞好污泥处理与污泥处置的前提与基础,而污泥处理与处置是污水处理的实现的最终目标的保证措施。这两者缺一不可。一个完整的城市污水治理工程,污水处理工程、污泥处理处置工程必须同步规划、同步建设、同步投产、同步运行。只有这样才能充分发挥污水治理工程整体功能,达到保护环境造福人类的目的。

我省有些城市污水治理工程建设中,污泥处置工程没有与整个治污工程做到同步建设,其原因有以下种种:有的城市是因为缺少排水专业规划与污泥处理与处置专业规划,因依据不足,工程初步设计缺乏污泥最终而必需的处置内容;有的是由于资金紧张,处置工程“暂缓”安排建设。这样,污水厂投产后污泥因得不到正常处置,造成污泥无序乱堆放,对环境带来二次污染。有些城市污水厂保护环的功能在衰退,逆向转入集中污染环境趋势。这种不正常的现象我们极不允许!只有按照科学发展观要求,加快污泥处置配套工程建设,才能确保城市污水,治理工程整体效益达到充分发挥。

二、必须按照循环经济增长模式全面按照“四化”要求强化城市污水厂污泥处理与处置

循环经济是一种新的、符合可持续发展理念的模式,在一些发达国家取得了明显成效。当前我国正处在一个全面建设小康社会关键历史时期,在这一时期如何保证保持经济平稳运行,健步增长发展,经济增长模式必须由传统的单向线型模式(即资源产品废弃物直接排放)转变成循环经济模式(资源产品废弃物再生资源利用,是闭环反馈式循环过程)。在城市污水厂污泥的处理处置过程中,全面执行减量化、稳定化、无害化、资源化处理与处置的方式是循环经济模式的体现。它具有强大的生命力、良好的环境效益、社会效益与经济效益。

我省有的城市污水厂污泥最终处置选择了与水泥制品厂或制砧厂合作,把污泥作为建材产品的掺合料一起焚烧,最终生产出质量完全符合标准的建材产品同时还降低了生产成本。这种处置过程,充分利用了污泥中的无机物(粘土),补充了当前水泥生产与制砧生产紧缺的泥源;同时充分利用了污泥中有机物(具有热值)作为辅助燃料,减低了建材产品生产的煤耗量;由于焚烧温度高达1200℃、污泥中病原体被彻底毁灭;燃烧过程中产生的有害废气(如阿?f咽)被彻底分解,又无残留灰渣,彻底避免了对环境的污染;同时为建材生产厂提供了再生资源,降低建材产品的单位成本;根据市场经济运作,污水厂还从中得到了应有的实惠。

有的城市污水厂污泥最终处置与制热单位合作,利用污泥替代部分燃煤制热,取得了较好的效果。污泥通过焚烧达到了无害化处置、制热单位由于获得了污泥这一再生资源,缓解了当前燃煤供应紧张的局面,并降低了制热生产成本。

有的城市把污水厂污泥经浓缩、脱水与适当堆放稳定处理作为农肥后用于苗圃、园林绿化,或土壤改良。

上述种种,按照“四化”要求对污水厂污泥进行处理与处置的,虽在我省城市污水厂中还是少数,但是它代表着一种发展的方向,不久将来必须会得到迅速普及。其原因是:

1、城市污水厂污泥是一种宝贵的再生资源。

从循环经济观点来看,“资源”这一概念是相对的。据报导目前全世界钢产量的1/3、铜产量的1/2、纸制品1/3来自循环使用,有些发达国家在17个产业生产中,已经实现了水资源消耗的零增长甚至负增长。同样,在城市污水厂污水处理过程本身来看,产生的污泥是一种废弃物,但对后续综合利用生产单位(如水泥生产、制砧、农用、土壤改良)来说是一种宝贵的再生资源,它具有普遍的使用价值。随着科技进步与循环经济模式推广,城市污水厂污泥必然会得到广泛利用。

2、从保护环境角度来看,城市污水厂污泥最终进行资源化处置,才能彻底消除污泥对环境的污染,有利于保护环境。

3、从提高资源使用率角度来看,城市污水厂污泥资源化处置,是充分发挥了污泥这一再生资源使用价值,做到了物尽其用。

三、城市污水厂污泥全面执行“四化”处理与处置的对策

1、要进一步统一对城市污水厂污泥处理与处置技术路线必须全面执行“四化”要求的认识。当前首要的问题是认识不统一,主要有以下两个方面:

其一是有些同志把城市污水厂污泥仅仅看作是一种废弃物而不是资源。他们把有些地方污泥未进行处置归罪于“污泥误认为资源”、“过分强调了污泥资源化”,他们还主张污泥处理与处置最终目的应仅限于“减量化、稳定化、无害化”,强调“资源化”不是最终目的。这种思维方法是把环境保护与资源综合利用对立起来。事实恰恰相反,按照循环经济增长模式,应把环境保护与资源综合利用统一起来。我们主张在保护环境的前提下搞污泥综合利用,同时也认为只有综合利用,才能有效的彻底解决污泥对环境污染。我们相信,遵照“实事求是”、“因地制宜”的原则,依靠社会化生产大合作的形式,能找到有利于保护环境、安全实用、经济合理污泥处理与处置办法。

其二,是有的同志主张万事不求人,不主张污泥处置与其它单位搞合作、搞联营,其理由是这样做不可靠、不正规,而自己单独搞污泥处置既缺少资金、又缺乏技术力量,结果是污泥处置还迟迟不能上马。这种想法与做法与社会化生产、有效的分工合作、组织集约型生产模式相违背的。事实上企业间进行有效合作,可相互取长补短,能快速提高整个社会生产综合效益的充分发挥。污泥处置采用社会化生产,加强企业间合作,有利于多、快、好、省地全面推行污泥“四化”处理与处置的技术路线。

2、要进一步制订相关的污泥处置技术政策。

正确的技术政策是正确技术路线实施的保证。以往我国虽出台了一系列技术政策,但尚欠完整。笔者建议国家有关部门要进一步补充制订有利于城市污水厂污泥全面执行减量化、稳定化、无害化与资源化处理及处置的技术路线实施的相关技术政策。

(1)要坚持实事求是、因地制宜,一切从当地实际情况出发的原则;

(2)污泥资源化利用方案必须通过多方案技术经济比较,择优选定,被选定方案有利于保护环境,污泥综合利用做到安全实用、经济合理,实施方便可行;

(3)城市污水厂污泥处理与处置设施应与污水处理设施做到同步建设、同步投产、同步运行。今后凡缺少污泥处理与处置的设施的污水治理工程不得通过竣工验收,只有把污泥处理与处置设施补充完善了才能通过竣工验收;

