化学工程与应用化学十篇

发布时间:2024-04-29 16:28:06

化学工程与应用化学篇1

关键词:绿色化学;工程工艺;化学工业节;应用

工业是国民经济的基础,随着社会经济的不断快速发展,对于工业生产也提出了更高的要求。然而,当前我国工业发展面临着资源价格飞涨,环境污染日益严峻的情况,这也使得全社会对于工业生产越来越关注。怎样有效的处理好工业污染物,防止其对环境的二次污染,怎么有效的利用好数量庞大的生活废品,是当前许多学者都在研究的问题。绿色化学工程是在社会迫切需要的情况下诞生的新型项目,这个项目的目标是:对日常化学生产当中的一些资源浪费及环境污染进行有效的处理,从而使得化工污染得到有效缓解,化工生产过程中的资源浪费得到很大的改善。

一、绿色化学工业的概念

绿色化学又被称为无污染化学,以此为理念而开发出的技术就是绿色化学工程技术,采用化学原理从根本上降低化学工业对环境造成的破坏。化工业发展的基础是绿色化学工程,它已成为了未来化学工业发展方向的重要研究目标之一,绿色化学具有以下两种特性:首先,绿色化学的根本思想在于保护环境,使自然资源可持续发展,让人与自然之间的关系和谐,人们对环境造成的破坏促使了对绿色化学的研究;其次,绿色化学是将环境改变的技术,发展下的绿色化学技术以逐渐可以应付各种环境下对自然的破坏。从根本上来说,绿色化学是预防环境污染;而环境化学则是对污染后的环境进行改善和治理。两者之间是根本不一样的,在最终目的上也是千差万别的。

目前,对绿色化学进行研究的重要发现和实践活动为绿色化工技术。基本原理是采用原料中的原子进行转化,这就使化学工业在进行工作时不会产生污染物,达到对化学工业污染物的零排放。并且,在进行化学工业工作时,不使用任何具有危害性和毒性的原材料,这样可以生产出对环境不造成破坏的产品。这种技术目前处于理论状况,但是在众多科研人员的努力探索下,还是可以逐渐实现此种设想的。

二、绿色化学工程与工艺的开发

在传统化学的生产过程中,在有毒、有害物质的处理上存在较为严重的滞后性,因此导致化学工艺一直处于被动生产。应用这样的化学工艺对污染物进行处理无法取得理想的效果,资源优化也无法得到有效实现。化学工艺的应用不但导致化学生产污染物成本提高,还导致污染物处理效率严重下降。绿色化学工程的应用可有效弥补传统化学工程中存在的缺陷,其通过对相关科学技术及先进方法的利用,对化工生产相关污染物进行除尘、脱硫等处理。绿色化学工程与工艺具体实施方法主要有以下几种。

(一)采用绿色化学原料

在化工生产工艺及具体流程中,化学生产原料是起着决定性作用的主要因素,在传统化学工程中,所用原料大部分为不可再生能源。采用这些原料不但大大提高国家不可再生能源的消耗,同时还导致污染物的排放量大大增加,加重生态环境污染程度。将绿色化学原料作为化工生产材料是绿色化学工程重要研发内容之一。在化工生产过程中,可使用绿色化学物质、自然物质等无染污、可再生的化学原料。典型的绿色化学原料主要有芦苇、苞米杆、纤维植物等。将这些作为原料投入到化工生产过程中,可使其转化为酮、醇、酸类等多种化学品。在整个转化反应过程中,这些原料仅会产生一定量的氢气,而不会有任何一种有害、有毒的物质产生。

(二)提高化学反应的选择性

在化学工程的物质反应中,化学反应作为必不可少的重要组成部分存在。所有化学原料的转化均是需要化学反应才能得以实现。在化工生产过程中,合理选择有效的化学反应形式可有效促进化学工程生产效率及质量得到提高。对化学反应产生影响的因素有很多种,反应原料、环境、时间、特点等均会对化学反应产生不同程度的影响。在化学生产过程中应用最为普遍的反应形式为氧化反应。在氧化反应过程中会有大量的热产生,所有化学原料均会在热的催化作用下发生变质,因此会大大降低化学品的生产质量。在绿色化学工程中,应用新型的反应形式,这种新型反应形式为烃类氧化反应。这种反应形式的应用不仅可促进催化物反应催化能力得到提高,同时还可有效促进生产物同分异构反应时间增加。

(三)使用无毒无害催化原料

随着化学工业发展速度的不断加快,将化学反应合理的应用于化工生产过程中已经成为促进工业可持续发展的重要前提之一。在化学反应过程中均离不开催化剂的使用。将催化剂应用于化学反应过程中,可有效加快反应速度,缩短法宁时间。所以,在化工生产过程中使用无毒无害的催化原料成为推动绿色化学工程与工艺不断深入发展的重要前提条件之一。目前,我国相关部门已经高度重视对催化原料的选择及应用进行深入研究。越来越多的催化剂得到开发和研制,化学反应过程中使用的催化原料不断得到改善,分子筛除催化剂等优良催化原料在化工生产过程中的应用越来越广泛。无毒无害催化原料的應用可有效提高化学反应效率,降低能源消耗量,同时也可减少环境污染。

三、结论

化学工程与工艺的发展不仅影响着现代社会的发展,而且有助于环境友好型社会的构建。当前世界面临着资源和能源的短缺,社会经济的发展不能以牺牲环境为代价,这就需要化学工程与化学工艺共同发展,满足我国资源节约和环境保护的需要。化学工程与工艺的行业领域需要积极配合国家提出的可持续发展战略。转变可持续发展的概念。重视化学工程与工艺发展的环保性,转变传统的化学工程与工艺,减少环境的污染,积极开发新能源,走环境友好型道路。

参考文献 

[1]艾宁,计伟荣,项斌,等.化学工程与工艺专业人才培养模式改革的探索与实践[J].化工高等教育,2009,26(6):28-31,35. 

化学工程与应用化学篇2

【关键词】建筑工程制图与识图一体化教学理论实践

中图分类号:tU198文献标识码:a文章编号:

土木工程建设专业是理论与实践结合的专业,《建筑工程制图与识图》同样是一门理论和实践相辅相成的基础课程,要想《建筑工程制与识图》的教学内容更合理,一体化教学模式能够很好的教学的内容进行有机组合同时做到统筹安排,将教学内容变得更加有条理系统化,将重复内容尽可能的减少扩大学习范围,缩短《建筑工程制图与识图》的教学间,提高教学速度和效率,同时在教学质量上也能明显的提高,让理论和实践相互促进,让学生更好更快的掌握的《建筑工程制图与识图》。

1《建筑工程制图与识图》传统教学探析

很多的老师和学生对《建筑工程制图与识图》都有一个错误的认识,那就是把《建筑工程制图与识图》当成一门非重点的基础课程。值得说明的是,在当今科学技术快速发展的今天,,建筑的设计和施工都在不断的快速更新进步,这对老师对《建筑工程制图与识图》的教学和学生的掌握程度对应的提高要求。那么为了适应建筑工程制图与识图能力的新要求,如何更好更快的达到《建筑工程制图与识图》中的教学目的和知识技能的传输,达到预期的教学目标,上课内容如何进行安排,什么的教学方法更适合《建筑工程制图与识图》,这就需要教学内容内容的充分剖析,对教学需要和睦充分的解读。

但《建筑工程制图与识图》的教学上存在着许多问题,如课程中的理论与实践脱节,一般都是先上理论基础课,再进行实际训练,理论和实际没有形成统一的合理,达到对学生对于建筑工程制图与识图这么课程的教学促进作用,反而放学生之前忘后,,教学活动的层次和顺序较为混乱,教学效果不甚理想,影响了学生读图能力和画图能力的培养,浪费了学生学生和学校宝贵的教学资源和师资。

2一体化的教学模式的优势

一体化的教学模式是区别于传统的教学模式的新型教育方式方法。打破更新了传统的教学模式和教育方法,一体化的教学模式重新整、整合、理分了教学资源,这种对于教育资源的重新分配整理是基于教育效率的现状和教学目标科学制定的。重新整合购置的教学资源,有着以学生能力提高为本位的特点,对于传统的教育方式,很好的规避了《建筑工程制图与识图》教学中理论教学与实践不科学的教学问题,在增强教学直观性同时,学生以受教育主体出现在教学过程中,增强了学生在课堂中的参与性,对于教学的质量和人才的培养都有极大的促进作用。一体化教学模式应用于《建筑工程制图与识图》主要有以下优势:

(1)一体化教学模式在应用于《建筑工程制图与识图》教学中时,能够很好的将测绘制图的理论知识教学和实际训练相结合,让课堂既是理论教室又是实训教室,冲破了《建筑工程制图与识图》的理论课同实训课之间的教学壁垒,良好的课程流程和教学内容涉设计,理论与实践的教学并轨,大大的减少了《建筑工程制图与识图》的学习时间,同时对学生知识的掌握程度也有很大的提高。

(2)一体化教学模式对于提高学生对《建筑工程制图与识图》的学习兴趣有很大的促进作用。理论知识教学和实际训练相结合,将枯燥的理论和较为有趣的实践相结合,将抽象知识变成形象实物,让学生可触可感,不单单是提高学生对《建筑工程制图与识图》的学习兴趣,对于学生的三维空间思维能力和空间想象力都有很好的促进作用,以此调动学生的学习兴趣,和对《建筑工程制图与识图》求知欲。充分发挥学生对《建筑工程制图与识图》学习主动性及积极性,教学效率将得到明显的提升。

(3)理论知识和实践能力是学生毕业之后能够快速上岗,能够适应企业岗位对于知识和技能的需要。一体化教学模式,对于《建筑工程制图与识图》教学,起到了很大的促进作用,理论知识和实践教育相结合的教学方法,契合了新课表对于教学的新定义,让学生自主、合作、探究,在这样的方式中学习,让理论更加扎实,实践能力也有所提高。由于实行边做边学、边学边做的教育方法策略,在实践过程中总结得出课程理论知识,同时让理论知识引导实践,使得实践能力得到理论知识的深化加强。理论和实践技能互相渗透,沟通推进,达到《建筑工程制图与识图》的教学目的和效果。

3针对《建筑工程制图与识图》一体化教学的保障

3.1制度保障

实施一体化教学,首先就是要转变教育理念,以符合现展和学生实际情况的教育观指作为导向,推进《建筑工程制图与识图》一体化教学模式的进程。一体化教学模式的实施是以学校推行一体化教学为前提的,理论知识和实践教育相结合的教学方法,契合了新课表对于教学的新定义,达到教学的统一和协调。

3.2师资保障

师资力量和素质是保证一体化教学质量的保证,让骨干教师深入企业实际体验《建筑工程制图与识图》的操作流程,让教师和企业对接,避免出现教学和实际脱轨,实现学校企业化的教学模式。提高老师的实践能力以及对《建筑工程制图与识图》的教学水平,理论和实践的的“双师型”教师团队。只有教师理论知识扎实,同时具备过硬的专业技术,方能更好的引导学生实现理论教学和技能训练双促进。

3.3设备保障

先进的教学设备是确保一体化教学有效实施的条件,加大投入力度,引进先进的设备,建造出《建筑工程制图与识图》教学的专业教室。方能更好更快实现教学目标,达到教学效果。促进学生对建筑工程制图与识图的理解和掌握。

参考文献

[1]周斌.一体化教学思维的理论与实践,山东科学技术出版社,2005(8).

