首页范文继电保护装置的概念十篇继电保护装置的概念十篇

继电保护装置的概念十篇

发布时间:2024-04-26 01:24:55

继电保护装置的概念篇1

【关键词】电力系统;继电保护;故障;维修

1电力系统中继电保护的意义概述

1.1保障电力系统的正常运行

继电保护装置可在电力系统元件出现故障时迅速地发出跳闸指示,将发生故障的元件与电力系统分离开,从而最大程度地降低元件受到的损害,对电力系统的安全供电形成一定的保障[1]。如在发生变压器温升过高、变压器轻等情况时,继电保护装置能够在一定程度上避免发生故障的元件对电力系统产生影响,有助于保障安全供电。

1.2对电气设备的非正常工作情况作出反应

继电保护装置可根据非正常工作情况及设备运行条件的不同来作出提示与反应,并自动进行调整,将可能引起事故的电气设备切除,同时提示维修人员在收到信号之后对出现问题的部分进行维修[2]。因此,继电保护装置对于事故的预防以及设备的正常运行都能够起到良好的保障作用。

1.3实现电力系统的自动化

继电保护装置对于降低人力资源的投入也有着重要的意义,这是由于继电保护装置可实现电力系统的自动化及远程操作,在遥控、遥测、自动重合闸等方面均可实现自动控制,节约了大量的人力、物力资源[3]。

2电力系统中继电保护的常见故障

2.1产源故障

继电保护装置出现故障的概率与生产质量的达标情况成正比,在继电保护装置运行的过程中,生产质量达标的装置出现故障的概率明显偏低,生产质量未达标的装置出现故障的概率明显偏高[4]。继电保护装置是一种对于生产材质、部件精确度要求较高的一种装置,这些因素从根本上决定了继电保护装置的整体性能,生产质量较差的继电保护装置在运行的过程中容易出现运行不协调的情况,甚至出现误动及拒动等故障。

2.2运行故障

运行故障作为继电保护装置中出现的概率最为频繁的一种故障现象,对于电力系统也有着较大的危害。例如,经过长时间的运行,电路网络出现局部温度过高的现象,继电保护装置由于受到影响而导致失灵,出现保护开关拒合等现象的发生。电压互感器作为继电保护装置的起始点,二次电压回路故障是目前继电保护工作中较为薄弱的一个环节,在故障原因中也占据了较大的比例[5]。

2.3电流互感饱和故障

电流互感饱和对于继电保护装置也有着一定的影响,这是由于随着设备终端负荷的增大,当出现短路现象时,产生的电流也出现相应的增强,并由此对继电保护装置形成了一定的影响。当系统终端设备周围出现短路现象时,将会产生巨大的电流,甚至到达电流互感器单次额定电流的100倍左右。由于电流互感器的误差和短路电流倍数之间保持着相互关联的关系,因此随着电流速断、灵敏度的降低将会出现相应的阻止动作。当由于短路而出现电流互感器电流饱和现象时,二次电流也由于受到影响而不再发生反应。同时,过流保护装置也出现拒动现象,致使配电所的进口线自动形成保护反应,由此导致断电现象的发生。

2.4开关保护设备选择不合理

由于当前大部分配电建立起的开关站均在高负荷密集区域进行,供电及输电的模式基本以变电所至开关站,再由开关站至配电变压器的形式为主,因此开关保护设备对于继电保护工作也有着重要的意义。因此,在进行开关保护设备的选择时,应尽可能以负荷开关及同组合的继电器设备系统为主。

2.5继电保护的隐性故障

(1)继电保护中部分隐性故障的产生是由于不正确的整定所引起,一方面是管理失误及整定失误等人为因素所造成;另一方面是由于保护定值无法适应电网的结构及运行模式,从而在成电网出现故障时保护定值无法根据实际情况来进行相应调整,导致隐性故障的形成。(2)设备所引发的软件故障及硬件故障也属于隐性故障的一种,软件故障可定义为软件版本错误、程序逻辑错误等软件系统内出现的故障,该类型故障的涉及范围较广,与软件的开发、维护与使用等因素都息息相关,需引起足够的重视;硬件故障可定义为热解、氧化、水解等外部因素所导致的硬件设备磨损与消耗,过冷或过热的气候环境、人员的不当操作等外在因素均可成为导致硬件故障出现的直接因素。

3对继电保护故障进行处理的相关策略

3.1参照法

参照法主要用于接线错误的处理中,具体概念为以正常的设备技术参数与非正常的设备技术参数进行对比参照,并找出故障点。在定值校验的过程中,如测试值与预想值出现较大偏差,且无法进行正确恢复时,可与同类设备接线的定值进行参照。

3.2替换法

替换法主要用于缩小查找故障的范围,是一种处理继电保护装置内部故障中的常用方法,具体概念为利用相同的正常元件来替换出现故障的元件。当出现内部回路较为复杂的元件出现故障,或是微机保护出现故障时,可利用周围备用的元件进行替换,替换后再次检查故障是否已经消失,如尚未消失则表明故障并不存在于替换的元件中,而应继续向其他范围排查。

3.3短接法

短接法主要用于判断接点是否完好,是一种判断故障存在范围的常用方法,具体概念为通过将某一部分回路进行短接,来判断端接线的范围内是否存在故障。如在切换继电器不动作、电流回路开路、电磁锁失灵等现象发生时,可利用短接法来检查接点是否完好。

3.4直观法

直观法主要用于快速确认故障所在,具体概念为通过处理部分无法进行故障排除的情况,来明确故障是否存在于机构内部,如继电装置内部存在明显泛黄迹象,或是某元件有明显焦味产生,便可直接对故障所在之处进行确认,并及时更换元件。

4提高继电保护技术的策略

4.1掌握电子技术知识

对于继电保护操作人员而言,电子技术知识的掌握是至关重要的一个环节,这是由于在电网系统中微机保护的使用日益增多,只有不断巩固自身电子技术知识及微机保护知识,才能够为实际操作提供足够的理论依据。

4.2具备足够的技术资料

对于继电保护事故的处理,技术说明书、调试大纲、检修规程等相关的计数资料是其中不可或缺的一个部分,只有具备足够的技术资料才能够对继电保护事故进行完善的处理。

4.3以正确的方法进行检查

在继电保护事故发生时,如通过简单的方法未能明确找出故障发生原因,便应利用逆向检查法从故障暴露点着手对发生原因进行分析,如仍未得出确切结果则利用顺序检查法对装置进行全面的排查。

5结束语

继电保护是电力系统中重要的环节,当继电保护装置发生故障时,只有以科学合理的方式对故障发生原因进行排查,并予以对症下药的维修,避免盲目与大意,才能够保障继电保护装置的恢复与电力系统的正常运行。

参考文献:

[1],陈建民,韩学军,倪腊琴,骆敬年.基于继电保护故障信息处理平台的故障回放系统的开发与应用[J].华东电力,2014(03).

[2]张瑞晓.基于继电保护隐性故障的电力系统连锁故障分析[J].电源技术应用,2014(03).

[3]陈仁辉.继电保护隐性故障下的电力系统连锁故障浅谈[J].科技与企业,2013(17).