(4)要禁止污泥无序堆放,任意污染环境的行为;

(5)鉴于节约用地考虑,要尽量少用土地填埋处置技术;

(6)要大力提倡污泥综合利用处置技术。根据不同条件要分别优先推广污泥焚烧与建材化生产相结合的处置技术、污泥替代燃煤的处置技术、污泥生产复合肥料与土壤改良等综合利用技术;

(7)建议政府对全面按“四化”要求,污泥处理的企业,在财政上给予必要支持,在税收上给予一定减免优惠政策;

(8)要进一步补充制订污泥质量评价标准。

3、建议各地政府与有关部门要进一步加强城市污泥处理与处置工作的领导。

(1)要加强科技投入,不断加强城市污泥处理新技术、新工艺、新设备的研究;

(2)要做到规划先行,今后城市污水厂建设前必须先制订有关城市排水专业规划与污泥专业规划;

污泥再生利用方案篇5

[关键词]跳汰选煤煤泥回收水仓淤泥

中图分类号:U697文献标识码:a文章编号:1009-914X(2017)15-0015-01

1引言

水仓是矿井排水系统中不可缺少的一部分,它主要有两个作用:一是存水;二是沉淀。矿井水中含有以煤泥和砂石为主的杂质,进入水仓沉淀后,应定期把沉淀物清挖出去。否则会造成:①减少水仓的有效容积;②当积淤过多时,杂物会进入吸水井,然后被吸入水泵,使水泵的过流部件磨损加剧;③吸水井淤泥过多时会堵塞吸水泵龙头,造成排水困难或无法排水。因此,必须定期地清挖水仓来提高矿井排水系统安全性。而国内清挖水仓的煤泥一般采用四种方案处理:①由矿车运输排往矸石山。②由矿车将煤泥运至地面空地,晾干后混入煤中销售。③借鉴洗煤工艺中的煤泥水处理系统,在井下直接完成煤泥水处理,将成品煤泥运至煤场混入煤中销售。④利用洗煤厂煤泥水处理系统,在地面完成煤泥水处理,得到煤泥可单独销售也可混入煤中销售。方案一中煤泥直接排往矸石山会造成资源浪费;方案二运至地面晾干,会占用大片空地,不利于环境保护;方案三在井下建立煤泥水处理系统,会加大设备投入与生产成本,不利于成本管控。方案四利用洗煤厂煤泥水处理系统,不仅有效减少煤泥处理成本,而且提高了煤泥回收效率和水资源的再循环利用。本文着重介绍跃进煤矿利用洗煤厂煤泥水处理系统回收煤泥工艺及取得的成效。

2.工作原理及工艺流程

在水仓清淤过程中,遇到的糊状淤泥,清理比较困难。产生糊状淤泥的原因是淤泥中水的含量太大,如果能将淤泥中的水分离出来,对煤泥和水加以回收利用,不但能提高经济效益,而且有利于环保。经过研究,将水分从淤泥中分离出来可利用洗煤厂洗煤过程中处理煤泥水的工作原理来实现。这项工艺将水仓淤泥中的颗粒煤及杂质分为三类分别采用不同方式处理,一类为粒径大于3mm的颗粒煤及杂质;一类为粒径0.5mm-3mm的颗粒煤及杂质;另一类为粒径小于0.5mm的颗粒煤及杂质。运输至地面的水仓淤泥进入1#调节池,加入循环水稀释,粒径大于3mm的颗粒煤及杂质在重力作用下沉淀后,由挖机挖出晾干,然后同煤一起销售;粒径小于3mm的颗粒煤和杂质,经1#调节池稀释沉淀后,溢流至2#缓冲池,由缓冲池排污泵打入煤泥水桶,与洗煤过程中的煤泥水混合,再由旋流器组入料泵打入分级旋流器,由分级旋流器分离出含粒径小于0.5mm的颗粒煤和杂质的煤泥水与含粒径在0.5mm-3mm的颗粒煤和杂质的煤泥水。粒径小于0.5mm的颗粒煤和杂质的煤泥水经分级旋流器上部流出由管网输送至浓缩系统利用压滤机回收煤泥和水;粒径在0.5mm-3mm的煤泥水由分级旋流器下部依次流入弧形筛,离心机,脱水后由煤泥皮带转载至煤仓,煤泥水t由管网排入污水池,由污水池排污泵打入煤泥水桶进行下一循环。工艺流程图见图1。此系统在跃进煤矿投入工业性试运行,效果明显。

3.淤泥处理系统的综合性能和效益分析

(1)该系统充分利用了洗煤厂煤泥水处理系统,机械化程度高,降低了工人劳动强度。

在洗煤厂正常运行过程中,该系统充分利用洗煤厂自有设备及人工完成淤泥输送,泥水分级,干料运输等环节,改变了人工装载,人工推车的体力劳动,将工人从强体力劳动中解脱出来。同时,减少了设备投资,提高了用工效率。

(2)处理淤泥能力强,煤泥回收效果明显,提高了经济效益。

淤泥中大部分是煤,该系统对淤泥中不同粒径的颗粒煤,分别回收,提高了煤泥回收效率,增加了经济效益。该矿共有水仓4个,平均每年产生大约2500m?淤泥,仅回收煤泥一项,每年可增加收入25万余元。

(3)水仓淤泥及时处理有利于矿井安全生产,保护了环境。

及时清理水仓淤泥,可避免因积淤过多,大量淤泥进入吸水井,堵塞水泵,无法排水等现象,减轻矿水对矿井生产的威胁。矿水经过充分沉淀,可减轻对水泵过流部件的磨损,延长其使用寿命,提高排水系统的效率。本系统处理淤泥彻底,同时实现了水资源的循环再利用,减少了对环境的污染。

参考文献:

[1]王培润,戴葆青,郭秀欣,等.矿井水仓清挖及处理新方法[J].煤矿机电,2004(6):54-58.

[2]霍妍妍,李爱军,刘瑜,等.宝雨山煤矿井下水仓清淤系统设计[J].煤矿机械,2007(10):22-23.