[2]胡济群.浅谈高校教学模式改革对素质教育的影响,理论探索,2001(6).

化学工程与应用化学篇3

关键词:化学工程与工艺实验;数据处理;matLaB软件;化工实验数据;化学实验文献标识码:a

中图分类号:o652文章编号:1009-2374(2015)09-0059-02Doi:10.13535/ki.11-4406/n.2015.0785

1matLaB软件

matLaB软件最早由美国的mathworks公司提出,其主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言的编辑模式,代表了当今国际科学计算软件的先进水平。近年来matLaB软件逐渐被用于化学工程与工艺实验的数据处理中,极大地提高了数据处理的效率。

2化学工程与工艺实验数据处理

化学工程与工艺实验不同于普通的化学实验只重视一个原理的求证,它的目的是为了解决工业中的化工问题,其特点主要有实验时间长、实验规模大和实验数据处理繁杂等。在整个化学工程与工艺实验里数据处理是必不可少的阶段,也是印证化学实验成果是否行之有效的必要手段,但是由于实验数据过于庞大,实验当中相关的参数关系大多是非线性的,单单依靠传统的手工计算不仅速度慢,还容易出现计算失误的情况,根本无法满足实际的需求,因此,将matLaB软件融入实验数据的处理中刻不容缓,它能有效地将繁琐的计算步骤化解成简单的计算,提高工作效率,让实验数据的准确性达到最高值,避免误差的产生。以下通过研究两个化学工程与工艺实验,分析matLaB软件在处理实验数据时与传统的手工计算有什么优势和便利。

3化学工程与工艺实验数据处理设计

3.1数据处理的程序框架

因为每一个化学工程与工艺实验的目的都不相同,因此其处理的步骤以及涉及的化学公式也不尽相同,不可能以一个程序来概括,但是经过大量的实验研究和总结,发现不同的化工实验中都会有其相似之处,它们都可以由图1来概述:

图1

3.2数据处理的程序编制

3.2.1数据输入。化学工程与工艺实验的数据输入主要依靠提示的函数input实现,比如以温度为例子,则其输入函数为:t=input(‘请输入实验的温度(摄氏度):’),其中输入函数大多是以矩阵的输入形式为主。

3.2.2处理和作图。化学工程与工艺实验中得到的数据时常会存在离散的情况,必须经由多种拟合的方法将它们结合成一条或多条连合的曲线,而其中最常用的拟合方式是最小二乘法,因此本实验设计中的拟合方式也采用最小二乘法的方式。

设实验的离散数据(x1,y1)通过最小二乘法将其拟合成因变量y,自变量x,输入的函数关系为y=f(x),函数关系的主要思路是让离散数据中的x1的残差平方以及Σ(f(x1)-y1)2达到最小值。因为在得出化工实验数据中多少会因为外界的因素存在着一些误差,因此最小二乘法可以无需使输入函数y=f(x)必须经过全部的离散数据(x1,y1),但是残差平方和必须达到最小值。根据最小二乘法的拟合方法可知,最小二乘法可以满足化工实验数据处理中的拟合应用需求。

在化学工程与工艺实验中会涉及到流体的流动阻力研究,研究主要是通过测试流体的流动阻力,在经过特定的计算之后得出摩擦系数(λ)和雷诺准数(Re)的离散数据,再同理,经过最小二乘法拟合出连续的曲线,并根据其画出相对应的图形。因为摩擦系数(λ)和雷诺准数(Re)属于成双对数函数,则:

λ=aReb+c(1)

当a,b,c是常数时,则可以设c=0:

λ=aReb(2)

因为λ与Re属于成双对数函数,则:

Logλ=blogRe+loga(3)

得出上述式子之后可以将matLaB里的函数polyfit()进行线性的拟合,以作为化工数据处理的程序

原理。

3.2.3建立数据库。因为经过上述的设计,化学工程与工艺实验数据处理只能得知在特定的温度下(比如10℃、20℃以及30℃等)实验的物性数据,但

是在实际的生产中,工业生产所涉及的温度多变,不单单只停留在设计好的温度当中,因此,这就需要我们在数据中选择最相近的数据,假设它们属于线性的关系,再利用内插或者外推的方式计算出实验的物性数据常数。在本文的化工实验中,编写的程序已经将实验温度和密度以及实验的温度与黏度进行多次的实验拟合,建立出了一个相对完整的数据库,在工作中只需将温度输入进系统,则程序可以自动跳出在特定温度下的物性数据,提高数据处理效率。

3.3程序的运行

在编制完成化学工程与工艺实验的数据处理程序,且建立数据库之后,便应该输入数据以验证程序是否能有效地处理实验数据。在化学工程与工艺实验的数据处理中,matLaB软件的应用是十分重要的,经过实验可知,在化工实验当中会出现大量的离散数据,必须经过拟合的方式进行处理,其处理过程中不仅工作量大,而且十分繁琐,一旦出现差错则必须重新重来,浪费大量的人力物力资源,而且在处理好实验数据之后,在查看实验当中还要将化工实验数据重新计算一次,看结果是否与原先的计算结果相同,工作量十分重,但是如果运用matLaB软件则大大降低了数据处理难度,只要在matLaB软件中输入相应的化工实验数据,就可以得到结果,节省了时间,提高了工作效率。

4结语

在实际的应用中,化学工程与工艺实验所要处理的数据十分庞大,而且涉及的计算公式也十分多,甚至很多时候为了将数据的计算公式导出来还要建立复杂的模型,一旦有一个步骤出现差错则会直接影响到实验的成果,如果使用传统的手工计算方式,为了避免差错则必须对每一个数据处理环节进行反复计算,降低了工作效率,因此matLaB软件的应用对于化学工程与工艺实验的数据处理十分重要,它不仅将复杂的计算变得简单,也让事后的实验验证效率得到提高,促进了化工实验的

发展。

参考文献

[1]赵新强,谢英慧,曹吉林,李国玲.化学工程与工艺教学实践[J].河北工业大学成人教育学院学报,2014,6(1).

[2]韩正.计算机引发化学工程革命[J].发明与创新(综合科技),2013,12(1).

化学工程与应用化学篇4

为了使高等院校的人才培养与社会对人才的要求一致,几年来,计算机教指委陆续下发了一系列指导意见及规范,明确指出“计算机科学是实践性极强的学科,必须培养学生具有很强的实际动手能力[1]。在it专业中工程应用型人才的培养成为教学研究的重点,并已成为我国高等教育普遍关注的热点。两年来,我们经过探索和实践,创建了一套可教学化的实训教学体系,对工程应用型软件人才的培养取得了良好的效果。

可教学化实训体系的建设关键在于实训教学资源体系的建设、“3+1”实训教学模式的确立,教师实训机制的建立以及实训教学方法的确立;政府引导、校企合作,组织的保证及考核模式的改革是深化工程应用型软件人才培养方法的保障。他们是可教学化体系建设不可分隔的部分。

2以政府为主导,构建可教学化实训组织体系

要构建完善的可教学化实训组织体系,首先要坚持以政府为主导的原则。政府、企业、院校三方从组织上确立实训教学在工程应用型软件人才培养上的重要性,起到了统一组织、统一协调的作用,将培养企业急需的工程应用型软件人才落到实处。东软信息学院大学生创业实训中心就是在大连市政府以及东软集团的大力支持下于2007年初成立的,中心除担负学院的实训教学任务外,还作为大连市政府挂牌的“软件人才实训基地”,为大连市it产业发展,培养、输送急需的工程应用型人才,实训中心的主要职能包括以下几个方面。

第一、建立校企合作联盟,紧密跟踪、研究行业主流应用技术,建设标准化实训教学资源。材、案、统一实训项目、统一文档模板、统一考评办法;按计划分阶段组织建设并完善涵盖学院各专业的初(中)级人才岗位技能的实训体系并进行统一管理。

第二、研究各行业业务,将技术与业务相结合,建立并扩展行业实训项目,使学生在实训的同时掌握行业业务知识,提高学生的综合能力。

第三、配合系部教学计划,完成对教师的训练及实训体系向各系部的转移,使学院专业课程教师真正成为一名“双师”型教师,并能按照实训体系教学要求完成对学生的实训。

第四、组织安排做好教师的实训教学的技术支持工作,配合实训教师完成对学生的实训,使学生成为一名可以按照软件开发管理方法及软件工程的要求完成项目开发的软件工程师。

第五、利用校企联盟承接协办项目,建立项目的竞标制度及机制,组织项目的审核、测试、验收及交付。最大限度地使具备开发能力的学生多参加项目的开发及管理,不断增加学生的技术应用能力及开发经验。

