首页范文地理信息科学的应用十篇地理信息科学的应用十篇

地理信息科学的应用十篇

发布时间:2024-04-26 06:01:19

地理信息科学的应用篇1

【叙事报告】

(一)课题研究背景及研究意义

选择这一课题,基于以下几点认识:

1.地理教学信息技术化的需求

2.高中地理新课程改革的需要

3.我校一级达标验收的需要

(二)课题研究的主要内容

(1)目前我校在整合方面存在问题的调查与研究

(2)整合环境下备课方式的探索和研究

(3)整合环境下的课堂教学各个环节呈现的基本特点

(4)整合环境下优化课堂教学环节提高课堂效率的主要方法

(三)课题研究的主要方法

1.调查法

(1)调查目前我校教师在学科教学与信息技术整合方面的现状;

(2)调查研究过程中教师的运用信息技术的水平与教学效果,搜集资料,了解情况。

2.个案研究法

选取不同类型的研究对象进行信息技术学科教学整合的课堂实例个案研究。

3、行动研究法

以解决实际问题为目的的研究,就是要创造运用理论解决实际问题,自然条件下进行实践,并对实践进行不断的反思,通过计划,实践,观察,反思四个步骤进行。

4、文献法

对国内外有关信息技术与课程整合的理论研究、实践经验进行总结、分析和提炼,以形成信息技术环境下整合教学的理论和方法。

(四)课题研究的实施步骤

本课题研究的思路是通过计划、调查、实践和总结反思等几个环节,运用调查研究、文献研究、行动研究、案例研究等方法,积极开展以课堂教学为切入点和突破口,在信息技术和学科的有效整合方面的研究,得出具有推广价值的一般规律和方法。从课前备课、课堂上师生的双边活动等方面入手,改革传统课堂的授课模式,解决好主体和客体、手段和目的、预设和生成等之间的矛盾,力争使整合达到最佳结合点,提高课堂效率,提高教学质量。

【正文】

一、问题的提出

《基础教育课程改革纲要》中指出要“大力推进信息技术在教学过程中的应用,促进信息技术与学科课程的整合。地理学科在空间上和时间上跨越大,延时长,而现代信息技术则以它强大的再现功能、集成功能、虚拟功能等突出了地理空间分布动态变化的综合表现能力,使其在中学地理教学中显示出独特的优越性。于是我借助多媒体信息技术平台尝试着根据学生的心理发展规律,联系教学实际安排教学内容,引导学生从现实生活的经历与体验出发,激发学生对地理问题的兴趣、培养地理学习能力,鼓励积极合作探究,使学生了解地理知识的功能与价值,形成主动学习的态度并充分利用网上庞大的教学资源,让学生通过自主学习、合作探究,来树立学生的主体合作意识,“培养学生创新精神和实践能力”。为此,在信息技术与地理学科课程整合的应用模式研究的过程中我提出了“网上自主合作探究教学模式”。

二、理论依据

1.教育人本论

2.以学生全面发展为本的理念

3.探究学习理论

4.合作学习理论

5.终身发展的理念

三、预期的目标

课程整合成败的标准是什么?就是要看信息技术与地理课程整合后是否提高了教学效率,是否优化了教学活动过程,是否更好地实现了教育教学目的。这也是信息技术与课程整合的本质核心和出发点。

本文所提出的“信息技术合作探究”教学模式,不仅能激发学生对地理问题的兴趣,而且还能利用网上丰富的教学资源,培养学生学习地理的能力,鼓励积极探究,形成主动学习的态度,从而培养具有自主学习能力及合作探究能力的学生,培养学生的创新精神和实践能力,体现以学生为本的新教育理念。

四、操作步骤

信息技术与地理学科课程整合的应用模式研究之“网上自主合作探究”模式,主要由趣味导课、网上学习、合作探究、组间质疑、评价激励等环环相扣的五个环节组成。

五、操作策略

1.趣味导课

该过程的设计是将本节的内容与颇有情趣的事例相结合,根据教学目的、内容、要求来设计最恰当、最生动的导入形式。且不可为使学生产生兴趣,离题万里,也不可耗费过多的笔墨冲淡教学;另外最好选择学生熟悉的话题。

主动学习的态度,从而培养具有自主学习能力及合作探究能力的学生,培养学生的创新精神和实践能力,体现以学生为本的新的教育理念。

2.网上学习

该过程包括两步:

①学“图”:最好以小组合作的方式利用现有的网上资源、地图或多媒体课件演示、组织、帮助学生读图、填图、回答问题。落实地理事物的地理位置,形成空间概念。

②学“文”:在学图的基础上带着问题自学,小组间通过讨论、探究的学习方式合作完成自学提纲。在此阶段注意“图”简单,不宜过多。“文”中的问题不宜过难,要有剃度,而且少而精,面向全体学生。

在信息技术组合教学中尤其显得重要,以下是《人类与环境》一章中“环境和环境问题”的教学流程设计:

标题 第十一章 人类与环境 第一节 环境和环境问题

总结、练习(环境问题是指人类赖以生存和发展的地理环境,由于人为或自然的原因出现了影响人类生产和生活、甚至生存的种种问题。)

3.合作探究

在学习的过程中,充分调动学生已有的知识经验,并充分利用网页、地图等工具,共同探究问题的答案。这样,不断培养学生的合作能力,以学习能力强的带动学习弱的学生;小组同学共同学习、共同进步。老师以适当的语言激励学生组与组间竞争,培养学生竞争意识。在讨论的氛围中,使学生学会与他人相处、相容。

4.组间质疑

小组讨论提出代表性的问题,但不可与本节无关,其他同学讨论回答,这时教师选出全班同学都可参与的问题。我们所教的对象来自社会,最终还是返回社会实践中去,这就决定了我们的教学一时一刻也不能离开社会实践或创设一种模拟社会生活氛围。与此同时,还尽量使全体学生都能参与活动,避免出现少数参与、多数旁观的现象。

5.评价激励

在学生回答问题正确或基本正确时,给学生适当的肯定,激励学生的学习热情,评价组间协作的好与坏,是否带动本组同学的学习,鼓励学生以小组为单位进行竞争。

六、模式的评价

“信息技术与课程整合”为课程改革的实施提供了强有力的支撑,过去存在的难以在学科教学中面向全体学生、因材施教、师生互动、个性化学习等问题,都可以通过“整合”手段加以解决;同时,新课程的学科课程的基本理念又为信息技术与学科整合提出了理论性指导,整合的思想,是以整体的、联系的、发展的、变化的观点去分析、研究、解决学科教学中的问题,从而克服过去教与学的矛盾,使教师、学生、资源、信息技术等呈现出有机融合相互促进的态势。

信息技术与地理学科课程整合的应用模式研究下的“信息技术合作探究”教学模式,就是借助多媒体信息技术平台,充分发挥并利用了网络这一现代信息技术的资源优势,有效运用了学生的兴趣和思维,兴趣与学习效果间的正相关性,使地理课堂教学具备了基础性、共享性、民主性、活动性、层次性、开放性等素质教育课堂的基本特征,是地理学科教学中落实素质教育各项要求的良好载体。

当然,该模式作为一种新型教学模式尝试性的探索,还有待于进一步实验,修改和完善。不过我相信,在全体地理组教师富有创造性的努力下,通过整合可以逐步真正实现教学目标的综合化、教学过程的民主化、教学方法的多样化、教学技术的信息化和学生学习的自主化合作化,学生的学习方式将得到全面深刻的改善,从而使素质教育下的地理学科教学和课程建设得到突破性进展和创造性的建树。

参考文献

[1]钟万书.《现代信息技术与传统地理教学的有机整合》

[2]祝智庭.《信息技术在课堂教学中的作用模式:理论框架与案例研究》

[3]米竞.《必然抉择:信息技术与学科整合》中国电化教育

[4]李子运.《信息技术与课堂教学的整合》中国远程教育

[5]李克东.《数字化学习——信息技术与课程整合的核心》电化教育研究

[6]何克抗.《关于信息技术与课程整合的理论思考》中小学电教

[7]钟爱群.《信息技术与地理教学的整合》《大连教育学院学报》

地理信息科学的应用篇2

关键词地理信息系统;环境科学;应用

在科学技术不断发展的强大推动下,地理信息系统发挥着不可比拟的作用和优势,其应用价值极其显著,尤其对环境科学领域产生了很大的影响,借助地理信息系统的应用,对于环境科学发展也具有显著的促进作用,其发展前景十分广阔。现阶段,人们对环境的重视程度越来越高,在环境科学不断发展过程中,投入了较多新型技术,其中,地理信息系统不容忽视,已经得到了社会上的高度认可和关注。

1GiS的相关概述分析

1.1概念

对于地理信息系统来说,作为计算机系统之一,可以促进空间数据的采集、储存以及查询检索等顺利进行,有助于对海量地理数据予以分析和处理,已经成为一大通用技术。地理信息系统的关键就在于地理空间数据库,基于计算机软硬件环境,采集和储存整个空间相关数据,所以已经成为不可或缺的技术系统。

1.2功能

对其功能进行分析,主要是指在地理数据处理工程中,GiS的作用显著

数据的采集和输入,也就是在数据处理系统中,实现系统外部原始数据向系统内部的顺利传输,并将这些数据从外部格式实现向内部格式的顺利转换,为系统处理提供便利性。第二,数据编辑,首先,对于图形编辑来说,主要涵盖、图形编辑、图形修饰等功能,其次,对于属性编辑来说,主要是指与数据库管理相整合,其功能主要体现在修改和删除等。第三,数据存储和管理,对于数据存储来说,要求在计算机内部或外部存储介质上,记录好数据,其存储方式与数据文件的结构之间的关系是紧密联系、密不可分的,关键要加强记录的逻辑顺序的构建,属性数据,在关系数据库管理中得到了广泛应用。第四,空间查询和分析,其中,对于数据查询和检索来说,主要是指從数据文件和数据库中,对所需数据予以查找或选取。借助GiS技术,可以对所定区域的各种现象予以有效分析。

2GiS在环境监测中的应用

环境监测,与信息的采集和处理有着密切的联系,而环境信息与空间位置的关联性极其明显,所以在环境监测中,地理信息系统得到了广泛应用。借助该项技术的应用,可以为各种环境信息的获取和存储等提供很大的便利性,并确保环境信息具有高度的全面性和准确性,为环境监测的开展助益。地理信息系统的空间分析和数据处理功能显著,要加强GiS的功能模块的应用[1],与选定的环境监测模型结合在一起,有效处理多源环境信息,将环境演变的动态规律挖掘出来,动态化监测环境,并直观展示出环境的变化情况和规律等,将其制作程图片。

