集成电路工艺原理十篇

发布时间:2024-04-25 18:42:47

集成电路工艺原理篇1

关键词:大规模集成电路集成电路制造工艺教学内容

21世纪以来,信息产业已成为我国国民经济发展的支柱产业之一,同时也是衡量一个国家科技发展水平和综合国力的重要指标。超大规模集成电路技术是信息产业的重要基础,而集成电路制造工艺又是超大规模集成电路的核心技术。因此,对集成电路工艺的优化和创新就成为提高信息产业综合实力,增强国家科技竞争力的关键所在。近年来,尽管我国微电子技术不断进步,但与微电子技术发达的国家相比,仍存在着相当大的差距。因此,要实现由集成电路生产制造大国向集成电路研发强国的转变,就迫切需要培养一批高质量的超大规模集成电路工艺技术人才[1],这也正是《集成电路工艺原理》这门课程所要实现的目标。

然而,目前《集成电路工艺原理》课程的教学效果并不理想[2],[3],究其根本原因在于该课程存在内容陈旧、知识点离散、概念抽象、目标不明确等不足[4]。同时,由于大部分普通高校没有足够的实验设备和模拟仿真实验平台,无法使学生熟悉和掌握工艺仪器的操作,导致学生所学知识与实际应用严重脱钩,甚至失去学习积极性,产生厌学情绪。为此,依据我院微电子专业本科生的教学情况,我详细分析了教学过程中存在的问题,提出了改革方案。

一、目前教学中存在的问题

1.学习目标不明确。现有的教学内容往往采用先分别独立讲授单项加工工艺,待所有工艺全部讲授完毕,再综合利用所有工艺演示制作CmoS集成电路芯片的流程。这种教学模式会造成学生在前期的理论学习过程中目标不明确,无法掌握单项工艺在芯片加工中的作用,不能与实际器件加工进行对应,造成所学知识与实际应用严重错位,降低了学生的学习积极性和主动性。

2.知识衔接性差。本课程的重点内容是集成电路工艺的物理基础和基本原理,它涉及热学、原子物理学、半导体物理等离子体物理、化学、流体力学等基础学科,然而,大部分学生并未系统地学习过譬如等离子体物理、流体力学等课程,这就不可避免地造成了教学内容跨越性大的问题,无法实现知识的正常衔接,致使学生对基本概念和基本物理过程难以理解,从而影响学生的学习兴趣。

3.课程内容抽象,不易理解。由于该课程的基本概念、物理原理和物理过程多而繁杂,再加上各种不同工艺之间的配合与衔接,导致内容抽象难懂。教师在课堂上按照常规讲法,费时费力,学生对所讲内容仍无法彻底理解,难以完成知识的迁移。

4.教学资源匮乏。现有教材中严重缺乏集成电路加工方法的可视化资料,大量使用文字叙述描述物理过程和工艺流程,致使课程讲授枯燥乏味,学生无法真正理解教学内容,很难产生学习兴趣。

综上所述,在现有集成电路工艺原理的教学过程中还存在一些严重影响教学质量的因素。为了响应国家“十二五”规划中明确提出的建设创新型国家的任务,培养创新型大学生的要求,我们必须逐步改革和完善现有的教学内容及教学模式[5],提高教学质量,为培养开创未来的全面发展型人才奠定基础。

二、教学内容的整体规划

为了让学生明确教学目标,突出教学重点,需要摒弃传统的教学思路[6],构建“先整体、后部分;先目标、后工艺”的教学思路,对教学内容进行重新设计,使其更加符合学生的认知规律。我们抛弃了传统的教学内容编排方式,提出了整个课程主要围绕一个通用、典型的集成电路芯片的加工和制备展开,使学生明确本课程的教学目标。首先给出典型器件的模型,分析其各部分的材料和结构,明确器件的不同组成部分并进行归类,依据器件加工的先后顺序,然后模块化讲授器件每部分的加工方法、工艺原理和加工流程,逐步完成集成电路的全部制作,进而完成整个课程内容的讲授。这样就能用一条主线串起每块学习内容,使学生明确每种工艺的原理、流程和用途,做到有的放矢,并能与实际应用较好地融合在一起,进而提高学生的学习主动性,增强课堂教学效果。

三、教学内容的选取与组织

1.教材的选择

集成电路工艺的发展遵循摩尔定律,随着理论的深入和技术的革新,现有的大部分《集成电路工艺原理》教材显得陈旧、落后,无法适应现代工艺技术的发展和教学的需求。

为此,本课程的教材最好采用现有经典教材和前沿科学研究成果相结合的方式,现有经典教材有美国明尼苏达大学的《微电子制造科学原理与工程技术》[3]和北京大学的《硅集成电路工艺基础》[7]等,这些教材内容全面,几乎覆盖了所有的集成电路加工方法,而且原理讲解深入透彻,具有较强的理论性。这些教材知识结构基本上是按照传统的教学思路编排,所以要打破这种思维的束缚,设计出一个具有代表性器件的加工过程,然后把教材中的工艺原理、工艺流程融入器件的加工过程中。这就要求我们不能照搬书本上的知识内容,需要根据课程的新设计方案重新整合讲义。同时还应该注意,为了扩充学生的知识面,还应该摘取一些具有代表性的最新前沿成果,不仅使学生的知识体系具有完整性,而且能进一步调动他们的创造性。

2.教学内容的选取

依据课程“先整体、后部分;先目标、后工艺”的教学思路,采用“范例”教学模式,教学内容可以划分为九大知识模块:典型CmoS器件、外延、氧化、扩散、离子注入、物理气相淀积、化学气相淀积、光刻与刻蚀、隔离与互联。首先,通过一个典型CmoS器件的结构分析,获得制作一个芯片所需的材料与结构,然后简要给出不同材料和结构的加工方法,让学生对课程整体内容有宏观把握,初步了解每种工艺的基本功能。其次按照器件加工的顺序,对不同工艺分别从发展历史、工艺原理、工艺流程、工艺特点等方面进行详细阐述,使学生对工艺原理深入理解,工艺流程熟练掌握,最后完成整个器件的制作。

3.教学内容的组织

对每部分教学内容要坚持“基础知识衔接、主流工艺突出、淘汰工艺删减、最新工艺提及”的原则。由于本课程以工艺的物理基础和基本原理为重点内容,这是本课程的教学难点,为了让学生更加清晰地理解和掌握其工艺原理,需要适当地补充一些课程必备的物理基础知识。主流工艺是本课程的主要内容,要求学生对原理、流程、性能、使用范围等深入理解,熟练掌握。因此,这部分内容要进行详细讲解。淘汰工艺是本课程的了解内容,目前淘汰工艺在现有教材中占据的篇幅和课时还比较多,且有喧宾夺主之势,为了让学生了解和熟悉集成电路工艺的发展历史,需要进行适当的概括压缩或删减处理。最新工艺是本学科的前沿研究内容,为了扩充学生的知识,开阔学生的视野,应该适当地补充一些新型工艺技术,为学生将来进一步研究深造奠定基础。

四、结语

《集成电路工艺原理》是微电子学专业本科生的一门重要的专业基础课程,本课程的目的是使学生掌握集成电路制造工艺流程和基本原理。只有通过精心选择优秀教材,合理设计教学内容,使理论与实践紧密结合,才能激发学生的学习兴趣和创新思维,进而有效地提高课堂教学质量,为培养科技创新型人才奠定基础。

参考文献:

[1]彭英才.兼谈《集成电路工艺原理》课的教学体会与实践[J],高等理科教育,2003(50).

[2]李尊朝.集成电路工艺课程教学改革探析[J].实验科学与技术,2010(8).

[3]李琦,赵秋明,段吉海.工程教育背景下“集成电路工艺”的教学探索[J].中国电力教育,2011.

[4]邵春声.浅谈《集成电路制造工艺》的课程建设和教学实践[J].常州工学院学报,2010(23).

[5]汤乃云.“集成电路工艺原理”课程建设与教学改革探讨[J].中国电力教育,2012.

集成电路工艺原理篇2

集成电路设计公司在招聘版图设计员工时,除了对员工的个人素质和英语的应用能力等要求之外,大部分是考查专业应用的能力。一般都会对新员工做以下要求:熟悉半导体器件物理、CmoS或BiCmoS、BCD集成电路制造工艺;熟悉集成电路(数字、模拟)设计,了解电路原理,设计关键点;熟悉Foundry厂提供的工艺参数、设计规则;掌握主流版图设计和版图验证相关eDa工具;完成手工版图设计和工艺验证[1,2]。另外,公司希望合格的版图设计人员除了懂得iC设计、版图设计方面的专业知识,还要熟悉Foundry厂的工作流程、制程原理等相关知识[3]。正因为其需要掌握的知识面广,而国内学校开设这方面专业比较晚,iC版图设计工程师的人才缺口更为巨大,所以拥有一定工作经验的设计工程师,就成为各设计公司和猎头公司争相角逐的人才[4,5]。

二、针对企业要求的版图设计教学规划

1.数字版图设计。数字集成电路版图设计是由自动布局布线工具结合版图验证工具实现的。自动布局布线工具加载准备好的由verilog程序经过DC综合后的网表文件与Foundry提供的数字逻辑标准单元版图库文件和i/o的库文件,它包括物理库、时序库、时序约束文件。在数字版图设计时,一是熟练使用自动布局布线工具如encounter、astro等,鉴于很少有学校开设这门课程,可以推荐学生自学或是参加专业培训。二是数字逻辑标准单元版图库的设计,可以由Foundry厂提供,也可由公司自定制标准单元版图库,因此对于初学者而言设计好标准单元版图使其符合行业规范至关重要。2.模拟版图设计。在模拟集成电路设计中,无论是CmoS还是双极型电路,主要目标并不是芯片的尺寸,而是优化电路的性能,匹配精度、速度和各种功能方面的问题。作为版图设计者,更关心的是电路的性能,了解电压和电流以及它们之间的相互关系,应当知道为什么差分对需要匹配,应当知道有关信号流、降低寄生参数、电流密度、器件方位、布线等需要考虑的问题。模拟版图是在注重电路性能的基础上去优化尺寸的,面积在某种程度上说仍然是一个问题,但不再是压倒一切的问题。在模拟电路版图设计中,性能比尺寸更重要。另外,模拟集成电路版图设计师作为前端电路设计师的助手,经常需要与前端工程师交流,看是否需要版图匹配、布线是否合理、导线是否有大电流流过等,这就要求版图设计师不仅懂工艺而且能看懂模拟电路。3.逆向版图设计。集成电路逆向设计其实就是芯片反向设计。它是通过对芯片内部电路的提取与分析、整理,实现对芯片技术原理、设计思路、工艺制造、结构机制等方面的深入洞悉。因此,对工艺了解的要求更高。反向设计流程包括电路提取、电路整理、分析仿真验证、电路调整、版图提取整理、版图绘制验证及后仿真等。设计公司对反向版图设计的要求较高,版图设计工作还涵盖了电路提取与整理,这就要求版图设计师不仅要深入了解工艺流程;而且还要熟悉模拟电路和数字标准单元电路工作原理。

三、教学实现

集成电路工艺原理篇3

关键词:半导体可靠性设计

abstract:thereliabilityofthesemiconductorintegratedcircuitdesignisinthewholeprocessofproductdevelopment,prevention,strengthenthesystemofmanagementthoughtsastheinstruction,fromlinedesign,layoutdesign,processdesign,packagestructuredesign,evaluationtestdesign,materialselection,softwaredesign,andadoptsvariouseffectivemeasures,andstrivetoeliminateorcontrolsemiconductorintegratedcircuitunderspecifiedconditionsandwithinthetimerequired,allkindsofpossiblefailuremode,thusintheperformance,cost,time(research,productioncycle)factorsonthebasisofcomprehensivebalance,andrealizethesemiconductorintegratedcircuitproductsthereliabilityindexesprovisions.