继电保护装置的概念篇2

【关键词】继电保护;装置;认识

继电保护装置不但在电力系统,在各种工业企业里的应用都是非常广泛的,而且继电保护系统关系到生产生活的安全。所以,我作为一名电力系统的职工,把我对继电保护装置在电力系统的应用进行简要的论述和大家共同分享。

1.继电保护装置的概念和工作原理

1.1继电保护装置的概念

答:当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置。

1.2继电保护装置的基本原理和构成方式

答:继电保护主要利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。

2.继电保护装置在电力系统中的任务

(1)当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求(如保持电力系统的暂态稳定性等)。

(2)反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同(例如有无经常值班人员)发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置允许带一定的延时动作。

3.继电保护装置的常见问题和解决方案

3.1触点松动开裂

触点是继电器完成切换负荷的电接触零件,有些产品的触点是靠铆装压配合的,其主要的弊病是触点松动、触点开裂或尺寸位置偏差过大。这将影响继电器的接触可靠性。泛起铲除点松动,是簧片与触点的配合部门尺寸不公道或操纵者对铆压力调节不当造成的。触点开裂是材料硬渡过高或压力太大造成的。对于不同材料的触点采用不同材料的工艺,有些硬度较高的触点材料应进行退火处理,在进行触点制造、铆压或点焊。触点制造应细心,因为材料有公差存在,因此每次堵截长度应试摸后决定。触点制造不应泛起飞边、垫伤及不丰满现象。触点铆偏则是操纵者将摸具未对准确、上下摸有错位造成。触点损伤、污染、是未清理干净摸具上的油污染和铁屑等物造成的。不管是何种弊病,都将影响继电器的工作可靠性。因此,在触点制造、铆装或电焊过程中,要遵守首件检查中间抽样和终极检查的自检划定、以进步装配质量。

3.2继电器参数混乱

电磁继电器的零部件相称部门是铆装配合的,存在的主要题目是铆装处松动或结合强度差。这种毛病会使继电器参数混乱,高低温下参数变化大,抗机械振动、抗冲击能力差。造成这种毛病的原因主要是被铆件超差、零件放置不当、工摸具质量分歧格或安装不正确。因此,在铆焊前要仔细检修工摸具和被铆零件是否符合要求。

3.3电磁系统铆装件变形

铆装后零件弯曲、扭斜、墩粗黑给下道工序的装配或调整造成难题,甚至会造成报废。这种毛病的原因主要是被铆零件超长,过短或铆装时用力不平均,摸具装配偏差或设计尺寸有误,零件放置不当造成。在进行铆装时,操纵工人应当首先检查零部件尺寸,外型,摸具是否正确,假如摸具未装到位就会影响电磁系统的装配质量或铁心变形、墩粗。

3.4玻璃绝缘子损伤

玻璃绝缘子是由金属插脚与玻璃烧结而成,在检查、装配、调整、运输、清洗时轻易泛起的插脚弯曲,玻璃绝缘子掉块、开裂,而造成漏气并时绝缘及耐压机能下降,插脚滚动还会造成接触簧片移位,影响产品可靠通断。这就要求装配的操纵者在继电器出产的整个过程中要轻拿轻放,零部件应整洁排列放在传递盒内,装配或调整时,不答应扳动或扭转引出脚。

3.5线圈故障

继电器用的线圈种类繁多,有外包的、也有无外包的,线圈都应单件隔开放置在专用用具中,假如碰撞交连,在分开时会造成断线。在电磁系统铆装时,手扳压床和压力机压力调整应适中,压力太大会造成线圈断线或线圈架开裂、变型、绕组击穿。压力太小又会造成绕线松动,磁损增大。多绕组线圈一般是用颜色不同引线做头。焊接时,应留意分辨,否则将会造成线圈焊错。有始末端要求的线圈,一般用做标记的方法标明始末端。装配和焊接时应留意,否则会造成继电器极性相反。

4.电力系统对继电保护装置的基本要求

继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求:这四“性”之间紧密联系,既矛盾又统一。

(1)可靠性是指保护该动体时应可靠动作。不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本的要求。

(2)选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护切除故障。为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件(如启动与跳闸元件或闭锁与动作元件)的选择性,其灵敏系数及动作时间,在一般情况下应相互配合。

(3)灵敏性是指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数,各类保护的最小灵敏系数在规程中有具体规定。选择性和灵敏性的要求,通过继电保护的整定实现。

继电保护装置的概念篇3

【关键词】继电保护可靠性评估元件研究系统稳定性

1继电可靠性整体特性评测及存在缺陷类型

1.1继电保护体系特点

继电保护体系的基本特点包括选取性、灵活性、可靠性和速度性。当供电体系在运作中出现问题时,继电保护程序应该有余地的采取故障排除措施。即在它切断距离问题点最短的连接点,来确保整个体制中其余正常部分可以继续进行。系统中的继电设备足够供应需求,这便被称作选取性;在继电保护设备中测量其对可能出现的状况和问题的应对技能被称作灵活性;所谓速度性是指能够保障设备尽早被去除,阻断短路现象;保障各设施正确操作,并随时可被运行的势态,尽量的简洁化,即增强系统可靠性。

1.2继电保护体系模型

一个器件、设备在系统规定数值及限定条件下达成要求的技能便是可靠性模型的本质含义。可靠性的元件制造及无效数值的概括与计算,系统都可以对其可靠性数量进行评测和护养,协商经济与可靠的结合。基于物品而言,其可靠性越足,其物品价值越高,其工作时长也越久。因而,在某种程度上说,可靠性模型是表示操控者对于物品的喜悦效果或者甚至于对品牌的依赖度,这种效果往往是通过主观意识上来判断的。

1.3继电保护体系评测

继电保护设备是一种机电结合的仪器,概括来讲,继电保护设备包含测试和数据整型部分,要分析继电装置是否出现故障及突发状况,应根据逻辑范围计算出输出数值的质量,产生的次序及排列的组合,来展开深入的逻辑推理,以确保保护动作正常执行。

2继电保护体系现状及发展研究方向

2.1继电保护系统的重要性

传统的继电保护体系通过最优的检查阶段来考察各个目标,简单的从经济基础开始或者仅仅评测可靠性,来明确检测阶段并不是最好的时间,从而肯定科技化时代的继电保护体系的最好检测时机。继电保护系统在整个电力体系中占有极大影响力,它的正常运行保障着电网操作的可靠程度,因而人们持续关注着关于继电保护可靠性这一重大问题。

2.2继电保护系统的现状

不管是探究继电保护的长时运作可靠状态,还是从各个方面评估短时的变化概率,这都将对大概会发生的各种状况从突发性及结果等方面产生对比评测。现如今关于继电保护可靠性评测体系的钻研包括继电保护系统及其维护设备为主。结合探讨其准确行动、金钱效用、模式空间等,通过频率计算与各个方案组织可靠性模型,根据各方案探讨定性和非定性量判断评测。

2.3继电保护系统的问题

目前,继电保护可靠性的探究行动逐渐深入到各阶层并获得了有效成绩,但仍然免不了部分隐患矛盾。主要体现在几个方面:通过分析法的测量容易受到整个体系范围的限制,出现保护可靠性的评测方向及使用模式存在偏差,难能解决有关案件中其模仿实例的正确战略;由于保护体制可靠性判别成果的精准性不单是由采用的模型参数和其具体问题相结合点,还由模型本身的各个数据质量决定,这导致难能正确得到保护可靠性的评估结果。

3存在问题的原因及解决方式

3.1继电保护系统的工作原理

按照保护系统的故障参数量、执行部分、和跳闸或信号脉冲回路等几个部分构成,目前继电保护系统普遍为双重化装置,数据系统通常由不寻常的互感装置、并和单位、交转机、网络接口等装置组合而成。大多保护功效都依靠与采集信号时目的的明确性。

3.2继电保护系统的评测指标

研究可靠性评测体系中的根本元素,保护可靠性指标必然要提到,一般参考资料都要根据系统运作的特性,通过抗动和误动引导,并以装备的可靠性和功效的可靠性来明确系统体系完整度。由探究继电保护可靠性开始,我国存在众多准确行为概率,也就是在限制时间内来研究继电保护设备的准确运作数和总运作数进行对比,以评测继电保护的可靠性,以此达到为我国继电水平起一定导向影响。

3.3改善继电保护系统装置

在充分改善传统保护可靠性模式所要形成的趋势时,进行全数据化维护,广泛维护的基础理念以及运用资料结果对已经展开的电力系统中执行,可靠性尤为关键的一点不可忽略。能否突破传统模式开展全数值模式保护体系新技术在下一步研究中,大型变换器是构成电力系统的主要元件,变压器的内部构造主防护是建立于二次波动理论的变动保护。当变动保护的抗动和差动都会对变压器以及电网形成破坏性的隐患,因而这对体系运作的误动保护其可靠性有极高要求。在很多元素影响下,对二次波动原生的量化分解探究其可靠性,预防差动维护的保障,明确变压器安全和电力系统的可靠性评估有重大含义。