2.1在大气环境动态监测方面

在城市工业化不断发展过程中,城市工业企业数量越来越多,在城市空气中,充斥着较多的有毒有害物质,诸多国家和地区都对大气环境质量的改善予以了高度重视。对大气环境的特点进行分析,主要是指其空间尺度较大,人类生存的大气圈中,其厚度是不可想象的。空气在自然环境中的流动性较高,所以GiS技术,在大气环境动态监测方面具有较高的应用价值,以此来将监测和分析功能发挥出来。加强地理信息系统的应用,可以有效收集和整理大气污染隐患的企业和位置信息等,并加强地理信息数据库的构建。通过对GiS空间分析和数据显示功能的发挥,可以为污染物在大气中浓度分布图的获取提供便利性,从而对污染物的空间分布和超标情况予以充分了解。

2.2在水资源环境监测方面

在工农业发展中,水资源发挥的作用不可小觑,但是水源污染现象越来越严重化,而且复合型污染特点比较明显,对于饮用水产生了很大的影响,所以针对水资源环境,必须要注重监测和管理的实施。对水资源环境的特点进行分析,具有庞大的空间信息量,GiS的优势主要体现在有效管理和分析空间信息这一方面。在水资源环境监测中,加强GiS的应用,可以将水质监测数据和空间数据管理的科学性和有效性提升上来,为管理人员有效查询和修改各种空间信息创造有利条件[2]。GiS的空间分析和图标分析功能显著,可以更好地制作空间和检测数据的专题图,确保污染治理方案的制订具有高度的可行性和合理性。比如某一研究人员借助GiS技术,合理设计地下水监测网络,有效监测和分析所选研究区域的场地,不断提高管理地表和地下废物的有效性,及时将潜在污染源挖掘出来,更好地保护水源井,并且作用于填埋场选址这一方面。

3GiS在环境影响评价中的应用

对于环境影响评价来说,主要是指系统化分析和预测拟议中的建设项目实施后对环境产生的影响程度。环境影响评价,旨在对在规划和决策中考虑环境因素予以积极引导,确保人类活动具有较高的环境相容性。现阶段,环境影响评价的诸多环境问题,可以借助成熟模型来进行描述,但是这些环境模型空间数据的难度性较高,尤其在操作和显示方面,而且空间特性较为显著。借助GiS技术,可以集中整合数据和地图,加强拓扑关系的构建,为空间分析和查询各类专题图创造有利条件,并将环境质量和污染状况直观展示出来。

3.1在项目环境影响评价方面

在项目环境影响评价方面,环境信息数据库发挥着重要的作用,项目环境影响评价,要对相关环境信息予以充分掌握,如区域自然与社会经济、区域环境质量等。环境信息数据量比较庞大,而且与空间位置的关系是密不可分的。在环境评价的各种模型中,要对GiS集成与场地相关的各种数据予以应用,给予综合化分析和模拟强有力的保障,更好地分析环境质量现状。GiS的数据管理和跟踪能力较为强化,可以对环境影响评价单位和工程建设单位予以协助检查,引导单位自身将自身的职责履行到位,并将环境影响报告书的事后验证工作落实下去。

3.2在区域环境影响评价方面

对于区域环境影响评价来说,主要是指加强科学技术的原理和方法的应用,将该区域环境中与发展过程相关的人类活动、自然作用的规律予以反映。借助区域环境影响评价,旨在协调发展区域内的社会、经济以及环境等,确保与可持续发展战略规划的要求相互统一。在区域环境影响评价中,GiS的应用,可以对地理区域复杂化的污染源信息等予以管理,并对区域环境影响因素的变化情况进行统计和分析[3]。此外,叠置地理对象的功能不容忽视,将同一区域不同时段的多个环境影响因素与特征叠加整合在一起,对区域环境质量演变和其他因素的相关关系予以合理化分析,从而更好地预测区域的环境质量。区域的污染源数据关联于各种环境预测模型,加强模型预测法的应用,可以为预测区域的环境质量创造有利条件。

3.3累积环境影响评价

对于累积环境影响评价来说,主要是指针对累积环境变化的过程,应进行系统分析和评估,也就是分析和调查,对影响源和过程的累积,并解释各个影响在时间和空间方面的累积,对以往、现在的人类活动的累积影响进行预测,当然也包括对社会发展的反馈效应。结合可持续发展目标,如果具有统一的潜在发展行为的方向和内容等,应予以合理化选择。累积环境影响评价,可以将环境影响评价的时空分析范围予以拓展化,并将环境变化的时空放大作用发挥出来,所以对评价方法的能力提出了较高的要求。而GiS技术,在编辑和加工长时段区域数据的能力方面发挥着重要的作用,可以对环境影响在时空的累积特征进行有效识别,所以可以广泛应用于累积环境影响评价。

4GiS在环境规划中的应用

对于环境规划来说,主要是指调查和监测一个区域的环境现状,由于经济发展可能造成的环境变化进行预测,并基于生态学原理,要对工业部门结构和生产布局等予以调整,作为战略性部署之一,实现保护和改善环境的建设目标。在环境规划中,GiS的应用,有助于集中整合GiS空间分析技术、空间图形库,促进环境数据收集和管理工作的顺利进行,并为预测和污染控制规划方面的处理提供帮助,确保环境规划决策的过程,具有高度的直观性和有效性。

5结束语

综上所述,GiS的空间数据和非空间的属性数据管理优势显著,而且具有较高的空间分析能力,GiS可以有效编辑多种空间数据,并借助对各种专题图和统计图的分层输出,可以满足资源节约化需求,避免浪费更多的人力和财力等,同时所获取的精准度较高。在GiS技术发展中,将会大大完善环境领域中的应用范围,促进我国环境科学领域的健康发展。

参考文献

[1]吴巧云.公众参与地理信息系统(ppGiS)在环境规划中的应用研究[J].环境与发展,2019,31(6):17-18.

[2]孙义峰,孙立娥,刘维龙.地理信息系统在环境质量综合分析中的应用研究[J].资源节约与环保,2016(12):112.

地理信息科学的应用篇3

地理信息产业发展从20世纪90年代初期进入起步阶段。随着社会进步,地理信息产业不断发展,我国地理信息产业面对国际金融危机的冲击仍然保持了强劲的发展势头,“十一五”期间增幅超过300%,2011年产业总产值突破1500亿元,从业人员约80万人,从业机构超过2万家。国家测绘地理信息局推进地理信息产业的目标是到2015年年总产值超过3000亿元,到2020年年总产值达到10000亿元。1998年教育部颁布了我国新的《普通高校本科专业目录》,其中对高校本科专业行了调整,专业由原来的504个调整为294个,教育部特别增设了地理信息系统专业,这一点说明地理信息产业的特殊优势和生命力。2012年普通高等学校本科专业目录再次调整,将地理信息系统专业改名为地理信息科学专业。经各种资料的统计表明,2000年有37所院校设立了GiS专业,2003年有93个高校开设了GiS专业,2007年全国共有161所高校设置GiS专业,2012年全国共有168所高校设置地理信息科学专业[1-2]。从而促进地理信息产业不断发展壮大。

2地理信息科学专业发展面临的问题与分析

2.1教师专业素养迫切需要提高

目前状况是一些院校现有的地理信息科学专业教师是从相关学科转入地理信息科学专业的,大多数是从学校毕业又走入学校,并没有机会从事实际地理信息系统研究、开发和应用的经验[3]。而地理信息科学技术本身发展又很迅速,这使得一些教师很难胜任所承担的核心课程与专业课程教学任务。

2.2教材建设与培养目标脱节

由于软件的更新速度飞快,相应的实验教材很难跟上。据此有些人提出了要大胆尝试采用电子教材,某些部门或是软件出品单位不要只是将精力放在软件使用帮助上,也应当随之出品入门级或更高档次的电子实验教材,弥补实验教材陈旧落后更新慢的问题。理论教材内容更新滞后非常明显,与各人才培养层次与方向脱节,没有针对各个培养层次和方向的统一化、系统化的教材的建设[4]。

2.3课程体系及教学内容与社会需要脱节

各高校开办地理信息科学专业时,主要是依托已有相关专业构建课程体系,无论是学科基础课程,还是专业核心课程的设置,皆与地理信息系统专业培养目标及社会需求脱节[5]。大多是根据本校的师资和学生的素质来设置相应的课程。还有因师资不足,涉及地理信息新理论、新技术、新方法的课程不能开设,学生空间分析、地理信息系统技术二次开发与应用的能力上得不到锻炼,在工作中暴露出地理信息系统应用能力差的缺陷,直接影响到该学校地理信息科学专业人才培养的声誉[6]。

2.4专业目录名称与本学科内涵不相适应

随着形势的发展,逐渐暴露出一些问题。从地理信息科学专业分层次的培养来看,名称上存在不相称,一些专家建议,对于理科院校或从地理科学为基础发展起来的,完全可以称为地理信息科学专业,但对于工科院校或从测绘等方向发展起来的,可以改称为地理信息工程专业。笔者认为经过多年的磨合共融发展,也可能在将来二者会统一于新的名称。

2.5资金投放不足

目前,高校地理信息科学专业建设与人才培养,同样受到发展速度与投入增量不同步的影响,专业建设经费不足,仪器设备陈旧且不配套。特别是在一般本科类院校,在追求规模发展过程中,因资金不足与基础设施建设需要,对教学仪器设备与运行保障经费采取紧缩政策[7]。

2.6全国地理信息科学专业的发展没有一个统一的教育培养评价体系

对于这个专业培养的人才没有相应评价体系。尤其针对一般本院校来说,不论是以测绘为基础发展起来的,还是以地理科学为依托发展起来的地理信息科学专业,都没有真正融入到全国地理信息科学专业的大圈子里。要真正服务社会,不应靠少数顶级院校的科学进展,更多是发挥好全国各地的地理信息科学专业的教育资源,让地理信息科学的大众化教育与培养复合型人才可以落到实处,从而彰显地理视角。

3建议与发展策略

3.1地理信息科学教育应遵循应用科学的教育理念

这个专业无论是从测绘工科院校发展起来的还是从以地理学空间分析应用为主的理科发展起来的,大家都会认为本专业是理论实践相结合的学科。从现在本科生、研究生的招生就业情况来分析,本科阶段是扎实掌握基本理论的重要时期,研究生阶段可注重与实践相结合。大学本科阶段要遵循教育的基本理念,而不是一味地追寻市场,更不能成为步入社会的培训场所。大学本科教育是思想和认知善恶发育成型的阶段,让学生有能力去追求知识与真理,这是大学本科的教学核心。只有这样才能在以后的工作中具有更强的创新能力。

3.2培养空间思维的教学模式不能变

空间思维能力不只是让人知道东西南北,更多是分析和解决问题的空间维度。从另一个角度来看,地理信息科学的普及也是对全民空间思维能力的培养,比如eSRi在美国会对小孩子进行免费的地理知识讲解,使他们从小就能接触到地理空间的概念,启发了他们的空间想象力。

3.3人才培养上要在权威机构中划分出层次

从地理信息产业发展来看,地理信息科学学位教育应强化技能培训,这部分人才培养就落在一些以测绘为基础的工科院校发展起来的地理信息科学专业的培养上,突出地理信息科学技术的开发与应用。而另一类别是以地理学为基础发展起来的院校专业上应突出地学方面的应用。总之地理信息科学人才的培养既需要有能够创新思路的人才,也要培养具有扎实知识的技能型人才,这样才能共同推动地理信息科学和地理信息产业可持续发展。