Keywords:semiconductordesignreliability

中图分类号:o471文献标识码:a文章编号:

1.可靠性设计应遵循的基本原则

(1)必须将产品的可靠性要求转化成明确的、定量化的可靠性指标。

(2)必须将可靠性设计贯穿于产品设计的各个方面和全过程。

(3)从国情出发尽可能地采用当今国内外成熟的新技术、新结构、新工艺。

(4)设计所选用的线路、版图、封装结构,应在满足预定可靠性指标的情况下尽量简化,避免复杂结构带来的可靠性问题。

(5)可靠性设计实施过程必须与可靠性管理紧密结合。

2.可靠性设计的基本依据

(1)合同书、研制任务书或技术协议书。

(2)产品考核所遵从的技术标准。

(3)产品在全寿命周期内将遇到的应力条件(环境应力和工作应力)。

(4)产品的失效模式分布,其中主要的和关键的失效模式及其机理分析。

(5)定量化的可靠性设计指标。

(6)生产(研制)线的生产条件、工艺能力、质量保证能力。

3.设计前的准备工作

(1)将用户对产品的可靠性要求,在综合平衡可靠性、性能、费用和研制(生产)周期等因素的基础上,转化为明确的、定量化的可靠性设计指标。

(2)对国内外相似的产品进行调研,了解其生产研制水平、可靠性水平(包括产品的主要失效模式、失效机理、已采取的技术措施、已达到的质量等级和失效率等)以及该产品的技术发展方向。

(3)对现有生产(研制)线的生产水平、工艺能力、质量保证能力进行调研,可通过通用和特定的评价电路,所遵从的认证标准或统计工艺控制(SpC)技术,获得在线的定量化数据。

4.可靠性设计程序

(1)分析、确定可靠性设计指标,并对该指标的必要性和科学性等进行论证。

(2)制定可靠性设计方案。设计方案应包括对国内外同类产品(相似产品)的可靠性分析、可靠性目标与要求、基础材料选择、关键部件与关键技术分析、应控制的主要失效模式以及应采取的可靠性设计措施、可靠性设计结果的预计和可靠性评价试验设计等。

(3)可靠性设计方案论证(可与产品总体方案论证同时进行)。

(4)设计方案的实施与评估,主要包括线路、版图、工艺、封装结构、评价电路等的可靠性设计以及对设计结果的评估。

(5)样品试制及可靠性评价试验。

(6)样品制造阶段的可靠性设计评审。

(7)通过试验与失效分析来改进设计,并进行“设计-试验-分析-改进”循环,实现产品的可靠性增长,直到达到预期的可靠性指标。

(8)最终可靠性设计评审。

(9)设计定型。设计定型时,不仅产品性能应满足合同要求,可靠性指标是否满足合同要求也应作为设计定型的必要条件。

5.集成电路可靠性设计的基本内容

(1)线路可靠性设计。

线路可靠性设计是在完成功能设计的同时,着重考虑所设计的集成电路对环境的适应性和功能的稳定性。半导体集成电路的线路可靠性设计是根据电路可能存在的主要失效模式,尽可能在线路设计阶段对原功能设计的集成电路网络进行修改、补充、完善,以提高其可靠性。如半导体芯片本身对温度有一定的敏感性,而晶体管在线路达到不同位置所受的应力也各不相同,对应力的敏感程度也有所不同。因此,在进行可靠性设计时,必须对线路中的元器件进行应力强度分析和灵敏度分析(一般可通过SpiCe和有关模拟软件来完成),有针对性地调整其中心值,并对其性能参数值的容差范围进行优化设计,以保证在规定的工作环境条件下,半导体集成电路整体的输出功能参数稳定在规定的数值范围,处于正常的工作状态。

线路可靠性设计的一般原则是:1)线路设计应在满足性能要求的前提下尽量简化;2)尽量运用标准元器件,选用元器件的种类尽可能减少,使用的元器件应留有一定的余量,避免满负荷工作;3)在同样的参数指标下,尽量降低电流密度和功耗,减少电热效应的影响;4)对于可能出现的瞬态过电应力,应采取必要的保护措施。如在有关端口采用箝位二极管进行瞬态电压保护,采用串联限流电阻限制瞬态脉冲过电流值。

(2)版图可靠性设计。

版图可靠性设计是按照设计好的版图结构由平面图转化成全部芯片工艺完成后的三维图像,根据工艺流程按照不同结构的晶体管(双极型或moS型等)可能出现的主要失效模式来审查版图结构的合理性。如电迁移失效与各部位的电流密度有关,一般规定有极限值,应根据版图考察金属连线的总长度,要经过多少爬坡,预计工艺的误差范围,计算出金属涂层最薄位置的电流密度值以及出现电迁移的概率。此外,根据工作频率在超高频情况下平行线之间的影响以及对性能参数的保证程度,考虑有无出现纵向或横向寄生晶体管构成潜在通路的可能性。对于功率集成电路中发热量较大的晶体管和单元,应尽量分散安排,并尽可能远离对温度敏感的电路单元。

(3)工艺可靠性设计。

为了使版图能准确无误地转移到半导体芯片上并实现其规定的功能,工艺设计非常关键。一般可通过工艺模拟软件(如SUpRem等)来预测出工艺流程完成后实现功能的情况,在工艺生产过程中的可靠性设计主要应考虑:1)原工艺设计对工艺误差、工艺控制能力是否给予足够的考虑(裕度设计),有无监测、监控措施(利用pCm测试图形);2)各类原材料纯度的保证程度;3)工艺环境洁净度的保证程度;4)特定的保证工艺,如钝化工艺、钝化层的保证,从材料、工艺到介质层质量(结构致密度、表面介面性质、与衬底的介面应力等)的保证。

(4)封装结构可靠性设计。

封装质量直接影响到半导体集成电路的可靠性。封装结构可靠性设计应着重考虑:1)键合的可靠性,包括键合连接线、键合焊点的牢固程度,特别是经过高温老化后性能变脆对键合拉力的影响;2)芯片在管壳底座上的粘合强度,特别是工作温度升高后,对芯片的剪切力有无影响。3)管壳密封后气密性的保证;4)封装气体质量与管壳内水汽含量,有无有害气体存在腔内;5)功率半导体集成电路管壳的散热情况;6)管壳外管脚的锈蚀及易焊性问题。

(5)可靠性评价电路设计。

为了验证可靠性设计的效果或能尽快提取对工艺生产线、工艺能力有效的工艺参数,必须通过相应的微电子测试结构和测试技术来采集。所以,评价电路的设计也应是半导体集成电路可靠性设计的主要内容。一般有以下三种评价电路:1)工艺评价用电路设计。主要针对工艺过程中误差范围的测定,一般采用方块电阻、接触电阻构成的微电子测试结构来测试线宽、膜厚、工艺误差等。2)可靠性参数提取用评估电路设计。针对双极性和CmoS电路的主要失效模式与机理,借助一些单管、电阻、电容,尽可能全面地研究出一些能评价其主要失效机理的评估电路。3)宏单元评估电路设计。针对双极型和CmoS型电路主要失效模式与机理的特点,设计一些能代表复杂电路中基本宏单元和关键单元电路的微电子测试结构,以便通过工艺流程研究其失效的规律性。

6.可靠性设计技术

可靠性设计技术分类方法很多,这里以半导体集成电路所受应力不同造成的失效模式与机理为线索来分类,将半导体集成电路可靠性设计技术分为:1)耐电应力设计技术:包括抗电迁移设计、抗闩锁效应设计、防静电放电设计和防热载流子效应设计;2).耐环境应力设计技术:包括耐热应力、耐机械应力、耐化学应力和生物应力、耐辐射应力设计;3)稳定性设计技术:包括线路、版图和工艺方面的稳定性设计。

集成电路工艺原理篇4

关键词:集成电路;电镀;磷铜;阳极;

中图分类号:tQ153.1

phosphorizedCopperanodeinULSiandstudiesonrelatedproblems

GaoYan1,2,wanGXin-ping1,2,HeJing-jiang1,2,LiUHong-bin1,2,JianGXuan1,2,JianGYu-hui1,2

(GeneralResearchinstitutefornon-ferrousmetals,Beijing100088,China)

(GRiKinadvancedmaterialsCo.,Ltd.,Beijing102200,China)

abstract:withthedevelopmentofsemiconductortechnology,copperinterconnectispopulartechnologyinVLSi.Damascenceprocessisusedtoplatecopper.thephosphorizedcopperanodeplaysanimportantroleinplatingsolution.thearticleanalyzestheinfluencefactorsofplatingqualitywhichisthecontentofphosphorandoxygen,purityandgrainsize.

Keywords:iC;plating;phosphorizedcopper;anode

1前言

电镀铜层因其具有良好的导电性、导热性和机械延展性等优点而被广泛应用于电子信息产品领域,电镀铜技术也因此渗透到了整个电子材料制造领域,从印制电路板(pCB)制造到iC封装,再到大规模集成线路(芯片)的铜互连技术等电子领域都离不开它,因此电镀铜技术已成为现代微电子制造中必不可少的关键电镀技术之一。大规模集成电路中广泛采用电镀铜工艺,制备铜互联线。因此铜的电镀工艺,以及电镀阳极的选择越来越成为集成电路行业关注的焦点。

2集成电路的电镀铜工艺及磷铜阳极

2.1集成电路的电镀铜工艺

在大规模集成电路行业中,由于铜的刻蚀非常困难,因此铜互连采用双嵌入式工艺,即双大马士革工艺(DualDamascene)。该工艺是在刻好的沟槽内先溅射扩散阻挡层和铜种籽层,然后通过电沉积(电镀)的方法在沟槽内填充铜,最后采用Cmp(化学机械抛光)的方法实现平坦化(图1)。

电镀铜是完成铜填充的主要工艺(图1中③),该工艺要求在制备超微结构刻槽的铜连线过程中电镀铜必须具有很高的凹槽填充能力,因此就对电镀过程中的电镀阳极,电镀液,有机添加剂等的要求很高,特别是电镀用磷铜阳极的要求就更高。

集成电路用磷铜阳极通常是由高纯磷铜合金构成;铜电镀液通常由硫酸铜、硫酸和水组成。在电镀溶液中,当电源加在带有铜种子层的硅片(阴极)和磷铜(阳极)之间时,溶液中产生电流并形成电场。然后,磷阳极的铜发生反应转化成铜离子和电子,同时阴极也发生反应,阴极附近的铜离子与电子结合形成镀在硅片表面的铜,铜离子在外加电场的作用下,由阳极向阴极定向移动并补充阴极附近的浓度损耗,如图2所示。电镀的主要目的是在硅片上沉积一层致密、无孔洞、无缝隙和其它缺陷、分布均匀的铜。电镀后的表面应尽可能平坦,以减少后续Cmp工艺中可能出现的凹坑和腐蚀问题[1]。