第六、建设维护实训社区,在做好教师实训教学支持的同时,为学生提供讨论交流的场所,形成校企合作的互动平台,增强企业对学校的了解,建立互信渠道,托宽学生的就业渠道;

2坚持校企合作,实现教学资源整合

实训教学资源是工程应用型软件人才培养基础和保障,包括教学用项目开发的基础理论资料,难点、重点讲解资料;项目开发专用技术资料;具有一定规模的企业实际工程项目及相关文档、模版,是可教学化实训体系的核心。因此,可教学化实训体系的建设离不开企业的参与,必须坚持校企合作,工学结合。在政府的政策引导和资金支持下,通过校企合作,在企业技术人员的指导下,实训中心人员将企业已经完成的工程项目进行需求分析,技术分析,按照工程管理的要求进行项目的可教学化改造,修订补充项目文档,总结归纳教学内容,最后完成可教学化实训教学资源建设。

为了将实训教学落到实处,实训中心工程技术人员紧密跟踪it行业主流应用技术及企业岗位技能要求,通过对大量软件企业调研,在企业工程技术人员的指导下,完成了包括Java、嵌入式、.net在内的实训项目的开发及实训体系建设,完成了不同方向的《实训教学大纲》、《实训教学日志》、《实训教学安排》、《实训教学要求及教学方法》、《实训项目开发计划》等一批实训教学指导性文件,分方向总结、提炼完成了工程项目实训前基础复习,项目开发中的重点、难点技术的教学内容,同时为了学生学习方便,将中心内容录制成网上课件,由于内容较多,这里仅以Java方向实训教学资源体系建设为例加以说明实训教学资源体系所包含的内容。

2.1基础理论知识

由于实训与基础理论的学习是分阶段进行的,如果学生在进行工程项目的训练之前对基础知识掌握得不牢不透,是无法在规定的时间内达到预期实训效果的,所以需要对项目中用到的以前学习过的基础知识以及重点内容进行巩固,同时由于学生没有参加过实际项目,项目中一些技术难点不易把握,需要通过特定场景进行练习。为了取得更好的教学效果,中心技术人员除了准备教学大纲,教学内容外,还将教学内容录制成课件,供学生在课余时间进行反复学习。如Java方向的复习、难点、重点内容如表1所示,同时还包括近20小时的网上课件。

表1Java基础复习资料及视频课件

2.2实例参考手册

实例参考手册是为学生进行项目开发准备的。由于学生没有参加过实际项目开发,对项目中一个完整功能的实际实现缺乏信心,通过参考或模仿手册中的实例,不断积累经验,才能逐步适应开发的过程。手册内容基本涵盖web应用Java开发中所能遇到的问题,共包含240多个实例。实例参考手册不仅是学生实训中的辅助参考手册,同时也是日后工作中不可多得的参考书。具体内容如表2所示。

表2Java软件工程师实例参考手册

除了实例参考手册外,还为学生准备了在项目实训中扩展知识面的电子资料,如CSS2.0中文手册;oracle9i中文版基础教程;oRaCLe函数大全;oRaCLe应用常见问题1000问等开发人员常用的参考资料。

2.3专用技术练习

为了在学生进入工程项目实训后,能尽快把握项目所用技术,在之前需进行项目专用技术的训练,中心技术人员专门制作了一些小型项目供学生独立完成。如下表3所示。

表3专用技术练习项目

学生根据教师提供的文档进行项目专用技术的练习,完成后可以参考项目源码,达到掌握开发技术的要求。

2.4实训工程项目建设

工程项目是来自于企业,从企业引入高校的企业实际项目。通过项目的开发,学生可以将课堂中所学知识融会贯通,了解企业的业务;掌握编程思想;熟悉软件工程项目的全过程;了解里程碑、缺陷管理流程;单元测试方法及代码审核方法;增强解决问题处理问题的能力,积累工作经验;同时通过工程项目的团队开发,具备了团队协同开发工作的能力。目前我院通过和东软集团合作,已对一批工程项目进行了可教学化改造,如表4所示。

表4可教学化工程项目列表

以东软网络教学管理系统(netp)项目为例,与项目相关的文档如表5所示。

表5项目开发相关文档

由于不同企业对文档要求的不同,技术人员除了为学生准备了实训项目的完整开发文档,供学生自己完成文档后进行参考,还准备了文档的标准模版,供学生工作后进行参考。

2.5开发工具及环境准备

实训项目的开发除技术外,在开发环境、工具的选择上同样需要与企业主流应用相结合,这样学生在进入企业后对所使用的工具和环境才不会陌生。在开发环境的搭建上,无论从项目开发环境还是数据库环境通过教师讲解让学生掌握主流开发工具及环境的使用方法。Java方向环境准备如表6所示。

表6开发环境、工具

3构建“1321”与“3+1”相结合的系统实践体系

所谓“1321”模式,是指将一个学年分为三个学期,其中两个理论学期,一个实践学期。“3+1”教学模式,是指四年制本科生在校期间,前三年以课堂学习为主,完成原本需要三年半完成的所有的专业课程学分,最后一年采用项目实训与毕业设计相接合的方式,用一年的时间进行工程实践,与传统的培养方式不同之处仅仅在于增加了半年的项目实训。在理论教学阶段,根据需要适当调整教学计划,将学生原本需要三年半完成的课程压缩到三年完成,以便于第四年全部用来进行工程实践。这种“1321”、“3+1”系统化的实践教学模式以毕业实训为最终目标,贯彻“实践不断线”,强调实践的延续性及关联性。

“1321”、“3+1”教学模式的确立是可教学化体系建设的关键要素之一,也是一个必要条件,分散与集中相结合的系统化实训教学,是工程应用型软件人才培养的重要保障。

4建立教师实训机制,加强师资队伍建设

高水平的实训指导教师是实现可教学化实训预期目标的重要保障。指导学生实训的教师,必须具有较强的实践工作经验,能够胜任项目经理的工作,这对长期从事理论教学的教师来说是有一定难度的。为了解决实训指导教师的问题,学院确立了“双师型”教师培养的机制。在实训项目规划的初期进行项目立项,作为学院科研项目进行管理,由实训中心牵头,组织相关系部专业课教师,在企业工程技术人员的指导下进行企业项目的可教学化改造,实现实训教学资源建设。实训资源建设完成后,利用寒暑假期,由实训中心技术人员对没有参与资源体系建设的教师进行分方向实训,为实训学期学生的实训做好准备。参加实训的教师考核合格后,颁发大连市软件人才实训基地实训教师资格证书,持有合格证书专业教师可以指导实训学期学生实训。同时在教师考核中对实训合格的教师进行激励,这种机制不仅提高了教师的工程技术能力,同时形成了实训的师资团队,为大规模开展实训教学奠定了基础。

教师们通过实训,完整学习、体验了工程项目开发的全过程。第一,对技术的应用有了更全面的了解,学习了很多新知识,并且对各课程之间的关系有了更清楚认识。第二,对专业课程有了更深的理解,为日后的授课托宽了思路,同时激发教师对理论教学的课程设置、课程内容的改革动力。第三,增强了科学研究和项目开发的能力。教师实训机制的确立,是可教学化实训体系建设的一个重要环节,是实训教学资源体系改造及学生工程项目实训指导师资培养的保证。

5完善评价体系,加强教法与考核机制改革

实训教学是一种全新教学模式,是培养工程应用型人才的一种教学方法,传统教学方法及考核机制无法满足实训教学的需求,实训教学方法的确立与考核方式的改革,是达到工程应用型软件人才培养目标的保证。

5.1实训教学跟踪

为了达到工程应用型软件人才培养目标,同时考虑学生的兴趣,采取学生分方向自愿报名的方法,每个参加工程项目实训学生的都有一份《实训教学跟踪表》,从实训开始前的基础摸底考试到基础知识讲解阶段结束后测试,再到专用技术练习后的测试,乃至最后的项目实训的综合测试成绩都会记录到学生的《实训教学跟踪表》中,实训结束后,由实训指导教师对每个学员进行综合评价,并给出综合得分,作为学生毕业推荐的参考依据。

5.2企业管理制度

在实训教学阶段,学生不可能再采取理论课学习阶段的管理模式,需采用小班型教学,以项目组的形式进行学习和项目开发,指导教师扮演着项目经理的角色,整体仿照软件开发公司式的管理模式。对于学生管理的具体措施有:

第一,采用企业管理模式。实行8:00-17:30的作息制度,按照企业模式进行管理。进行日常考勤,对迟到、早退的同学要进行严格记录,并按考核规定计入最后总成绩。

第二,采用项目经理制度,指导教师就是项目经理。要求学生把每天项目完成情况以及遇到的问题进行总结提交,提交项目日报,指导教师每天仔细阅读学员日报,了解每一个学员一天的学习、工作情况,认真总结问题,给出评语。

第三,进行分组管理。按照项目需要划分开发小组,每个组都有组长,负责本组项目进展情况,并协助老师帮助同学调试程序中一些简单的BUG。

第四,实施阶段考核。实训过程分为基础知识讲解,项目专用技术讲解、训练,项目实训等多个阶段,需要在每个阶段结束后进行相应考核,检验同学学习效果,督促同学进步。

第五,及时进行课后总结及思想教育。每天认真总结当天出现的问题,共同做出解决方案,采取相应措施,保证实训的顺利进行。

实训教学方法的确立使学生在学校就提前感受到企业管理的要求,为毕业后进入企业尽快适应企业工作环境打下了良好的基础;阶段性考核方法的实施,有利于对实训教学效果的及时把握。

6总结

总之,建立可教学化实训体系,是对现有软件及软件相关专业学生的培养规格的适应性调整,是培养工程应用型软件人才的有效手段,符合东软信息学院一直秉承的“教育创造学生价值”的教学理念,符合“知识的运用比知识的拥有更重要”的宗旨。实践证明,可教学化实训体系能够培养出直接为用人单位所用的工程型软件人才,得到了社会和企业的广泛认同。

参考文献

化学工程与应用化学篇5

化学工程与工艺专业的定位

1.化学工程与工艺专业的性质及培养模式

化学工程与工艺专业属于工科专业,授予工学学士学位。由于化学工业的相关领域极为广泛,化学工程与工艺专业涉及的专业方向也就非常多样化,各高校的化学工程与工艺专业特点亦不尽相同。我校近年来根据社会经济、工业发展的需求趋势,兄弟院校化学工程与工艺专业方向的设置,以及我校原有的相近专业优势,设置了能够体现我校特色的化学工程与工艺专业方向,逐步建立了适合我校化学工程与工艺专业的教育培养模式。2008年,我校化学工程与工艺专业已有7届本科毕业生,其学生就业形势良好,社会反馈积极.在制定教学计划的工作中加强教学内容和课程体系的改革,加强实践教学环节,目的在于进一步提高教学质量,培养适应能力更强的化学工程与工艺人才。

2.化学工程与工艺专业的任务

根据化学工程与工艺专业的性质,化学工程与工艺专业的任务是培养学习化学工程学与化学工艺学等方面的基本理论和基本知识,受到化学与化工实验技能、工程实践、计算机应用、科学研究与工程设计方法的基本训练.具有对现有企业的生产过程进行模拟优化、革新改造,对新过程进行开发设计和对新产品进行研制的基本能力。由于涉及化工的学科和领域很多,化学工程与工艺专业除了让学生学习一般应用化工的基本知识和基本技能外,还应该结合本地区、本行业及本校的实际情况,重点学习化工在某个或某几个领域中的具体应用,以便形成不同高校应用化工专业的特色专业方向.