3.4创造继电保护系统新突破

继电保护系统是可维护的体系,采用合适的防护检测来增大保护可靠程度,降低各种存在的安全隐患的有力手段。本文通过结合可靠性和经济性这两个标杆,判定了保护系统抗动、检测、维护等多个形态的工作频率及相对的配置停电隔离的修复阶段的整体轮廓,搭建了保护系统可靠系数的概念,目前广泛的维护装备皆处在探索阶层,由高速的以太网交换技术的飞速成长,以及高科技的互感科研已实际应用到各个领域,使得保护系统甚至电力体系都在加速迈向全数字化的目标。

4结语

在繁杂的大电网局势下,继电保护系统的可靠性研究尤为关键。本文通过对各地区继电保护可靠性指标和评测模式问题上展开研究并结合其特点,总结了目前保护可靠性评测指标以及存在的缺陷,由于继电保护设置与有关的仪器构造逐渐复杂,设计可靠性探究面更大,评测困难加大,怎样有力判断保护系统的可靠性,还需加强研究。

参考文献:

[1]郭剑波,姚国灿,我国未来大区电网互联可能出现或应该注意的若干技术问题:全国联网和更高一级交流电压等级技术问题研究之一[J].电网技术,1998,22(006):63-67.

继电保护装置的概念篇4

关键词:电力系统;断电保护;运行

1继电保护的基本概念

继电保护是指研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路、母线等)使之免遭损害,所以沿称继电保护。电力系统继电保护的基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内自动将故障设备从系统中切除,或者给出信号由值班人员消除异常工况的根源,以减轻或避免设备的损坏和对相邻地区供电的影响可靠性是指一个元件、设备或系统在预定时间内,在规定的条件下完成规定功能的能力。可靠性工程涉及到元件失效数据的统计和处理,系统可靠性的定量评定,运行维护,可靠性和经济性的协调等各方面。具体到继电保护装置,其可靠性是指在该装置规定的范围内发生了它应该动作的故障时,它不应该拒动作,而在任何其它该保护不应动作的情况下,它不应误动作。继电保护装置的拒动和误动都会给电力系统造成严重危害。

2保护装置评价指标

2.1继电保护装置属于可修复元件,在分析其可靠性时,应该先正确划分其状态,常见的状态有:①正常运行状态。这是保护装置的正常状态。②检修状态。为使保护装置能够长期稳定运行,应定期对其进行检修,检修时保护装置退出运行。③正常动作状态。这是指被保护元件发生故障时,保护装置正确动作于跳闸的状态。④误动作状态。是指保护装置不应动作时,它错误动作的状态。例如,由于整定错误,发生区外故障时,保护装置错误动作于跳闸。⑤拒动作状态。是指保护装置应该动作时,它拒绝动作的状态。例如,由于整定错误或内部机械故障而导致保护装置拒动。⑥故障维修状态。保护装置发生故障后对其进行维修时所处的状态。

2.2目前常用的评价统计指标有

2.2.1正确动作率即一定期限内(例如一年)被统计的继电保护装置的正确动作次数与总动作次数之比。用公式表示为:正确动作率=(正确动作次数,总动作次数)×100用正确动作率可以观测该继电保护系统每年的变化趋势,也可以反映不同的继电保护系统(如220kv与500kv)之间的对比情况,从中找出薄弱环节。

2.2.2可靠度r(t)是指元件在起始时刻正常的条件下,在时间区间(0,t)不发生故障的概率。对于继电保护装置,注意力主要集中在从起始时刻到首次故障的时间。

2.2.3可用率a(t)是指元件在起始时刻正常

工作的条件下,时刻t正常工作的概率。可靠度与可用率的不同在于,可靠度中的定义要求元件在时间区间(0,t)连续的处于正常状态,而可用率则无此要求。

2.2.4故障率是指元件从起始时刻直到时刻t完好条件下,在时刻t以后单位时间里发生故障的概率。

2.2.5平均无故障工作时间建设从修复到首次故障之间的时间间隔为无故障工作时间,则其数学期望值为平均无故障工作时间。

2.2.6修复率m(t)是指元件自起始时刻直到时刻t故障的条件下,自时刻t以后每单位时间里修复的概率

310kv供电系统继电保护

10KV供电系统是电力系统的一部分。它能否安全、稳定、可靠地运行,不但直接关系到企业用电的畅通,而且涉及到电力系统能否正常的运行。

3.110KV供电系统的几种运行状况

3.1.1供电系统的正常运行这种状况系指系统中各种设备或线路均在其额定状态下进行工作;各种信号、指示和仪表均工作在允许范围内的运行状况。

3.1.2供电系统的故障这种状况系指某些设备或线路出现了危及其本身或系统的安全运行,并有可能使事态进一步扩大的运行状况。

3.1.3供电系统的异常运行这种状况系指系统的正常运行遭到了破坏,但尚未构成故障时的运行状况。

3.210KV供电系统继电保护装置的任务

3.2.1在供电系统中运行正常时,它应能完整地、安全地监视各种设备的运行状况,为值班人员提供可靠的运行依据。

3.2.2如供电系统中发生故障时,它应能自动地、迅速地、有选择性地切除故障部分,保证非故障部分继续运行。

3.3几种常用电流保护的分析

3.3.1反时限过电流保护继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护就叫做反时限过电流保护。反时限过电流保护虽外部接线简单,但内部结构十分复杂,调试比较困难;在灵敏度和动作的准确性、速动性等方面也远不如电磁式继电器构成的继电保护装置。

3.3.2定时限过电流保护继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。继电器的构成。定时限过电流保护是由电磁式时间继电器(作为时限元件)、电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般采用直流操作,须设置直流屏。定时限过电流保护的基本原理。在10kV中性点不接地系统中,广泛采用的两相两继电器的定时限过电流保护。它是由两只电流互感器和两只电流继电器、一只时间继电器和一只信号继电器构成。

4总结

提高不拒动和误动作,是继电保护可靠性的核心。在城市电网配电系统中,各种类型的、大量的电气设备通过电气线路紧密地联结在一起。为了确保供电系统的正常运行,必须正确地设置继电保护装置并准确整定各项相关定值,从而保证系统的正常运行。

参考文献

继电保护装置的概念篇5

关键词:电力系统;继电保护;自动化

电力系统的运行正常与否将直接影响到人们生活质量的高低,因此,要注重保障电力系统可以正常的运行。而保护电力系统的主要装置就是继电保护装置,该装置对电力系统的运行状态能够起到有效的监督作用。在电力系统出现运行故障的时候,其可以及时有效的对出现问题的区域做出判断,并对故障问题进行有效的解决,以保障电力系统可以正常的运行。而随着相关技术的不断发展,电力系统的继电保护也逐渐向着自动化的方向发展,使得继电保护装置的保护性能得到了明显的提升。

1继电保护自动化的概念及工作原理

为了保护电力系统能够正常运行,或者在发生问题时能够及时的发现和解决,技术人员对电网系统设置了继电保护装置,维护了电网的正常运行。而最新技术下产生的继电保护自动化则更加有效的解决了这个问题。它会在电网系统发生问题时,立即予以发现,然后自动采取相应措施,这些措施包括报警信号、跳闸等。如果有必要,这种装置会把故障部分进行隔断,避免事故的进一步扩大,对一些比较简单的故障继电自动保护化装置也可以直接予以解决。

继电保护装置通常由引脚,线圈,衔铁,触点等构成。在自动化的电网实际运行中,它对于发电、配电、输电等电气设备的监控,都是由传感器来完成的,并且结合网络系统来采集和整合监控数据,然后把获得的数据通过网络系统进行收集、整合,最后对数据进行分析。在新型的自动化继电保护系统中,主要通过监控系统,讲被保护对象所有的电气量信息以及与其关联节点的其他节点的运行状况信息进行分析和决策,实时对相应继电保护装置的保护功能和保护定值进行修正、调整,确保保护装置能够适应灵活变化的情况。