2.2电镀铜工艺为何使用磷铜阳极

在早期的电镀过程中,采用的是纯铜作为阳极,由于电镀液中含有硫酸,使得纯铜阳极在电镀液中溶解很快,导致电镀液中的铜离子迅速累积,失去平衡。另一方面纯铜阳极在溶解时会产生少量一价铜离子,它在镀液中很不稳定,通过歧化反应分解成为二价铜离子和微粒金属铜,在电镀过程中很容易在镀层上面成为毛刺。为消除阳极一价铜的影响,人们最早使用阳极袋,但很快便发现泥渣过多妨碍了镀液的循环。后改用无氧高导电性铜阳极(oFHC),虽然泥渣减少了,但仍不能阻止铜金属微粒的产生,于是又采用定期在镀液中加入双氧水使一价铜氧化成二价铜,但此法在化学反应中要消耗一部分硫酸,导致镀液中的硫酸质量浓度下降,必须及时补充,同时又要补充被双氧水氧化而损耗的光亮剂,增加了电镀成本。

1954年美国nevers等人[2]在纯铜中加入少量的磷作阳极时,发现阳极表面生成一层黑色胶状膜(Cu3p),在电镀时阳极溶解几乎不产生铜粉,泥渣极少,零件表面铜镀层不会产生毛刺。这是由于含磷铜阳极的黑色膜具有导电性能,其孔隙又不影响铜离子自由通过,加快了一价铜的氧化,阻止了一价铜的积累,大大地减少了镀液中一价铜离子;同时又使阳极的溶解与阴极沉积的效率渐趋接近,保持了镀铜液中铜含量平衡。美国福特汽车公司使用这种含磷铜阳极的经验证明既保证了镀铜层质量,又节约电镀光亮剂了20%,降低了成本。从此以后,磷铜阳极在酸性镀铜行业中被广泛采用了,然后又逐渐被集成电路行业大规模使用。

3影响集成电路

用磷铜阳极性能的主要因素

影响集成电路用磷铜阳极性能的主要因素有:磷含量,原料铜的纯度,氧含量和晶粒尺寸。

3.1磷铜阳极的磷含量

磷能够赋予铜阳极优良的电化学性能。添加磷元素后,铜阳极表面生成一层具有特殊性能的黑色阳极膜。保加利亚学者Rashkov等人[3]研究了这种阳极表面黑色膜,主要成分是Cu3p,其具有金属导电性能,这样就解释了黑色膜不会使阳极钝化的原因。他们认为磷的作用在于含磷铜阳极溶解时产生的一价铜生成Cu3p,从而阻止了歧化反应的产生。

阳极中磷的含量应该保持适当,磷含量太低,阳极黑膜太薄,不足以起到保护作用;含磷量太高,阳极黑膜太厚,导致阳极屏蔽性钝化,影响阳极溶解,使镀液中铜离子减少;无论含磷量太低或太高都会增加添加剂的消耗。

关于集成电路用磷铜阳极中磷的含量,根据所采用的加工工艺,以及生产技术水平不同,各研究学者的意见也不同,如表1所示。

阳极的磷含量国内多为0.1-0.3%,主要是由于国内生产设备和工艺落后,搅拌不均匀,不能保证磷元素在阳极内部的分布均匀,因此只能够加入过量的磷来保证元素分布。国外的研究表明,磷铜阳极中的磷含量达到0.005%以上时,既有黑膜形成,但是膜过薄,结合力不好。但是当磷含量超过0.8%时,磷含量又过高,黑膜太厚阳极泥渣太多,阳极溶解性差,导致镀液中铜含量下降。因此,阳极磷含量以0.030-0.075%为佳,最佳为0.035-0.070%。国外采用电解或无氧铜和磷铜合金做原料,用中频感应电炉熔炼,原料纯度高,磷含量容易控制。采用中频感应,磁力搅拌效果好,铜磷熔融搅拌均匀,自动控制,这样制造的铜阳极磷分布均匀,溶解均匀,结晶细致,晶粒细小,阳极利用率高,有利于镀层光滑光亮,减少了毛刺和粗糙缺陷[2]。

本文为全文原貌未安装pDF浏览器用户请先下载安装原版全文

随着大规模集成电路引入酸性电镀铜技术的发展,晶圆上的更细线宽、更小孔径、线路的密集化和多层化对铜镀层的要求就越来越严格。镀层的硬度、晶粒的精细、小孔分散能力以及镀层的延展性等物理化学特性要求磷铜阳极的质量更加的精细。同时由于电镀槽的实时监控系统和各性能参数的SpC控制,要求磷铜阳极的稳定性就越来越高。目前国际上主流集成电路用磷铜阳极的磷含量通常要求为0.04-0.065%,这样减少了磷元素的波动,使得电镀阳极的物理化学参数波动更加小,更加可控。但是,这对熔炼、锻造等加工工艺的要求也就更高了。目前对于装备精良,工艺设计稳定的现代化加工企业来说,是完全有能力将集成电路用磷铜阳极的磷含量控制在0.04-0.065%的。

3.2磷铜阳极的纯度

对于每一种阳极,电镀公司都希望阳极是由高纯铜制备而来的,但是往往受到价格和产品要求等因素的影响。常规的磷铜阳极都是采用电解铜、无氧铜和磷铜合金来制备的。无氧铜的含氧量为3ppm,杂质极少。由于氧含量极低且固定,因此基本不产生磷的氧化物,基本不消耗磷,所以磷含量很容易控制,电解铜的纯度一般为99.95%,杂质含量也很少,也容易控制,所以国内外不少厂家采用电解铜为原料。但是,制备磷铜阳极一定不能采用杂铜或回收铜为原料,因为回收的废铜内部杂质种类很多,往往含有过量的铁、镍、锡和银等元素,这些元素过多将污染阳极,从而影响电镀效果。同时,由于氧含量不确定而含磷量又加得少,造成磷含量失控,严重者导致电镀报废。

对于集成电路用磷铜阳极来说,由于使用的环境更加苛刻,要求的电镀效果更加精细,就要求阳极通常都是由高纯铜(铜含量大于99.99%)来制备的。这样才能够保证后续加入磷铜中间合金不会明显影响杂质含量,满足集成电路电镀的要求。表2列出了国内的几家主要的磷铜阳极生产厂家的产品和集成电路用磷铜阳极对于杂质含量的要求。如表2可知,国内的生产厂家在杂质含量的控制上各有不同,但都无法满足集成电路用磷铜阳极的要求。集成电路用磷铜阳极相较与普通阳极,要求控制的杂质种类更多,更加苛刻。对于铜原料纯度的要求要高出普通阳极至少一个数量级以上。

3.3磷铜阳极的晶粒尺寸

随着集成电路封装和晶圆电镀铜的发展,除了要求电镀过程中形成一层致密、均匀、无空洞和无缝隙的铜镀层外,还要求通过电镀来解决高厚径比结构、微通孔和多层通孔电镀的问题。这就要求磷铜阳极的晶粒尺寸要细小均匀,同时磷含量分布均匀。因为只有这样才能保证黑色的Cu3p镀膜均匀,从而保证在相同电流和酸性环境条件下,Cu2+的电离以及结合均匀,形成均一的镀膜。

KenjiYajima[10]等人认为电镀阳极的晶粒尺寸和大小在电镀过程中对黑膜的影响很大,但它最好为再结晶结构,这样方便黑膜的形成。小的晶粒尺寸无疑是最优的模式,特别是晶粒尺寸小于10μm是最优的尺寸,但是考虑到成本的因素,平均晶粒尺寸在10-50μm都是比较好的。再结晶后平均晶粒尺寸如果超过50μm,阳极表面形成的黑膜趋向于分离。因此最优的晶粒尺寸应为15-35μm。

图3显示了不同晶粒尺寸的集成电路用磷铜阳极的微观组织照片。由于磷的质量百分含量都约为0.05%左右,因此磷元素都以固溶的形态存在于基体中。晶界上没有明显的第二相或其它组织,因此是典型的纯铜微观组织结构。在图3(a)中可以看到不同的晶粒尺寸,有的很小约几微米,有的很大约几百微米,这样的组织结构是非常不均匀的,可能导致富含在晶内或晶界的p元素分布很不均匀,从而导致在电镀过程中Cu3p黑膜的膜厚不均匀,影响电镀效果,因此这样的组织是要尽量避免的。图(b)和图(c)的平均晶粒尺寸分别为10μm和42μm,而且从金相组织照片看,晶粒分布均匀,方向随机,这样的组织使得p元素的分布均匀,Cu3p黑膜的膜厚均匀,电镀效果会非常好。图(d)的晶粒尺寸约为158μm,由于晶粒过大,很容易引起Cu3p黑膜不够致密,这样使得Cu2+的电离速度不相同,引起镀层不够致密,厚度不够均匀,此类组织也不是最佳的组织结构。

在制备磷铜阳极的过程中,由于通常都采用的高纯铜进行熔炼,在凝固过程中,由于杂质含量少,往往形成大晶粒尺寸的磷铜铸锭。然后,再通过塑性变形和热处理结合的方法来细化晶粒尺寸,以满足集成电路行业的要求。

3.4磷铜阳极中的含氧量

磷铜阳极中本身不希望含有大量的氧,因为当氧含量高时,极易生产Cu2o和Cuo的两种化合物,会导致Cu2o和Cuo分布于晶界处,分布不均匀,影响电镀效果。由于含氧量的不均匀,会导致磷铜阳极电解时产生阳极钝化,使得阳极失去了原有的特性,电镀平衡破坏,影响电镀质量。因此,专利[10]认为,如果o含量高于2ppm,电极表面的黑膜,很容易受到破坏,而o含量小于0.1ppm时,从生产的角度和成本控制的角度来说,都过高。因此集成电路用磷铜阳极的氧含量在0.1-2ppm比较合适,最优的氧含量为0.4-1.2ppm.

4结论和展望

采用双大马士革工艺(DualDamascene)制备的集成电路互连线要求的磷铜阳极必须具备如下条件:①磷元素的含量在0.04%-0.065%,且分布均匀。②制备的磷铜阳极的高纯铜原料至少保证纯度大于99.99%。③磷铜阳极的最佳晶粒尺寸为小于50微米,且晶粒尺寸均匀无分层。④磷铜阳极的含氧量在0.4-1.2ppm为佳。

集成电路互连线用磷铜阳极的研究正在朝着大尺寸、长寿命和低消耗的方向发展。还有很多方面都有待研究:如何通过合理的熔炼方式、冷却方式和热处理方式保证磷元素的分布均匀;如何通过合理的变形工艺和热处理工艺,保证晶粒尺寸的细小,均匀,无明显的分层现象;如何合理的设计阳极的表面形状,增大溶液接触面积,保持电镀液的稳定性;如何通过调整电流参数、添加剂、硫酸和硫酸铜等参数来得到低电阻、高致密度和平整的镀层等。

参考文献

[1]徐赛生,曾磊,顾晓清等,添加剂对铜互连线脉冲电镀的影响[J];中国集成电路,2008no.7:61-64

[2]程良,邝少林,周腾芳,再谈硫酸盐光亮镀铜的磷铜阳极[J],电镀与涂饰,1999no.6:20-26

[3]St.Rashkov,L.Vuchkov,thekineticsandmech-anismoftheanodicdissolutionofphosphorus-containingcopperinbrightcopperplatingelectrolytes[J],Surfacetechnology14(1981)309-321

[4]沈希宽等,印刷电路技术,北京,科学出版社,1987:204

[5]吴以南等,材料表面技术及其应用手册(电镀篇),北京,机械工业出版社,1998:123

[6]张立轮,镀铜工艺中基础电镀材料的技术发展及进步[J],印刷电路信息,2004no.5:21-25

[7]赵金敏,铜都铜业铜材厂磷铜产品营销环境分析[J],铜陵职业技术学院学报,2006no.4:37-39

[8]丁士启,王金海,李卫,一种阳极磷铜合金材料的加工方法[p],Cn100453667C,2009.01.