3.化学工程与工艺专业的业务培养目标

本专业培养具备化学工程与化学工艺方面的知识,能在化工、炼油、冶金、能源、轻工、医药、环保和军工等部门从事工程设计、技术开发、生产技术管理和科学研究等方面工作的工程技术人才。

4.化学工程与工艺专业的课程设置

为了使不同高校既有统一的规范,又有不同的专业特色,根据应化学工程与工艺专业的任务和业务培养目标,化学工程与工艺专业的毕业生应该具有较扎实的化工理论基础,较宽的化工应用知识以及一定的工程技术基础,从而该专业的课程设置(公共课、基础课除外)应由基础化学课、工程基础课和专业方向课3部分组成。基础化学课包括:无机化学、有机化学、分析化学、物理化学等。工程基础课主要包括:化工仪表与自动化、化学工程基础、电工电子学等。专业方向课:可根据具体方向选择专业化学课,如电化学工程方向可选理论电化学、化学电源工艺学、电解工程和电镀工程等。精细化工方向可选择化工工艺学、化工分离工程、化学反应工程等。另外实践性环节包括基础实验、综合实验、提高实验、生产实习、毕业实习和毕业论文等。

我校化学工程与工艺专业方向

就专业方向而言,化学工程与工艺专业的性质是工科。化学工程与工艺专业应该是培养具有较扎实及宽广的化学工程理论基础知识,特别注意培养学生的动手能力及解决实际问题的能力。教学计划的总体设计中要体现应用型人才所具备的工程技术基础知识,重视实验、实践、实习、毕业论文等环节。设置专业发展方向,结合广西经济发展的需要,建立在合理利用广西及学校的资源及适应科技发展、注重社会需求基础上。据此,我校化学工程与工艺专业专业方向设定为:电化学工程与精细化工。

化学工程与应用化学篇6

   1.1核心课程体系构建的原则

   钦州学院开设化学工程与工艺专业有良好的机遇,同时也有多方面的挑战。要办好钦州学院化学工程与工艺专业,贯彻学院打造五大品牌专业的精神,需要从紧密联系北部湾区域经济建设方面着眼,努力办出具有石化特色的化学工程与工艺专业,重点建立一套紧密结合石化下游产业链、注重过程开发和工程实践能力培养的核心课程体系。在核心课程设置方面,确立夯实专业基础、强化工程意识、注重实验技能、拓宽专业口径,注重石化特色的原则。

   1.2核心课程体系的内容与相互关系

   所谓化工过程,主要包含分离过程和反应过程两种过程。与这两种过程紧密相关的一系列化工类课程共同构成了化工类课程的核心。按照“门数适宜,重点突出,相互支撑,形成一体”的要求,选择化工热力学、分离工程、传递原理、反应工程和化工工艺学等五门理论课以及与这五门理论课相关的化工专业实验课作为核心课程,建设具有石化特色化学工程与工艺专业的核心课程体系,全力打造化学工程与工艺这一品牌专业。在这五门理论课程中,分离工程和反应工程分别研究各类分离过程和反应过程,它们构成了化工过程课程最核心的部分。化工热力学是化工过程研究、开发和设计的理论基础,是化学工程的重要分支之一,与化学反应工程、分离工程关系密切。化工热力学的核心价值在于研究过程进行的方向和限度,为分离过程和反应过程提供相平衡、反应平衡数据,并对化工过程进行热力学分析[1]。反应工程是与工程实际紧密联系的课程之一,它广泛地将化工热力学、化学动力学、流体力学、传热、传质以及生产工艺、环境保护、经济学等反面的理论知识和经验综合于工业反应器的结构和操作参数的设计和优化中[2]。

   分离工程是化工专业基础课程,讲述的是如何将混合物进行分离与提纯的学科。作为专门研究分离方法的分离工程课程对学生工程素养的培养有很重要的作用。该课程阐明了化工分离过程的本质规律,重点研究分离方法的工业化途径,设备设计放大效应,最优分离路线的工业化,及最优操作条件。在选择具体分离方法时,不仅要考虑技术上的可行性、经济上的合理性,而且要考虑能耗、环保、设备放大和开发成本等诸多问题[3]。传递原理旨在研究化工动量、热量及质量(俗称三传)的传递现象,用一种统一的观点来处理三种传递现象,并研究动量、热量和质量传递之间的类似性,是研究分离机理、分离效率和宏观反应动力学的基础理论,同时也是反应器放大研究的基础理论之一。与化工热力学不同,传递原理是一门探讨传递速率的课程,它对过程开发、过程设计、生产操作、优化控制及过程机理研究都有重要的使用意义[4]。化工工艺学重在工艺过程的分析,即在特定条件下,进行分离过程、反应过程的比较选择、整合优化。化工工艺学是大学基础化学、化工热力学、化工动力学、反应工程、分离工程等专业基础可和专业课的综合运用。化工热力学和传递原理旨在加强专业基础,化工专业实验、反应工程和分离工程重在强化工程意识,化工工艺学拓展了专业适应面,可以突出石化特色。

   2核心课程体系的优化

   为了保障以上核心课程体系的顺利实施,建议结合钦州学院化学工程与工艺现有的教学计划,从下面几个方面作出适当的调整。

   2.1加强数理基础教学力度,适度拓展

   新世纪的工程人才必须有熟练应用数学、科学与工程等知识的能力,有进行设计、实验分析与数据处理的能力。在两年的教学实践中,学生普遍反映数理基础不够扎实,一些数学问题不知所云,比如热力学计算中要应用迭代法求解状态方程、精馏过程计算、反映工程中的偏微分方程求解等等,问题大都源于数学基础较薄弱。因此建议加开线性代数、运筹学、概率论与数理统计、数值计算、C程序语言、数学物理方法,流体力学等数理和计算机基础课程。多所兄弟院校也早就开设了这些基础课程。线性代数和运筹学的开设可以解决反应器设计过程的优化问题;概率论与数理统计是实验数据处理和理解反应工程中一些基本概念的基础;数值计算和C程序语言两门课程是工科学生重要的基础课程,加开这两门课程也是落实我校化学工程与工艺专业培养计划中对学生计算机水平的要求,对学生的就业能力的提高有好处;数学物理方法和流体力学是传递工程等课程的基础,加开这两门课程可以大大的提高学生工程数学能力,为就业和进一步深造打下更坚实的数理基础。考虑到matlab在科学和工程计算领域的突出作用,建议开设matlab在化工中的应用的相关课程[5]。化工热力学和化工原理是反应工程的基础,故将化工热力学和从第四、五学期调整至第三、四学期;化工原理和反应工程两门课程共同构成了化学工程最核心的部分课程,将化工原理从第四、五学期调整至第二、三学期,反应工程从第三学期调整至第五学期,也是考虑到化工原理是反应工程的基础。同时,将计算机模拟与仿真删去,将其中的知识分散到加开的matLaB在化工中的应用和数值计算这两门课程中。从上表2中还可以看出,加开的课程中,突出了数理课程的基础,同时,适度的拓展经济和计算机相关的课程,也增加化工制图和电工学等实践性较强的课程,这对培养学生的工程实践能力是必不可少的。

   2.2整合化工专业实验

   为了整合学院教学资源,最大限度地利用现有的一切教学设备,建议从各门化学工程与工艺核心课程的专业实验中选出一些经典的、与石化行业紧密相关的进行重新编排,单独设置一门大学化工基础实验课程,分成三个学期展开教学。另外,考虑到传统的化工专业实验教材以单一验证实验为主,无法满足新世纪综合素质人才培养的要求,可将化工实验按由浅入深的原则划分成验证型实验、设计型实验和综合型实验三个层次。尽量精简验证型实验,增加设计型实验和综合型实验。可以从教师的一些科研项目中选出一部分让学生参与,将这些项目设计成设计型或综合型实验,这样,通过学生的亲身体验科研过程,培养了正确的科研习惯,为学生的就业和进一步的深造打下好的基础。

化学工程与应用化学篇7

以化工原理为代表的化工原理系列课程是化学工程与工艺专业本科生必修的专业基础课中最重要的课程,起着由“理”及“工”承上启下的桥梁作用,其教学目的就是培养学生运用所学知识分析和解决化工单元操作中实际工程问题的能力。化工原理系列课程包括:理论课、实验课、生产或仿真实习和课程设计四个环节。其中化工单元操作过程设计方法、操作原理及其计算是理论课程教学的重要内容,而迅速准确地进行工程计算是课程设计的基础,所以组织好化工原理理论课程教学是落实化工原理整体教学的关键。目前,化工原理主要授课内容:流体流动、流体输送机械、非均相物系的分离和固体流态化、传热、精馏、吸收、萃取、干燥等单元的基本概念、原理和工程计算方法,而通用过程模拟软件中几乎包括所有常见的化工单元基本模块,在讲课过程中,教师可以在讲授基本原理后,使用软件中的相关计算模块对其工作特性进行模拟展示。