2继电保护自动化的特征

继电保护在实现自动化后,依据其适用的范围以及工作的原理,可以有效的得出其所具有的特征,包括灵敏性、可靠性、快速性以及选择性,下面就对继电保护自动化所具有的这四种特征进行详细的分析。

2.1灵敏性

继电保护有其保障的范围,在这一范围内,电力系统如果出现任何的故障问题,继电保护装置都可以根据灵敏系数来对所发生的故障问题进行分析,及时的找出故障问题出现的区域,从而使得电力系统可以第一时间得到有效的维护,进而保障其运行的安全性。

2.2可靠性

继电保护都有其实际的应用监督和控制范围,在该范围内,如果电力系统出现的运行故障,那么继电保护装置就会对该故障问题进行有效的解决,而不在该区域范围之内,电力系统出现了故障问题,则继电保护装置就不应该进行误动,这样可以有效的保障继电保护自动化应用的可靠性。

2.3快速性

所谓的继电保护自动化快速性,就是指其能够及时的发现电力系统运行时出现的故障,能够尽快的对所出现的故障问题进行解决,从而降低故障问题对电力系统的损害程度,进而保障电力系统可以正常的运行,以延长电力系统的应用寿命。

2.4选择性

电力系统中通常都会设置继电保护装置,该装置能够对电力系统中出现的故障问题危害程度进行有效的判别,从而确定故障点,并及时的将故障点进行切断,这样可以使得原电路还可以正常的运行,从而就可以降低故障点对电力系统线路造成的损害,进而保障了整个电力系统的安全,使得电力网络能够在正常的状态下保持健康的运行。

3新时期电力系统对继电保护自动化的影响和挑战

在我国,继电保护装置的应用水平并不高,原有的继电保护装置占据了大量的市场份额,不利于先进的继电保护装置的推广和应用,不利于我国电力企业的长远发展。要想使得我国的继电保护水平可以得到有效的提高,就需要相关的研究人员能够极大的研究的力度,对原有的继电保护装置进行改进,大力的引进先进的智能化以及信息化技术,从而实现继电保护自动化。继电保护自动化的实现,不仅能够有效的提高电力网络的运行质量,而且还能够有效保障电力网络的运行质量,推动电力系统的高速发展。

随着智能化时代的到来,我国的电力系统也在逐步的迈入到智能化和自动化的行列,我国的电力企业开始将各种新型的设备应用到电力系统中,虽然这样能够有效的提升电力系统的运行效率和质量,但是也使得电力系统出现故障的几率在某种程度上相应的增加,这就对继电保护的要求相应的提升。为了保障电力系统可以正常的运行,就需要对继电保护装置的相关技术水平进行合理的提升,根据现代社会发展的要求和主流趋势,适应电网系统的发展要求,从而保障电网系统可以正常而高效的运行。

4继电保护的未来发展趋势

继电保护的技术发展道路已经越来越明确,就是智能、数字、网络,并通过信息处理技术将数据整个在一起。

目前继电保护技术正在朝着智能化、数字化以及网络化发展,适应了智能电网的技术水平要求。在以往的继电器使用中往往有一些问题,表现最明显的问题是系统的定值计算与管理系统定值分离,这种分类导致了数据的不准确,给操作带来了较大的困难,同时比较容易产生较大的失误。因此技术人员加入了智能化概念,就是通过模糊逻辑、神经网络等控制手段对继电保护装置进行控制,保证了数据的准确性。因此,数字化的继电保护装置在人工智能的控制下建立了继电保护网络,从而最大程度的实现了对于继电保护装置的控制,也加强了对于电网系统的监测与故障处理,是未来继电保护装置未来的发展趋势。

结束语

随着智能化时代的到来,电力网络系统也逐渐实现了智能化,智能电网由此诞生。而在智能电网不断发展的进程中,传统的电力系统也受到了极大的冲击和挑战,为了保障电力系统可以正常而安全的运行,相关的工作人员开始将继电保护技术应用在电力系统中。但是,我国对继电保护技术的应用还处于初级发展阶段,该技术的应用还具有一定的局限性。要想使得该技术可以得到有效的应用,就需要相关的人员能够不断的加大对其的研究力度,对继电保护装置进行频率的更新,从而实现继电保护的自动化,以推动电力企业的长远发展。

参考文献

[1]陈勇军,赵玉梅.智能电网中的继电保护技术分析[J].科技与企业,2012(23).

[2]李强.继电保护及自动化设备行业统计分析[J].电器工业,2009,2.

继电保护装置的概念篇6

关键词:电力系统;继电保护;发展现状;发展对策

中图分类号:tB

文献标识码:a

文章编号:1672-3198(2010)08-0038-02

1继电保护的概述

(1)继电保护的概念:继电保护能够保证电力系统的可靠性,并最大限度的使可靠性与经济性相协调,所谓可靠性就是由于城市及农村电网的配电系统覆盖面广,运行的环境又相对复杂,加之各种天灾人祸的影响,往往会导致电气故障的发生,这个时候继电保护就要出来英雄施救,发挥他的可靠,电力系统发生故障往往会造成一定的经济影响,继电保护就是最大限度的来消除这种影响。继电保护的概念必须具体到继电保护装置,所谓继电保护装置就是指一种保护电力系统的措施和装备,也就是当电力系统的电力元件诸如发电机、线路等或电力系统本身发生了故障,继电保护装置能够及时的控制断路,发出跳闸命令,最终达到规避危险的目的。

(2)继电保护的原理:继电保护要求当电力系统的某一处电气设备出现故障而不能正常工作时,继电保护装置能够发挥作用,及时的并且有选择性地把故障设备从系统中除掉,以保障电力系统安全稳定的运行,这种保护装置所根据的原理是:

①反映电气量保护。例如在电流增大时进行保护,或者电压降低时构成低电压保护,或者当电流与电压的相位角发生变化进行方向保护,或者对电流与电压所构成的比值进行保护等。

②反映非气量保护。如当温度、压力、流量等发生变化时可以构成电力变压器的瓦斯保护温度保护等。继电保护就犹如一个具有在线开环的自动控制装置,能够根据该控制装置所发出的信号,进行模拟型和数字型的继电保护判断。根据判断的结果做出跳闸或发信号这样的继电保护行为。

(3)继电保护的任务:保护电力系统的安全稳定,当电力系统的电力元件发生故障时,继电保护装置应该及时的发出信号,准确及时的脱离故障元件,以最近性原则发出命令,保护系统安全;保护电气设备,继电保护应及时准确的反映电气设备的不正常的工作情况,并对设备运行过程中的维护条件的不同发出信号,使值班人员能够迅速及时的对问题做出处理。或者自动装置能够完成自行调整。

2继电保护的发展现状及趋势

我国继电保护的发展也经历了一个持续的不断发展完善的过程,建国初期我国的继电保护装置基本上依赖进口。如500kv的晶体管方向的高频保护和晶体管高频闭锁距离保护。直到天津大学与南京电力自动化设备厂进行合作才结束了继电保护装置依赖进口的历史。并将运行于葛洲坝继电保护线路上。集成电路保护于20世纪70年代进行研究,20世纪80年代集成电路保护研究基本完成。但到20世纪90年代我国仍旧处于集成电路的研究、运用的状态中,这在继电保护的历史上被称之为集成电路的时代。但是世纪之交的时代是信息化的时代,是高科技的时代,所以继电保护的发展发生了巨大变化,即进入了微机保护时代。微机继电保护是指以数字式计算机为基础而构成的继电保护。现已广泛的应用于电力、石化、铁路、甚至民用建筑等。