污泥再生利用方案篇6

与发现和使用了约4000年的铁相比,铬算是正当盛年的后起之秀。铬元素由法国科学家沃克兰于1797年发现,距今仅有213年的历史。铬(Cr)排列在元素周期表的第24位。金属铬呈银白色,比铁稍轻,熔点约为1857℃。

金属铬的耐腐蚀性很强,可用于制镍铬系的不锈钢,该钢种类繁多,令人目不暇接,许多大都市的现代雕塑也采用镍铬不锈钢进行制造。铬既可用于制造飞机、轮船、汽车,又可用于制作小巧的首饰、磁带、,录像带等。人们爱不释手的红宝石和绿宝石,也因为含有铬,才使其呈现绚丽的色彩。普通的金属上镀铬可以防锈,价格低廉的金属披上一层薄薄的铬外衣后,既美观又耐久,两种不同性能的金属互补,可谓相得益彰。

铬也是人体必需的一种微量元素,人体对无机铬的吸收利用率比较低,不到1%;人体对有机铬的利用率可达10%~25%。天然食品中的铬以3价的形式存在,含量较低。铬在人体的糖代谢和脂代谢中都起着比较重要的作用。

铬污染离我们并不远

常见铬的化合价有正2价、正3价和正6价。铬的毒性与其价态有关,金属铬没有毒性,而化合物中的6价铬是强致癌致突变物质,可诱发肺癌和鼻咽癌等癌症,6价铬还易被人体吸收并且在体内蓄积。3价铬和6价铬在一定的条件下可以相互转化。铬的污染源主要来自含铬化合物生产加工过程中排放的铬渣,除此之外,金属的电解和电镀加工、皮革鞣制、印染等生产也会排放出大量含6价铬的废物。

进入21世纪,人类社会面临各种挑战,其中就包括人们关注的环境污染问题。铬污染是人们必须认真对待的难题。多年以来,铬污染对人类健康损害的事例时有报道,特别是国际癌症研究机构关于6价铬可以致癌的结论,使铬污染更是名声狼藉。

早些时候,世界各地就发生过比较严重的铬污染事件,其中包括上世纪70年生在日本东京的铬污染事件,同期在美国新泽西州以及我国锦州也发生过大面积的铬污染。全球己发生过的铬污染事件中,最著名的可能要属1993年发生在美国加州的保洁公司铬污染案。该公司利用铬盐作为冷却水的缓蚀剂,后因含铬液体渗漏造成所在地6价铬污染,导致住在污染地附近的老百姓健康受到危害。该污染案不但引起民事纠纷,还成为美国该类案件中最大的民事赔偿案,其赔偿金额高达三亿三千三百万美金之巨,此案巨额的赔偿金当年曾在美国引起轰动并被搬上银幕。真实的故事、传奇的情节、明星的演绎和大众关心的环保主题使该片大获成功,最重要的是,随着此影片的发行,铬污染也开始成为全球亿万民众关心的环境问题。

除了前面提到的那些,装修房屋用到水泥的时候,也有可能接触到铬污染。水泥是建筑行业使用最广泛的材料,大多数人不知道水泥生产中也有可能会产生铬污染。水泥生产时需将石灰石粉经过水泥回转窑内i000多摄氏度的高温进行煅烧。为抵抗高温下碱性物料对窑炉耐火砖的侵蚀,部分水泥窑在炉内的高温区采用铬镁耐火砖砌筑。在高温和碱性环境下,经过高温煅烧的水泥熟料就有可能含有几十万分之一数量级的6价铬。因水泥系强碱性物质,如果水泥产品中微量的6价铬超过一定值,触碰后就有可能对的皮肤或有破损的皮肤造成铬性皮炎溃烂的,伤害。因此,近年来不少国家对水泥产品也制定了新的标准限制,控制其6价铬的含量。

另据有关资料介绍,由于历史的原因,我国许多地方都存在过铬渣污染。早年各地生产铬酸钠的化工厂历年会随生产排放铬废渣,截止到2005年,全国各地堆存下来的含铬废料约300万吨。其堆存地点分布于20多个省、市、区。我国因铬污染被迫先后关闭的30多个铬化工厂遍及上海、苏州、青岛、杭州、哈尔滨、沈阳、江门、长沙、广州、韶关、开封、天津等地。这些工厂倒闭后,遗留下来数百万吨铬废料堆积在当地,成为污染当地环境的毒瘤。不少地区地下水被6价铬污染,有的面积达数平方千米以上,被铬渣污染的水流入当地的河流,会直接影响到在流域沿途居住的千百万民众的生活,严重地威胁着当地人们的身体健康。

铬污染的治理

有毒铬污染物对环境造成的巨大破坏引起了各国科学工作者和工程技术人员的密切关注,近30多年来,仅针对铬渣的污染治理,全世界已经发表的论文和专利就有数百篇以上。铬渣的污染治理采用的方法真可谓五花八门,有湿法化学还原法,有高炉炼铁还原法,还有还原气氛下的高温煅烧还原法等等,但是它们都离不开一个原则,就是利用化学还原反应将毒性巨大的6价铬还原成几乎没有毒性的稳定的3价铬化合物。

近年来提出的循环经济理论也为解决这个问题提供了良好的思路。借鉴循环经济的原则研究人员开发出“水泥的6价铬降解法”和“铬渣和废酸的综合利用法”两个专利,它们的特点都是遵循循环经济的原理,利用一种有害的工业废弃物治理铬污染,是典型的“以废治废,再循环利用”的方案。

污泥再生利用方案篇7

关键词:废水;回用;方案;经济性

中图分类号:X703文献标识码:a文章编号:1673-1069(2017)06-76-2

1概述

张家口市金川中水开发利用有限公司再生水处理厂于2009年10月建成投产,目的是为河北大唐张家口热电厂的循环冷却系统提供冷却循环补充水。为缓解城市水资源供需矛盾,冷却循环补水采用经深度处理后的城市污水,这是当前社会可持续发展的必然趋势,也可以有效缓解张家口市水资源紧张的现状。

1.1再生水处理工艺简介

本再生水厂采用曝气生物滤池―石灰软化法―过滤―消毒工艺,具体工艺流程为:污水处理厂总出水经再生水提升泵房进入生物滤池进行脱氮及去除有机物处理,出水经中间提升泵进入机械搅拌澄清池,与石灰浆和絮凝剂硫酸亚铁混凝,沉淀分离后,上清液进入酸化渠道,通过投加浓硫酸将出水pH值调整到7.0~8.5,随后进入活性砂滤池,过滤水在进入清水池前投加消毒剂次氯酸钠,在清水池短暂停留后,由输水泵输送至大唐张家口热电厂。详细的工艺流程见图1

1.2再生水处理厂中系统废水的来源

再生水处理厂中系统废水的来源有三个方面:

①曝气生物滤池的反冲洗水。

②机械搅拌澄清池排出污泥压滤后产生的废水。

③砂滤池的反冲洗废水。

其中第①种废水间歇性排放而且水量较少,同时其中CoD、BoD及SS的浓度较高不宜直接回用,因此此部分废水由厂内污水管道回流至污水处理厂前端进行二次处理,而第③种废水可以直接回流至机械搅拌澄清池再次澄清后进行回用。本文重点讨论的是第②种废水的回用方案和经济行分析。