东南大学化学化工学院肖国民、李浩扬[3]等,利用Fluent、aspenplus软件应用于讲授和解决“三传”问题。其中利用Fluent软件,对固定床反应器进行动量模拟,结合反应动力学模型和对流传热模型等,研究反应器内一氧化碳与硝酸二乙酯偶联反应,从而获得反应器内速度、温度和各物质浓度的分布情况,模拟结果与实验数据吻合良好。这一过程给学生清晰的展示了:不仅固定床反应器内部的“三传”均和反应的进行程度相辅相成,而且若想准确计算、设计或优化一个单元操作过程,实验情况与计算模拟必须相互反馈,相得益彰。利用aspenplus软件对二苯基甲烷二异氰酸酯换热器进行设计和工程开发,与传统的换热器设计计算方法相比,结果具有可靠性高、计算用时少、绘图快、和各专业集成效应强等优势。通过对甲醇—水精馏过程模拟,说明该软件可用于质量传递方面的计算。教学实践证明,该方法不仅可以全面反映塔内物料组成、质量分布状况等工艺计算结果,而且还可通过系统内置板式塔或填料塔的各种塔内件参数,得到塔结构详细设计,另外学生还可以通过改变模拟计算条件,综合考察各因素对分离效果的影响,便于教学。

中国石油大学(华东)化学工程学院刘相、王兰娟[16]利用软件:mathcad、aspenplus和autoCaD与传统的课程设计相结合的教学方式,简化繁琐的计算过程,强化学生的工程意识和制图规范,使化工原理课程设计逐步走入规范化轨道。中国石油大学(华东)化学工程学院孙兰义,张月明[17,18]等,选择烯烃分离装置作为研究对象应用于化工原理课程设计教学之中,利用aspenplus、proii获得了最佳回流比、理论板数等重要数据,计算机教学的引入为化工原理课程设计教学注入了新的活力。江苏技术师范学院化学与环境工程学院张春勇,郑纯智[19]等利用aspenplus软件在流体流动和输送机械、传热、精馏、吸收与脱吸中应用,在教学过程中使学生看到的都是工程实例,充分践行了理论联系实际这一教学原则。嘉兴学院生物与化学工程学院韦晓燕,谭军[20]等,山东科技大学化学与环境工程学院张治山、高军[21]等将aspenplus过程模拟系统有目、有步骤地应用于化工原理系列课程教学,通过单元模型操作型问题、实际案例分析和课程设计三个阶段的训练,使学生加深对化工单元设计的理解,达到培养“知识”+“能力”型人才的目的。另外,北京石油化工学院化学工程系葛明兰,李翠清[22]等和安阳大学化工系李安林,张换平[23]等将ChemCaD软件应用与化工课程设计和简捷精馏模型,青海大学化工学院李晓昆,张宏[24]等将eCSS软件应用在板式精馏塔工艺计算中。华南理工大学化学与化工学院郑秀玉,李琼[25]还将过程模拟系统应用于化工仿真实习教学的改革与实践当中,取得了宝贵的教学经验。实际工程问题的解决方案通常是多方面因素综合,且呈非线性关系作用的结果,解答需要经过多次运算与讨论分析。如操作型计算,尽管与设计型应用的原理是一样的,但是因为思考问题的角度不同,使得此类问题复杂、灵活,综合条件的选择计算不是一次完成,而是需要多次试算,反复迭代,加之公式复杂,计算步骤繁多,计算量很大。模拟软件的应用是解决这类问题行之有效的捷径,既帮助学生加深了对各化工单元的认识与理解,又培养了他们解决实际工程问题的能力。

2在化学反应工程、分离工程教学中的应用

化学反应工程和化工分离工程皆为化学工程与工艺专业本科生必修的专业基础课程。其主要研究内容的共性为过程开发、工艺设计以及实际生产操作过程中遇到的工程问题。在化工生产过程中,化学反应是生产的核心,而分离过程则是其前的原料净化和其后的产品精制,一般来说分离装置的费用占总投资的70%以上。过程模拟系统中,基本上包含了教学过程中所包含的各式反应器模型,另外系统还集成了用户自定义模块,用户可根据实际需求二次开发反应器模块子程序。而对于化工分离过程的模拟无论是从可模拟介质的种类和塔器的形式上,还是从模拟结果的精度上,都堪称化工模拟技术发展的代表。如:在aspenplus中用于模拟所有类型的多级汽-液、液-液平衡为例,其计算分为简捷、严格法两种。简捷法计算单元模块库有三类:简捷法精馏设计、简捷法精馏核算和石油简捷蒸馏。

严格法计算单元模块库有六类:严格精馏、复杂塔严格精馏、石油严格蒸馏、基于质量传递速率蒸馏、严格间歇蒸馏和严格液-液萃取,每一类单元模块库中又有多个以进料、加热器(冷凝器)和侧线物流等不同组合形式,如:严格精馏不仅可用于两相(汽-液)计算,还可用于三相(汽-液-液)计算,即可模拟:普通蒸馏、吸收、再沸吸收、萃取、再沸萃取、抽提、共沸精馏、平衡和反应比例控制蒸馏等工艺过程,而石油严格蒸馏库中就有近50种形式可选,所以过程模拟系统不仅可以满足化工分离工程课程主要内容的需要,而且对其后继石化、炼化等工艺课程,也有较大的帮助。天津科技大学王彦飞,朱亮等采用教学内容与aspenplus软件相结合以提高教学质量,讨论环氧丙烷水解绝热连续搅拌釜式反应器模型的多解性,在课堂上非常快速直观的让学生清楚了解多定态现象以及产生的原因,有助于学生对反应过程的理解,并通过软件使用可以回答,“如果改变某些条件,那么对于结果有哪些影响?”这样的问题。南京化工职业技术学院化工系戴斌,徐宏利用化工过程模拟系统ChemCaD二次开发工具,在So2转化反应器的工艺设计上,通过使用VBa语言编程,实现有复杂反应动力学方程的反应器工艺设计。变换不同的So2转化工艺条件,计算得到与之对应的反应器体积,从而为装置技改、去瓶颈和优化提供依据。上海应用技术学院吴锡慧,郁平等对化学反应工程教学改革和实践,在实验中引入aspenplus软件强化计算机应用,提高了学生们的设计和综合分析能力。该软件也正被学生用在大学生化工设计竞赛、毕业设计和科技创新等环节。

天津大学化工学院李士雨,齐向娟给出了应用ChemCaD模拟软件更新分离过程教学内容的初步方案包括:分离过程热力学、自由度分析的原理和方法、单级平衡和多级平衡模拟计算等。得出:无论从国内外化工分离过程教学内容的更新趋势上看,还是从工业界对分离过程教学内容需求的变化上看,在分离过程教学内容中增加计算机模拟分析方法是大势所趋。华东理工大学化工学院李伟,朱家文等采用模拟软件proii在化工分离习题课上,同时改变热力学方法、闪蒸条件、压力等,完成不同条件下的多种闪蒸计算。进行丙烯精制塔精确计算可对塔操作参数进行多方案计算和比较,实现整体优化;通过调节操作参数实现产品的纯度和塔的能耗比较,在其之间建立量化概念,这对于思考许多分离基本问题是十分有益的。江苏石油化工学院朱建军、林西平等利用aspenplus软件对醋酸与乙醇催化反应精馏塔进行模拟,回流比、进料组成、进料位置等对醋酸与乙醇收率的影响进行了分析,结果表明:运用aspenplus软件可以有效、快捷、方便地模拟脂化反应精馏过程,结果可靠,精度高。江汉大学化学与环境工程学院吴宇琼将aspenplus软件引入分离工程课程及实验教学中。通过演示软件操作录像、学习模拟经典实例等方法,使学生迅速掌握并使用软件,借此求解泡、露点及塔板数等。

广西大学化学化工学院秦祖赠,葛利等利用proii对膨胀器的气体加工装置进行模拟,福建农林大学材料工程学院卢泽湘,范立维等利用aspenplus对甲基叔丁基醚(mtBe)的催化反应精馏工艺进行模拟,并进行教学演示和讲解。着重在混合物热力学性质的计算、多组分平衡分离过程计算上,真正做到了“严格计算”。同时指出软件对化工热力学、化工设计等课程的学习也会有较大的帮助,连续三年化工专业本科生对过程模拟系统的学习兴趣调查中“,学习兴趣强烈”的分别占到总人数:72.8%、83.2%、86.8%。将过程模拟系统应用于化学反应工程教学,避免了大量计算公式推导、复杂数值计算等问题,可以在少用课时的情况下,尽量全面地展示化学反应工程的核心内容。多组分多平衡级分离的严格计算,是设计分离设备和优化操作过程的必要计算手段,也是化工分离工程教学的主要内容。使用过程模拟系统,在进行meSH方程推导及基本算法介绍的同时,使得塔的精确计算和将热力学中相对独立的知识运用到具体的分离过程中,解决其工程实际问题成为可能,并且可以对塔的操作参数、分离要求和设备投资、运行费用等问题进行分析计算,极大地提高了学习的深度与广度,使学生更加主动积极,综合分析和解决实际工程问题的能力明显提高。

3结语

化学工程与应用化学篇8

关键词:化学反应工程;教学改革;实践

Doi:10.16640/ki.37-1222/t.2017.08.200

化学反应工程是化工类专业的一门核心课程。该课程以物理化学、化工原理、化工热力学等化工专业基础课为先修课程,其主要研究物料从进入反应器到离开为止的全过程,主要解决过程中的反应动力学和反应器分析与设计两个基本问题。化学反应工程内容涉及多学科,理论较抽象,数学模型多,计算复杂繁琐,有些方程只能通过数值计算求解。因此有不少学生把化学反应工程认为是大学中最难学的课程之一[1-3]。