2.1继电保护发展过程中遇到的一些问题

(1)继电保护调度人员交接班不清或疏漏交待的已操作项。不熟悉设备的性能,发生异常现象时不能冷静的进行处理。对保护现象不能做出准确的判断。

(2)保护人员在继电保护的过程中呈现出责任心差、安全意识淡薄,缺少专业的培训,不具备安装调试和事故处理的能力。在校验过程中出现校验项目不全、不准确的现象,致使留下事故隐患。

(3)运行人员在操作中也有一些人为的失误,如由于缺少培训,或多新的技术操作缺少了解,致使在继电保护过程中出现处理事故中的误动保护,或对运行经验不足,造成不必要的经济损失。

(4)继电保护装置存在的质量问题,如个别保护插件制造的质量不良或保护装置功能不完善等。

2.2继电保护发展的现状及其未来的发展趋势

目前微机保护装置的发展已有二十多年的历史了,由不成熟逐渐走向了成熟,微机保护较之刚刚起步之时具备了以下诸多性能:更趋自动化和智能化;设备管理和事件的记录功能大幅度提高;值得注意的是最近发展的人工神经网络保护装置。所谓人工神经网络就是通过一种监控学习技巧,能够对真是输出和希望值之间的差别做出比较,进而调整网络路径的权值,目的是能够使下一次的相同输入的情况下,是网络跟接近于希望值。较之以前人工神经网络的继电保护的发展具有更好的性能,它可以对更为复杂的模式、更为复杂的因果关系以及非线性的、模糊的、动态的和平稳的状态做出更为准确的判别。能够以数值的、联想的、自组织的、仿生的方式做出判别的是ann即神经网络系统,能够进行启发性认知的是eS即专家系统。神经网络系统能够应用与网调、省调试验室内进行学习。或者能够做出一些波形间断的变电站的高频保护。其不足之处是神经网络的硬件芯片很昂贵,在资金有限的情况下无法将其投入使用。此外此项技术在现有的科技水平下还发展的不够成熟,如神经网络的并行处理和信息分布存储机制还不十分清楚,如何选择的网络结构还没有充分的理论依据但这应该是继电保护在今后发展的一个趋势。总而言之计算机的发展趋势趋向于:计算机化、网络化、智能化、综合自动化。在此笔者重点谈一谈继电网络化、智能化、自适应性这几点。

(1)继电保护技术的网络化发展趋势。

随着信息化时代的到来,网络技术成为继电保护的一大发展趋势,继电保护的主要功能在于维护电力系统的安全稳定,而网络技术的介入使的继电技术的可操作检查的直观空间范围扩大,计算机网络能够通过数据的采集分析和模拟,综和和准确的分析出各种故障。并能够分析出缘由,为继电保护人员提供可靠的保障。使得继电保护人员能够及时的修理电力系统出现的故障。

(2)继电保护技术的智能化发展趋势。

目前电力系统的管理已经趋向与智能化管理,作为电力系统中的一员,继电保护也不例外,如我国的一些大城市已经采用了模拟人工神经网络来进行继电保护,在输电的过程中会出现几十种短路的现象,靠人工的智力难以实现排除,而用神经网络的发法排除则准确而又迅速,因此神经网络排除法能够大大的提高电力运输的效率。

(3)继电保护的自适应性发展趋势。

继电保护的自适应技术今年来逐渐被推广,它具有多适应性的特点,所以能够对适应多种故障的检测;具有保护作用,能够自动的延长保护时间,从而延长了电气设备的使用寿命,完成了继电保护装置本有的使命;减少了人工操作,提高了工作效率,也提高了经济效益。这种自适应技术能够发挥继电保护的真正保护功能,使继电保护装置完成自己既定的历史使命。因此这也是继电保护的发展趋势的一个方面。

3如何发展我国电力系统的继电保护

继电保护对于维护电力系统和电气设备有着不可替代的作用,如何在新的历史时期发展好继电保护以确保我国电力系统的安全稳定,确保经济的快速持续的发展是我们电力系统工作人员的重要职责。对此我提出以下几点对策:

(1)上文中提到继电保护在发展过程中会遭遇技术上的障碍,如何克服技术上的障碍,不仅是我们面临的难题,也是世界各国面临的难题,我们知道,继电保护已经向智能化、网络化、自适应性的方向发展,所以急需要一批高素质的科技人才投入到我国的电力事业。因此电力保护系统应该适时的对从事继电保护的工作人员提供学习和深造的机会,提高他们的技术水平,集体克服继电保护中的技术障碍。

(2)避免继电保护的误动动作的发生,继电保护误动动作发生会引起负荷供电的中断,更为甚者会造成系统稳定的破坏,致使给电力系统造成巨大的损失。如2004年5月25日,鹤岗矿业集团富力变电发生以起继电保护装置的误动动作事故,给鹤岗矿业集团造成了重大损失。这样的误动现象是怎么发生的呢,经过调查发现改误动现象的发生与维护工作有关系:如该厂房的卫生条件差,漏风又漏雨,无法关严门窗,此外工作人员没有进行及时的检修维护和保养。总之是自然环境的原因和一些人为因素。对此我们电力系统的人员应该提高警惕,使得继电保护装置能够正确的拒动,以此消除故障。

(3)加强继电保护的管理系统。抓好继电保护地方验收工作,严格自检、专业验收。严格继电保护装置及其二次回路的巡查检查设备,一边及时发现隐患。提高继电保护的运行操作技术。提高继电保护人员的专业素质和道德素质避免一些人为的祸端。继电保护的管理系统除了存在一些人为的管理方面的问题之外。还存在计算机继电保护的内在管理系统,也就是继电保护管理的本质内涵。随着电子计算机的日新月异的变化,继电保护管理的平台最终是通过网络化管理来实现的,所以必须建立继电保护管理系统的技术路线。可以采用一个weB这样的应用程序,建立一个具有网页状态的小客户端和大容量的服务器管理系统软件,来进行网络化的继电保护管理,网络系统的继电管理能够对定值整定、压板调整、故障修复、设备检修等方面进行自动化解决,对于相关的工作人员仅需要考虑如何协调好这些工作就可以了,实现了工作人员的零距离工作,这样大大提高了继电保护的效率,对与电力系统的安全稳定具有重大的意义。

(4)加速培养一批优秀的具有微机继电保护技术的相关人才,深入研讨微机继电保护中存在的问题。继电保护装置的发展先后有熔断器、电磁型继电保护装置、电子型静态继电器、数字式继电保护。科学技术的发展迅速,继电保护装置的更新也日新月异,诸如人工神经网络、遗传算法、进化规模、模糊逻辑等技术相继出现。继电保护的事故种类也程现出复杂化的态势,事故种类有:定值问题即整定计算机的误差,人为整定错误,装置漂移错误,元件老化与损坏等;ta的饱和问题;插件绝缘问题;高频收发信机问题;微机继电保护故障的发生简单的固然好处理,但涉及到复杂的问题就牵扯到了高技术的问题,这就需要微机继电保护人员具有过硬的技术业务。比如能够对一些难度比较高的技术资料具有阅读能力和理解能力;掌握常规检查方法之外的非常规方法,微机继电保护在出现故障时,有些问题可能比较隐蔽,需要借助于具有逆向思维特点的非常规办法进行处理;微机继电保护的普通人员必须谙熟微机原理和知识,以保证能够迅速的分析出事故的原因及发生故障的部位。因此对于微机继电保护人员,必须加大电子技术知识的学习,作为继电保护部门的领导也应该拨出专款对员工进行培训。

(5)做好继电保护装置的维护。河北滦平县出现的继电保护的误动现象,就与继电保护装置维护的不够有一定的关系,因此做好继电保护装置的维护工作能够有效的避免一些故障现象的发生,那么如何继电保护装置呢?