3.4通过任教资格考试、技术水平认证来规范地理信息从业人员的水平

国家应有相应的政策法规来管理地理信息产业。规定必须要有相当水平的从业人员才能承接各种项目。原因就是地理信息产业的相关行业关系人类社会正常发展,如果政策法规跟不上,那么将会一片混乱。3.5为一线地理信息科学教育工作者申请教学或科研项目建立一种运行模式与保障机制笔者认为可以从政府层面上建立一种运行模式,保障地理信息科学教育工作者真正地申请到地理信息科学项目,如教育部科技司、国家测绘地理信息局、国家发改委高技术产业司等等或是中国测绘地理信息学会、中国地理信息产业协会等各级协会都可以组织建立保障机制并实施这种运行模式。

3.6分层次规范地理信息科学专业的课程体系

地理信息科学的应用篇4

关键词 地理信息系统 学科建设 政策建议

1引言

地理信息系统是地理学、资源与环境科学、地球系统科学中最富有生命力的部分,是它们重要的发展方向之一,“在持续发展的研究和决策中,没有任何其他领域比利用GiS技术更为重要”。地理信息系统发展十分迅猛,地理信息系统学科也非常年轻,从第一个GiS建立到现在只有33年的时间,从“数字地球”的提出到现在耳熟能详的“数字化浪潮”只有短短8年的时间。

随着地理信息系统学科的快速发展和社会需求空间的不断增大,地理信息系统人才的需求量也在不断扩大。如何加强GiS学科和人才培养体系建设显得尤为必要。

2地理信息系统学科体系

GiS(GeographicalinformationSystem)是在计算机软件和硬件支持下,综合运用地理学、系统工程和信息科学的理论,获取、存贮、管理、传输、分析和输出地理空间数据的信息系统,是计算机和信息系统技术在地理科学中运用发展的产物。从学科角度看,地理信息系统是管理和分析空间数据的科学技术,是一门集地理学、测绘科学、计算机科学、空间科学、信息科学和管理科学等多门科学为一体的新兴的综合集成学科,具有多学科交叉的显著特点。

从广义来看,GiS应属地球信息科学与技术的范畴。地球信息科学包括理论、技术和应用三部分。应用信息论、控制论和系统论形成了地球信息科学的方法论;区域的可持续发展和全球变化构成了地球信息科学的应用部分;信息的获取、监测,信息的模拟,信息的传播与建设构成了地球信息技术部分(见图1)。当前我国的GiS学科建设方面,存在理论不适应技术的发展需求,同时技术与应用脱节的现象。

从狭义来看,GiS属多学科综合集成的学科,包含了理、工、管理学科的科学与技术内容。GiS作为理科,以地理学、地图学、系统科学为基础;GiS作为工科则以计算机科学与技术、测绘科学与技术、系统工程为核心;GiS作为管理学,则以管理信息系统(miS)为支撑体系。目前对GiS学科建设,一是分散在相应学科的边缘,没有得到充分的重视;二是学科体系不清,结构不完善。因此,只有把GiS学科建设作为一类交叉学科门类,进而从科学、技术、工程三个层次加强,才能够形成完善的学科体系,任何强调其中一个方面的倾向,均会对GiS学科发展产生不利的影响。设置交叉学科类在美国的学科分类体系中得到了充分且高度的重视。从GiS科学角度,要加强地球信息科学、地球系统科学等在GiS中的应用;从GiS学科建设的技术角度,要加强遥感技术的应用,以及网络计算机软件技术的开发与应用;从GiS学科建设的工程角度,要加强系统工程在GiS中的应用,从而保证任何GiS软件系统具有很强的稳定性与安全性,能够具有强大的服务功能。

3地理信息系统人才培养体系

3.1GiS人才培养方向

把握了GiS人才培养方向就勒住了人才培养体系的龙头。根据前面的论述,GiS人才培养方向可以归纳为:①GiS理论人才;②GiS技术人才(含软件开发人才);③GiS应用人才(GiS工程建设)。

从科学(理论)角度看,地球系统的信息流是GiS研究的主要内容。资源与环境信息则是其主要关注的对象。GiS在不断发展中已逐步形成了以“地球信息科学”为基础的独特的理论体系,具有多学科集成的显著特点。但目前,正如陈述彭先生所指出的“地理信息系统基础研究状况是理论的发展满足不了技术进步的需求”。因此,在GiS人才培养中,首先需要的是能够满足学科发展所急需的理论型人才。

GiS技术人才包括信息的获取、监测,信息的模拟,信息的传播与建设等方面的人才,这些人才的培养,广义上包括遥感技术、GpS技术、地理信息系统与空间辅助决策系统以及信息基础设施建设方面的人才培养。对于GiS软件开发,为避免大量人力集中在低层、重复的程序编制上,应尽量利用已完成的软件资源,同时从长远看,中国应该发展自己的GiS软件,应该加大对软件开发的投入。

国外有统计数字:用于GiS软件、硬件和建库的投资比例为1∶2∶10。这反映中国的GiS软件市场大,而GiS的应用市场更大。现在国内急需GiS工程建设的高级技术人才。这样的高级技术人才必须具备很好的测绘、遥感、地理学、计算机和应用科学的知识基础;有处理各类GiS应用技术问题的经验;果断的判断和决策能力;较高的组织指挥才能。他们要凭自己的知识、经验和能力对GiS系统的建设和开发过程进行总体控制,解决技术难点,并能进行系统开发,对运行系统进行诊断。

GiS软件开发和GiS应用两类人才都需要培养。尤其是GiS应用人才培养目前国内还没认识到其重要性,国内不少人避开社会科学问题,倾向于纯技术课题,片面认为唯有编制低层次的算法程序才是高级的、有意义的工作。实际上“在发达国家的GiS人员结构中,绝大多数的人员和研究生都在GiS的应用领域工作,这才促成了GiS的蓬勃发展”。

3.2国内外GiS学科、专业设置现状

GiS学科与专业设置影响到GiS人才培养的素质与人才结构。国外的GiS专业教育比中国早10年左右,20世纪80年代中后期,国内一些大学才开始着手建立了GiS专业。1997年国家学位委员会在对原有学科进行合并、调整的同时,在原地理学一级学科目录中增加了“地图学与地理信息系统”(理学)、在原测绘科学与技术一级学科目录中增加了“地图制图学与地理信息工程”(工学)两个二级学科,并开始进行这两个二级学科的博士、硕士研究生培养单位审批和招生工作。这也是我国最早开始的硕士、博士GiS研究生学位教育。1998年7月教育部颁布的新的本科专业目录中,在原地理类专业中增设了“地理信息系统”理学本科专业。

在我国现行的学士学位(本科)专业目录中,能够进行GiS专业人才培养相关的有理学、工学、管理学3个门类,4个学科,4个专业。但仅有地理科学类门下的“地理信息系统”一个专业可以授予GiS理学学士学位。美国在现行的学士学位(本科)专业目录中,能够从事GiS专业人才培养的有理学、文学、工学、管理学和环境学5个门类,5个学科,14个专业,并且都可授予GiS学士学位。

比较而言,我国现行的GiS专业设置,不符合GiS作为一门交叉学科和综合性学科的特点,阻碍了GiS学科建设,现行培养方案已不能满足GiS人才培养的需要,并在一定程度上限制了人才培养体系的建设与发展。

3.3国内GiS专业课程设置对比分析

合理的课程设置,尤其是专业核心课程的设置,是GiS人才培养体系所面临的一个重要问题。目前,GiS专业课程体系主要由公共必修课、专业基础课、专业课等几部分组成。本文选取了典型的7所国内高校本科GiS专业的主要专业课程设置,包括:3个理学专业,4个工学专业(见表2,不包含数理基础部分的课程)。

分析表2可以看出:

1)不论其学校系科归属于理学或工学,课程体系的设置本质差异不大,除去公共必修课和数理基础课程外,根据GiS学科包含的核心内容看均包含有:地理(地球)科学、摄影测量与遥感、计算机科学,以及地理信息系统专业课程四个部分。

2)各校课程组结构比重的差异反映了理学、工学办学的特点及各校的办学特色与师资条件。虽然开设的课程类别基本相同,但课程结构存在明显差异:a)工学对数理科学有相当高的要求,对计算机类和摄影测量与遥感课程组的要求也明显高于理学GiS;b)理学GiS专业课明显多于工学GiS专业课,体现地理信息系统专业起源于地理学科的固有特性,反映了工科系科内地理科学有关学科师资力量的薄弱与不足;c)不论工科或理科,各校优势学科课程都明显高于其他学校。如同济大学的测绘科学与技术课程,占总课程的30%。

3)比较而言:必修课除了物理、数学、计算机文化基础、英语、政治之外,如果将其他必修课作为专业核心课程,则重庆邮电大学GiS专业测量学方面与遥感方面相对薄弱,电信专业方面课程得到加强。重庆邮电大学GiS专业是设在计算机学院下,重庆邮电大学GiS专业中各类课程的比重是:地理学或地学课程11.5%;计算机课程31.5%;摄影测量与遥感课程占2.27%;GiS专业课程15.9%;电信类课程占16.26%;其他基础课部分20.3%(图2)。这从某种程度上说明了重邮的特色,即计算机加电信的地理信息系统,同时也能引起我们对于到底培养怎样的GiS人才、办成怎样的专业特色进行思考。

4地理信息系统学科与人才培养体系建设对策

4.1学科建设对策

目前GiS学科的发展不能适应GiS未来发展的需要,甚至在一定程度上限制了学科的发展。有必要从本学科的长远发展来考虑如何将专业优势转化为优势专业的问题。

(1)完善和加强各级实验室建设。依托现有的计算机实验室,建立初步满足教学实验的软件和硬件环境,这对提高GiS人才的实验技能、对发展GiS专业至关重要。在地理信息系统实验室中,可分为理论基础实验、软件工程实验和综合实验三方面。

(2)全面建设野外综合实验基地。增添野外定位、观测、数据采集、记录、处理、通讯设备(GpS、水、土、气、生自动观测等)常规设备。野外综合实验基地的建设是提高对地学信息野外测量能力的基础,可包括地理学综合实验基地、测量和遥感实验基地、软件工程与管理实验基地等。

4.2人才培养对策

4.2.1根据GiS人才的素质要求,加强实践性人才培养

GiS是一门集地理学、测绘科学、遥感学、计算机科学、环境科学、城市科学、空间科学和管理科学等为一体的新兴边缘学科。虽然有个别提法不一定完全一致,但GiS是一门新兴的边缘、交叉学科,却是大家的共识。我们不能否认GiS的理论性,但我们更不能否认GiS的强技术性与实践性。可以说,GiS是一门偏重于技术与实践的学科。理论性与技术性并不矛盾,陈述彭院士说过,没有高新技术支持的科学是落后的科学,没有科学理论指导的技术则是盲目的技术,这是一句富含哲理的睿语。美国的GiS理论与技术都十分先进就是一个例证。因此,GiS人才不但要有深厚的理论基础,而且还要有过硬的技术能力,这就是GiS人才的素质标准。具有合理的知识结构,灵敏的空间数字思维方式,卓越的技术、实践、管理与组织才能,才是GiS创新型的高级人才。