2研究目的与内容

2.1研究目的

本项目目的是提高再生水处理的经济效益和减少再生水处理中再生水处理厂系统自身用水量以节s石灰加药成本,同时可以增加再生水的产水量。

2.2研究内容

主要研究内容是对污泥压滤后产生的废水的各项指标进行分析以确定其是否可以通过工艺改造实现目的。

3水质指标检测结果及污泥含水率检测

3.1压滤水水质指标检测结果

随机抽取压滤水水样进行检测,水质指标检测结果如下表1所示。选取表1各项水质指标平均值作为压滤水水质参照值:

悬浮固体SS=3mg/L;溶解性固形物tDS=1128ppm;pH=10.24;浊度为1.41ntU;碱度为1.53mmol/L;硬度为4.87mmol/L。

3.2机械搅拌澄清池出水水质检测结果

根据再生水水厂水质日常化验数据表可以得到机械搅拌澄清池的出水水质指标值:悬浮固体SS=2mg/L;溶解性固形物tDS=1144ppm;pH=10.69;浊度为1.49ntU;碱度为1.01mmol/L;硬度为5.74mmol/L。

由上述水质指标可见压滤水的出水水质完全满足要求,即不需要经过机械搅拌澄清池处理即可满足出水水质要求。

3.3石灰污泥含水率及脱水后泥饼的含水率检测

对石灰污泥和泥饼进行含水率检测,可得出湿石灰污泥含水率98%,污泥比重为1.006,含泥为0.0196g/ml;经脱水后泥饼的含水率约为70%,泥饼比重为1.92g/cm3。

4脱水机压滤水产水量计算

再生水水厂采用的压滤机型号为XmK300/1500-U,过滤面积为300m2,滤室容积为4.8m3。按照上述检测结果可知,湿石灰污泥含水率98%;经脱水后泥饼的含水率为70%。通过以上数据可得出运行一次压滤机所得到的压滤水为67.2m3。由于压滤机进泥管道改造,因此进泥脱水时间会随着进泥压力的增加而缩短。压滤机整套脱水系统包含进泥脱水、吹风、卸料及清洗四个步骤,根据设计使用说明和实际运行情况来看,当脱水系统连续运行的情况下,不需要每次都要进行清洗,水厂设定每台每天清洗一回,因此可确定2小时为一个运行周期。运行期间由两台压滤机交替使用,扣除压滤机清洗时间,两台一天可运行20次,总产出水量为1344m3。一个月按照30天计算,总产水量为40320m3。

5经济分析

5.1用酸成本计算

根据上述水质指标检测结果可知,压滤水的水质指标值和机械搅拌澄清池的出水指标值基本一致,改造后压滤水排水管道直接进入酸化渠进行加酸处理,因此压滤水加药成本只需计算加酸成本。根据以往水厂的耗酸量数据,得出经验值:每100m3再生水的耗酸量为0.00601t。根据压滤水产水量可计算出,水厂一天增加硫酸消耗量为0.08078t,一个月需增加硫酸消耗2.4234t。浓硫酸(浓度为98%)的单价为每吨780元,则每个月(按30天计算)的用酸成本为1890元。

5.2电费计算

由于以往脱水系统每天只开两次,改造后脱水系统连续运行,可达到每天开20次。因此脱水系统的用电量将大幅度增加。脱水系统中用电设备为板框压滤机、送泥泵、冲洗水泵、空压机。其中:

板框压滤机的功率为10kw,用于板框的压紧、打开等;

送泥泵的功率为22kw,用于进泥脱水;

冲洗水泵的功率为11kw,用于板框压滤机的滤布清洗;

空压机的功率为5.5kw,用于各种阀门的开启与关闭。

根据脱水系统的实际运行时间,可估算出运行一次脱水系统的用电量为40度。较以往相比,脱水系统每天多开18次,增加用电量720度,按工业电价每度0.68元计算,每天增加电费490元,一个月(按30天计算)增加电费为14700元。

5.3泥饼外运费计算

石灰污泥经脱水形成泥饼后直接卸入储泥间,当储泥间泥量过大时,需要将泥饼外运处置。储泥间大约可存放170m3的泥,板框压滤机每次出泥量为4.8m3,污泥处置单价为每方16元,表2为改造前后的泥饼处置费计算结果。

由表2可知,泥饼处置增加成本为41472元,增加率为90%。

5.4经济分析

通过上述成本计算,可得到改造后每个月增加的成本为1890+14700+41472=58062元。每个月的压滤水总产水量为40320m3,即每月增加的再生水产量为40320m3,再生水销售价格为2.25元/m3,则增加销售额为90720元,所得利润为32658元,一年总利润为391896元。

6回用及改造方案

由于脱水机高程高于酸化渠的高程,因此脱水机的压滤水经收集后可直接由脱水机房经架空管道自流至酸化渠首端,只需对脱水机压滤水收集管道进行改造即可,同时管道进行保温处理。

7结论与建议

由此可见,经过压滤废水回用改造后既提高了水厂的经济效益,又达到了节能减排的效果。

但需要注意的是为保证压滤机脱水后的压滤水对总出水的影响降低到最小,需控制好机械搅拌澄清池的出水pH,并对储泥池进行改造防止石灰污泥沉淀造成储泥池容积减小。

参考文献

[1]黄君礼.水分析化学[m].中国建筑工业出版社,2006.

污泥再生利用方案篇8

【关键词】城镇污水处理;现状;技术

0.前言

21世纪以来,水污染已经成为全球性的问题,随着城镇化进程的加速,大量生产生活污水污染了水资源,我国城镇污水处理的现状不容乐观。通过不断改造已建设施,不断应用新设备、新材料和新技术,建设与运行并重,我国城镇污水设计处理能力正与经济协调发展。

1.我国城镇污水处理的现状

截至2014年3月底,我国城镇累计建成3622座污水处理厂,污水处理能力为1.53亿立方米/日。除海南三沙市、日喀则以外,全国设市城市全部建成并投运的污水处理厂合计2051座,污水日处理能力达1.26亿立方米;已建有污水处理厂的县城为1381个,居县城总数的85%,累计建成1571座污水处理厂,污水的日处理能力为2758万立方米。我国的实际污水处理量已居世界首位,污水年处理总量、处理率、处理厂数量、设计处理能力等正快速增加。不过,我国污水处理厂的设施建设并不均衡,比起东部地区、中部地区来说,东北、西部地区污水处理率还存在一些差距。全国城镇污水处理厂耗电量约为0.3kw・h/m3,总体偏高,其中东北、西部和东部地区耗电量更高,中小型污水厂运行成本中耗电费用所占的比例更大。