①值班人员要定期的对继电保护装置进行巡视和检查,并做好巡视和检查的记录。一旦发现异常现象,就要做出及时的处理,如果有重大的故障,要及时向上级主管部门汇报。

②继电保护装置害怕灰尘,所以必须做好清扫工作。此外为了防止在清扫工作中误碰运行设备,所以清扫工作不能一个人进行。

③要对继电保护进行定期的查评,查评内容如二次设备的各个元件的标志、名称是否齐全;开关按钮的动作是否灵活;控制室的光字牌、红绿指示灯泡是否完好;盘柜上的表计、继电器急接线端子的螺钉是否松动;电压互感器、电流互感器二次引线端子是否完好;配线是否整齐,固定卡子有无脱落;断路器的操作机构是否正常。

继电保护装置的概念篇7

关键词:电力系统数学理论继电保护广域保护

1概述

继电保护是一门较为古老的学科,但是由于它综合性较强,理论与实践都很重要,故随着电力系统的发展,继电保护也在不断的更新。

继电保护技术的发展史主要如下:从原理上来看,19世纪末,研究出过流保护原理;1905-1908年,研究出电流差动保护原理;1910年开始采用方向性电流保护;19世纪20年代初距离保护开始生产;30年代初出现了快速动作的高频保护。由此可知,如今普遍应用的继电保护原理基本上都已建立,保护原理方面,迄今没有出现突破性发展。从硬件上来看:从1901年出现的感应型继电器至今大体上经历了机电式、整流式、晶体管式、集成电路式、微型计算机式等发展阶段。

虽然继电保护的基本原理早已提出,但它总是在根据电力系统发展的需要,不断地从相关的科学技术中取得的最新成果中发展和完善自身。总的看来,继电保护技术的发展可以概括为三个阶段、两次飞跃。三个阶段是机电式、半导体式、微机式。第一次飞跃是由机电式到半导体式,主要体现在无触点化、小型化、低功耗。

2新的数学理论在继电保护中的应用

近年来,随着新的数学理论的提出,在继电保护中也有大量的应用,主要有如下几个方面:

2.1小波变换

小波变换:小波分析是近十几年来在国际上掀起研究热潮并有广泛应用价值的一个研究领域,工程角度看,小波分析是一种信号与信息处理的工具,是继傅里叶分析之后又一有效的时频分析方法,小波变换作为一种新的多分辨分析方法,可同时进行时域和频域分析,具有时频局部化和多分辨特性。

国内提出了很多利用小波分析的保护原理,多为行波保护,利用小波变换可以准确提取行波波头极性和行波幅值大小,准确定位行波到达时刻。也有利用小波分析进行故障选项及高压线路的暂态保护。但是小波算法计算量大,目前还没有得到广泛应用。

2.2模糊数学

模糊数学是研究和处理模糊性现象的数学理论和方法。模糊数学在电力系统中常用于电力系统规划、电力系统控制、电力系统的多目标优化。模糊数学在继电保护中应用的并不是十分广泛,它可在微机快速方向保护中,用以提高保护的抗干扰能力。

2.3人工神经网络

人工神经网络(ann)是由许多并行运算的功能简单的单元组成,它是源于人类神经系统的一类模型,是模拟人类智能的一条重要途径,它具有模拟热的部分形象思维的能力。ann具有高度神经计算能力以及极强的自适应能力,鲁棒性和容错性。ann在电力系统中,常用于电力系统暂态稳定性评估、继电保护、负荷预测以及谐波分析。

将ann具有的鲁棒性和容错能力、自适应和自学习能力应用于继电保护,则可使其性能大幅度提高。有学者提出,将ann应用于距离保护,仿真结果表明,当考虑单相接地故障和i段保护时,可在设计的90%保护范围内具有良好的保护性能,对样本的正确识别率为100%。也有人提出将ann用于同步机的失步保护或预测,结果表明ann具有鲁棒性好、失步检测快速并且易于用传统的信号处理器实现在线检测等优点。还有人提出将其用于自适应单相重合闸的研究,并经理论分析证明对于判断永久性故障或瞬时性故障有很好的效果,可用于防止重合于永久性故障。

由此可见,ann应用于继电保护是一种很有价值的研究方向。

2.4模式识别

模式识别是在某些一定量度或观测基础上把待识模式划分到各自的模式类中去。计算机模式识别就是指利用计算机等装置对物体、图像、图形、语音、字形等信息进行自动识别。在继电保护方面,模式识别可用于发电机定子接地保护的计算。

2.5数学形态学

数学形态学是近年来发展起来的一种有代表性的非线性图像处理和分析理论,在图像处理中已获得广泛的应用。它具有一套完整的理论、方法及算法体系,其系统性和严密性不亚于传统的线性图象处理理论。数学形态学方法比起其它时域或频域图像处理和分析的方法具有一些明显的优势。利用形态学算子可以有效的滤除噪声,同时保留图像中的原有信息,突出图像的几何特征便于进一步分析图像。从目前的研究领域可以看到数学形态学在电力系统中的应用主要集中在继电保护,电能质量,绝缘监测等方面。

其中,在继电保护方面提出的应用主要有:行波保护、超高速线路保护、超高速线路方向保护以及变压器励磁涌流辨别等。

3广域保护

3.1背景

目前的安全自动装置都是在检测到系统产生不正常运行状态以后再采取控制措施,在特殊情况下,可能安全自动装置来不及动作,系统已经发生严重的崩溃事故。另外,目前使用的安全自动控制判据大部分都是基于本地量构成,反映的只是系统某点或很小一个区域的运行状态,并不能较好的反映大区域电网的安全运行水平,装置之间缺乏相互协调和配合。这样将会导致系统某点发生故障后安全水平下降,造成继电保护和安全自动装置相继动作。由于这些装置之间缺乏相互的配合协调,可能进一步扩大故障影响范围,引起系统发生连锁跳闸等严重事故。

也就是说,互联已称为现代电网发展的一个必然趋势,广域保护便是在这样的背景下被提出。

3.2广域保护的基本概念

继电保护装置的概念篇8

【关键词】变电运行;继电保护

近几年,我国电力事业得到了迅速的发展,各种电力新设备、新技术都得到了广泛应用,继电保护技术便是其中一种。作为当前变电运行不可缺少的一个重要组成部分,继电保护可确保整个电力系统安全、稳定以及可靠的运行,保证供用电质量。因此在变电运行中,做好继电保护,不断提高继电保护技术水平是极有必要的。下面对变电运行中如何提高继电保护技术水平加以探讨,并提出几点浅薄的建议。

1、继电保护技术的概述

从上世纪六十年代开始,晶体管继电保护技术得到了发展和应用,随后继电保护技术获得了不同程度的发展,在上个世纪七十年代已经研制出不同类型的计算机保护装置。随后微机保护装置的出现和广泛的应用。随后我国的继电保护技术真正进入了微机保护时代。当前继电保护技术已经向着计算机化以及网络化的方向发展,这对继电保护技术在保护、测量、控制、人工智能化以及数据通信一体化方面提出了更高的要求,这对于继电保护技术来说不但是一种发展的机遇同时也是一种挑战。随着继电保护技术的不断发展,在整个电力系统中将得到更加广泛的应用,使得整个电力系统处在安全、稳定以及可靠的运行状态中,将会间接的为我国的经济发展做出更多的贡献。

2、继电保护技术在变电运行中应用的基本任务

在电力系统中,继电保护主要是通过利用元件发生异常情况时包括电压、电流以及功率等在内电气量的变化情况来形成继电保护动作。继电保护装置的主要任务有:第一,在整个电力系统的运行过程中,对系统中所有设备的运行状况进行在线监视,确保系统的整体运行;第二,如果供电系统出现故障,继电保护装置将有选择性的、自动的并迅速的将故障的部分切除,然后确保没有发生故障的部分能处于正常的运行状态中;第三,如果在供电系统的运行中出现了异常情况,继电保护装置可以及时准确的提供信号或者是进行告警,进而使得相关人员能及时采取措施进行处理。