人才培养除了要了解市场的前瞻性,从长远来看,将来GiS人才面向的越来越多的是企业,而真正推动“数字地球”“数字城市”的是政府行为,政府本身无法完成庞大的“数字城市”“数字国土”的任务,这些任务最终落在企业身上,从行政行为到市场的选择,它本身有一个滞后的过程,它受国家地理信息基础设施完善程度和某些技术瓶颈的制约,一旦这些瓶颈打破,将带来大量的对GiS人才的需求。

当前是市场经济,人才培养除了要了解市场的前瞻性外,还要有市场需求的现实性。从近期来看,企业需要的是马上能给单位创造价值的可塑性人才,它需求的是现实价值和潜在价值的统一,两者中,又更加注重现实生产力。技术娴熟的生产者能够马上受到企业的青睐。

因此GiS专业人才培养除加强理论教学外,更应该注重实践性人才培养。

4.2.2进一步加强GiS人才培养的核心课程建设

目前,在本科教育中,精英教育与大众教育并存,GiS学科人才培养核心课程体系的建设已显得十分重要。为此,针对上述GiS学科体系划分、人才培养的专业设置,建议进一步加强大学GiS专业的核心课程建设,优化核心课程体系(表3、表4)。内容涉及与GiS学科密切相关的地理类、测绘与遥感类、计算机科学与技术类、GiS专业类四个课程组,作为GiS本科专业素质教育的核心课程。

4.2.3注重GiS课程前驱课程和后续课程的设置

GiS课程应该根据专业特点和学生的认知特点设置,体现知识的前后衔接。学生通过前驱课程的学习,再进入GiS课程的学习,以GiS知识为主导,将GiS技术融入到其他方面的分析中(图3)。

4.2.4在狠抓教学质量的基础上,扩大专业规模

从1998年7月教育部颁布的新的本科专业目录中,增设了“地理信息系统”理学本科专业。例如,重庆邮电大学地理信息系统专业于1999年经教育部批准设立,2000年开始招生,学制四年,授理学学士学位,是西南地区创建该专业的本科教学最早的学校之一,经过6年办学,从无到有,逐步走向完善。全体老师共同努力,教学计划得到调整,办学经验不断丰富,但规模一直成为进一步增加投入加强学科建设的一个瓶颈。

建议在狠抓教学质量的基础上,扩大专业规模,同时应该不失时机地加大投入。高新技术本身意味着需要高投入、高风险,才有高回报。

4.3加强GiS专业建设的规划与规划的执行

借用根据克来因综合国力方程,专业综合势力的评价可以表示为:

pp=(C+e+m)×(S+w)

pp――表示专业综合势力

C――表示基本实力,包括学生素质,师资力量和教学设备

e――表示经济投入能力

m――表示领导能力,等于领导的感召力和协调能力,调动各项资源从事专业建设的能力

S――表示战略意图,即专业定位和专业建设长期规划、短期规划和年度计划

w――表示贯彻战略意图的能力,即专业建设长期规划、短期规划和年度计划执行力

由此可见,有战略目标,有强有力执行战略意图的能力是专业综合实力的一个重要指标。许多学校的专业建设都十分重视专业的整体规划。作为一个学科建设,需要有明确的站在时代的角度、全国的角度审视的战略意图,需要加强执行战略意图的能力。

参考文献

[1]wikenedB,paulC.RumpandBrianRizzo.GiSSupportsSustainableDevelopment[J].GiSworld,199,5(5).

[2]邬伦,刘瑜,张晶.地理信息系统:原理、方法和应用.北京:科学出版社,2001,21.

[3]史培军,李京,潘耀忠,陈军.中国地理信息系统学科建设与人才培养探讨.首届全国“地理信息系统”专业教育研讨会.2003.

[4]陈述彭,何建邦,承继承.地理信息系统的基础研究――地球信息科学.地球信息,1997,3:11-20.

[5]邵全琴.中国的GiS教育与人才培养.首都师范大学学报(自然科学版),1995,4(16):88-89.

[6]边馥苓.我国高等GiS教育:进展、特点与探讨.地理信息世界,2004,5(02):20-22.

地理信息科学的应用篇5

卫生信息学基础理论研究现状

缺失特色理论一门学科的特色理论至少有两方面的作用:一是代表本学科的科研水平与发展趋势,成为学科发展的里程碑标志;二是对专业特有概念和特有规则从理论的角度进行系统解释,使本学科区别于其他学科。笔者认为,现阶段还没有一套成熟的基础理论能够明确标志卫生信息学成熟与完善程度,即卫生信息学尚缺乏较为系统的特色理论。究其原因,一是卫生信息学现有特色理论研究有待进一步的深化研究,理论阐述本身系统性欠缺,不能充分凸现卫生信息学的存在特征和发展需要;二是,卫生信息学的特色研究之间的关联研究不够。卫生信息学由于其是一门新兴边缘学科,主要由信息学、图书馆学和档案学在卫生领域的应用而产生,因此,生命周期理论、核心价值理论、价值理论、全宗理论和价值鉴定理论被看作为卫生信息学基础理论。但是卫生信息学有其本身学科特色,也有其特有的概念,这些特有的概念引伸出与卫生信息工作相符合的卫生信息工作规则与规律。如果简单地把信息学、图书馆学和档案学的理论套用到卫生信息学中,将会妨碍对卫生信息学自身理论特色理论深层面的挖掘。简单套用现象从信息学、图书馆学和档案学中“套用”其原理和方法应用于卫生信息学学科是现阶段该学科的主要研究方法。卫生信息学中涉及情报学、信息学、图书馆学和档案学等学科,它们之间的界限日趋模糊,套用信息学、图书馆学和档案学的原理和方法,并移植于卫生信息学,能够为本学科开拓出许多新的研究领域。然而这种方法容易造成简单套用信息学等相关学科理论,使得卫生信息学基础理论产生生搬硬套、生吞活剥的套用现象,失去学科生命力。笔者认为,应在卫生信息学研究中灵活运用信息学、图书馆学和档案学相关学科的概念、理论、公式,并使之与卫生信息学进行有机融合,使套用而来的理论根植于卫生信息学学科,使卫生信息学学科理论更精巧、理论理解更简便,并在此基础之上发展卫生信息学的特色基础理论。理论与应用脱节对卫生信息学进行理论与应用的研究有利于适应高科技带来的新现象、新方法、新经验。卫生信息学既是来源于实践,又反作用于实践。现阶段卫生信息领域的现状是基础理论研究远落后于应用实践。如电子病历,由于卫生信息领域的特殊要求,信息技术、标准、电子签名技术、数据库技术等运用与信息学学科是相一致的,但是其理论研究却远落后于信息学学科,进而造成电子病历的理论研究与实际操作相互隔阂,阻碍了电子病历信息资源的进一步开发与利用。另外,在卫生信息学基础理论研究中,对新事物、新技术不敏感,人云亦云,甚至生搬硬套外国卫生信息学者的研究,或把外国卫生信息学者的某些言论作为金科玉律。如对电子病历的研究,其中有些研究者并不精通信息技术、计算机技术、通信技术与网络技术方面的知识,对国外文献不能领会其意,因此其研究成果让人不知所以[3]。无庸讳言,如果这种情形得以存续,卫生信息学基础理论研究将很难深入。

卫生信息学基础理论研究思考

明确学科意义,调整理论研究的思维方式研究卫生信息学基础理论的前提是明确什么是卫生信息学学科。卫生信息学学科是一个门类繁多、层次分明、结构复杂的知识系统,在这个系统中,不仅包括自然科学、技术科学和社会科学方面的知识,而且也包括在这三大领域之间由于门类交叉、学科交叉、知识交叉、方法交叉所产生的知识。但是任何科学知识,都有自己发育的过程,都有自己的演化历史。卫生信息学学科知识也经历了四个演化阶段:准科学、前科学、常规科学、后科学[4]。该学科现阶段仍处于前科学阶段,它是研究者从各个不同侧面观察和研究事物表现效应的结果,因而对同一卫生信息实践现象有着多种不同的认识和看法。前科学阶段的批评或反驳对方的批评,无论怎么激烈,谁也难以取代谁。前科学阶段,科学存在的形式乃是“多重态”的科学,不可能形成排斥异己的所谓“科学共同体”。这个阶段的卫生信息学研究对象的众说纷纭,卫生信息学内容结构划分方法的各异,卫生信息学理论研究现状的不同评价,片面追求学科分支的逻辑增长,过量移植相关学科的理论与方法等等。这是大科学观正确认识某一学科的思维方式,这种思维方式,是以解放思想超越自身有限经验的局限为前提,以人类卫生信息活动的全部历史和实践为对象的开放型思维,这一开放型思维是开展卫生信息学理论研究的思想基础。拓展研究范畴,探寻理论研究生长点探寻卫生信息学学科新的知识生长点是面对新的信息环境研究卫生信息学基础的重要课题,不研究这些新课题,卫生信息学基础理论就没有生命力,卫生信息学学科也就可能萎缩。研究卫生信息学基础理论必须掌握卫生信息学学科坚实、宽广的基础理论和系统深入的专业知识,必须掌握与本学科研究领域有关的相关学科的理论知识和先进的技术方法,只有如此才能创新性研究卫生信息学基础理论。卫生信息学基础理论的研究范畴,始终处于不断更新和拓展的过程中,没有更新就没有发展,没有局部的拓展就没有全局的进步。在这方面,既不可墨守陈规,也不可人为地设置和障碍。不能只强求“同”,而不谋求“和”。应更加注重学科和学者的多样化,更加关注学科的融合,探求卫生信息学基础理论多元发展模式[5]。卫生信息学研究不能仅从病案、医院等实体来进行研究,而是要顺应跨学科研究的趋势,将现代信息技术与卫生信息学理论结合起来开展前沿性课题的研究。探寻学科新的知识生长点与加强卫生信息学理论研究不是矛盾的,而是有助于卫生信息学理论的创新。信息环境新变化和卫生事业的变革为卫生信息学基础理论研究创造了发展的良机。在理论发展的前科学阶段,卫生信息学基础理论研究更多地是研究学科对象、性质、内容、结构、相关学科、研究方法等方面;而当卫生信息学处于整体变革这一特殊阶段时,基础理论研究应关注变革中出现的新问题,总结变革中出现的新理念和新方法,推动卫生事业变革的进行;要审时度势,注重学科新的框架建构,为新理论、新方法的发展提供可容纳的空间;还要关注卫生信息学应用领域中的基础理论问题,离开了应用领域中具有普遍意义问题的研究,卫生信息学基础理论就将成为无源之水。理论与技术融合,促进学科发展优势融合理论与技术,创造学科发展新优势,是卫生信息学基础理论研究的一个新趋向。当前现代信息技术突飞猛进,卫生信息产业快速发展。卫生信息学特有的分类、编目、索引、文摘、检索语言等专业理论和方法仍然占有重要的地位,卫生信息学在虚拟知识空间中并没有失去继续存在和发展的机会。信息技术专家主要考虑怎样提供一种智能化、自动化、高效率的信息存取机制,而卫生信息学专家更多地考虑卫生信息内容本身的合理逻辑性,寻求科学的知识建构、组织和控制的途径。这两者应该相互补充和支持,因为卫生信息学是技术敏感型的学科,在卫生信息学发展史上,信息技术总是渗透到其业务工作和技术设备之中,并武装了卫生信息管理员,成为卫生信息管理领域中最重要的生产力因素。在卫生信息学研究中,应用性技术研究无疑占有相当重要的地位。卫生信息学理论和方法必须与现代信息技术紧密地结合起来,只有这样才能创造交叉发展的学科优势,并继而使之转化成为资源优势,在虚拟知识空间中产生显著的效益。理论与技术相融合的关键,在于正确处理基础与应用的关系。重应用轻基础乃至否定基础研究的价值,这是当前卫生信息学研究中应该反对的一种思想倾向。基础理论和应用技术既相对独立而又不可分割,应用技术的发展与完善是以相应的理论和方法为条件的;没有基础理论的指导,便没有应用技术的发展,也无法解决卫生信息实践所提出的现实问题。