[9]相场玲宏,冈部岳夫,电解镀铜法、电解镀铜的磷铜阳极和利用所述方法及阳极镀铜的半导体晶片[p],wo2003/078698,2003.09.

[10]KenjiYajima,akihiroKakimoto,Hideyukiikenoya,phosphorizedcopperanodeforelectroplating[p],US6783611B2,2004.8.31

[11]王为、刘学雷、巩运兰;硫酸盐镀铜溶液中铜阳极性能的研究[J],材料保护,2001no.9:10-11

作者简介

集成电路工艺原理篇5

【关键词】集成电路;应用

一、引言

集成电路技术作为微电子技术的一个重要门类和组成部分,其技术发展遵循着著名的摩尔定律,仅仅需要1.5年的时间就能够将相同性能的电路压缩到原有体积的一半,而进40年来,集成电路的体积几乎缩小了30000倍。当前,顶尖的集成电路研发技术掌握在少数几个发达国家的研究机构手中,而与集成电路息息相关的iC产业已经被高度整合,从设计,到制造,到封装再到测试,已经形成了一条完整的产业链,集成电路的广泛应用不断地推动着科技的进步,也不断地改变着人类的生活。本文将讨论集成电路的原理,分析集成电路的发展,最后讨论集成电路的应用。

二、集成电路概述

微电子学是一种结合了电子学以及材料物理学的综合学科,该学科的主要研究认为是将半导体材料进行适当处理,制造出微型电子电路、微型电子系统以满足各种应用需要。基于微电子技术发展起来的集成电路技术主要囊括了材料技术、电路技术、集成封装技术等几个门类,主要通过将晶体管器件、电阻器件、电容器件等按照电路原理高度集成在一起,从而实现电路的某种功能,从集成电路输入输出关系来看,集成电路一般可以分为模拟集成电路和数字集成电路两种。

三、常见集成电路举例

1.74LS138译码器

74LS139集成电路是常见的两个2线-4线译码器,共有54/74S139和54/74LS139两种线路结构型式,当选通端(G1)为高电平,可将地址端(a、B)的二进制编码在一个对应的输出端以低电平译出。若将选通端(G1)作为数据输入端时,74LS139还可作数据分配器。a、B译码地址输入端,高电平触发;芯片的G1、G2为选通端,低电平触发有效;Y0~Y3为译码输出端。

2.74ls244缓冲器

74LS244是一种3态8位缓冲器,一般用作总线驱动器。74LS244芯片没有锁存的功能,地址锁存器就是一个暂存器,74LS244根据控制信号的状态,将总线上地址代码暂存起来。8086/8088数据和地址总线采用分时复用操作方法,即用同一总线既传输数据又传输地址。

当微处理器与存储器交换信号时,首先由CpU发出存储器地址,同时发出允许锁存信号aLe给锁存器,当锁存器接到该信号后将地址/数据总线上的地址锁存在总线上,随后才能传输数据。

3.555定时器

555定时器是一种模拟和数字功能相结合的中规模集成器件,是最常见的定时器集成电路。一般用双极性工艺制作的称为555,用CmoS工艺制作的称为7555,除单定时器外,还有对应的双定时器556/7556。555定时器的电源电压范围宽,可在4.5V~16V工作,7555可在3~18V工作,输出驱动电流约为200ma,因而其输出可与ttL、CmoS或者模拟电路电平兼容。一般来说,555定时器的功能实现由比较器决定。两个比较器的输出电压控制RS触发器和放电管的状态。在电源与地之间加上电压,当5脚悬空时,则电压比较器C1的同相输入端的电压为2VCC/3,C2的反相输入端的电压为VCC/3。若触发输入端tR的电压小于VCC/3,则比较器C2的输出为0,可使RS触发器置1,使输出端oUt=1。如果阈值输入端tH的电压大于2VCC/3,同时tR端的电压大于VCC/3,则C1的输出为0,C2的输出为1,可将RS触发器置0,使输出为0电平。

555的应用:

(1)构成施密特触发器,用于ttL系统的接口,整形电路等;

(2)构成多谐振荡器,组成信号产生电路,振荡周期:t=0.7(R1+2R2)C;

(3)构成单稳态触发器,用于定时延时整形及一些定时开关中。

555应用电路采用以上三种方式中的1种或多种组合起来可以组成各种实用的电子电路,如定时器、分频器、脉冲信号发生器、元件参数和电路检测电路、玩具游戏机电路、音响告警电路、电源交换电路、频率变换电路、自动控制电路等。

四、集成电路发展

电路工艺是集成电路技术中最为基础的部分,主要涉及到扩散技术、氧化技术、光刻腐蚀技术以及薄膜再生技术等方面。上世纪六十年代末,微电子研究人员充分研究了氧化二硅系统的电性质,完成了界面物理研究的理论储备,紧接着科学家通过控制钠离子玷污的手法,配合使用高纯度的材料,成功实现了moS集成电路的生产,由于moS电路在工艺上易于控制、功耗很低、集成度高、可裁剪性强等优点,当前半导体工业中,绝大多数的集成电路有使用moS或者CmoS结构。

制版技术方面的关键技术的光刻技术,光刻技术最初被使用在照相术上面,上世纪五十年代末被应用到半导体技术中,仙童公司巧妙地使用光刻技术实现了集成电路的图形结构。使用光刻技术制造的器件相互连接时可以不使用手工焊接技术,而是采用真空金属蒸发技术,使用光刻技术实现电路的绘制。近年来,随着光刻技术的发展,光刻技术的加工精度已经达到超深亚微米数量级。

电路设计方面。1971年,intel公司第一台微处理器的发明是集成电路技术对人类做出的最大贡献之一,微处理器的发明开辟了计算机时代的新纪元。微处理器的发明带动了以CmoS为基础的超大规模集成电路系统的发展,也带动了智能化电子产品的飞速发展,是信息技术的基础原件和实物载体。近年来,随着集成电路技术的发展,科学家将量子隧穿效应技术应用到集成电路领域,推动了信息化社会的进程。

工艺材料方面。随着材料科学的不断发展,很多新材料技术和新物力技术不断地被应用到集成电路领域当中,铁电存储器和磁阻随机存储器就是其中的代表。当前集成电路技术的发展突显出一些新的特征,主要表现在从一维向多维发展,向材料技术、微电子技术、器件技术以及物理技术提出了更高的要求,集成电路的发展也正因为如此遭遇瓶颈,物理规律的限制、材料科学的限制、技术手法的限制。不过与此同时,宽禁带的SiC、Gan以及ain等材料击穿电压值高、禁带值高、抗辐射性能好,应经被广泛应用,所制造器件在高频工作状态、高温状态以及大功率状态下性能优异,是集成电路的发展方向。

五、结语

集成电路是上世纪人类社会最伟大的发明之一,集成电路的广泛应用不断地推动着科技的进步,也不断地改变着人类的生活。本文系统分析了集成电路的原理,列举了几种常见集成电路,并对集成电路的发展进行了讨论和研究。

参考文献

[1]张允炆.半导体技术[m].哈尔滨工业大学出版社,2004.

[2]李祁镇.集成电路概述[m].北京:清华大学出版社,2003.

[3]韩周子.数字集成电路概述[m].西安:西安电子科技大学出版社,2004.

[4]方寒.浅谈集成电路的发展[m].中国科技纵横,2003.

集成电路工艺原理篇6

 

―、构建课程体系的总体思路

 

构建微电子技术专业课程体系的总体思路是以微电子行业职业岗位需求为依据,以素质培养为基础,以技术应用能力为核心,构建基于工作过程的课程体系。实施学院“四环相扣”的工学结合人才培养模式,将“能力标准、模块课程、工学交替、职场鉴定”的四个环节完整统一,环环相扣,充分体现了高职教育工学结合的人才培养思想,努力为社会培养优秀高端技能型人才。

 

1.行业、企业等用人单位调研。通过调研国内“成渝经济区”为主)微电子技术行业、企业等用人需求和要求,了解现有高职微电子技术专业学生就业情况、用人单位反馈意见及人才供需中存在的问题。电子信息产业是重庆市国民经济的第一支柱产业。重庆市“十二五”规划建议提出,培育发展战略性新兴产业。把新一代信息产业建设为重要支柱产业,建设全球最大的笔记本电脑加工基地、建设通信设备、高性能集成电路、光伏组件及系统、新材料等重点产业链(集群),建成国家重要的战略性新兴产业基地。以集成电路产业的重点项目为牵引,建成包括芯片制造、封装、测试、模拟及混合集成电路设计和制造等项目的产业集群,形成较为完善的集成电路产业链;四川电子信息产业未来5年将迈万亿元,成渝经济区将打造成西部集成电路的产业高地。随着惠普、富士康、英业达、广达集团等世界级的it巨头进入成渝,未来几年it人才需求在20万以上,而现在成渝地区每年培养的相关人才不过2万人左右,远远不能满足社会需求。市场需求的调查表明,近年来成渝地区iC制造、iC封装及测试、iC版图设计等岗位的微电子技术应用型人才紧缺。同时调研表明半导体行业企业却难以招到满意的人才,学生在校学非所用,用非所学,实践动手能力、社会适应能力、责任意识、职业素养难以满足企业要求。

 

2.基于工作过程的课程体系的理论基础。基于工作过程的课程体系的理论基础,主要从德国“双元制”职业教育学习论和教学论的角度阐述构建基于工作过程的课程体系的理论依据。工作过程系统化的课程体系必须针对职业岗位进行分析,整理出具体的、能够涵盖职业岗位全部工作任务的若干典型工作过程,按照人的职业能力的形成规律进行序列化,从中找出符合职业岗位要求的技术知识和破译出隐性的工作过程知识,并以工作任务为核心,组织技术知识和工作过程知识[2]。通过完全打破原有学科体系,按照企业实际的工作任务、工作过程和工作情境组织课程,形成围绕工作过程的新型教学项目的“综合性”课程开发。

 