3、继电保护装置运行的性能要求

一般来说,将继电保护装置安置在电路中,并进行变电运行时,其装置的基本性能要求有四个,即可靠性、快速性、灵敏性以及选择性。下面对这四种性能作详细介绍。

3.1可靠性

可靠性是继电保护装置最基本的性能,一台合格的继电保护装置必须具备高度的可靠性,以保证装置启动后的正常运行,保证其功能的正常发挥。对于继电保护装置来说,没有可靠性,装置运行中所发生的故障就无法得到有效的处理和解决,甚至还有可能引发更大的故障或安全事故,装置的存在将毫无意义可言。因此,安装于电路系统的继电保护装置一定要具备最基本的可靠性。而为了做到这一点,就必须保证装置的设计、安装以及调试等环节都严格按照相关规定执行,确保装置中所有元件都配备齐全。装置投入运行后,要全面做好装置的维护和保养工作。

3.2快速性

继电保护装置所具备的快速性的主要意思是指,当电路发生故障时,继电保护装置能够在第一时间内,快速断开故障,保证其他电力设备的安全。继电保护装置所具有的快速性能可在很大程度上降低故障对电力设备或元件的损害,确保其他没有发生故障的部分正常工作,并在一定程度上保证其运行的稳定性。通过快速断开故障,继电保护装置可从整体上提高电力系统运行的稳定性,降低电力运营成本。

3.3灵敏性

继电保护装置的灵敏性主要表现在,当电路系统发生故障时,继电保护装置可在最短时间内可靠的发生动作,快速,并且有效的处理故障。灵敏系数是考核继电保护装置的灵敏性的基本指标,而关于装置灵敏性的具体要求,在相关的继电保护程序设计中都有提到,同样也需要引起相关技术人员的重点关注。

3.4选择性

选择性是指,变电运行发生了故障,或者出现了其他异常情况后,继电保护装置可根据实际情况,有选择性切除故障点旁边的断路器,达到保证没有发生故障部分正常运行的目的。

4、做好变电运行继电保护的方法

4.1做好继电保护装置的质量检验

当继电保护装置完成安装和调试之后,要再次对其质量和性能进行检查、验收,进一步保证装置运行的可靠性。质量检验时,先做好自检,然后由专业的验收工向厂家提交检验获得的验收单,再由厂家采取实验手段,确保继电保护装置性能的稳定与正常。实验时,厂家必须保证所有关于继电保护装置的试验数据都准确无误,保证试验中所拆卸掉的所有部件都全部回复正常之后,才能在验收单上签字。另外,当装置的保护定值或二次回路发生变更时,要先对装置的定值以及变更问题进行核对和确认,并做好相应地变更记录,经相关责任人签字确认之后,再采取相关措施加以处理。

4.2要做好继电保护装置及其二次回路的巡检工作

通过对设备的巡检,可以及时发现设备存在的隐患进而避免故障的发生,这属于相关工作人员的一项重要工作。在巡检的时候,除了要做好交接班的检查之外,也要组织进行全面的巡视检查。

4.3要提高继电保护运行操作的准确性

运行人员要全面掌握继电保护装置的原理,以便于对其进行准确的操作,同时对其的结构以及相关规定要全面掌握,在操作的时候要严格按照相关规定中的要求进行,在每次投入和退出必须获得调度的指令之后进行。在运行规程中应该将所有保护装置的相关信息编入,以保证投入和退出的准确性。运行人员严格执行相关的规定可以避免在操作中出现差错,如果发现在继电保护装置的运行中有异常情况出现,要加强对异常部位的监视,并通知相关的人员进行处理。

继电保护装置的概念篇9

关键词:电力系统 10kv供电系统 继电保护

       1继电保护的基本概念

       可靠性是指一个元件、设备或系统在预定时间内,在规定的条件下完成规定功能的能力。可靠性工程涉及到元件失效数据的统计和处理,系统可靠性的定量评定,运行维护,可靠性和经济性的协调等各方面。具体到继电保护装置,其可靠性是指在该装置规定的范围内发生了它应该动作的故障时,它不应该拒动作,而在任何其它该保护不应动作的情况下,它不应误动作。

       继电保护装置的拒动和误动都会给电力系统造成严重危害。但提高其不拒动和提高其不误动作的可靠性的措施往往是互相矛盾的。由于电力系统的结构和负荷性质的不同,拒动和误动所造成的危害往往不同。例如当系统中有充足的旋转备用容量,输电线路很多,各系统之间和电源与负荷之间联系很紧密时由于继电保护装置的误动作,使发电机变压器或输电线路切除而给电力系统造成的影响可能很小;但如果发电机变压器或输电线路故障时继电保护装置拒动作,将会造成设备的损坏或系统稳定的破坏,损失是巨大的。在此情况下提高继电保护装置不拒动的可靠性比提高其不误动的可靠性更为重要。但在系统中旋转备用容量很少及各系统之间和负荷和电源之间联系比较薄弱的情况下,继电保护装置的误动作使发电机变压器或输电线切除时,将会引起对负荷供电的中断甚至造成系统稳定的破坏,损失是巨大的。而当某一保护装置拒动时,其后备保护仍可以动作而切除故障,因此在这种情况下提高继电保护装置不误动的可靠性比提高其不拒动的可靠性更为重要。

       2保护装置评价指标

       2.1继电保护装置属于可修复元件,在分析其可靠性时,应该先正确划分其状态,常见的状态有:①正常运行状态。这是保护装置的正常状态。②检修状态。为使保护装置能够长期稳定运行,应定期对其进行检修,检修时保护装置退出运行。③正常动作状态。这是指被保护元件发生故障时,保护装置正确动作于跳闸的状态。④误动作状态。是指保护装置不应动作时,它错误动作的状态。例如,由于整定错误,发生区外故障时,保护装置错误动作于跳闸。⑤拒动作状态。是指保护装置应该动作时,它拒绝动作的状态。例如,由于整定错误或内部机械故障而导致保护装置拒动。⑥故障维修状态。保护装置发生故障后对其进行维修时所处的状态。

       2.2目前常用的评价统计指标有

       2.2.1正确动作率即一定期限内(例如一年)被统计的继电保护装置的正确动作次数与总动作次数之比。

       正确动作率=(正确动作次数/总动作次数)×100

       用正确动作率可以观测该继电保护系统每年的变化趋势,也可以反映不同的继电保护系统(如220kv与500kv)之间的对比情况,从中找出薄弱环节。

       2.2.2可靠度r(t)是指元件在起始时刻正常的条件下,在时间区间(0,t)不发生故障的概率。对于继电保护装置,注意力主要集中在从起始时刻到首次故障的时间。

       2.2.3可用率a(t)是指元件在起始时刻正常工作的条件下,时刻t正常工作的概率。可靠度与可用率的不同在于,可靠度中的定义要求元件在时间区间(0,t)连续的处于正常状态,而可用率则无此要求。

       2.2.4故障率h(t)是指元件从起始时刻直到时刻t完好条件下,在时刻t以后单位时间里发生故障的概率。

       2.2.5平均无故障工作时间mtbf设从修复到首次故障之间的时间间隔为无故障工作时间,则其数学期望值为平均无故障工作时间。

       2.2.6修复率m(t)是指元件自起始时刻直到时刻t故障的条件下,自时刻t以后每单位时间里修复的概率

       2.2.7平均修复时间mttr平均修复时间是修复时间的数学期望值。

       310kv供电系统继电保护

       10kv供电系统是电力系统的一部分。它能否安全、稳定、可靠地运行,不但直接关系到企业用电的畅通,而且涉及到电力系统能否正常的运行。

       3.110kv供电系统的几种运行状况 

       3.1.1供电系统的正常运行这种状况系指系统中各种设备或线路均在其额定状态下进行工作;各种信号、指示和仪表均工作在允许范围内的运行状况; 

       3.1.2供电系统的故障这种状况系指某些设备或线路出现了危及其本身或系统的安全运行,并有可能使事态进一步扩大的运行状况; 

       3.1.3供电系统的异常运行这种状况系指系统的正常运行遭到了破坏,但尚未构成故障时的运行状况。 

       3.210kv供电系统继电保护装置的任务 

       3.2.1在供电系统中运行正常时,它应能完整地、安全地监视各种设备的运行状况,为值班人员提供可靠的运行依据; 