地理信息科学的应用篇6

关键词:地理信息技术;政府决策;对策建议

中图分类号:D63文献标志码:a文章编号:1673-291X(2012)16-0203-04

前言

随着经济全球化和信息时代的快速发展,城市发展步伐加快,城市公共事务的动态性和复杂性不断提高,城市政府决策呈现出环境复杂、数量激增、风险加大、不确定性增强等新的特点,传统的中国城市政府决策体制和决策机制已经难以适应城市经济社会发展的新要求,主要表现在城市政府决策组织完备性和适应性较差、城市政府决策过程透明度和参与度不高、城市政府决策方法科学化和现代化程度较低,尤其是政府决策的信息化、可视化及政策绩效评估信息反馈等方面问题更加严重,导致城市政府决策盲目、低效、失效现象比较突出,制约着城市的可持续发展。而当前参与政府决策的技术首推地理空间信息技术。地理空间信息技术以其在空间信息获取、处理、分析、应用等理论和技术的优势,成为政府决策分析的一种重要工具。政府决策作为城市管理者的主要工作之一,其决策与地理空间紧密相连,决策科学性与空间信息占有量和准确性紧密相关。根据当前证据表明,政府决策所需要信息的80%都与地理空间有关。从这个意义上来说,掌握了地理信息,政府决策就成功了一大半。正因为如此,地理信息自产生之日,就被政府广泛采用,为政府提供了有效的决策支持。本文在深入剖析政府决策应用地理空间信息的基础上,结合决策应用和需求的发展趋势,提出地理信息更好服务政府决策的策略与建议。

一、地理信息技术在区域社会科学研究中的应用综述

当前,社会科学研究,包括公共政策与规划的一项重要进展,就是利用信息化技术方法在人类复杂的社会系统中广泛应用。国外关于地理信息化技术在社会学研究中起步较早,美国许多大学都设有相关的计量社会科学研究中心。如芝加哥大学、华盛顿大学、加州大学洛杉矶分校、乔治·梅森大学近年来兴办的这类中心,在推动社会科学与自然科学交叉以及社会科学内部各学科间的交叉领域研究方面成果显著。围绕这一主题的相关学术会议层出不穷,相关专著也越来越多(如Goodchild&Janelle,2004;okabe,2005)。地理信息系统(GeographicinformationSystems简称GiS)在此过程中扮演了重要角色,由于GiS在整合、分析各种数据尤其是空间数据方面有独特优势,基于GiS平台的政府公共政策与管理应用也日益广泛。正如英国皇家科学院院士迈克·巴迪(michaelBatty,2006)所言:“要搞好政策性较强的社会科学研究,数量方法是必不可少的,而这些方法及背后的理论一定要空间化。”

美国加州大学圣达巴巴拉分校的社会科学空间综合研究中心(CenterforSpatiallyintegratedSocialSciences简称CSiSS)就是在美国国家自然科学基金资助下成立并发展起来的,为促进GiS技术在各种社会科学中的应用发挥了重要作用。英国伦敦大学学院的高级空间分析中心也集聚了GiS、地理学、经济学、物理学、计算机科学等多学科的专家,集中研究社会经济系统在时空演变中的客观规律以及相应的政策与规划手段。哈佛大学最近新成立了一个地理分析研究中心(CenterforGeographicanalysis),宗旨就是要推动空间分析和GiS在人文与社会科学研究中的应用。在相关研究机构在推动地理信息技术在区域社会科学中大力推广,欧美地区在政府决策管理中应用也日益广泛。在美国及其他发达国家,地理信息的应用遍及环境保护、资源保护、灾害预测、投资评价、城市规划建设等政府管理众多领域。美国最早提出了“信息高速公路”、“空间数据基础设施”和“数字地球”的发展战略。美国的政府机关几乎都采用了政府GiS。美国联邦政府的业务部门也建立了自己的专业信息系统,主要用于资源开发、环境保护、防汛抗灾、人口管理、城市规划和农业发展等,取得了明显的社会效益和经济效益。德国政府已建成面向政府领导机关的政府GiS,其中“地形制图信息系统”、“土地利用信息系统”和“军事地形信息系统”为政府GiS的建设和应用提供了有效的空间数据支撑,其政府GiS已广泛应用于道路规划、城市治理、环境保护和热点经济问题的分析决策。丹麦开发了协调服务的政府GiS,它以高分辨率的地籍数据、遥感数据和统计数据为基础,在网络系统的支持下,建成了联结国家、省府、城市和县级政府的业务运行系统,使用效率很高。日本政府重视政府GiS的建设和应用,已建成以高分辨力空间地理数据库为支撑的分布式政府GiS。政府GiS在日本的国土规划、环境治理、防震抗灾、经济区布局等方面提供了有效的系统支持。

国内有些部门基于地理信息的电子政务建设也取得很好的效果。北京、上海、重庆、广东等省级区划单位,广州、深圳、武汉等市级单位的基于GiS的电子政务建设。《中国电子政务建设指导意见》中明确提到与地理空间信息有关的是“自然资源和空间地理基础信息库”,与地理信息密切相关的是金土工程、金盾工程、金农工程和金水工程等。“金土工程”成为2002年确定的国家“十二金”电子政务重点工程之外第一个正式批准立项的电子政务工程项目。“金土工程”一期建设建成在国土资源部、31个省(市、区)和32个城市建立相关土地基础数据库和耕地保护业务管理应用系统,以及重要矿产的矿产资源基础数据库和管理应用系统。“金土工程”作为国土资源电子政务建设的骨干工程,对国土资源管理领域的地理空间信息产生了巨大的需求。

地理信息科学的应用篇7

从iCt到Computing:英国正在发生的信息技术课程变革

从最初的程序设计是第二文化,到信息技术工具论,再到后来注重信息处理能力,世界各国的信息技术课程一直在发展演化,人们变革信息技术课程的脚步也未曾停止。信息技术课程一直是英国中小学的必修课程之一。随着时代的发展、计算机软件的更新换代和学生的变化,单纯学习办公软件的英国iCt课程越来越受到学术界、产业界等方面的质疑。有学者这样批评道:“学生仅仅知道如何消费技术,却不知道如何创造技术。”此后,越来越多的人认为应该学习软件背后的原理和规则,即计算机科学知识。从2006年开始,英国信息技术教育研究者就试图在iCt课程中加强计算机科学教育。2012年,英国皇家学会(RoyalSociety)在《关闭还是重新开始:英国中小学中计算的方式》的报告中明确地提出,目前的英国iCt国家课程标准将计算机科学、信息技术和数字化素养等整合在“iCt”的标题之下,其结果就是计算机科学经常被忘记或者忽略,导致信息技术课程的教学偏向“怎么样使用办公软件”,而不是指向能够支撑学生未来生活的知识。这个报告认为,应该重新定义iCt,并考虑是否可能把它分解为清晰的领域:数字素养、信息技术和计算机科学,以便恰当地分清在每个学段需要设置的课程内容。他们在报告中建议,“每个儿童应该有机会在学校学习计算,包括将计算机科学作为一门严肃的学术科目”。与此同时,英国教育大臣迈克尔·高夫(michaelGove)宣布终止当前的iCt课程,并将给予学校自由,让学校选择合适的课程与教学资源。2013年2月,英国教育部颁布了Computing学习计划草案。2013年9月11日,英国教育部正式公布了Computing课程学习计划。英国Computing课程的核心是计算机科学,在这门学科中,学生学习信息与计算的原理,数字系统如何工作以及如何通过编程使得这些知识得以使用。基于这些知识与理解,让学生应用信息技术创造程序、系统等。

英国从iCt到Computing的课程变革告诉我们,必须正视目前信息技术课程的危机。“改革往往产生于某种已经感受到的危机,这种危机呼唤着大规模快速行动以应对危机”。从社会需要以及学生个人发展等不同的角度出发,只有去改变目前的信息技术课程目标与内容,才能够真正地适应变化。回归计算机科学课程也许是重构信息技术课程的一条出路。

计算机科学课程理论支点:计算思维

没有正确的理论作为指导,行动就会陷入盲目和被动。缺乏正确的认识基础,方向就会迷失,机会就会丧失。信息技术快速发展与普及以及对单纯信息技术操作技能教学内容的反思,全世界的信息技术教育研究者开始寻求新的课程理论支点。计算思维(Computationalthinking)理论所倡导的像计算机专家一样思维的理念恰恰契合了国际上社会发展的需求。国际计算机科学课程正是将计算思维理论作为指导性理论,并将计算思维作为计算机科学课程的核心目标。

计算思维概念是由时任美国卡内基·梅隆大学(CmU)计算机科学系主任的周以真(Jeannettem.wing)教授在2006年3月首次提出的。周教授从思维的视角阐述计算机科学,并以此来探索计算机学习的教育价值。她认为,计算思维不仅仅属于计算机科学家,它应当是每个人的基本技能。计算思维理论有助于人们从以往单纯学习信息技术操作技能的泥潭中解脱出来。周教授在2013年接受笔者的访谈时曾指出:“学习怎么样使用应用软件并没有什么错误,但是我想我们的学生能够学习更多和更深的概念。”

计算思维理论一经诞生,就得到世界各国计算机教育研究者的高度重视。计算思维理论影响着国际计算机科学课程变革。英国CaS组织公布的《计算机科学:学校课程》(Computerscience:acurriculumforschool)中明确提出:“计算机系统对我们生活的社会产生着深远的影响,计算思维提供了一个新的‘镜头’,通过它我们可以看看我们自己和我们的世界。”在国际上,各国计算机科学专家和信息技术教育研究者召开了系列的学术研讨会,探索并讨论与计算思维有关的主题。英国新设立的Computing课程正是将计算思维理论作为课程的指导性理论,核心目标是让学生通过计算思维来理解和改变世界。