3.形成专业定位,确定培养目标。根据存在的问题及半导体产业链过程:集成电路设计—裸芯片精细加工^封装测试—芯片应用—pCB设计制造,充分掌握现有微电子技术专业课程体系建设的基础及存在的问题,形成重庆电子工程职业学院微电子技术专业定位,确定培养目标:培养德、智、体、美全面发展;掌握微电子技术专业领域必备的基础知识、专业知识;有较强的岗位职业技能和职业能力;面向集成电路设计、芯片制造及其相关电子行业企业,满足生产、建设、服务和管理第一线的优秀高端技能型专门人才。毕业生应该既掌握微电子方面的基本技术,又具有很强的实际操作能力。具体可从事岗位:集成电路版图设计;半导体器件制造;iC制造、测试、封装;电子工艺(半导体)设备运行、维护与管理;简单电子产品的设计与开发;电子产品的销售与售后服务,并为技术负责人、项目经理等后续提升岗位奠定良好基础。

 

二、构建基于工作过程的学习领域课程体系

 

对专业核心课程的构建采用“微电子行业专家确定典型工作任务—学校专家归并行动领域—微电子行业专家论证行动领域—学校专家开发学习领域—校企专家论证课程体系”的“五步工作机制”,实现校企专家共同参与课程体系设计。通过工作任务归并法,实现典型工作任务到行动领域转换,通过工作过程分析法,实现从行动领域到学习领域转换,通过工作任务还原法,实现从学习领域到学习情境转换的“三阶段分析法”,构建基于工作过程的微电子技术专业课程体系和教学内容,获得人才培养目标、课程体系、课程教学方案“三项主要成果”。即“533”课程设计方法。

 

1.确定行动领域。工作过程系统化课程是按照工作过程要求序化知识、能力和素质,是以工作过程为参照物,将陈述性知识与过程知识整合、理论知识与实践知识整合,在陈述性知识总量没有变化的情况下,增加经验以及策略方面的“过程性知识”3]。对典型工作任务进行归纳,确定行动领域。将本专业52个典型工作任务归纳为6个行动领域,即集成电路版图设计、晶圆制造、集成电路芯片制造技术、芯片封装、芯片测试、Smt技术。

 

2.确定典型工作任务。所谓典型工作任务是指一个复杂的职业活动中具有结构完整的工作过程,它是职业工作中同类工作任务的归类,能表现出职业工作的内容和形式,并具有该职业的典型意义。我院召集企业专家和工作在一线的工程师、技术员,与学院的微电子技术专业教师一起,召开课程开发座谈会,进行微电子技术课程体系开发:以“集成电路(版图)设计—晶圆制造—封装测试—表面贴装”工作过程为主线,与行业企业一线技术骨干、专家解析微电子技术专业岗位中版图设计师、半导体芯片制造工、iC测试助理工程师、Smt工程师、FpGa助理工程师等典型岗位,得出行动领域所具有的专业素质、知识与能力。

 

3.将行动领域转化成学习领域。对完成典型工作任务必须具备的基本职业能力(包括社会能力、方法能力、专业能力)进行分析。通过归纳形成专业职业能力一览表。这些职业能力就是学习领域(即课程)中学习目标制定的依据。打破原有16门专业理论课程和9门实践课程组成的课程体系,按照以工作过程为导向,进行课程的解构与重构,将6个行动领域转换为9个学习领域,即集成电路版图设计、集成电路芯片制造技术、微电子封装与测试、表面贴装工艺与实施、电子线路板实用技术、电子测量仪器使用与维护、语言、单片机应用技术、FpGa应用技术及实践。根据微电子技术专业岗位群的职业能力和工作过程要求,重新构建基于工作过程的课程体系。第一、二学期:电路分析、电子技术等基础课程;第三、四、五学期:集成电路制造技术、电子测量仪器使用与维护、FpGa应用开发实用技术、微电子封装与测试、Smt技术、集成电路版图设计等专业核心课程。

 

4.形成学习情境模式。学习情境是实施基于工作过程系统化的行动导向课程的教学设计,由教师根据学校教学计划,结合学校的教学设施条件、教师执教能力和专长,由教师按照“资讯、计划、决策、实施、检查、评估”的行动方式来组织教学,从而促进学生对职业实践的整体性把握4]。微电子技术专业核心课程形成的学习情境模式为:①集成电路版图设计课程以任务为载体形成6个学习情境:n/pm0S晶体管版图设计、反相器、与非门、或非门版图设计、触发器版图设计、电压取样电路版图设计、比较器版图设计、DC-DC版图设计;②集成电路芯片制造技术课程以设备为载体形成8个学习情境:集成电路芯片制造技术工艺流程、硅晶圆制程、硅晶薄膜制备、氧化工艺、掺杂技术、光刻工艺、刻蚀工艺、集成电路芯片品检;③微电子封装与测试课程以工艺为载体形成4个学习情境:Dp封装、BGa封装、CSp封装、mCm封装;④表面贴装工艺与实施课程以工艺流程为载体形成5个学习情境:Smt工艺流程的基本认知、表面贴装生产准备、表面贴装设备操作与编程、表面贴装品质控制、Smt生产线运行及工艺优化5个学习情境;⑤电子线路板实用技术课程以项目为载体形成3个学习情境:单面板的制图与制板、简单双面板的制图与制板、复杂双面板的制图与制板;⑥电子测量仪器使用与维护课程以电路设备为载体形成9个学习情境:收音机元件准备、收音机电路测试、收音机电路工作状态检测、收音机整机调整、收音机装调使用仪器的保养与维护、电视机元件检测、电视机电路检测、电视机的质量检查、电视机装调使用仪器的保养与维护;⑦C语言课程以项目为载体形成6个学习情境:编程的基本概念、C语言上机步骤C语言上机步骤、算法的概念、基本数据类型、结构化程序设计、函数的概念;⑧单片机技术及应用课程以任务为载体形成6个学习情境““跑马灯”电路分析与实践、单片机做算术、逻辑运算并显示、开关信号状态读取与显示电路的制作、交通信号灯电路的设计与制作、产品数量统计电路的设计与制作、两台单片机数据互传;⑨FpGa应用技术及实践课程以项目为载体形成6个学习情境:课程概述、基于Qualusii的原理图输入设计、宏功能模块应用、基于Quarusii软件的VHDL文本输入设计、VHDL设计、实用状态机设计。

 

三、试点实施效果分析

 

在教学实施上,重点是加强教师执教能力:教师在教学中的角色应由主宰者转化为引导者。教师应该主动地引导、疏导和指导学生,学生可以根据自己的兴趣爱好,在教师的指导下,充分利用各种资源,相互协作开展对某一问题的学习探讨,从而获得新知识,得到探索的体验及情感,促进能力全面发展。经过我院近3年的教学实践,课程教学效果得到显著提高,学生专业核心能力、岗位适应能力、社会能力显著提高,“双证书”提高到100%,专业对口率从原来的48%上升到92%,用人单位满意度达90%以上。

 

高职院校在办学过程中要形成特色鲜明的高职办学模式,课程体系是重要的载体。办学特色正是通过课

 

程体系的实施来实现的。基于工作过程系统化的课程体系,跟随产业的发展,调整专业的课程设置,符合职业岗位要求,学生技能显著提升,同时结合我院的办学特色,努力探索基于工作过程的高职微电子技术专业课程体系的构建思路和构建策略。

 

参考文献:

 

[1]姜大源.关于工作过程系统化课程结构的理论基础〇].职教通讯,2006,(1).

 

[2]余国庆职业教育项目课程的几个关键问题ffl.中国职业技术教育,2007,(4).

 

[3]首珩,周虹基于工作过程的课程体系开发与实施m职教论坛,2008,(9).

 

[4]姜大源,吴全全当代德国职业教育主流教学思想研究[m].北京:清华大学出版社,2007.

集成电路工艺原理篇7

关键词:集成电路,铜互连,电镀,阻挡层

1.双嵌入式铜互连工艺

随着芯片集成度的不断提高,铜已经取代铝成为超大规模集成电路制造中的主流互连技术。作为铝的替代物,铜导线可以降低互连阻抗,降低功耗和成本,提高芯片的集成度、器件密度和时钟频率。

由于对铜的刻蚀非常困难,因此铜互连采用双嵌入式工艺,又称双大马士革工艺(DualDamascene),如图1所示,1)首先沉积一层薄的氮化硅(Si3n4)作为扩散阻挡层和刻蚀终止层,2)接着在上面沉积一定厚度的氧化硅(Sio2),3)然后光刻出微通孔(Via),4)对通孔进行部分刻蚀,5)之后再光刻出沟槽(trench),6)继续刻蚀出完整的通孔和沟槽,7)接着是溅射(pVD)扩散阻挡层(tan/ta)和铜种籽层(SeedLayer)。ta的作用是增强与Cu的黏附性,种籽层是作为电镀时的导电层,8)之后就是铜互连线的电镀工艺,9)最后是退火和化学机械抛光(Cmp),对铜镀层进行平坦化处理和清洗。

图1铜互连双嵌入式工艺示意图

电镀是完成铜互连线的主要工艺。集成电路铜电镀工艺通常采用硫酸盐体系的电镀液,镀液由硫酸铜、硫酸和水组成,呈淡蓝色。当电源加在铜(阳极)和硅片(阴极)之间时,溶液中产生电流并形成电场。阳极的铜发生反应转化成铜离子和电子,同时阴极也发生反应,阴极附近的铜离子与电子结合形成镀在硅片表面的铜,铜离子在外加电场的作用下,由阳极向阴极定向移动并补充阴极附近的浓度损耗,如图2所示。电镀的主要目的是在硅片上沉积一层致密、无孔洞、无缝隙和其它缺陷、分布均匀的铜。

图2集成电路电镀铜工艺示意图

2.电镀铜工艺中有机添加剂的作用

由于铜电镀要求在厚度均匀的整个硅片镀层以及电流密度不均匀的微小局部区域(超填充区)能够同时传输差异很大的电流密度,再加上集成电路特征尺寸不断缩小,和沟槽深宽比增大,沟槽的填充效果和镀层质量很大程度上取决于电镀液的化学性能,有机添加剂是改善电镀液性能非常关键的因素,填充性能与添加剂的成份和浓度密切相关,关于添加剂的研究一直是电镀铜工艺的重点之一[1,2]。目前集成电路铜电镀的添加剂供应商有enthone、Rohm&Haas等公司,其中enthone公司的ViaForm系列添加剂目前应用较广泛。ViaForm系列包括三种有机添加剂:加速剂(accelerator)、抑制剂(Suppressor)和平坦剂(Leverler)。当晶片被浸入电镀槽中时,添加剂立刻吸附在铜种籽层表面,如图3所示。沟槽内首先进行的是均匀性填充,填充反应动力学受抑制剂控制。接着,当加速剂达到临界浓度时,电镀开始从均匀性填充转变成由底部向上的填充。加速剂吸附在铜表面,降低电镀反应的电化学反应势,促进快速沉积反应。当沟槽填充过程完成后,表面吸附的平坦剂开始发挥作用,抑制铜的继续沉积,以减小表面的粗糙度。

加速剂通常是含有硫或及其官能团的有机物,例如聚二硫二丙烷磺酸钠(SpS),或3-巯基丙烷磺酸(mpSa)。加速剂分子量较小,一般吸附在铜表面和沟槽底部,降低电镀反应的电化学电位和阴极极化,从而使该部位沉积速率加快,实现沟槽的超填充。