按照《“十二五”全国城镇污水处理及再生利用设施建设规划》,到2015年全国城镇污水管网将为32.5万千米,较“十一五”期间的管网长度增加155%,污水处理率进一步提高,污水处理设施实现再生水利用率15%以上。全国所有设市城市和县城需具备污水集中处理能力,直辖市、计划单列市以及省会城市城区达到污水全部收集并处理,地级市污水处理率为85%,县级市及县城为70%,建制镇为30%。同时,到2015年要全面提高污水处理设施的运行效率,城镇污水处理厂投运一年以上的,实际处理负荷应超过设计能力的60%,投运三年以上的应超过75%。

2.城镇污水处理存在的问题

我国的污水配套管网建设总体滞后、设施建设和运营资金不足、各区域污水处理设施建设不平衡、污水处理厂设计规模偏大、污水处理设施运行负荷率普遍较低、污水处理率有待进一步提高、多数污泥没有进行无害化处理、部分处理设施无法完全满足环保新要求、污水再生利用率不高、运营监管不到位等问题普遍存在,很多城镇污水处理厂存在不达标或者不能同时达标的问题。在技术方面具体有下列问题:

2.1管网配套不健全,进水量严重不足

我国城镇管网建设普遍滞后,是当前污水处理设施的主要问题。由于污水厂同城镇污水管网的建设不同步,引致部分城镇污水厂进水量不足、污水收集率低、运行负荷率低,这造成了污水处理设备的投资浪费和闲置,也给污水处理厂的减排效能带来很大的难度。

2.2进水水质复杂,达标排放难度大

部分城镇污水处理厂进水中污水成分复杂,工业废水占相当比例,出水tSS、tp、tn、和CoD无法稳定达到一级排放标准。其中的抗生素类污染物对微生物有很强的抑制作用,更是对城镇污水处理厂正常运行造成严重影响。

2.3污水处理吨水耗电量偏高

污水处理是能耗密集型行业,单耗电一项就占了污水处理厂运行费用的50%以上。全国城镇污水处理厂耗电量约为0.3kw・h/m3,比发达国家高出很多,高电耗增加了处理设施的运行成本。

2.4未妥善解决污泥的处理处置

总体来说,我国的污泥处置属于起步阶段,大多数污泥经过脱水运出厂外后,仅有少部分进行建材利用或焚烧等无机化处理处置,处理处置率只有5%-10%,对土壤、地下水会造成二次污染。

3.污水处理技术的研究与发展

我国正在运行的城镇污水处理厂中,采用一级物化处理工艺的只有1.9%,二级生化处理工艺居于主导地位,全国90%以上城镇污水处理厂采用的主体处理工艺类型为氧化沟(oD)工艺、传统活性污泥法(CaS)、a/o工艺、a2/o工艺、SBR工艺以及曝气生物滤池(BaF)工艺。近年来,城镇污水处理厂广泛采用a2/o工艺,以满足除磷脱氮的需求。中国现有的城镇污水处理技术大多是引进、消化和吸收,一直以来,技术人员大量地研究国外的污水处理技术,包括原理分析、改进设计、结构解析和优化运行等,使国外技术本土化,以符合我国具体国情的需求。

未来污水处理技术将从现今污水处理厂的达标排放技术、优化运行技术、节能降耗技术向着资源化技术方向发展,污水处理的资源化技术不但是污水回收所需要的高质量再生水处理技术,而且将发展污水中所含的磷、氮、碳等物质的回收技术。依据城镇污水处理未来走向,如下技术将得到重点发展:低碳污水处理技术,具体为高效控制技术、节能降耗运行优化、可持续新工艺和节能降耗新设备的应用;污水深度和超深度处理技术,具体为新兴污染物去除技术、营养物深度去除技术和高质量再生水超深度集成处理技术;污水处理资源回收技术,具体为磷回收技术和pHa生物塑料回收技术;污水处理能源开发技术,具体为污泥和污水能源开发技术。

4.关于城镇污水处理的策略与建议

为了进一步搞好城镇污水处理工作,应当抓住现今节能环保产业加快发展、设备支持明显增强、激励约束机制逐渐完善、资金投入力度日益加大的有利时机,增强城镇污水配套管网建设力度,增加对污水处理设施的投入,特别是增加对东北地区和西部地区污泥处置、污水处理、污水再生利用设施的投入;加快污水处理厂升级改造,积极推动再生水利用,强化设施运营监管能力,加强污泥处理处置设施建设,全面提升污水处理能力,精心组织、科学筹划,全面推进污水处理设施建设,稳步提升设施运营管理水平。从技术层面来讲:(1)加大管网建设,提升设施运行负荷率。未来在城镇污水处理厂建设中,要更加注重污水量前期调查以及预测,正确确定设计规模,杜绝大马拉小车的错误现象;而且要加强管网建设,做到污水管网全部覆盖,产生的污水全部收集,提升污水处理设施运行负荷率。(2)去除难以生物降解以及不可生物降解的成分。首先要查清污染源,让污染源单位自行处理,其次要针对水质分析报告,调整污水处理流程,从设备、设施、技术、工艺等方面着手去除。(3)力求精细化管理,降低污水处理吨水耗电量。要大力重视节能降耗工作,随时观察水量水质变化,通过技术更新、设备更新、工艺改造、参数调整、优化运行等方式,实施精细化管理,降低污水处理吨水耗电量,节约污水处理成本。(4)妥善处理处置脱水污泥,消除二次污染。处理污泥的方案跟污泥最终处置的去处有关,而处置的去处取决于污泥的成分,如此方能准确地制定污泥的处理方案,应以资源化、无害化、减量化为准绳,逐步完善不同泥质、不同区域的脱水污泥处理技术。

【参考文献】

[1]李宁.小城镇污水生物处理方法的比较研究[J].扬州:扬州大学,2012.