国际计算机科学课程的设置状况

从国际发展趋势来看,各国和地区的信息技术课程都是从最初的计算机科学课程发展而来的,随后信息技术工具的使用以及信息处理的方法逐渐成为主流。但是最近几年,随着信息技术的快速普及以及操作简单化趋势,各国和地区对于计算机工具论指导下的信息技术课程进行深度反思与批判,计算机科学课程重回人们的视野。尤其21世纪以来,国际上出现了重视计算机科学课程,甚至以计算机科学课程取代信息技术课程的呼声与做法。

1.美国计算机科学课程

由于受教育分权制的影响,美国各州中小学信息技术教育的目标分为信息素养、教育技术和计算机教育三大类别,反映出不同的技术教育取向——信息素养关注信息能力,教育技术凸显创造与革新,计算机教育强调计算思维。三者虽有融合交叉,但关注点各不相同。

美国计算机协会下的计算机教师协会一直致力于推广计算机科学课程。自20世纪80年代起,美国计算机协会就先后了多个计算机科学课程模型供各地教育行政部门选择。2011年,美国计算机教师协会在全美中小学计算机教育调研基础上制定了最新的“计算机科学教育标准”,从“计算思维”、“合作”、“计算实践与编程”、“计算机和交流设备”以及“社区、全球化和伦理影响”五个方面制定了不同学段学生需要达成的计算机学习标准,并建议以核心课程的方式在中小学开设计算机科学教育。

2.新西兰程序设计与计算机课程

2008年,新西兰修订了中小学数字化技术的课程,从2011年明确地表述为“程序设计与计算机科学”。改变的动因是“在最近时间,新西兰学校已经很少教授计算机科学,经常性的是计算机教育聚焦在一般性的应用和技能上,甚至更糟的是,有的时候计算机仅仅被认为是一个工具。当然,学生能够使用计算机是重要的,但是应该让学生了解到计算是一个领域”。“中小学计算机课程在中小学涵盖三个不同的方向:将计算机作为一个工具来用于教学(如电子化学习);将计算机用于一般性的目的(有的成为信息技术);计算作为一个独特的领域(包括程序设计和计算机科学)。由于管理者被这些不同的角色所困扰,导致计算机科学不能够成为一个独立的领域”。

3.日本的信息科学课程

日本从20世纪80年代开始在中小学推广信息科学课程,并特别强调信息处理能力,认为其是课程的核心。即使如此,日本的课程体系中仍然保留着相当多的计算机科学内容。在1999年公布的高中学习指导要领中,高中信息科学课程分为必修科目“信息a”、“信息B”、“信息C”,分别侧重于信息技术运用能力、信息科学的理解、参与信息社会的态度,学生可选择其中一门作为必修。在2008年颁布的新学习指导要领中,他们将这三个必修科目修改为“社会与信息”与“信息科学”,学生在其中选一个科目进行学习。

从课程设置来看,国际上的总体趋势是逐渐加大了计算机科学课程内容的比重,且有一些国家独立开设了计算机科学课程。

国际计算机科学课程的目标与内容

1.美国计算机科学课程的目标与内容

美国计算机协会将计算机科学定义为:“计算机科学是计算机和算法过程的学习,它包括其中的原理、硬件及软件设计、应用软件及其对社会的影响。”因此,美国的计算机科学课程主要包括:编程、硬件设计、网络、图形、数据库与信息搜索、计算机安全、软件设计、编程语言、逻辑、编程模式、两种抽象之间的转换、人工智能、计算机的局限性(计算机不能做什么)、信息技术应用与信息系统以及社会问题(因特网安全、隐私、知识产权等)。

2.日本信息科学课程的目标与内容

日本“信息科学”科目的内容包括四个部分:(1)计算机和信息通信网络。包括:计算机和信息处理、信息通信网络的构成、信息系统的机能和提供的服务。(2)解决问题和运用计算机。包括:解决问题的基本方法、问题的解决和处理程序的自动化、模型化和模拟。(3)信息的管理和问题解决。包括:信息通信网络和问题解决、信息的存储与管理、对问题解决的评价和完善。(4)信息技术的发展和信息伦理。包括:社会信息化和人类、信息社会的安全和信息技术、信息社会的发展和信息技术。

3.英国计算机科学课程的目标与内容

英国2013年9月公布的正式国家课程Computing的目标是:让学生理解和应用计算机科学的基本原理和概念,包括抽象、逻辑、算法、数据表示;能使用计算术语来分析问题,并具备为解决这些问题不断地编写计算机程序的实践经验;能评价和使用信息技术,包括新兴的或不熟悉的技术,分析性地解决问题;成为有责任心、有能力、自信的、有创造力的iCt使用者。

启示

不难发现,世界各国均充分认识到了信息技术课程偏重于应用信息技术软件的缺陷,计算机科学课程成为信息技术课程的主要组成部分已是大势所趋。我国现行的信息技术课程正遭受诸多的质疑与批判,已走到一个发展的十字路口。分析我国信息技术课程的未来发展走向,可从国际经验中得到一定的启示和借鉴。

1.计算机科学课程应有独立的地位与体系

我国的信息技术课程最初是从计算机选修课开始发展的,但不久后计算机科学的内容由于被质疑不够实用等原因而逐渐丧失其应有的课程地位,因而现行的信息技术课程更加偏向软件工具操作。但是随着时代的发展,如今信息技术工具的使用技能可以在家庭中得到普及和应用,而计算机科学的内容仍有其独特的价值,应该在信息技术课程中重新确立其独立的地位与体系,特别是我国教育决策部门应该充分地认识到我国从信息技术大国向信息技术强国转变的过程之中,计算机科学课程所具有的独特价值。

2.计算机科学课程内容体系的开发

若想计算机科学课程得到迅速的普及和发展,必须从宏观上对计算机科学课程内容体系进行设计与开发。从国际经验来看,各国都根据自己国家的实际情况,设计了小学、初中和高中不同阶段的计算机科学课程内容标准。我们显然需要一套适应新情况、考虑地方不同弹性需求的计算机科学课程标准来推进我国计算机科学教育。根据我国目前的实际情况,信息技术课程需要区分为两个部分,一是信息技术部分,偏重信息技术工具学习与信息处理方法,二是计算机科学部分,偏重计算机科学的原理与方法。而在我国小学阶段,信息技术部分和计算机科学部分都应该有一定的比重,以信息技术部分为主,计算机科学部分为辅。在初中阶段,信息技术部分应该以信息技术工具综合应用以及信息处理方法为主,计算机科学部分比重加大。到了高中阶段,则应该以计算机科学部分为主,再辅以使用信息技术进行创造的部分。

3.研究先行探索计算机科学课程发展路径

从国际计算机科学课程的经验来看,计算机科学课程发展并不仅仅是教育领导的简单意志,而是研究先行。从最初的对于计算机科学课程实施现状的调查,到全面审视计算机科学课程,再到深入国际比较研究计算机科学现状,再到开发计算机科学课程,最后才到国家层面的政策行为。没有前面的研究基础,各国绝对不会贸然地开展计算机科学课程。但是,在我国信息技术课程发展之中,先行的研究还做得不够。我们当前最紧要的任务不是简单地制定一个课程标准,而是首先厘清计算机科学课程的理论基础和内在逻辑。唯有踏实而有效的研究,才能够真正推动我国信息技术课程健康、有序地发展。

如今,我国的信息技术课程正处于变革期,如能适应社会需要与学生发展需要,信息技术课程定会浴火重生,否则,延续单纯技能化倾向,必然丧失其独有的价值和地位。计算机科学课程给重构信息技术课程带来了一缕阳光。国内的有识之士早已进行了有益的实践尝试,我们要借鉴国外先进经验,总结国内有益尝试,重构课程体系,才能不负时代的责任。

参考文献

ComputerScience:aCurriculumforSchools.[DB/oL].[2013-06-10]computingatschool.org.uk/data/uploads/ComputingCurric.pdf.

RoyalSociety:Shutdownorrestart?thewayforwardforcomputinginUKschools.[DB/oL].[2013-09-12]royalsociety.org/education/policy/computingin-schools/.

ComputingprogrammesofstudyforKeyStages1-4,[DB/oL].[2013-09-20]computingatschool.org.uk/data/uploads/computing-04-02-13_001.pdf.

周以真等.计算思维改变信息技术课程[J].中国信息技术教育,2013(6):5-12.

李锋、王吉庆.当代美国中小学信息技术教育目标取向分析[J].电化教育研究2013(12):102-107.

刘向永,董洪波.英国中小学信息通信技术课程变革述评[J].现代教育技术,2013(1).

牛杰,刘向永.从iCt到Computing_英国信息技术课程变革解析及启示[J].电化教育研究,2013(12).

钱松岭,董玉琦.美国中小学信息社会学课程与教学述评[J].中国电化教育,2013(8):28-33.

地理信息科学的应用篇8

论文摘要:本文探讨了在新课改的背景下中学物理教师应该具备的信息技术技能。首先给出了应用于物理教学的信息技术技能的含义,提出了四种功能,即激发学生学习兴趣、体现学生主体地位、实施个性化教学和开放性教学、促进教师专业化发展。其次探讨了信息技术应用于物理教学中时要求教师应具备新的教育理念、应与传统教学手段相结合、具有实用性和一定的资源基础。最后提出了实施过程中应当遵循科学性原则、教学性原则、适度原则和实效性原则。

信息技术的飞速发展和广泛应用,逐步改变着人们对教育目标、教学方式和教学观念的理解。随着现代科技的不断进步,将会有更多的新信息技术应用于基础教育领域。进入新世纪以来,许多地区都开展了信息技术与物理学科整合的课题研究工作,事实证明,信息技术已经打破了传统教育技术的应用界限,广泛提高了学习的参与性和主动性,促进了教学方式的重大变革,从而提高了教学效率。推进基础教育改革的关键是提高教师的教学科研水平,因此全国各地教育部门大力开展了提高教师信息技术应用水平的培训和竞赛工作。物理作为中学阶段科学教育领域的一门基础课程,把信息技术有效运用于中学物理教学科研中去是物理教师必须具备的基本技能之一。

一、信息技术技能的含义

现代教育技术是提高教学质量、推进素质教育的重要手段,也是推动基础教育改革的重要环节。积极运用以信息技术为代表的现代教育技术推动基础教育的改革与发展,已经成为本世纪世界各国政府的普遍共识和发展趋势。我国政府历来重视信息技术在中小学学科教学中的应用,明确提出了信息技术与学科教学整合的目标与内容。教育部在《基础教育课程改革纲要(试行)》中提出,大力推进信息技术在教学过程中的普遍应用,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革,充分发挥信息技术的优势,为学生的学习和发展提供丰富多彩的教育环境和有力的学习工具。本世纪以来我国针对中小学教师广泛地开展了“培训、考核和认证”工作,要求各地尽快提高广大中小学教师的教育技术应用水平。