抑制剂包括聚乙二醇(peG)、聚丙烯二醇和聚乙二醇的共聚物,一般是长链聚合物。抑制剂的平均相对分子质量一般大于1000,有效性与相对分子质量有关,扩散系数低,溶解度较小,抑制剂的含量通常远大于加速剂和平坦剂。抑制剂一般大量吸附在沟槽的开口处,抑制这部分的铜沉积,防止出现空洞。在和氯离子的共同作用下,抑制剂通过扩散-淀积在阴极表面上形成一层连续抑制电流的单层膜,通过阻碍铜离子扩散来抑制铜的继续沉积。氯离子的存在,可以增强铜表面抑制剂的吸附作用,这样抑制剂在界面处的浓度就不依赖于它们的质量传输速率和向表面扩散的速率。氯离子在电镀液中的含量虽然只有几十ppm,但对铜的超填充过程非常重要。如果氯浓度过低,会使抑制剂的作用减弱;若氯浓度过高,则会与加速剂在吸附上过度竞争。

平坦剂中一般含有氮原子,通常是含氮的高分子聚合物,粘度较大,因此会依赖质量运输,这样在深而窄的孔内与加速剂、抑制剂的吸附竞争中没有优势,但在平坦和突出的表面,质量传输更有效。沟槽填充完成后,加速剂并不停止工作,继续促进铜的沉积,但吸附了平坦剂的地方电流会受到明显抑制,可以抑制铜过度的沉积。平坦剂通过在较密的细线条上方抑制铜的过度沉积从而获得较好的平坦化效果,保证了较小尺寸的图形不会被提前填满,有效地降低了镀层表面起伏。

在铜电镀过程中,对填充过程产生影响的主要是加速剂、抑制剂和氯离子,填充过程完成后对镀层表面粗糙度产生影响的主要是平坦剂。铜电镀是有机添加剂共同作用的结果,它们之间彼此竞争又相互关联。为实现无空洞和无缺陷电镀,除了改进添加剂的单个性能外,还需要确定几种添加剂同时存在时各添加剂浓度的恰当值,使三者之间互相平衡,才能达到良好的综合性能,得到低电阻率、结构致密和表面粗糙度小的铜镀层。

尽管使用有机添加剂可实现深亚微米尺寸的铜电镀,但往往会有微量的添加剂被包埋在铜镀层中。对于镀层来说,这些杂质可能会提高电阻系数,并且使铜在退火时不太容易形成大金属颗粒。

图3电镀铜表面添加剂作用示意图

a=acceleratorS=Suppressor

L=LevelerCl=Chlorideion

电镀过程中添加剂不断地被消耗,为了保证镀层的品质,需要随时监控添加剂的浓度。目前主要使用闭环的循环伏安剥离法(CylicVoltammetricStripping,CVS)来监测电镀液的有机添加剂含量。CVS测量仪器的主要供应商是美国eCi公司。CVS尽管硬件成本低,但它很难反映出几种添加剂组分浓度同时改变的准确情况,高效液相色谱(HighperformanceLiquidChromatography,HpLC)分析技术有望能替代CVS。

3.脉冲电镀和化学镀

在铜互连中的应用

在目前的集成电路制造中,芯片的布线和互连几乎全部是采用直流电镀的方法获得铜镀层。但直流电镀只有电流/电压一个可变参数,而脉冲电镀则有电流/电压、脉宽、脉间三个主要可变参数,而且还可以改变脉冲信号的波形。相比之下,脉冲电镀对电镀过程有更强的控制能力。最近几年,关于脉冲电镀在集成电路铜互连线中的应用研究越来越受到重视[3,4]。

脉冲电镀铜所依据的电化学原理是利用脉冲张驰增加阴极的活化极化,降低阴极的浓差极化,从而改善镀层的物理化学性能。在直流电镀中,由于金属离子趋近阴极不断被沉积,因而不可避免地造成浓差极化。而脉冲电镀在电流导通时,接近阴极的金属离子被充分地沉积;当电流关断时,阴极周围的放电离子又重新恢复到初始浓度。这样阴极表面扩散层内的金属离子浓度就得到了及时补充,扩散层周期间隙式形成,从而减薄了扩散层的实际厚度。而且关断时间的存在不仅对阴极附近浓度恢复有好处,还会产生一些对沉积层有利的重结晶、吸脱附等现象。脉冲电镀的主要优点有:降低浓差极化,提高了阴极电流密度和电镀效率,减少氢脆和镀层孔隙;提高镀层纯度,改善镀层物理性能,获得致密的低电阻率金属沉积层。

除了电镀以外,还有一种无需外加电源的沉积方式,这就是化学镀。化学镀不同于电镀,它是利用氧化还原反应使金属离子被还原沉积在基板表面,其主要特点是不需要种籽层,能够在非导体表面沉积,具有设备简单、成本较低等优点。化学镀目前在集成电路铜互连技术中的应用主要有:沉积Cowp等扩散阻挡层和沉积铜种籽层。最近几年关于化学镀铜用于集成电路铜互连线以及沟槽填充的研究亦成为一大热点,有研究报道通过化学镀同样可以得到性能优良的铜镀层[5,6]。但是化学镀铜通常采用甲醛做为还原剂,存在环境污染的问题。

4.铜互连工艺发展趋势

使用原子层沉积(aLD,atomicLayerDeposition)技术沉积阻挡层和铜的无种籽层电镀是目前铜互连技术的研究热点[7]。

在当前的铜互连工艺中,扩散阻挡层和铜种籽层都是通过pVD工艺制作。但是当芯片的特征尺寸变为45nm或者更小时,扩散阻挡层和铜种籽层的等比例缩小将面临严重困难。首先,种子层必须足够薄,这样才可以避免在高纵宽比结构上沉积铜时出现顶部外悬结构,防止产生空洞;但是它又不能太薄。其次,扩散层如果减薄到一定厚度,将失去对铜扩散的有效阻挡能力。还有,相对于铜导线,阻挡层横截面积占整个导线横截面积的比例变得越来越大。但实际上只有铜才是真正的导体。例如,在65nm工艺时,铜导线的宽度和高度分别为90nm和150nm,两侧则分别为10nm。这意味着横截面为13,500nm2的导线中实际上只有8,400nm2用于导电,效率仅为62.2%[7]。

目前最有可能解决以上问题的方法是aLD和无种籽电镀。使用aLD技术能够在高深宽比结构薄膜沉积时具有100%台阶覆盖率,对沉积薄膜成份和厚度具有出色的控制能力,能获得纯度很高质量很好的薄膜。而且,有研究表明:与pVD阻挡层相比,aLD阻挡层可以降低导线电阻[7]。因此aLD技术很有望会取代pVD技术用于沉积阻挡层。不过aLD目前的缺点是硬件成本高,沉积速度慢,生产效率低。

此外,过渡金属-钌可以实现铜的无种籽电镀,在钌上电镀铜和普通的铜电镀工艺兼容。钌的电阻率(~7μΩ-cm),熔点(~2300℃),即使900℃下也不与铜发生互熔。钌是贵金属,不容易被氧化,但即使被氧化了,生成的氧化钌也是导体。由于钌对铜有一定的阻挡作用,在一定程度上起到阻挡层的作用,因此钌不仅有可能取代扩散阻挡层常用的ta/tan两步工艺,而且还可能同时取代电镀种籽层,至少也可以达到减薄阻挡层厚度的目的。况且,使用aLD技术沉积的钌薄膜具有更高的质量和更低的电阻率。但无种籽层电镀同时也为铜电镀工艺带来新的挑战,钌和铜在结构上的差异,使得钌上电镀铜与铜电镀并不等同,在界面生长,沉积模式上还有许多待研究的问题。

5.结语

铜互连是目前超大规模集成电路中的主流互连技术,而电镀铜是铜互连中的关键工艺之一。有机添加剂是铜电镀工艺中的关键因素,各种有机添加剂相互协同作用但又彼此竞争,恰当的添加剂浓度能保证良好的电镀性能。在45nm或更小特征尺寸技术代下,为得到低电阻率、无孔洞和缺陷的致密铜镀层,aLD和无种籽电镀被认为是目前最有可能的解决办法。此外,研究开发性能更高的有机添加剂也是途径之一,而使用新的电镀方式(比如脉冲电镀)也可能提高铜镀层的质量。

参考文献

[1]tantavichetn,pritzkerm.effectofplatingmode,thioureaandchlorideonthemorphologyofcopperdepositsproducedinacidicsulphatesolutions[J].electrochimicaacta,2005,50:1849-1861

[2]mohanS,RajV.theeffectofadditivesonthepulsedelectrodepositionofcopper[J].transactionsoftheinstituteofmetalFinishing,2005,83(4):194-198

[3]Y.Lee,Y.-S.Jo,Y.Roh.Formationofnanometer-scalegapsbetweenmetallicelectrodesusingpulse/DCplatingandphotolithography[J].materialsScienceandengineeringC23(2003):833-839

[4]Songtao,DYLi.tribological,mechanicalandelectrochemicalpropertiesofnanocrystallinecopperdepositsproducedbypulseelectrodeposition[J].nanotechnology17(2006)65?78

[5]王增林,刘志鹃,姜洪艳等.化学镀技术在超大规模集成电路互连线制造过程的应用[J].电化学,Vol.12no.2may2006:125-133

集成电路工艺原理篇8

【关键词】印制电路板制造业;清洁生产;自动化运行

引言

印制电路板(pCB),是电子元器件电气连接的提供者。由于它是采用电子印刷术制作的,故被称为“印刷”电路板。在pCB制造过程的几十道工序中,有一道电镀铜工序,但不能因此把pCB制造行业看成是金属制造业中的电镀行业,更不能将pCB制造业和电镀行业的高污染、高能耗印象划上等号。

笔者工作的奥特斯(中国)有限公司(以下简称公司),是奥地利at&S集团在中国设立的独资企业,主要产品为高密度pCB。奥地利是环境保护方面的先驱,目前公司的环保投入已超过2亿元。中国印制电路行业协会(CpCa)邀请公司参与协助制定《标准》,而公司的所有指标均达到了最高的“一级标准”(一级代表国际清洁生产先进水平,二级代表国内清洁生产先进水平,三级代表国内清洁生产基本水平),仅有5%的国内企业达到这一标准。

清洁生产,指不断采取改进设计、使用清洁的能源和原料、采用先进的工艺技术与设备、改善管理、综合利用等措施,从源头削减污染,提高资源利用效率,减少或者避免生产、服务和产品使用过程中污染物的产生和排放,以减轻或者消除对人类健康和环境的危害。

1.生产工艺与装备要求中的要点

生产工艺是产生污染的源头,必须从源头开始控制污染的产生量,避免“先污染,后治理”的现象。生产工艺的自动化程度越高,越能避免各种人为的加药过量、浪费生产用水等现象。公司在生产工艺上实现了绝大部分的加药、进水阀门由pLC控制;药水槽装有在线仪表,如pH、oRp、电导率、各种离子检测仪等;还通过计量盒、计量泵等,实现精确加药;大部分生产线为水平线,利用挡水滚轮避免药水间的交叉污染,同时还有利于密闭抽风,减少生产线上的异味。以上这些工艺装备,可以减少药水槽的超标报废,从而在源头上减少污染物的产生。