污泥再生利用方案篇9

关键词:污水处理厂

为了加强城市污水治理,保护水环境,中央增加了投资力度。1998年分二批下达的城市污水治理项目达117项,投资约300亿元。1999年又下达近百亿国家债券资金,支持城市污水处理厂建设。为了确保污水处理厂建设后的正常运行,国家已明确在水价中增收排污费。一年多来,全国有上百座城市污水处理厂正在建设,按照“七大流域、三大湖泊和重点沿海城市及其近岸海域要新增城市集中式污水处理能力2000×104m3/d”和“非农业人口50万以上城市都要建设城市污水处理厂”的目标,在2000年年底前,还有上百座城市污水处理厂正立项要求建设。我国现有668个城市中,仅有123个城市有307座不同处理等级的城市污水处理厂,其中城市污水二级处理率10%左右,全国17000个建制镇,绝大多数没有排水和污水处理设施。纵观世界各国,排水系统和污水处理率均有一个逐步发展和逐步完善的过程。国家提出至2000年我国污水处理率要求达到25%,2010年达到40%,这是根据国家(包括地方)财力,在各方面作出努力后争取达到的目标。为使来之不易的投资取得实实在在的效益,针对目前城市污水处理中有关建设规模和工艺技术谈一些个人的看法。

1合理确定建设规模

对一个城市来说,需根据城市总体规划和排水规划,分期分批地建设污水管网和污水处理厂,要根据水环境保护的目标,分期实施,逐步到位。城市排水工程建设是一项系统工程,涉及城区管渠改造,污水的收集、输送(包括泵站),污水处理和排放利用,以及污泥处置等问题;在河网城市,还需考虑上游、下游和水体自净问题。

合理地确定设计的污水水量和污水水质,直接涉及工程的投资、运行费用和费用效益。不少城市由于市区污水管道未形成系统,缺乏长期积累的污水水质水量资料,一般采取按规划面积、人口和工业发展的预测来推导污水量,并提出生活污水量、工业废水量和公建、商业污水量各占的比例,其不确定因素较多,因此提出的设计污水量往往偏大。实际上,按规划计算的污水量与可能有污水量、实际可能收集到的污水量和根据需要与可能进行处理的污水量是不同的,设计的污水量在很大程度上取决于污水管网普及率和实际可能收集到的近、远期污水量,并分期建设污水处理厂。要充分认识城区内管网改造的复杂性和艰巨性,有的取决于旧城市的改造和道路的改造,有的埋了干管,支管迟迟未建成,致使许多已建成的污水处理厂在相当一段时间内“吃不饱”。对设计的污水水质,应该对现有实测的水质资料进行分析(包括工业废水正在限期达标排放的水质水量变化和管渠内地下水的渗入量),对雨污合流和老城区排水系统需科学地确定污水管道的截流倍数(干管和支管可采用不同的截流倍数)。现在设计的需处理污水水质偏高的问题是普遍存在的,设计的污水水量和污水水质要通盘考虑,留余地过大,既增加投资亦会使设备闲置或低效运行。

2城市污水处理厂的工艺选择

污水处理厂的工艺选择应根据原水水质、出水要求、污水厂规模,污泥处置方法及当地温度、工程地质、征地费用、电价等因素作慎重考虑。污水处理的每项工艺技术都有其优点、特点、适用条件和不足之处,不可能以一种工艺代替其他一切工艺,也不宜离开当地的具体条件和我国国情。同样的工艺,在不同的进水和出水条件下,取用不同的设计参数,设备的选型并不是一成不变的。

具体工程的选择要求包括:

①技术合理。技术先进而成熟,对水质变化适应性强,出水达标且稳定性高,污泥易于处理。

②经济节能。耗电小,造价低,占地少。

③易于管理。操作管理方便,设备可靠。

④重视环境。厂区平面布置与周围环境相协调,注意厂内噪声控制和臭气的治理,绿化、道路与分期建设结合好。

21关于活性污泥法

当前流行的污水处理工艺有:aB法、SBR法、氧化沟法、普通曝气法、a/a/o法、a/o法等,这几种工艺都是从活性污泥法派生出来的,且各有其特点。

①aB法(adsorption—Biooxidation)

该法由德国Bohuke教授首先开发。该工艺对曝气池按高、低负荷分二级供氧,a级负荷高,曝气时间短,产生污泥量大,污泥负荷2.5kgBoD/(kgmLSS·d)以上,池容积负荷6kgBoD/(m3·d)以上;B级负荷低,污泥龄较长。a级与B级间设中间沉淀池。二级池子F/m(污染物量与微生物量之比)不同,形成不同的微生物群体。aB法尽管有节能的优点,但不适合低浓度水质,a级和B级亦可分期建设。

②SBR法(SequencingBatchReactor)

SBR法早在20世纪初已开发,由于人工管理繁琐未予推广。此法集进水、曝气、沉淀、出水在一座池子中完成,常由四个或三个池子构成一组,轮流运转,一池一池地间歇运行,故称序批式活性污泥法。现在又开发出一些连续进水连续出水的改良性SBR工艺,如iCeaS法、CaSS法、iDea法等。这种一体化工艺的特点是工艺简单,由于只有一个反应池,不需二沉池、回流污泥及设备,一般情况下不设调节池,多数情况下可省去初沉池,故节省占地和投资,耐冲击负荷且运行方式灵活,可以从时间上安排曝气、缺氧和厌氧的不同状态,实现除磷脱氮的目的。但因每个池子都需要设曝气和输配水系统,采用滗水器及控制系统,间歇排水水头损失大,池容的利用率不理想,因此,一般来说并不太适用于大规模的城市污水处理厂。

③a/a/o法(anaerobic—anoxic—oxic)

由于对城市污水处理的出水有去除氮和磷的要求,故国内10年前开发此厌氧—缺氧—好氧组成的工艺。利用生物处理法脱氮除磷,可获得优质出水,是一种深度二级处理工艺。

a/a/o法的可同步除磷脱氮机制由两部分组成:一是除磷,污水中的磷在厌氧状态下(Do<0.3mg/L),释放出聚磷菌,在好氧状况下又将其更多吸收,以剩余污泥的形式排出系统。二是脱氮,缺氧段要控制Do<0.7mg/L,由于兼氧脱氮菌的作用,利用水中BoD作为氢供给体(有机碳源),将来自好氧池混合液中的硝酸盐及亚硝酸盐还原成氮气逸入大气,达到脱氮的目的。为有效脱氮除磷,对一般的城市污水,CoD/tKn为3.5~7.0(完全脱氮CoD/tKn>12.5),BoD/tKn为1.5~3.5,CoD/tp为30~60,BoD/tp为16~40(一般应>20)。

若降低污泥浓度、压缩污泥龄、控制硝化,以去除磷、BoD5和CoD为主,则可用a/o工艺。

有的城市污水处理的出水不排入湖泊,利用大水体深水排放或灌溉农田,可将脱氮除磷放在下一步改扩建时考虑,以节省近期投资。

④普通曝气法及其变法

本工艺出现最早,至今仍有较强的生命力。普曝法处理效果好,经验多,可适应大的污水量,对于大厂可集中建污泥消化池,所产生沼气可作能源利用。传统普曝法的不足之处是只能作为常规二级处理,不具备脱氮除磷功能。

近几年在工程实践中,通过降低普通曝气池容积负荷,可以达到脱氮的目的;在普曝池前设置厌氧区,可以除磷,亦可用化学法除磷。采用普通曝气法去除BoD5,在池型上有多种形式(如下文所述的氧化沟),工程上称为普通曝气法的变法,亦可统称为普通曝气法。