因此,信息技术技能是现代中学教师必备的专业实践技能,也是中学教师专业素质的重要组成部分,是一种具有理论性、发展性与实践性的综合技能。中学物理教师应具备的信息技术技能是指在先进的物理教学理论指导下,把基于信息技术的各种现代教学媒体工具,整合应用到中学物理学科教学中去,从而提高物理课堂教学的效益的技能。

二、信息技术技能应用于物理教学的功能

1.激发学生的学习兴趣

使用信息技术能够突破物理教学环境的时空限制,将教学内容中涉及的物理情境和物理过程再现于课堂教学。巧妙地使用信息技术,同传统教学方式相比,可以使学习过程大大缩短,教学信息量增大,教学效率明显提高。如教学《平面镜成像》一课,利用现代教育技术手段,就可以把“猴子捞月”这个学生耳熟能详的故事采用动画的形式栩栩如生地呈现给学生,激发学生探究科学本质的好奇心。教育技术的应用可以把抽象的概念形象化,复杂的过程简单化,从而有助于吸引学生的注意力和调动学生的兴趣,有助于学生对物理现象、概念和规律的感知与理解,有助于发展学生的综合能力。

2.体现学生主体地位

信息技术应用于中学物理教学,可以在接近真实的物理情境中,使学生从被动的知识接受者转变为主动的学习参与者。如教学《分子运动论》一课可以采用动画模拟分子的无规则运动,克服难点,创设立体情境,启发思维,以较少的教学时间和精力,取得最优的教学效果,从而强化学生对物理知识的理解。学生的思维活跃了,思路拓展了,再分小组交流讨论解释生活中的现象,展示各自想法和做法,可增强自主学习和合作探究学习的能力,交流并反馈学习成果,充分体现学生的主体地位和教师的主导作用。

3.实施个性化教学和开放性教学。

借助计算机技术和网络技术构建虚拟实验的物理学习环境,可以实现对教育信息及时收集与反馈,使物理教学的表现方式和节奏符合中学生的认知特点,从而为优化物理教学过程提供技术保障。新颖的教学软件设计可以构建个性化的学习环境,营造协作式学习氛围,彻底改变学习方式,使传统的封闭课堂逐步走向开放教学。

4.促进物理教师专业化发展

信息技术为开展物理教学研究提供资源、技术、环境的支持,“虚拟教学”、“数字教育”、“远程培训”、“云学习”等新的学习模式不断进入教师的教学科研活动中,对于提高教师的教育科研能力和实践能力大有裨益。在网络时代,物理教师可以不受时空等传统实际条件的限制,根据自己的时间安排选择自己的自主学习,例如参与诸如“物理论坛”、“物理博客”、“教育叙事”、“主题研修”等教学探讨活动。

三、信息技术应用于物理教学的基本要求

本世纪以来全国各地不少地区和学校开展了信息技术和物理教学的整合工作,得到了许多成功的经验和失败的教训。因此,我们必须深入探讨在中学物理教学中,以信息技术应用于物理教学应该有哪些要求,这样才能更好地提高教师自身素质,为物理教学服务。

1.教师应具备新的教育理念

尽管新课程改革已经持续十多年,相当一部分物理教师仍未充分理解新课程改革的基本理念,不能有效地使用信息技术手段。不少物理教师认为在物理教学中只要使用了电脑,制作了多媒体课件,上课采用了网络技术手段,就是把信息技术手段成功应用于物理教学了。一些教师流于形式,忽视对应用本质、效果和意义的深刻认识。产生这种现象的原因是因为这些教师对于对新理念、新事物和新技术抱有畏难和抵触情绪,把教育改革变成了应付差事,教师最终变成了信息技术的“奴隶”。信息技术的运用需要物理教师有先进的教学理念,物理教师可以根据自己的教学需要,在教学实践中不断努力探索,走适合自己的道路。

2.应与传统教学手段相结合

把以多媒体和网络化为特色的信息技术应用于物理教学,并不是传统教学手段就可以束之高阁。各种教学手段均有它自身的优点和特长,都有一些功能是信息技术手段无法替代的。例如关于像万有引力定律这样的物理规律,课程教学中的理论推理过程如果使用传统板书更能展示探究的过程,更能启发学生的思维,体现物理的学科特色。再如可以鼓励学生自行操作大气压强真实的实验,就不必要用课件去模拟,尽可能地还给学生一个真实的物理世界。

3.实用性

将信息技术应用于物理教学中要考虑到教学内容和学生的情况,绝不是所有的物理教学都需要用计算机手段,在教学设计上也不是媒体越多越好,技术越复杂越好,而应从教学内容实际情况出发,恰当地编排和组织,注意实际教学效果。防止物理课件做得惟妙惟肖,学生赞不绝口,吸引了学生的注意力,却为了迎合信息技术而舍弃了物理教学目标,忽略了教学重点和难点,这都是不可取的。

4.资源基础

随着我国对基础教育投入的不断增大,越来越多的学校的普通教室可以开展多媒体教学,这对于实现信息技术和物理学科的整合提供了很好的条件。但是不能过多地强调硬件资源建设,忽略软件建设。只有软硬件双管齐下,才能高效地推进信息技术应用于学科教学。

(1)硬件建设。教室多媒体电教平台,包括电脑、大屏幕投影机、实物展台、internet网络的接入等。

(2)软件建设。包括常规上的教学软件,教学课件,物理资源库的建设,物理校本教材的开发,还包括一些专用的物理教学软件,如Flash、几何画板和仿真物理实验室等。

四、信息技术应用于物理教学的基本原则

1.科学性原则

中学物理课属于中学科学教育领域的重要课程之一,以培养学生的科学素养为课程目标,自然在开展物理教学活动中始终要坚持科学性原则。科学性主要体现在教学软件的设计和使用中不能出现科学性错误,不能把错误的概念、原理和过程教给学生。如果用信息技术手段把本来不准确不严谨的物理内容以“形象生动”的方式呈现出来,反而会造成知识性错误,这是绝对不允许的。

2.教学性原则

信息技术的应用应当从物理教学实际需要出发,整个应用过程要符合教学规律,要以提高物理教学质量为目标。确定合适的教学目标,选取合适的教学内容,采用恰当的组织表现形式,重视对学生学习环境的创造,实现教学效益的最大化。物理教师必须深入学习,准确把握,紧密结合课堂教学实际,对信息技术进行综合利用,剔除不合理的因素,使之完全适合自己的物理课堂教学。

3.适度原则

在物理教学设计中,假如用传统的教学方式就能达到良好的教学效果,则没有必要花费人力物力使用信息技术。对那些使用传统教学手段不能很好理解和表述的内容,应合理使用信息技术支持物理教学,如微观世界和天体运动等的教学。信息技术应用于物理教学最终目的是为了优化课堂教学结构,既要有利于教师的“教”,更要有利于学生的“学”,从而提高物理课堂教学效率。

4.实效性原则

信息技术应用于物理教学的目的是服务于中学物理教学,使得教学设计最优化,绝不是把物理知识利用信息技术手段简单、生硬地拼凑成“沙拉”。只有很好地利用技术手段创设情境、巧妙设疑,才能充分地激发学生的学习兴趣,调动学生的学习积极性,使得整个课堂学习气氛生动、愉快、轻松、有趣。

参考文献

[1]教育部.中小学教师教育技术能力标准(试行)[J].中国电化教育,2005,(2).

[2]王较过.物理教学论[m].西安:陕西师范大学出版社,2009.

[3]廖伯琴.新课程教师学科教学培训教材[m].北京:北京大学出版社,2004.

[4]徐振贤.多媒体环境下的物理教学探析[D].华中师范大学,2003.

地理信息科学的应用篇9

【关键词】地理信息系统;应用;实验设计

1研究背景

地理信息系统是一门综合性的技术,它涉及到地理学、测绘学、计算机科学与技术、规划管理等许多学科;在地理信息系统中,现实世界被表达成一系列的地理要素和地理现象[1-2]。从上世纪60年代初,加拿大建成世界上第一个GiS,地理信息系统作为一个新兴的科学与技术,已经兴起与快速发展了50多年,在理论方法技术等方面取得了巨大的成就,应用领域也得到了极大的拓展[3-4]。

新世纪,各行业都在飞速的发展,GiS将朝向何方发展?关于地理信息未来的发展趋势,国务院总理,2011年5月23日在中国测绘创新基地座谈会时指出,测绘地理信息是战略性新兴产业和生产型服务业的重要结合点,要着力强化测绘地理信息服务,大力促进地理信息产业发展;中国科学院、中国工程院院士李德仁教授在2012高校GiS论坛上指出,地理信息未来将面向服务发展,走向共享与智能服务;中国科学院院士、香港大学叶嘉安教授,在2012中国地理信息产业大会第七届海峡两岸GiS研讨会上的指出,GiS目前在民间的应用相对来说还不够,地理信息与人的生活息息相关,所以要建立一个为人民服务、大众参与的地理信息系统[4-6]。当前地理信息系统的发展,技术理论方法已经很成熟,GiS已成为一种工具,GiS的发展,重点已经转向了应用,其应用不仅仅局限在测绘地理等领域,而是已扩大到社会中的方方面面,GiS应用迎来了春天。

2应用地理信息系统实验设计研究的必要性

GiS的快速可持续发展,离不开人才,高校作为人才培养的重要基地,据不完全统计,全国有超过140个本科院校开设有GiS专业[7]。GiS作为一门技术性很强的专业,GiS实验在GiS课程体系中占有很重要的位置。GiS实验课,一方面它是其它专业课程的基础,众多GiS专业课中的概念需要在GiS实验实现;另一方面,它又是其它专业课程专业知识深化的载体,在专业理论学习之后,通过GiS实验,可以将课堂中学习的理论,应用于实践。

当前已有多个学者对GiS实验课教学进行了研究。从GiS软件平台方面,钟广锐基于SupermapDeskpro,柯丽娜基于arcGiS,设计了地理信息系统实验内容[7-8]。从不同专业课程特点方面,金宝石针对地理科学专业,陈建针对资源环境与城乡规划管理专业,唐桂文等针对测绘工程专业,设计了地理信息系统实验体系[9-11]。从教学改革方面,邓美容等提出了该校GiS专业实验教学改革方案;李天文等提出了GiS专业板块式教学体系的新模式;田雨等建立了从实验预习到技能考核的实验考核体系[12-14]。

当前对GiS实验设计的研究,主要基于不同的软件平台,不同专业以及教学改革等方面展开了研究,地理信息系统应用是当前GiS发展的焦点方向,但针对应用地理信息系统实验设计却鲜有研究;地理信息系统应用涉及内容广泛,多学科交叉、多技术集成,已有的实验设计体系已经不能满足应用地理信息系统实验教学的需要,因此开展应用地理信息系统实验设计研究很重要。