       3.2.2如供电系统中发生故障时,它应能自动地、迅速地、有选择性地切除故障部分,保证非故障部分继续运行; 

       3.2.3当供电系统中出现异常运行工作状况时,它应能及时地、准确地发出信号或警报,通知值班人员尽快做出处理。

       3.3几种常用电流保护的分析

       3.3.1反时限过电流保护继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护就叫做反时限过电流保护。反时限过电流保护虽外部接线简单,但内部结构十分复杂,调试比较困难;在灵敏度和动作的准确性、速动性等方面也远不如电磁式继电器构成的继电保护装置。

       3.3.2定时限过电流保护继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。

       继电器的构成。定时限过电流保护是由电磁式时间继电器(作为时限元件)、电磁式中间继电器(作为出口元件)、电磁式电流继电器(作为起动元件)、电磁式信号继电器(作为信号元件)构成的。它一般采用直流操作,须设置直流屏。

       定时限过电流保护的基本原理。在10kv中性点不接地系统中,广泛采用的两相两继电器的定时限过电流保护。它是由两只电流互感器和两只电流继电器、一只时间继电器和一只信号继电器构成。保护装置的动作时间只决定于时间继电器的预先整定的时间,而与被保护回路的短路电流大小无关,所以这种过电流保护称为定时限过电流保护。

       动作电流的整定计算。过流保护装置中的电流继电器动作电流的整定原则,是按照躲过被保护线路中可能出现的最大负荷电流来考虑的。也就是只有在被保护线路故障时才启动,而在最大负荷电流出现时不应动作。

继电保护装置的概念篇10

【关键词】电力系统;继电保护;数字化变电站;保护配置

【中图分类号】tm774;tm734

【文献标识码】a

【文章编号】1672—5158(2012)10-0260-01

0 前言

数字化变电站概念的提出基于光电技术、微电子技术、信息和网络通信等技术的飞速发展,由于其在建设、运行、维护和管理等方面具有的巨大优势,数字化变电站近年来已经成为业内关注的热点。

以某110kV数字化变电站为例,它采用南瑞继保的数字化变电站系统,使用具有国内领先水平的电子式电流(电压)互感器替代传统互感器,用光缆代替电缆作为系统测量、控制、保护和电能计量的信息采集和传输设备。

1 数字化变电站与传统变电站比较

数字化变电站是由智能化一次设备和网络化二次设备分层构建、建立在ieC61850通信规范基础之上、能够实现变电站内智能电气设备间信息共享和互操作的现代化变电站。一次设备采集信息后,就地转换为数字量,通过光缆上传测控保护装置,然后传至后台监控系统。监控系统和保护装置对一次设备的控制也是通过光缆传输数字信号实现其功能。

传统变电站的一次设备采集模拟量后,通过电缆将模拟量传输到测控保护装置,装置进行模数转换后对数据进行处理,然后通过网线将转换后的数字信号传至后台监控系统。同时,监控系统和保护装置对一次设备的控制通过电缆传输模拟信号来实现。

由上文可见,传统变电站的设备通过大量的电缆相连,存在电缆损耗、电磁兼容、电磁干扰、铁芯饱和等问题,而数字化变电站的二次侧直接输出数字信号通过光纤传输,使用光缆代替大量电缆,极大增强了变电站信号的抗干扰能力和系统的可靠性。

传统变电站与数字化变电站的对比见图1所示:

2 数字化变电站继电保护配置方案

在信息应用模式方面,数字化变电站采用光纤代替电缆作为传输信号的通道,从原来的电缆传送跳合闸电流操作方式变为通信报文(面向对象的变电站事件,即GooSe)操作方式。

在变电站结构方面,按照ieC61850标准,数字化变电站的二次系统可分为三层,即站控层、间隔层和过程层。站控层设备和间隔层设备通过站控网络连接,网络形式采用单环网型100m以太网,连接电缆选用100Base-tX,交换机选用16口,和站控网络相连接的设备均应具备RJ-45接口。过程层设备包括电子式互感器合并单元(mu),用于模数转换和采样数据的同步;断路器智能操作箱,用于接收网络跳闸命令和状态信息。数字化变电站的结构示意图见图2所示:

其中,数字化变电站二次侧的继电保护集中配置于间隔层,如上图所示,包括:线路测控、线路保护、主变测控、主变保护、分段测控、分段保护等。

以某110kV数字化变电站的实际工程实践为例,该110kV站现有2台三卷变压器,110kV为单母分段代旁母,进线2回;35kV为单母分段,包括出线6回和备用线路1回;10kV为单母分段,出线9回,10kV电容器4套,10kV所用变两台。

针对该站的需求,配置了:主变保护测控、110kV线路保护测控、110kV分段备自投兼测控、110kV侧电压并列、35kV线路保护测控、35kV侧电压并列、10kV侧电压并列、10kV线路保护、10kV母联保护、10kV电容器保护等。

2.1 110kV线路保护测控装置的配置方案

110kV线路Ct、内桥Ct、110kV线路抽取/母线电压均采用有源电子式互感器,其数字量输出直接由光纤接入主控室相关数字接口mU。110kV线路保护测控组成面向间隔、独立的、针对过程层的、基于GooSe机制的控制网,以实现相应间隔的遥信、遥控及保护控制,并实现与其它装置的信息交互。

110kV分段备自投功能采用全站集中式备投装置实现,装置利用过程层GooSe网络采集所需的开关、刀闸位置以及运行状态,根据软件算法实现传统备自投的功能。

2.2 35kV及10kV线路保护测控装置的配置方案

35kV线路测控保护基于模块化的设计思想,硬件可灵活组态,维护方便,而且具有实时的全站逻辑闭锁功能,完全支持ieC61850标准,采用基于GooSe机制的控制联系,以实现相应间隔的遥信、

遥控及保护控制,并实现与其它应用交互信息,于主控室集中组屏。35kV线路保护测控装置以直联的方式接入线路mU的电流电压量,与线路智能终端也是以直联的方式接入开关量信号并实现跳闸和遥控。

10kV线路保护、母联保护、电容器保护装置配置传统互感器,在开关柜内就地配置四合一的保护测控装置,以传统电缆方式采集交流量。10kV线路/电容器以电口形式将计量电流、电压输出给10kV线路/电容器电度表。

2.3 主变保护测控装置的配置方案

本次工程共配置主变保护柜两面,每面柜含5台三相三卷有载调压变压器的数字接口保护装置,2台35kV受总合并单元。

主变差动保护电流分别取自高压侧线路和内桥、中压侧eCt、低压侧模拟mU。低压侧模拟mU放置于受总间隔。

2台主变中压侧和低压侧受总的智能操作箱,2台主变智能操作箱均采用就地下放。2台主变高后备电量采集mU(取自主变套管Ct,兼主变零序/间隙电流采集),就地下放主变旁。主变套管Ct、零序/间隙电流由硬线引至高后备采集mU。

主变零序/间隙保护由主变高后备保护装置实现。通过接收由集控站/调度发出的主变运行方式改变遥控令(中性点地刀投切令)及中性点地刀位置,决定投零序或间隙保护。

主变差动、非电量、高、中、低后备保护采用数字接口的,完全支持ieC61850的装置,其开出通过主变GooSe控制网由智能操作箱实施(所有主变差动、后备、非电量保护、三侧受总智能操作箱、主变智能操作箱等,组成一独立的、面向过程层的、基于GooSe机制的主变控制网,以实现相应遥信、遥控及保护控制,并实现与其它应用交互信息)。

主变非电量的本体重瓦斯、有载重瓦斯/压力释放、通过电缆接至主控室主变非电量保护装置,装置通过GooSe网实现控制功能。同时将本体重瓦斯、有载重瓦斯加装就地下放的重动继电器,经硬接点至中低侧受总智能操作箱实施动作。

为防止光缆烧坏或其他原因造成的通信中断,所有保护装置均设置了通信中断时保护闭锁,同时全站保护均保留常规继电器硬接点开出,支持硬接线跳闸。