⑤氧化沟法

本工艺50年代初期发展形成,因其构造简单,易于管理,很快得到推广,且不断创新,有发展前景和竞争力,当前可谓热门工艺。氧化沟在应用中发展为多种形式,比较有代表性的有:

帕式(passveer)简称单沟式,表面曝气采用转刷曝气,水深一般在2.5~3.5m,转刷动力效率1.6~1.8kgo2/(kw·h)。

奥式(orbal)简称同心圆式,应用上多为椭圆形的三环道组成,三个环道用不同的D

o(如外环为0,中环为1,内环为2),有利于脱氮除磷。采用转碟曝气,水深一般在4.0~4.5m,动力效率与转刷接近,现已在山东潍坊、北京黄村和合肥王小郢的城市污水处理厂应用。若能将氧化沟进水设计成多种方式,能有效地抵抗暴雨流量的冲击,对一些合流制排水系统的城市污水处理尤为适用。

卡式(Carrousel)简称循环折流式,采用倒伞形叶轮曝气,从工艺运行来看,水深一般在3.0m左右,但污泥易于沉积,其原因是供氧与流速有矛盾。

三沟式氧化沟(t型氧化沟),此种型式由三池组成,中间作曝气池,左右两池兼作沉淀池和曝气池。t型氧化沟构造简单,处理效果不错,但其采用转刷曝气,水深浅,占地面积大,复杂的控制仪表增加了运行管理的难度。不设厌氧池,不具备除磷功能。

氧化沟一般不设初沉池,负荷低,耐冲击,污泥少。建设费用及电耗视采用的沟型而变,如在转碟和转刷曝气形式中,再引进微孔曝气,加大水深,能有效地提高氧的利用率(提高20%)和动力效率[达2.5~3.0kgo2/(kw·h)]。

22关于曝气生物滤池

曝气生物滤池实质上是常说的生物接触氧化池,相当于在曝气池中添加供微生物栖附的填(滤)料,在填料下鼓气,是具有活性污泥特点的生物膜法。曝气生物滤池(BaF)70年代末起源于欧洲大陆,已发展为法、英等国设备制造公司的技术和设备产品。由于选用的填料不同,以及是否有脱氮要求,设计的工艺参数是不同的,如要求处理出水BoD5、SS<20mg/L,去除BoD5达90%以上的工艺,其容积负荷为0.7~3.0kgBoD5/(m3·d),水力停留时间1~2h;以硝化(90%以上)为主的工艺,其容积负荷为0.5~2.0kgBoD5/(m3·d),水力停留时间2~3h。

一般认为,生物膜法处理城市污水,在国内尚需积累经验,处理规模不宜过大,约5×104m3/d左右为宜。国外(主要在欧洲)处理水量有达到36×104m3/d的,这与其填料材质、自控手段和先进的反冲洗装置有关,也与其有长期积累的运行管理经验有关。

23关于UnitanK工艺

UnitanK工艺和类似的tCBS工艺、mSBR工艺一样,都是SBR法新的变型和发展。它集“序批法”、“普通曝气池法”及“三沟式氧化沟法”的优点,克服了“序批法”间歇进水、“三沟式氧化沟法”占地面积大、“普通曝气池法”设备多的缺点。

典型的UnitanK工艺是三个水池,三池之间水力连通,每池都设有曝气系统,外侧的两池设有出水堰及污泥排放口,它们交替作为曝气池和沉淀池。污水可以进入三池中的任意一个,采用连续进水、周期交替运行。在自动控制下使各池处在好氧、缺氧及厌氧状态,以完成有机物和氮磷的去除。

UnitanK工艺由比利时Seghers公司首先建在我国的澳门特区,处理水量14×104m3/d(不下雨时平均处理水量为7×104m3/d),池型封闭,设计采用的容积负荷为0.58kgBoD/(m3·d),总的反应池体积为46800m3,曝气池水力停留时间为8h,出水的BoD5、SS<20mg/L。

这类一体化工艺是传统活性污泥工艺的变形,可以采用活性污泥工艺的设计方法对不同的污染物加以去除,如考虑硝化,其负荷一般在0.05~0.10kgBoD5/(kgmLSS·d),硝化率视污水温度而异。而要求污泥稳定化,其污泥负荷和污泥龄要远远超过硝化时的数值。

容积利用率低是此类一体化工艺共同的主要问题,就是说在一个较长停留时间的曝气系统内,有50%左右的池容用于沉淀。

UnitanK工艺的成功与否有赖于系统采用稳定可靠的仪表及设备,因此引进技术,消化、吸收和开发先进的自控系统是应用此工艺的关键问题。一般认为,UnitanK工艺不太适用于大型(>10×104m3/d)的城市污水处理厂。

3科学地进行工艺方案比较

城市污水处理投资大,运行费用高,如不包括引进处理设备和引进沼气发电设备,每处理1m3污水投资宜控制在1000元,运行费(包括折旧费)宜控制在0.5元/m3左右。由于现在污水处理率还不高,按用水量的0.8计算污水量,收0.2~0.3元/m3排水费,基本上能维持处理设备的运行。

为了降低投资和运行成本,因地制宜地进行工艺方案(主要是生物处理方案)比较是必要的。进行多种工艺方案的比较,说明处理工艺技术的发展,是好事。现在经常碰到的问题是,工艺方案比较往往不够科学,有的对工艺已有倾向和爱好,先入为主,对倾向的工艺只说优点,对不赞成的工艺强调缺点;有的把自己的小型试验数据与别的已上工程的工艺比;有的是将处理BoD5为主的工艺与处理BoD5同时进行脱氮除磷的工艺比。实际已运行的不少污水处理厂,其出水水质较好与其进水水量和水质远未达到设计指标有关,各厂情况不同,不可简单地比较出水指标;有的投资包括厂外工程费用(如道路、电负荷增容等);有的投资包括征地费用(而此费用在各地出入很大);有的工艺建设投资低,运行费用高;有的工艺投资高,运行费用低;有的工艺处理污水的投资低,而污泥量较多增加了污泥的处理成本。应该看到,同样的工艺,采用的设计参数不同,其结果也是不同的。作为负责任的单位,对工艺方案的比较力求客观全面,在同等进水、出水条件下,其设计参数应包括对各种污染物的去除率、曝气时间、污泥负荷和容积负荷、曝气量和氧的利用率(及动力效率)、污泥产量(及污泥指数)等作全面分析,数据丰富就可以集思广益,扬长避短,根据技术上合理,经济上合算,管理方便,运行可靠且有利于近、远期结合的原则,进行工艺方案的优化抉择。