3面向应用的地理信息系统实验设计

依据应用地理信息系统的对人才培养的需求,这里从八个方面对应用地理信息系统实验进行了设计。

3.1地理信息系统应用领域分析

应用地理信息系统实验,主要目的是培养学生应用地理信息系统的能力,但是由于地理信息系统实验也是一门承上启下的课程,学生在实验课开课前对地理信息系统应用的方向了解有限,故在开设实验课时,首先要向学生介绍地理信息系统的应用领域,一方面让学生对地理信息系统能做什么有一些大概的了解;另一方面,还可以激发学生学习的兴趣与动力。在过去的几十年中,已广泛应用于多个部门。可以有针对的选择一些部门应用的案例,分析地理信息系统的应用领域。

3.2软件平台选择与安装

当前各个国家和部门开发了多种不同类型的地理信息系统软件。在此阶段,实验可以依据本专业培养的特点以及所具有的实验条件,选择合适的软件平台。向学生讲述软件平台的工作环境与安装方法,使学生不仅在课堂上能进行学习,在课余也可以进一步的巩固学习;此外,可以向学生讲授各个软件的优缺点,使学生在以后的应用中能根据自己的需要进行更多的选择。

3.3数据校正配准

空间位置参考信息是地理数据的必备的基本要素之一,是对地理数据进行空间处理分析的基础。此阶段实验内容可以向学生讲述地图投影的原理与方法,以及在软件中如何进行投影设置与投影变化操作。配准方面,可以设计矢量配准栅格,栅格配准矢量,矢量与栅格数据对其它类型数据的配准等实验,以强化学生对配准方法的掌握。

数据是地理信息系统的重要内容,也是其灵魂和生命。数据采集的实验内容可设计为以点、线、面文件等类型文件,完成对扫描的地图、卫星遥感影像以及其它格式数据中感兴趣要素信息的采集。数据编辑的实验内容可设计为在采集数据过程中,对各类型文件的新建、删除、移动、分割、合并等操作。通过数据采集与编辑实验,是学生掌握地理要素信息获取的基本方法。

3.5地理数据库构建

地理数据库是研究区域内一定地理要素特征的数据集合,是地理信息系统的核心部分。此阶段实验内容可从数据的来源方式、表现形式、存储类型、时空尺度、精确性、完备性与一致性等方面,设计地理数据库构建实验,让学生掌握地理数据库构建的基本方法。

3.6数据空间查询与分析

地理信息系统区别于其它系统的最大特点是地理信息系统具有强大的空间查询与分析功能。此阶段实验在空间查询方面可以设计SQL查询和空间查询;在空间分析方面,可以设计矢量分析与栅格分析,其中矢量分析又可设计缓冲区分析、叠加分析与网络分析,栅格分析可以设计距离分析、密度分析、插值分析与地形分析等内容。通过数据空间查询与分析实验,使学生充分体会到地理信息系统功能的强大。

3.7专题地图编制

专题地图是地理信息系统应用成果的最终表现形式之一。此阶段实验可以基于学生前期实验取得的某部分成果为成图要素,从地图的版面设计、制图数据操作、地图标注、地图整饰、地图输出等方面,设计实验内容。通过本次试验,使学生能独立的将自己前期的成果编制成专题地图。

3.8综合应用案例设计

基于此前的实验,学生已经掌握了基本的地理信息系统操作,初步具备了地理信息系统在应用方面处理分析问题能力。此阶段实验内容,可以依据本专业学生专业设置的特点,设计几个综合应用的案例,加深学生对此前所做实验内容的理解与掌握,同时也使学生能将此前所学知识串为一体,从而进一步的加强基于地理信息系统解决现实社会中问题的能力。

4小结

地理信息系统未来发展的趋势是地理信息系统应用的快速发展,然后当前地理信息系统实验设计在应用地理信息系统方面却鲜有研究,论文基于应用地理信息系统的现实需要,从八个方面,构建了应用地理信息系统实验体系,以期能填补应用地理信息系统实验设计研究的不足,为培养更多面向应用地理信息系统方面的人才提供参考。

【参考文献】

[1]邬伦,刘瑜,张晶,等.地理信息系统:原理、方法和应用[m].北京:科学出版社,2001,2:7-8.

[2]龚健雅.当代地理信息系统的发展趋势[C]//海峡两岸地理信息系统发展研讨会.2002:10-19.

[3]李德仁.论21世纪遥感与GiS的发展[J].武汉大学学报:信息科学版,2003,2:127-131.

[4]叶嘉安.为人民服务的地理信息系统[J].地理信息世界,2013,1:12-13.

[5]李德仁.地理信息面向服务走向共享与智能服务[J].中国测绘,2012(4):56-57.

[6]尚进,张健.地理信息系统推进智慧城市建设――专访中国科学院院士、武汉大学测绘遥感信息工程国家重点实验室主任龚健雅[J].中国信息界,2013,5:12-15.

[7]柯丽娜,李家,王方雄.基于arcGiS的地理信息系统软件实验教学模式初探[J].地理空间信息,2012,10(6):172-173.

[8]钟广锐.基于SupermapDeskpro的“地理信息系统”课程实验设计[J].地理空间信息,2006,4(1):40-42.

[9]金宝石.高师地理科学专业的GiS课程教学与实验设计[J].安庆师范学院学报:自然科学版,2010,16(8):135-138.

[10]陈建.非GiS专业地理信息系统课程实验教学研究初探[J].南京晓庄学院学报,2005,21(6):99-102.

[11]唐桂文,余旭,张兴福.地理信息系统课程内容与实验教学探讨[J].广东工业大学学报:社会科学版,2010,10(7):188-190.

[12]邓美容,胡最,郑文武.高校GiS专业实验教学改革探讨:以衡阳师范学院为例[J].科教文汇,2013,235(3):55-56.

[13]李天文,王林刚,李庚泽,等.地理信息系统专业课程体系建设研究[J].中国大学教学,2011,1:33-35.

[14]田雨,卢秀山.GiS专业实验教学考核体系构建研究[J].测绘信息与工程,2008,33(6):46-47.

基金项目:测绘遥感信息工程国家重点实验室开放基金((11)重03)。

地理信息科学的应用篇10

关键词:信息技术教育应用;物理新课程;课程整合

以计算机技术为核心的信息技术是当前影响最广泛的科学技术之一,信息技术日新月异的发展,必然会影响、带动教育从目的、内容、形式到方法的全面变革。而信息技术与其他学科的整合和相互渗透,已成为教育发展和改革的强大动力,传统的教和学的模式正在酝酿重大的突破,教育面临着有史以来最为深刻的变革。但是这种变革决不可能发生在朝夕之间,一蹴而就,而是要经过一定的摸索过程,通过多次探讨、反复实验,在改革中逐步完善。信息技术教育与学科课程的整合将对现存的教育思想、观念、模式、内容和方法产生深刻影响。

一、信息技术与学科课程

信息技术教育几乎渗透了教育的每一个环节,但信息技术不等于计算机技术,同样信息技术教育也不等于计算机教育,信息技术教育的内涵与外延相当广泛,是包括卫星通信、交互式电视等众多技术的综合技术。

虽然信息技术有时以学科课程的面貌出现,可它又不是单一的学科课程。信息技术既有自己的理论体系,又有与其他学科课程融合的部分,利用信息技术可以更有效的指导学科教学,而在学科课程的学习中又促进了信息技术的学习、应用和发展,可以说,信息技术与学科课程是相辅相成且密不可分的。

信息技术课程的教学目标明确提出:“掌握运用信息技术学习其他课程的方法,培养学生进行自主学习、探讨的能力等”,但在具体的课程模块中很少有实现以上目标的内容。这就需要我们在课程教学中加强信息技术课程与学科教学的融合程度,以促使信息技术与学科课程的融合发展。

二、整合中的信息技术

信息技术是影响最大、最广泛,涉及教育因素最多的技术。它不仅是一种理论、一种方法,更重要的是内容。信息技术与课程整合与学科的课程的性质有关,针对不同的学科将有不同深度与广度的整合,而物理学科的特点自然就造就它与信息技术有着天然的、密切的联系,是我中有你、你中有我相互依附的关系。

1、信息技术教学应注重对学生应用能力的培养:信息技术课程不是要把所有的学生培养成为计算机高手,而是要给学生一种思想,一种理念。信息技术教学应使学生知道,利用信息技术能够帮助他们解决什么问题,并在解决问题过程中培养各种能力。

2、信息技术应扩大课程内容的范围:当前的信息技术课程内容只限定在计算机技术上,具有一定的片面性。信息技术并不等于计算机技术,信息技术课程的教学内容应最大限度地覆盖信息技术的各项内容。如我们可以在屏幕上控制个别设备和观察物理变化;可以把一些我们实验室没有的物理设备放在屏幕上,通过设备上的按钮或开关,使某些事件发生变化;使用自动化程序控制一个屏幕对象或一个真实的模型,观察最终结果,使用传感器检测物理变化。总之,在信息技术教育与物理学科整合过程中,信息技术课程本身的整合应在整合中占据一个重要的位置。

3、信息技术是教师的教学手段,学生的学习工具:教师的很多教学过程如果借助信息技术的帮助,会起到良好的效果。物理的学习和其他学科一样,也需要学生的个别化学习、网络学习,协商学习、讨论学习、研究性学习,这些都可以通过信息技术手段来完成。

信息技术注定要融合到教学过程中的教学目标、媒体信息、教学对象、学习方法、学生能力发展等各个要素之中。

三、整合中的物理课程

课程的改革已经全面展开,物理学科应该突出学科特点,用科学的思想、先进的理念、全新的模式在本次改革中主动发挥其主导作用。

1、注重课程资源:课程资源的内涵极其丰富,课程标准、教材、教学用书等是构成一门课程的重要元素。但要使课程发挥更大的功能,教师在教学过程中,还需要经常运用挂图、模型、投影片、录象、录音、课件等来辅助教学,经常用到各种演示实验或组织学生实验。为了课程的有效实施,教师还要有意识地从各种科技图书、报刊、电视等中收集课程实施所需要的资源,而这些资源要的顺利、有效使用,很多都是通过信息技术处理、整合后实现的。

2、注重学科特点:物理学科是一门实验科学,学生对很多物理知识的认识、掌握、从感性到理性的升华都是通过实验获取的,而目前很多学校的实验器材和实验设置有一定的局限性,这就要借助物理虚拟实验室。把信息技术引入物理实验室,这样可以加快中学物理实验软件的开发与应用,完成很多物理实验,还可以通过计算机实时测量、处理实验分析结果等;可以利用计算机能精确、实时地测量并记录物理信息数据,可将抽象的过程具体化,微观的现象直观化。使学习者能看见原本使用传统仪器看不见、抓不住的现象。还可以让学生利用提供数字信息技术平台,开展探究活动。利用信息技术实验仪器和软件,培养其基本的实验技能,锻炼学生逻辑思维和严谨的科学作风。

3.充分利用网络资源。

网络技术的发展大大丰富了物理课程资源。网络资源的利用最直接的是借助因特网进行检索,具有时效性强、快捷迅速和费用低等优点。可利用综合性教育网站和物理教育网站的资源信息,从这些网站或搜索引擎可以找到大量的物理教育的资源。也可从中选择一些有用、有趣的物理知识,辅助新课程物理教学。

四、信息技术与物理新课程的整合