重庆三峡学院是一所普通本科院校,学校人才培养目标是培养应用型技术人才。在化学反应工程的教学中,结合学生的实际情况,让学生能系统掌握本课程的内容,使教学内容达到较为合理的程度,力求把化学反应工程基本观点与相关基础知识紧密联系起来,着重培养宽口径、厚基础、应用型化工高级人才。为此,以培养学生综合运用基础知识分析、解决实际问题的能力为目标,把课程的理论研究与教学方法、手段等方面研究相结合,积极地进行教学改革探索与实践[4-6]。

1教材的选择和教学内容的精选

优秀的教材是课程教学的基本保证。有关化学反应工程的教材版本很多,体系编排差别较大,所涉及到的内容大都符合教学大纲的规定,因此合理选择教材对于教学和学习非常重要。根据我校的实际情况,在研究多个版本教材的基础上,认为普通高等教育“十一五”部级规划教材、由陈甘棠教授主编的《化学反应工程》(第三版)符合教学内容及授课体系,该书定为我校化学反应工程课程教材。该书内容经典系统,覆盖面大,循序渐进,篇幅较短,易于学生掌握。其它版本的教材当中,朱炳辰教授主编的《化学反应工程》更注重反应工程研究方法介绍,并在相应章节中论述了反应工程学科的新进展,便于读者深入钻研。两本教材各有特色,可互为补充。另外选取优秀的外文版教材译本作为学生的参考书,让学生涉猎到化学反应工程学科的前沿知识,开拓视野。

课程教学内容要力求体现本学科的科学性、先进性和适用性。教师只有掌握了该课程的知识结构特点,才能够抓住教学重、难点,精心选择教学内容。化学反应工程课程的基本内容包括反应动力学和反应器设计与分析两个方面,依据化工过程中的化学反应与反应过程中的动量、热量和质量传递关系来讲解,并对反应器进行设计与分析,阐明反应动力学基本原理。在实际的教学中,教师应清楚课程各部分知识的结构层次与相互关系,紧紧围绕反应工程学科的两个基本问题,把基本观点与基础知识联系起来,从工程分析的角度讨论化学反应工程中的重要概念。因此任课教师备课时必须认真钻研教材,了解本学科发展动态及前沿,精心组织讲课内容,合理安排,突出重难点,内容详实。重点讲授气-固相催化反应本征动力学与宏观动力学、理想流动反应器、反应器中的混合及对反应的影响等章节,突出工程意识,增强学生分析问题和解决问题的能力。对于气-液反应及反应器、气-液-固三相反应工程和多流体相的反应过程等内容,进行适当讲解。同时努力拓宽教学内容信息,把学科研究的最新工业化成果向学生介绍,激发他们的创新意识和工程意识。对于本课程与其他学科领域交叉形成的一些新的分支,如聚合反应过程、生物反应工程、电化学等,以学生自学为主,达到开拓学生的视野和培养学生创造力的目的。

2采用灵活多样化的课堂教学模式

课堂教学是化学反应工程理论教学的主要环节。本课程涉及较多工程数学知识,且要求有一定的逻辑思维能力,由于学生的数学基础比较薄弱,专业基础知识面也不宽,课堂讲授的内容和方法必须适当,才能收到较好的教学效果。在化学反应工程课程的教学过程中,采用多种多样的n堂教学方法,改变完全以教师为中心的讲授式教学为多种教学方法并用,以达到提高学生学习的主动性,提高课堂教学效果。下面介绍主要采用的几种教学方法。

2.1讲授式教学

教师系统地向学生传授学科知识。教师在讲授每一章时都可先用几分钟的时间,采用图示的方法,概括本章主要内容和基本理论结构框架,让学生领会教学目标,明确教学思路和重、难点以及具体应用实例,特别要联系实际和知道如何应用到相应的具体计算当中。在每一堂课开始时,都应该有承上启下的对上一节课的内容相应的总结,使学生能够将知识有机地结合起来。教师在讲授过程中要详细讲解典型内容,并要突出重、难点。如气-固催化反应和气-液反应过程,可以根据反应物分子必须接触碰撞才能进行反应的共同特点入手,讲解其最基本的反应步骤。让学生了解其共性后,能够举一反三,推导出相应的液-液、液-固反应过程,既调动了学生学习的积极性,又能使学生牢固掌握基本理论。

2.2互动式教学

即授课过程中教学双方经常进行交流互动。教师可以选出教材中较为典型的章节或例题,首先提出问题,由学生自行阅读课本,让学生带着问题自主学习,以学习课程知识为重点,让学生自行讨论阅读的内容后,全班讨论或小组讨论,最后教师强调并总结该部分内容中的关键概念和原理等。每次课程结束时,教师可以给学生布置总结本次课程内容的任务,下次课上随机抽出几位学生对前一次课的内容进行提纲挈领式的回顾,由此达到督促学生课后自主复习,及时消化,保证知识的连贯性,达到温故而知新的目的。互动式教学方法能够促使学生自主学习,新问题的提出,又能刺激学生主动想法获取问题答案,学生上课的积极性很快提高,取得了良好的教学效果。

2.3归纳对比法教学

化学反应工程教材中的概念抽象,公式繁多,教学推导过程复杂。归纳对比法在化学反应工程的教学过程和指导学生复习巩固知识过程中起着重要的作用,可以把零散的、不成系统的基本概念知识系统化、理论化。例如,将理想反应器和非理想反应器,连续反应器和间歇反应器,平推流反应器和全混流反应器,等温恒容反应与等温变容反应,流化床反应器和固定床反应器等基本概念进行对比。通过比较,找出概念的相同点和不同点,把相近的概念区别开来,从而达到简化、概括和记忆的目的。除了本学科之内的概念比较外,也可以不同学科进行比较。如把反应器中三传问题与化工原理中的单元操作相比较,把宏观动力学与物理化学课程的本征动力学相比较,有意将化学反应工程和已经学过的课程进行联系,以加深学生对该课程学习的兴趣。将复杂的概念用列表、提纲等简单明了的形式表达出来,使学生在“识同辨异”中增进学习兴趣,在“归纳”中渗透,在“对比”中巩固,最终达到提高学习效率的目的。

2.4案例教学法[7]

化学反应工程教材中的很多化工案例,内容过于简略,学生很难从中真正领会到案例的作用。对于教学过程中选用的一些能够反映技术发展前沿和创新科研的工业实例,可采用案例教学法。从化工实践中选取合适的案例,进行专题讨论,充分调动学生学习的积极性,发挥学生在学习中的主体作用,使他们通过积极的思维后主动获取知识。在案例教学的讨论中要注意教材中前后章节内容的连贯性,不孤立分割每一章节内容,要让同学意识到,所学的知识不是独力的而是共同为解决实际问题服务的。例如在讲授固定床气-固相催化反应时,选择学校实习基地宜化化工集团公司合成氨多段绝热固定床反应器的案例,结合生产实习认识,对固体催化剂的装载具体要求,反应器的具体实际类型和操作条件、操作方式等进行详细讲解和讨论,让学生深刻体会气-固相反应的过程、固定床催化器的特点、使用情况和选型原则等,初步掌握化工生产过程分析问题和解决问题的方法,培养学生理论联系实际能力。案例教学可以给学生留下深刻的印象,从而激发他们的创造欲,使他们成为推动学科发展与技术进步的新生力量。

3理论教学与实践教学充分融合

在教学过程中,化学反应工程课程组教师充分认识到理论教学与化工专业实验和化工设计的统一性,理论知识能指导实践,科学实践又能帮助将感性认识上升为理性认识后,再应用到实践中去。抓住各实践教学环节的机会,将本课程中的理论融入实践教学之中。

由于校院两级投入的加大,实验条件和实践教学条件有了较大的发展。针对本课程所设置的教学实验有多釜串联反应器停留时间分布测定实验、管式反应器烃类裂解反应实验、苯酐合成实验、固定床与流化床的流动特性测定实验和乙苯脱氢制苯乙烯实验。现在开设的化工专业实验中,有很多实验是和理论课程紧密相连的,只要科学合理安排理论教学和实验教学,就能使二者有机结合,为本课程的实践教学提供良好的支撑。进行相关实验能够进一步强化学生所学的理论知识,让学生在实验过程中认识真正的反应器,并将所学理论知识运用到反应器的操控和数据的处理。改变那种老师“抱着走”的单一教学方法,提高学生学习的积极性和主观能动性。

课程设计是完成课程教学后对该课程基本知识和技能进行综合应用的一个教学环节,通过课程设计培养学生解决生产实际问题的能力和知识的综合应用能力。为了进一步深化学生对化工反应器的认识,建成了仿真计算实验室,仿真实验室安装有化工设计模拟软件,为学生化工设计实践提供了良好条件。化学反应工程课程的主讲教师也是化工设计指导老师,学生以小组为单位,教师提出设计课题,学生查阅工程手册等资料,采用CaD绘制设计图纸,并通过答辩完成课题设计。通过反应工程的课程设计,初步培养学生的工程理念。

化学工程与工艺专业的学生都必须要经历认识实习和生产实习等实践环节。化学反应工程课程组教师充分利用这些实践教学环节,引导学生把课程理论知识与现场生产实践相结合。例如在实习中,给学生下达任务,了解相关工业反应器的形式和特点,其中所发生反应的类型和特点,记录反应器进出物料组成和流量等数据,利用该数据进行物料衡算,计算主产物的收率、选择性等,使学生利用所学知识,体会到所学知识在实际工作中的作用,激发学生学习兴趣,实现理论与工程实际的紧密结合。

4改革考核方式

考试具有测评教师教学水平和学生学习效果的功能,还有引导学生积极学习的“无形指挥棒”作用。考试制度的改革可以同时有效促进教学内容、方法和手段的改革。考试通常有开卷和闭卷两种,各有特点。本课程采用平时成绩(占20%)和期末考试成绩(占80%)相结合的考核方法。化学反应工程课程试题多年来一直坚持教考分离,每次考试试卷由其他教师按基本要求从试题库出70%的考题,主讲教师根据各自的讲课特点出30%的考题组合而成。这种命题方式既考虑了课程的基本要求,实施教考分离,又能充分发挥各主讲教师自己的讲课特色,要求学生体会课堂教学的内容。