对一定规模(如10×104m3/d)以上的城市污水处理厂,应作污泥稳定处理,通常采用中温消化,沼气利用,有条件的可设沼气发电(如北京高碑店、天津东郊),这要花费不少投资,技术设备相当复杂,设备需要引进。不处置由污水处理带来的污泥,污水处理是不完整的,脱水后污泥的最终处置要具体落实,不留后患。

污泥再生利用方案篇10

关键词:污水处理生利用技术决策

城市污水处理工艺选择的水质因素进水水质水量特性和出水水质标准的确定是城市污水处理工艺选择的关键环节,也是我国当前城市污水处理工程设计中存在的薄弱环节。城市污水管网的完善,对城市污水处理厂设计规模和设计水质的确定至关重要,目前我国大多数城市管网不配套,造成城市污水处理规模和水质难以合理确定,投入运行后实际值与设计值往往相差较大,效能难以充分发挥。

在国内城市污水处理厂的综合调查中,获得了87个城市污水处理厂的设计进水水质和最近一年的月平均实际进水水质情况。统计分析结果表明,在调查的城市污水处理厂中:(1)设计进水CoD值一般选择400-600mg/L,占调查总数的74.2%,低于400mg/L和高于700mg/L的分别占20%和5.7%;(2)设计进水BoD5值一般选择200mg/L左右,占总数的87.2%,选择高于400mg/L的仅占6.4%;(3)设计进水SS值一般选择200mg/L,占总数的78.8%,选择大于350mg/L的仅占10.6%。城市污水处理厂的实际进水水质与设计进水水质的比值能够反映出污水处理厂设计进水水质的准确程度,调查研究结果表明,在调查的城市污水处理厂中:(1)实际进水CoD与设计进水CoD比值低于1.0的占65.8%。高于1.0的占34.3%;(2)实际进水BoD5与设计进水BoD5比值低于1.0的占83%,高于1.0的占17%;(3)实际进水SS与设计进水SS比值低于1.0的占61.6%,高干1.0的占38.3%。

对于城市污水处理工艺方案及其设计参数的确定,进行必要的水质水量特性分析测定和动态工艺试验研究是国际通行的做法,有些发达国家甚至开展连续多年的全面水质水量特性测定和中试研究。在国内,由于体制和资金来源等方面的问题,在污水处理工艺方案的确定过程中虽然不太可能开展大规模的前期试验研究,但进行水质特性分析与短期动态工艺试验的条件还是具备的,不应该忽视。

因此,污水处理技术政策中要求,应切合实际地确定污水进水水质,优化工艺设计参数。必须对污水的现状水质特性、污染物构成进行详细调查或测定,作出合理的分析预测。在水质构成复杂或特殊时,应进行污水处理工艺的动态试验,必要时应开展中试研究。积极审慎地采用高效经济的新工艺,对在国内首次应用的新工艺,必须经过中试和生产性试验,提供可靠设计参数后再进行应用。

般城市污水主要污染物是易降解有机物,所以目前绝大多数城市污水处理厂都采用好氧生物处理法。如果污水中工业废水比重很大,难降解有机物含量高,污水可处理性差,就应考虑增加厌氧处理改善可处理性的可能性,或采用物化法处理。

污水的有机物浓度对工艺选择有很大关系。当进水有机物浓度高时,aB法、厌氧酸化/好氧法比较有利。aB法中的a段只需较小的池容和电耗就可去除较多的有机物,节省了基建费和电耗,污水有机物浓度越高,节省的费用就越多。厌氧处理要比好氧处理显著节能,但只有在浓度较高时才显示出优越性。当有机物浓度低时,氧化沟、SBR等延时曝气工艺具有明显的优势。在要求除磷脱氮的场合须选用稳定可靠的生物除磷脱氮工艺。

污泥的处理处置

在我国的城市水污染治理中,污水处理厂污泥处理处置费用约占工程投资和运行费的25%-45%。污水处理厂污泥处理处置高昂的投资及其运行费用,一方面使得目前国内大部分污水处理厂未对污泥进行稳定处理或处理工艺的配套设施不完善,另一方面也使得建有完善污泥处理设施的污水处理厂常因其运行费用较高而基本停用。随着我国城市污水处理设施的普及,处理率的提高和处理程度的深化,污泥的产生量将有较大的增长,预计到2010年,我国城市污水处理厂的湿污泥年产量将达2000余万吨,污泥的处理处置将成为难题。而通过技术改进和革新,降低污水处理厂的污泥产生量;研究开发先进的污泥处理工艺,提高污泥处理系统的效率,降低污泥处理成本;研制出技术先进、经济高效的国产污泥处理成套设备;积极进行污泥资源化利用研究等是解决当前及今后我国据市污水处理厂污泥处置问题的有效途径。

根据我国污水处理技术政策,城市污水处理产生的污泥,应采用厌氧、好氧和堆肥等方法进行稳定化处理,也可采用卫生填埋方法予以妥善处置;处理能力在10万m3/d以上的污水二级处理设施产生的污泥,宜采取厌氧消化工艺进行处理,产生的沼气应综合利用:处理能力在10万m3/d以下的污水处理设施产生的污泥,可进行堆肥处理和综合利用;采用延时曝气技术的污水处理设施,污泥需达到稳定化;采用物化--级强化处理的污水处理设施,产生的污泥须进行妥善的处理和处置;经过处理后的污泥,达到稳定化和无害化要求的,可农田利用;不能农田利用的污泥,应按有关标准和要求进行卫生填埋处置。

城市污水处理出本的再生利用

在我国,花费大量投资建设了城市污水处理厂,但经过处理后的再生水并没有得到充分利用,有的地区甚至还将处理后的再生水与未经处理的污水混入一起同流合污,有的地区没有将再生水合理再用却直接排入大海造成淡水资源的浪费。因此,在城市污水处理决策中应充分考虑污水的再生利用。城市污水处理厂出水可用作农业用水、市政杂用水、工业冷却用水、工业生产用水、地下水补充等;另一方面,城市污水处理厂出水也可看作是水文循环的组成部分,将合乎质量要求的出水排放到河流水体中,使河流水休能维持或变成供下游使用的原水源,不仅经济可行,而且可减少风险并发挥河流自净能力。

在我国的城市污水处理技术政策中,提倡各类规模的污水处理设施按照经济合理和卫生安全的原则,实行污水再生利用。发展再生水在农业灌溉、绿地浇灌、城市杂用、生态恢复和工业冷却等方面的利用。城市污水再生利用,应根据用户需求和用途,合理确定用水的水量和水质。污水再生利用,可选用混凝、过滤、消毒或自然净化等深度处理技术。因此,缺水城市和水环境污染严重的地区,在规划建设远距离调水之前应积极实施城市污水再生利用工程,同时做好非投资性或低投资性的节水减污工作。