多级逆流清洗技术是由多级清洗槽串联组成清洗自动线,从末级槽进水,第一级槽排出清洗废水,其水流方向与pCB清洗移动方向相反;公司在清洗槽上还配有循环泵及高压喷淋头加压冲洗;部分工艺段对水温进行控制,以加快清洗速度。采用了这些技术,能够节约大量清水。

节水,不仅是一种意识,更是一种管理,只有采取实际有效的方法,才能将节水管理持之以恒。公司除了开展节水意识的培训外,还采取了如下的管理措施:

(1)由于pCB制造的特点,湿制程工艺繁多。公司针对每个药水槽、清洗槽,建立详细的工艺列表,将每个槽的体积、进水量、排水量、加药量、抽风量、清洗水量都详细记录其中。

(2)每一条湿制程生产线,都安装独立的进水表,用于统计其月度用水量。通过工艺列表中的计算,可以规定其月度用水量指标。

(3)对每月用水量超标的生产线将进行公告,督促其查找原因,如:人员的误操作、设备的损坏、生产工艺参数更改等。

只有掌握了生产工艺和装备中的这些要点,并结合先进的pCB线路设计,资源能源利用指标、污染物产生指标才能符合《标准》中的要求。

2.废物回收利用中的要点

该指标分为工业用水重复利用率%和金属铜回收率%。对于工业水重复利用率,除了上述提到的多级逆流水洗技术,目前公司还采取了多种技术进行水的重复利用。如空调冷凝水回用至冷却塔;达标废水回用于反洗砂滤、树脂;反渗透浓水的二次利用;磨刷工艺含铜废水通过铜粉分离装置除铜后回用;废水处理末端中水回用等,充分挖掘工业用水重复利用的潜力。

除了工业用水的重复利用,公司还重复利用某些工艺段产生的药水、废液。如蚀刻工艺上使用的氯化铜溶液,可通过盐酸、双氧水再生重复利用;显影工艺产生的干膜废液,可通过干膜分离装置,重复利用其中的氢氧化钠用于废水处理。

pCB制造工艺是为了在基板上沉积出铜的几何形状,金属铜主要存在于已经沉积完成的成品板中,因此对于报废的成品板、边框废料,可按含铜量出售给有资质的废弃物处理商。而在某些药水中,含铜量颇为可观。含铜的药水主要有:硫酸铜电镀药水,氯化铜蚀刻液,含铜微蚀剂。前两者含铜量较高,可直接出售给有资质的废弃物处理商;而含铜微蚀剂含铜量较低,但可通过电镀装置将其中的铜回收出售。

除了铜回收,pCB制造工艺中还会用到各种含金、含银、含钯等贵金属的药水。如在化学镀金工艺中含有大量的金;在底片冲印工艺中用到的定影液,含有大量的银;化学镀金、化学镀铜工艺中用到的活化剂中,含有大量的钯;在某些报废的成品板中,则含有大量的贵金属。这些贵金属,可以通过电镀或化学沉淀等方法提取并出售,从而既减少了对环境的污染,又为公司节约了大量的成本。

3.环境管理要求中的要点

废水处理是清洁生产中的重要一环,为了废水处理的稳定达标,废水必须分类收集、集中处理。根据其化学性质、污染物的不同,公司将废水通过22根专用管道,排放至不同的废水储罐中,然后将性质相近的废水,集中处理至四种不同的工艺:冲洗水处理工艺,络合废水处理工艺,非络废水处理工艺,有机干膜废水处理工艺。一旦废水处理中出现不明原因的超标现象,结合工艺列表,可追溯到具体的生产线以及工艺段,以便采取相应的措施。同时,公司生产线使用的所有化学品均进行了备案,任何新申请的化学品必须进行废水小样测试,以便判断是否能利用现有的废水工艺进行处理。

废水处理的自动化程度,直接关系到废水处理工艺的稳定性,进而直接影响到废水处理的达标排放。公司在废水处理工艺上,安装有各种在线仪表、如pH/oRp探头、流量计、压力探头、液位计等,能够实时传递水质水量状况;采用S7-300自控系统,可通过pLC远程操作现场设备如泵、阀门等,避免了人为失误,并提高了处理效率,尤其是操作复杂的砂滤反洗、树脂再生等。由于自动化程度高,一旦废水工艺进行了更改,可通过修改pLC内的程序,及时调整工艺流程、工艺参数,确保废水处理工艺的稳定。

4.结语

印制电路板制造业属于国家鼓励发展的行业。以上供各位读者参考,以实现印制电路板制造业的清洁生产,加快我国的产业结构的调整和优化。

参考文献

集成电路工艺原理篇9

关键词:欠压锁存;电源管理;带隙基准;滞回区间;BCD工艺

中图分类号:tn710文献标识码:B

文章编号:1004-373X(2009)20-007-04

DesignofUnderVoltageLockoutCircuitBasedon0.5μmBCDprocess

wanGwei,LiFuhua,Xieweiguo

(Schoolofelectronicsandinformation,SoochowUniversity,Suzhou,215021,China)

abstract:accordingtothenecessaryfunctionofUnderVoltageLockout(UVLo)inDC-DCpowermanagementsystems,animprovedUVLocircuitisproposed.thecircuitrealizesstabilityofparameterssuchasthresholdpointvoltage,hystereticrangeofthecomparatoretc,withoututilizinganextrabandgapreferencevoltagesourceascomparereference.theUVLocircuitisimplementedin0.5μmBCDprocessofCSmC.theresultsofHSpicesimulationtoolshowthattheUVLohassimplecircuit,sensitiveresponse,lowtemperaturedraftandlowpowerconsumption.

Keywords:undervoltagelockout;powermanagement;bandgapreference;hystereticrange;BCDprocess

随着集成电路技术的发展,对电源管理芯片的开关频率、传输延迟、稳定性、功耗等各种要求越来越高,以保证电源电压在波动的情况下能够可靠的工作。

一般的电源芯片上电启动时,电源会通过输入端的等效电阻和电容对其充电,使得电源芯片的电压逐步上升,直到电压上升到芯片的开启电压时电路正常工作。然而若系统的负载电流较大,有可能把电路的电压拉低到开启电压以下,出现一开启就关断的情况。为了保证电路正常进入启动状态并且稳定工作,同时也为了电路工作时电源电压的波动不会对整个电路和系统造成损害,一般使用所谓的欠压锁存(UnderVoltageLockout,UVLo)电路对电源电压实时监控和锁存。

传统电源管理类集成电路的欠压锁存电路的设计思路都是由比较器、带隙基准参考电压和一些逻辑部件构成的[1-3],其存在响应速度跟不上,功耗大,电路面积太大等问题。针对这些问题,设计一种新的欠压锁存电路,在不使用额外的基准电压源和比较器以及复杂的数字逻辑的情况下,能够达到UVLo的各项指标。它最主要的特点就是具有简单的电路结构、高的反应速度、低的温度敏感性和精准的门限电压,同时版图面积节省、功耗较低。

1应用框图与传统电路结构

图1是DC-DC电源管理系统结构图。引脚Vstr直接与220V交流整流器相连,最大耐压650V。只要芯片一上电,UVLo电路就实时地对电源电压进行监控。芯片刚上电时,电流通过引脚Vstr给引脚VCC外接电容充电,当充电到芯片预置的开启电压Von时,UVLo电路输出电平发生翻转,芯片内部电路开始工作,Vstr对地短路,芯片电源由辅助变压器对VCC外接电容充电供给。正如上所述,UVLo电路同时设置了一个关闭电压Voff(Voff

由此可见,UVLo电路实质上是一个迟滞电压比较器,它必须具备反应速度灵敏,门限电压稳定,滞回区间合理,温度漂移较低等特点。

但是许多电源管理类集成电路的欠压锁存电路的设计思路都是由比较器、带隙基准参考电压和一些逻辑部件构成的[1-3],如图2所示。不是响应速度跟不上,就是功耗太大,更重要的是这种电路使用带隙基准参考电压源和分压电路,太过于复杂,使得电路面积太大而不利于降低成本。

图1DC-DC电源管理系统结构图

图2传统的UVLo电路结构图

在此提出一种基于0.5μmBCD工艺的UVLo电路,在不使用额外基准电压源和比较器以及复杂数字逻辑的情况下,能够达到UVLo的各项指标,其最主要的特点就是具有简单的电路结构、高反应速度、低温度敏感性和精准的门限电压,同时版图面积节省、功耗较低。

2电路工作原理

如图3为所设计的UVLo电路图。

图3应用带隙基准比较器的UVLo电路图

晶体管Q1和Q2,电阻R1,R2利用了带隙基准原理组成的比较器,有些文献也把这种比较器称为带隙基准比较器[4]。文献[4]给出了类似的电路拓扑结构,但是对于电路具体工作原理没有做出详细的解释。moS管m2,m3为其提供有源负载,m1,m2,m3,m4,m5,m6组成镜像管,R3,R4,R5,R6和m9组成电阻分压网络,其中m9管的作用下面会详细介绍,R7,m7;R8,m8组成两级反相器,Vaa是由VCC通过稳压二极管产生。

取晶体管Q1的发射区面积是Q2的6倍,那么两个晶体管的跨导关系是[5-7]:

gm1=6gm2

由于电阻R1,R2的射极反馈作用,所以晶体管Q1,Q2的等效跨导分别是:

Gm1=gm1/[1+gm1(R1+R2)]

Gm2=gm21+gm2R2

Gm1=gm21/6+gm2(R1+R2)=

gm21+gm2R2+gm2R1+1/6-1

一般情况下gm2R11,所以Gm1

(1)当VCC比正常供电低的情况下,由于Q1的等效跨导较Q2的跨导小,流过Q2的电流iC2比流过Q1的电流iC1小。如果m1,m2,m3,m4,m5,m6都处在饱和区,那么通过电流镜m1,m2,m5,m6镜像到m6管的漏电流iD6比通过电流镜m3,m4镜像到m4的漏电流iD4(iD4和iD6均指的是大小而不包含方向)大,这在同一条直流通路下是不可能的,这就驱使m6进入线形区,以保持和m4的漏电流相等。这样带隙基准比较器的输出X点为低电位,经反向后UVLo输出高电位从而关闭基准电源和锁存整个芯片。应当注意的是此时m9管处于导通状态。

(2)当VCC继续上升到接近Von时,流过Q1和Q2集电极电流近似相等,即iC1iC2,那么这时所有镜像对管都处于饱和区且电流相等。由于pmoS导通电阻比nmoS导通电阻大2~3倍,选择Vaa=5V,则X点电位大于m7的阈值电压,m7管导通且首先工作在饱和区,选择m7,m8管的宽长比相等,R7=R8,此时:

VUVLo=VGS9=Vaa-iD7,D8R7,8

只要适当选择m7,m8管的宽长比和电阻R7,R8的大小,就能使得UVLo仍然输出高电平,从而达到关断基准电源和锁存整个芯片的目的。

(3)当VCC上升到大于Von时,由于Q2比Q1的跨导大,所以,iC2迅速超过iC1。假设带隙基准比较器中各个镜像对管都处于饱和区,则同第二节(1)中的分析。同一直流通路上的电流iD6较iD4小,这是不可能的,所以这会驱使m4管进入线形区。这样,带隙基准比较器输出X点电位上升到高电平,经反相器反向后使得m9管关闭,a点电位进一步被拉升,从而确保UVLo输出为低电平,使得芯片正常工作。正是由于镜像对管对流过它们电流差异具有高度敏感性,所以这种UVLo电路反应速度很快。