平时成绩按照学生平时出勤、作业、课堂回答问题及课堂练习考核、写小论文、写专题报告等情况综合评定给出。平时学生可以上学校化学反应工程精品课程网站,自主学习,使学生的综合素质得以提高。

期末笔试考核学生必须掌握和熟记的基本理论、数学模型与计算方法等,按照期末笔试答题情况给出期末成绩。这种综合评定成绩方式督促学生注重综合素质的提高,对学生良好的学风建设起到了促进作用。任课教师在每次考试后,要求必须对试卷进行详细分析和课程总结,找出试卷中学生存在的共性问题和薄弱环节,为下一轮教学起到借鉴和促进作用,并注意在教学过程中不断改进和完善,实现教与学两方面共同提高。

5结束语

在当今实施素质教育、培养创新型人才的社会大背景下,化学反应工程作为一门工程学科,要求学生系统掌握反应工程课程的内容,能够把反应工程基本观点与工程知识紧密联系起来,从工程应用分析的角度来讨论重要的工程概念。通过课堂教学与专业实验、生产实习相结合以及创建课外实践教学活动平台和考试形式等多方面的教学改革,并比较了改进前后的教学方法对教学效果的影响进行,发现不同的内容采取相应的教学方法,学生更便于理解掌握教学内容,收到了良好的教学效果。化学反应工程的教学改革还只做了初步的改革探索与实践,每个学校具体情况都不一样,应根据自己的专业方向和办学特色做进一步的探讨。

参考文献:

[1]范明霞,袁颂东.化学反应工程重点课程建设探索与实践[J].广州化工,2009,36(2):111-112,115.

[2]丁刚,吴元欣,程健等.化学反应工程课程体系与实践教学模式的探讨[J].化工高等教育,2008,103(5):49-52,79.

[3]傅杨武,祁俊生,梁克中.论《化学反应工程》教学改革与实践-从“3t”人才培养模式视角[J].重庆三峡学院学报,2011,27(3):131-134.

[4]李望,朱晓波.《化学反应工程》课程教学方法初探[J].教育教学论坛,2015,43(10):156-157.

[5]王琳琳,陈小鹏,梁杰珍等.改革地方院校课程教学模式和内容,培养学生工程与创新能力-以广西大学化学反应工程教学为例[J].实验技术与管理,2012,29(8):10-14.

化学工程与应用化学篇9

【关键词】绿色化工工程;化工工业;节能;促进作用

引言:对于化工来说,其是促进社会和物质文明发展的关键,并且为人类做出了非常大的贡献。与此同时,环境污染问题也日益严重,这样就需要采取相应的措施进行解决。而绿色化学工程与工艺是利用科学有效的方法和材料等进行处理,不仅大大提升了生产的利用效率,还很好的解决了存在的污染问题,因此,其对化工节能就有很大的促进意义。

1.绿色化学工程与工艺概述

1.1绿色化学工程与工艺的重要性

目前很多我们生活中需要用到的物品都有赖化工生产流程,传统的化学工程与工艺中往往对于绿色化学不重视,生产过程中只是注重结果,短期内或许能收获相应的产品及利益,但从长远来看,很多化工生产工艺流程在生产过程中对环境造成很多污染,有的污染对环境的破坏是不可逆的,后果可想而知。随着人们环保意识的加强,近年来绿色化学工程与工艺越来越被人们提倡,这样的方式采用一种更科学更自然的方式实现化工生产,仍然能通过有效途径得到最后的目标产品,但大大降低了生产工艺对于环境的污染与破坏,同时很好的促进了化学工艺的节能,也实现了可持续发展的要义。

1.2绿色化学工程与工艺的基本原则

绿色化学化工在世界范围内的原则相对一体,主要涵盖下列几方面。(1)在反应过程的源头上减少甚至根除废弃物的产生,而不是在废弃物产生之后再对其进行净化处理。(2)产品进行设计时,尽量做到原料利用率最大化。(3)产品进行分析时,在考虑生产效率的同时使原料和产品的毒性降低。(4)对于析出剂和溶剂等辅助物,尽量少用或选择使用无害产品。(5)减少生产过程中能量的损耗及其对环境的影响。(6)除了考虑经济和技术的因素,生产原料尽量选择可回收的加工原料。(7)尽量避免生产过程中产生不必要的化学衍生物。

2.化工企业节能减排的措施

通常情况下,大型化工企业在生产过程中往往会消耗大量的煤炭、石油和一些化工原材料,最终排放出大量的“三废”,也只有通过不断循环市场经济,才能够促进化工企业在国内市场的发展,并取得一定的市场优势。而目前化工企业应该在节能环保的基础上促进经济发展,其方法主要有以下几点:(1)加大化工污染这方面的技术、资金投入力度,对污染问题进行全面的控制。(2)针对化工生产项目使用先进的节能减排生产工艺,控制好化工原料,进而从源头上对污染问题进行防控。(3)创建绿色的化工生产链条,实现节能减排技术集中化处理。(4)全面提高企业职工的绿色减排意识,从自身出发做好环境保护工作。

3.绿色化学工程与工艺的合理开发

3.1绿色化学原料的合理运用

在化工生产工艺及具体流程中,化学生产原料是起着决定性作用的主要因素,在传统化学工程中,所用原料大部分为不可再生能源。采用这些原料不但大大提高国家不可再生能源的消耗,同时还导致污染物的排放量大大增加,加重生态环境污染程度。将绿色化学原料作为化工生产材料是绿色化学工程重要研发内容之一。在化工生产过程中,可使用绿色化学物质、自然物质等无染污、可再生的化学原料。典型的绿色化学原料主要有芦苇、苞米杆、纤维植物等。将这些作为原料投入到化工生产过程中,可使其转化为酮、醇、酸类等多种化学品。在整个转化反应过程中,这些原料仅会产生一定量的氢气,而不会有任何一种有害、有毒的物质产生。

3.2提高化学反应的选择性

在化学工程的物质反应中,化学反应作为必不可少的重要组成部分存在。所有化学原料的转化均是需要化学反应才能得以实现。在化工生产过程中,合理选择有效的化学反应形式可有效促进化学工程生产效率及质量得到提高[2]。对化学反应产生影响的因素有很多种,反应原料、环境、时间、特点等均会对化学反应产生不同程度的影响。在化学生产过程中应用最为普遍的反应形式为氧化反应。在氧化反应过程中会有大量的热产生,所有化学原料均会在热的催化作用下发生变质,因此会大大降低化学品的生产质量。在绿色化学工程中,应用新型的反应形式,这种新型反应形式为烃类氧化反应。这种反应形式的应用不仅可促进催化物反应催化能力得到提高,同时还可有效促进生产物同分异构反应时间增加。

3.3使用无毒无害催化原料

从目前的现状来看,伴随着化工行业的不断发展,合理运用化学反应成为了化工行业健康稳定发展的关键,而在进行化学反应的时候,催化剂的使用是非常关键的,既可以对反应速度进行加快,也可以对反应时间进行缩短,那么在进行化工生产中,要想确保绿色化工工程和工艺得到快速的发展,就要使用没有毒害的催化原材料。同时现在我国有关部门对催化原材料的选择和应用已经给予了高度重视,并且催化剂的开发、研究和制作在不断增多,从而就促使在进行化学反应的时候,催化原材料有了很大的改善。此外,使用没有毒害的催化原材料还能够大大提高化学反应的效率,对能源消耗含量进行降低,也能够很大程度减少环境的污染。

4.绿色化学工程与工艺对化学工业节能的促进作用

加强对绿色化学工程与工艺的研究是化学工程的一次全新探索与实践创新,绿色化学工程工艺研究能够将废弃物的科滋控制在合理的范围之内,实现化学工程的规划化发展,与此同时也可以改善人民群众生活环境,对构建环境友好型社会具有重要的现实意义。

4.1清洁生产技术的合理应用

清洁生产技术的合理应用具有超高的价值,对化学原料进行无公害化的处理,以期最终达到合格生产的目的。清洁生产技术的使用可促使原料等到有效的利用,提升原料的使用效率,清洁生产技术最为常见技术例如脱硫技术等,化学生产加工不可避免将会产生一定废气,为了进一步降低废气对于空气质量的污染,就需要进行脱硫处理。此外,除了清洁生产技术的研发外,当前自然发电技术也被赋予了更多的重视,在环境污染日趋恶劣下,自然发电技术受到的关注,利用风能等自然资源发电,可在生物工程中降低污染,并提高环境质量,以期实现资源有效利用。

4.2生物技术的有机结合

在可持m发展理念推进下,生物技术也不断得以升级,生物技术也可理解成为生物工程,其中包括生物化工以及仿生学两部分。生物技术利用生物科技进行生产与加工,如常见的生物酶技术,生物酶是一种具有催化作用的有机物,该种有机物可具有超高应用价值,加之其污染系数较小,故此被广泛的应用到各领域之中。例如纺织领域,通过氧化还原酶的作用促使衣物处于仿旧状态等。生物技术的使用符合绿色化学工程工艺的要求,因此将生物技术与绿色化学工程工艺相互结合,可进一步的深人落实化学工程节能理念,并改变传统化学生产工艺模式,共同打造绿色环保社会。

4.3环境友好型产品的加工生产

绿色化学工程与工艺的主要发展目的之一即为为社会生产处环境友好型产品,如清洁汽油、磷洗衣粉等无毒无害产品。通过绿色化学工程可以生产出与社会、自然环境发展相符合的友好型产品。绿色化学工程生产的出现在很大程度上起到了保护环境的作用。在社会生产、生活中,人们的购买的产品均为绿色产品,不仅有效保证了人们身体健康,同时也可促进社会健康、和谐发展。因此,在化工生产过程中,如能够促进绿色化学工程与工艺对的优势得到充分发挥,可有效降低生态环境的染污,促进国家自然环境和社会经济得到可持续发展,对国家的长远发展及社会的进步具有重要意义。

结语

通过上文对绿色化学工程和工艺技术进行系统分析可知,绿色化学工程对促进化学工业节能发展起到了重要助推作用,是实现化学工业节能减排发展目标的重要手段。现阶段,开发和应用绿色化学工艺,已成为现代化学工业的发展趋势和前沿技术,是建设环境友好型社会,实现可持续发展的关键。

参考文献

[1]于贺.论绿色化学工程与工艺对化学工业节能的促进作用[J].科技与企业,2013,05:132.

[2]刘冠辰.浅析绿色化学工程与工艺对化学工业节能减排的促进作用[J].科技创新与应用,2015,34:107-108.

化学工程与应用化学篇10

关键词:应用化学化学工艺学理论教学

应用科学是研究和说明特定的设备运用于特定的生产和生活领域的具体方法和具体程序的科学。应用科学是理论科学和技术科学在生产和生活中的具体化和实际应用[1]。

化学工艺学是一门综合性、实践性很强的课程,是应用化学专业在学习了化学基础理论后所开设的一门应用性课程。该专业培养具备化学基本理论、基本知识和较强实验技能,能在科研机构、高等学校及企事业单位从事科学研究、教学工作及管理工作的专门人才。根据本专业的特点,在开设化学工艺学课程时应能充分将化学基础理论、基本技能与实践有机的结合起来,实现理论科学、技术科学对应用科学的指导。通过对本课程的学习使学生对化学工艺学所研究的内容有较为系统的认识。能将基础化学所学的知识与化学工艺学较好的衔接和运用起来,实现理论与实践的结合。对化工生产的基本原料、工艺过程、设备、环保要求有全面的了解。

一、根据专业特点安排教学内容

1.教学内容与基础化学密切相联系

应用化学专业与化学专业相比,增强了应用背景,是化学与化工的衔接,是化学学科在应用方面的拓展,培养的是理工结合的应用型人才[2]。本专业学生受到基础研究和应用基础研究方面的科学思维和科学实验训练,具有较好的科学素养,具备运用所学知识和实验技能进行应用研究、技术开发的基本技能。因此,化学工艺学课程教学内容的选择应满足专业的特点。在教学内容安排时,选择典型工艺进行较详细的介绍。无机化工工艺部分以合成氨为教学重点。合成氨在化学工业发展中具有里程碑式的意义,它在几大化学领域都有突出的发展。是化学理论与实践结合的成功典范。“正是由于对氮、氢、氨体系化学平衡的研究,把热力学理论推进到了真实气体高压化学平衡的研究领域,在研究氨合成催化反应速率方面,推动了反应动力学的发展。这些理论的形成直接指导了氨的合成。”[3]同时,合成氨在催化技术的应用方面也为现代催化理论奠定了基础,许多重要的催化理论概念如催化剂的活性中心、催化剂表面的非均一性、毒物作用及催化机理等都是在研究合成氨的反应过程中确立下来的。有机化工工艺部分以烃类裂解为重点。以“三烯”(乙烯、丙烯、丁二烯)和“三苯”(苯、甲苯、二甲苯)总量计,约65%来自乙烯装置,因此,常常将乙烯生产作为衡量一个国家石油化工生产水平的标志。[4]烃类裂解工艺在反应设备、分离系统、能量利用等方面都代表着最先进的世界化工发展水平,这对于培养学生工程理念,了解世界化学工业发展方向是非常重要的。

2.注重基础理论与应用相结合

将基础理论与实践应用相结合不仅仅是基础理论知识的简单应用,对学生来讲首先带来的是思维模式的改变。基础理论是由概念、定律等建立起来的具有严密逻辑结构的知识体系。学生更擅长从概念到概念,从公式到公式的思考模式。但实践中有更为复杂的因素对工艺过程的选择、工艺条件的确立、产品的分离等产生影响。在化工生产中对反应的化学热力学和化学动力学的研究是决定工艺条件的最重要的化学基础理论。反应的温度、压力、浓度、催化剂或其他物料的性质以及反应设备的技术水平等各种因素对产品的数量和质量有重要影响[5]。在课堂教学中应充分把化学热力学、化学动力学知识与实践中的应用结合起来。例如在合成氨的生产中平衡氨含量是一个非常重要的参数,从平衡常数Kp=pnH3/p0.5n2p1.5H2开始分析,到最终确立平衡氨含量XnH3/(1-XnH3-Xi)2=Kppr1.5/(1+r)2,分析此式不难看出总压强p,平衡常数Kp氢氮比r以及惰气的含量都对平衡氨X的含量有影响。如不考虑组成对平衡常数的影响,当氢氮比r=3时平衡氨含量具有最大值。考虑到组分对平衡常数Kp的影响,具有最大XnH3的氢氮比略小于3,随压力而异,约在2.68~2.90之间[6]。因此惰性气体对平衡氨含量的影响必须考虑进去。这是实施合成氨工业生产的一个重要理论依据,理论上的定性讨论与实验上取得的定量数据完全吻合,满足了定性与定量的统一,理论与实践的统一[7]。在对化学反应的速率分析中,基础化学理论中对动力学方程式的描述学生很熟悉,但在实践的工业生产中,反应动力学方程式与反应控制步骤的研究、反应温度、催化剂等因素有密切的联系,反应所用的催化剂不同,反应条件不同,则动力学方程式也不相同,这使实际的动力学方程式与基础化学中所学习到的相差甚远。因此,通过课堂教学让学生了解化工过程的复杂性。在实践中,实现一个化工过程对基础化学理论不是一个简单的应用。这也是工艺课程本身所具有的特点。

二、以化工生产过程及工艺流程为教学重点

应用化学专业的学生已学习了化工原理,对主要化工单元操作的基本原理、过程、计算方法等有了系统的掌握。但对实际生产过程相对比较陌生,通过对具体工艺单元的介绍结合所学的化工原理知识,学生能归纳出工艺单元的共性,对工艺过程的结构有一个概括的了解,并能对工艺流程有一定深度的认识。

1.掌握通用反应单元工艺的特点

化学反应单元是根据化学反应类型来分类的。反应单元仅是生产中的一个环节。在教学中根据学科需要有选择的介绍一些典型反应单元。由于同一反应单元有不少共性,通过对具体反应单元工艺的学习使学生自觉的找出规律性的东西,这样便于学生掌握所学的知识,也能很好的指导今后的科研、生产,做到触类旁通。例如在学习了二氧化硫催化氧化制硫酸、乙烯环氧化制环氧乙烷等后学生很快发现氧化反应是强放热反应,生成的副产物较多,对于烃类氧化还要防止造成深度氧化等特性。在找出反应的共同点后,针对反应单元的特点,对实际生产中设备的要求、流程的选择就有清晰的认识。如氧化反应器的设计必须从安全的角度出发,对易深度氧化的反应应选择有良好性能的催化剂以防止深度氧化的发生,等等。通过对反应单元的学习比较使学生能更加灵活的运用反应单元工艺。

2.以化学反应为核心,探索工艺流程的内在联系

工艺流程指工业品生产中,从原料到制成成品各项工序安排的程序。对于不同的化工产品其生产工艺流程也各不相同。但各流程都是围绕着化学反应这一核心问题展开的。如烃类裂解流程。根据裂解反应吸热、体积增大、裂解产物组成复杂、二次反应的影响等特点,裂解反应在高温、短停留时间条件下有较高的产品收率。这一反应特点,也决定了在对核心设备管式裂解炉设计时应满足传热面积大、裂解管变径,裂解管程数减少等的要求。从流程上来看,由于裂解产物组成复杂因此后续分离系统非常的庞大。从能量的利益来看,乙烯装置的节能技术关键是使用最少的裂解原料和燃料得到最大收率的目标产品,最大限度地回收裂解余热,并将回收热量合理分配到压缩、深冷、精制各工段。优化装置蒸汽系统,合理利用蒸汽等级,节约能量,并可向界区外输送能量[8]。因此,从化学反应性质入手充分发现流程中各单元的内在联系,把握好问题的主线,这样才能真正的对工艺过程有一个清晰的认识。在实际生产中还要充分考虑如何以最少的消耗、最低的成本得到最高的生产效率制。在教学中要让学生明确一个具体工艺流程安排不仅仅是生产实际对理论的检验,更多的还要从社会的、经济的角度去作全面的考虑。虽然一般工艺过程的组成大致相同,但每种产品的生产还有特殊性。在讲课时,抓住主要矛盾以展开,并着重于基本原理、基本知识和基本规律的讲解,力求达到清晰、严格和准确。

三、结束语

应用化学专业是介于化学与化学工程之间的一个应用理科专业,其任务是培养理工结合型的“用”化学的人才[9]。理论课的教学仅仅是学好这门功课的一个环节。要真正的掌握好这门课程还需要加强实践环节的学习。通过采用将多媒体、化工仿真实验、生产实践教学与化学工艺学课程教学相结合的教学方式,强化学生的化学工程意识,提高分析和解决化工生产实际问题的能力。同时,结合本地区化学工业发展的特点,对应用化学人才的需要不断调整教学内容。在科技发展迅猛的今天,应让学生了解更多化学的理论前沿、应用前景、最新发展动态,以及化学相关产业发展状。

参考文献

[1]杨玉辉,现代自然辩证法原理[m].北京:人民出版社,2003,257

[2]李水清,梅平.应用化学专业人才培养模式改革探索[J].长江大学学报:社会科学版,2008,31(6):253-254.

[3]张家治,化学史[m].太原:山西教育出版社,2004,124.

[4]何细藕,烃类蒸汽裂解制乙烯技术发展回顾[J].乙烯工业,2008,20(2):59-60

[5]米镇涛,化学工艺学[m].北京:化学工业出版社,2006,24.

[6]陈五平,无机化工工艺学,化学工业出版社,北京,2007,207.

[7]石启英,合成氨的热力学浅析[J].商洛师专学报(自然科学),1996年第2期(第7卷,总第9期),37-38.