当VCC由高压慢慢变低时,同样也有三种情况:

①当VCC

②当VCC下降到接近Voff时,类似于前面提到的(2),这时iC1iC2,带隙基准比较器中的各个镜像管都工作在饱和区,X点的电位同样可以驱动m7管导通,且使其首先进入在线性区(注意同前面提到的(2)的区别),m9管关闭,UVLo输出仍为低电压。

③当VCC下降到Voff时,iC1>iC2,m6进入线性区,X点电位被拉低,经过反向器作用,m9管导通,此时进一步达到低压锁存的效果。应当注意的是此时的Von≠Voff。

从上面的分析可知,当晶体管Q1和Q2的集电极电流相等时,带隙基准比较器各个镜像对管都工作在饱和区,此时a的电压大小非常关键。设此时a点电压为VReF,Q1,Q2集电极电流为:

iC1=iC2=(VBe2-VBe1)/R1

对于双极晶体管的基极发射极电压,有以下关系:

VBe=Vtln(iC/iS)

而iS∝Se,其中,是晶体管发射极面积。由于Q1的发射极面积是Q2的6倍,所以,式中:

iC1=iC2=(Vtln6)/R1

VReF=VBe2+2iC2R2=VBe2+2(R2/R1)Vtln6

由于VBe具有负的温度系数,而Vt具有正的温度系数,只要适当选择电阻R1、R2的比值,就可以实现几乎零温度系数的带隙电压[8]。现在再分别计算Von和Voff。

由上面分析可知,当电源电压VCC升高到尚未达到UVLo的开启电压Von时,UVLo输出高电平,且m9处于导通状态(忽略其导通电阻),此时a点电压为:

Va=R4+(R5∥R6)R3+R4+(R5∥R6)×VCC

只有Va>VReF时,UVLo的电平才会翻转,这样就得到了开启电压的门限值Von,

R4+(R5∥R6)R3+R4+(R5∥R6)×Von=VReF

Von=R3+R4+(R5∥R6)R4+(R5∥R6)×VReF

一旦VCC>Von,m9管关闭,这时a点电压:

Va=R4+R5R3+R4+R5×Von

大于VReF,使得UVLo更稳定地输出低电平。

同理,可以得出UVLo的关闭电压值Voff:

Voff=R3+R4+R5R4+R5×VReF

那么UVLo的滞回区间为:

Von-Voff=

R3+R4+(R5∥R6)R4+(R5∥R6)-R3+R4+R5R4+R5×VReF

3电路仿真与分析

使用HSpice电路仿真软件在CSmC0.5μmBCD工艺库下对UVLo电路进行仿真。由上面分析可知,UVLo电平翻转与晶体管Q1,Q2集电极电流变化速度快慢密切相关,所以对带隙基准晶体管上集电极电流变化做了如图4的仿真。从图4中可以明显看出,在2ms以前,iC1>iC2,UVLo输出高电平。在2ms时,两个晶体管的电流都急剧变大,但是由于Q2管的跨导比Q1管小,所以很快,iC1

图4UVLo随及晶体管集电极电流随电源电压变化关系图

因为DC-DC芯片应用的温度范围比较大,而且工艺中的电阻、晶体管等受温度影响也比较大,所以在实际设计中,应当充分考虑到这点。在此对UVLo在不同温度下进行仿真,尽可能把滞回区间的误差缩小到很小的范围内,以满足DC-DC芯片在宽温度范围内工作。表1和图5是对本文所设计的UVLo电路在-40℃,25℃,80℃和140℃下的仿真结果。从中可以看出,在25℃时,Von=9V,Voff=7V,滞回区间是2V。在其他温度下的偏差最大也不超过0.2V,可见其最突出的优势是可以在宽温度范围内工作而不失精度。

表1典型温度下Von和Voff的测量值-40℃25℃80℃140℃

Von/V8.8399.129.16

Voff/V6.8777.037.08

除此之外,当芯片发生欠压锁存时,芯片的功耗也是非常小的。这主要是因为当芯片发生欠压锁存时,芯片的其他部分都不工作,也就不消耗功率,UVLo电路的主要功耗是流过带隙晶体管和R3,R4,R5,R6电阻的电流所产生,只要适当地调节这些电阻阻值就可以把功耗降低到最低,但是考虑到版图的面积,实际仿真中的功耗可减小到150μw以下。

4版图设计

使用CSmC0.5μmBCD工艺技术,对UVLo电路设计版图[9,10]。由于利用带隙基准原理,在要求精度较高的情况下,设计时应注意UVLo模块与其他模块隔离。与传统的UVLo电路相比,最显著的提升就是版图面积大大缩小,只要工艺中包含高阻值的电阻类型,这种优势就更为突出。

图5典型温度下UVLo输出特性曲线图

5结语

在此针对DC-DC电源管理系统所必须的欠压所存功能,详细介绍一种新的改进UVLo电路,相对于传统的UVLo电路,它最突出的优点是不使用额外的带隙基准源和复杂的数字逻辑,因此节省了芯片面积。HSpice仿真结果表明,它在-40~+140℃范围内最大失真不超

过2%,因此可以在宽温度范围内工作。基本适用于各种类型的电源管理类芯片,对工艺要求也不高。

参考文献

[1]周庆生,吴晓波.一种新型欠压锁存电路的设计[J].微电子学与计算机,2006,23(11):199-201.

[2]汤俊斐,吴晓波,张毅,等.基于BCD工艺的充电控制芯片设计[J].固体电子学研究与进展,2007(4):524-528.

[3]王瑾,田泽,李攀,等.一种改进的BiCmoS工艺欠压锁存电路的设计[J].现代电子技术,2007,30(24):182-184.

[4]吴晓波,张永良,章丹艳,等.基于BCD工艺的单片热插拔控制集成电路设计[J].半导体学报,2006.

[5]康华光.电子技术基础(模拟部分)[m].北京:高等教育出版社,1998.

[6]GraypR,meyerRG.analysisandDesignofanalogintegratedCircuits[m].2ndedition.北京:高等教育出版社,2003.

[7]allenpe,HolbergDR.CmoSanalogCircuitDesign[m].北京:电子工业出版社,2002.

[8][美]毕查德•拉扎维.模拟CmoS集成电路设计[m].陈贵灿,译.西安:西安交通大学出版社,2003.

集成电路工艺原理篇10

“微电子工艺”“微电子系列实验”“生产实习”是微电子课程群中教学内容相近,教学形式不同的3门专业课程,我校对其进行了整合教学研究,提出了新的教学模式,编写了涵盖这3种形式教学内容的教材,设计了教学方案,并进行了初步实施及评价。

1微电子工艺课程分析

1.1原课程安排

“微电子工艺”是当前高校电子类本科专业的核心课程,其教学目的是使学生掌握硅集成电路芯片制造工艺的基本原理和方法,了解微电子产品制造关键技术及其发展方向。而“微电子系列实验”和“生产实习”是与“微电子工艺”课程内容关联性很强的实践教学环节。“微电子系列实验”是独立设置的实验课程,其教学目的是使学生掌握硅芯片关键工艺的实验、检测技术和常用仪器的使用方法。“生产实习”则是通过组织学生到现代化企业参观学习,在工艺线上直接参与生产实践[5],使之了解微电子产品的生产过程,行业发展动态,从而提高他们解决问题的能力及综合素质。本质上,这3门课程是教学形式不同,但教学内容相近的一个课程模块。在当前的教学大纲中,这3门课程都是独立开设的,通常在大三上学期分别开出40学时的工艺课、20学时的系列实验和4周的生产实习。因此,“微电子工艺”课堂教学和实践教学结合的较为松散,总学时数也偏多。

1.2教学现状分析

“微电子工艺”具有涉及知识面宽,综合性强,理论与实践结合紧密的特点。若只采取课堂教学,对毫无实践经验的学生而言,课程涉及的技术性内容繁杂,知识点多且分散,全面理解学习内容的难度大。在为2009级学生开出本课程之后进行了问卷调查。其中“对工艺课知识的理解程度”这一问题,在58张答卷中只有1人选择“能全部理解”,约60%的学生选择“大部分理解”(如图1所示)。

在对微电子课程群中其他相关,如“微电子器件原理”“集成电路设计”等课程主讲教师进行的调研中,普遍认为若将各自独立开设的“微电子工艺”“微电子系列实验”和“生产实习”作为一个课程模块进行整合教学,穿插授课,更有利于学生学习。

2课程整合研究

2.1课程整合

首先在培养计划上将“微电子工艺”“微电子系列实验”和“生产实习”整合为课堂/实验/实习一个微电子工艺课程模块,该课程模块的教学目标为:培养熟知国内外先进微电子关键工艺,并具有一定工艺设计、分析,以及解决实际工艺问题能力的人才。

通过对原课程内容分析,将微电子工艺课程模块中3部分内容都进行了优化(如图2所示)。该课程模块由一个课程组在大三上学期连续穿插教学,以避免教学内容的重复。因此,可以在不压缩教学内容、不降低教学效果的前提下,将授课学时数定为:讲课40学时/实验16学时/生产实习3周,与原课时数相比有了较大缩减。

课程组在原微电子工艺课程讲义基础上,结合微电子工艺学发展现状,编写了涵盖3种教学形式、内容的教材:《集成电路制造技术—原理与工艺》。该教材已于2010年9月由电子工业出版社出版,并基于此教材制作了多媒体课件。

2.2教学模式的整合

课程组设计了微电子工艺课程模块的整合教学模式(如图3所示)。整个教学过程是师生共同参与的、动态的、双向的信息传播过程。

课堂教学采取讲课为主,自学讨论为辅的形式,课后穿插参观微电子生产线等实践教学环节。教师讲授教材各单元、章节中的重点、难点,课堂上设置问答等少量的“教”“学”互动形式。其他内容采取:教师首先提出问题,再组织学生在课堂上自学,然后展开讨论,最后进行归纳总结。这既调动了学生的学习积极性,又能提高学习效率。为避免出现只有部分学习积极性高的学生参与课堂讨论的现象,教师随机抽取学生回答问题,并作为平时成绩记录。在课堂学习阶段,组织学生参观微电子生产工艺线,让他们在实际生产情景中理解课堂讲授的相关内容。

课堂教学之后进入实验和晶体管制作实践教学阶段。实验项目是针对关键工艺参数进行测试,以及有关芯片性能测量设置的实验,因此将其穿插在晶体管芯片制作过程中进行。

3整合教学的初步实施及评价

受原教学计划限制,在2011年秋季学期末,主要开出了整合后的微电子工艺课程模块课堂教学部分,其他内容在2012年春季学期初开出。

3.1对教材的评价

采用新编的《集成电路制造技术—原理与工艺》教材和多媒体课件进行了课堂教学。课程结束后进行的问卷调查表明,学生对新编教材和课件的满意度较高(如图4所示)。

另外,从电子工业出版社的统计结果来看,尽管该教材是受众面很小的专业课教材,但自2010年9月出版至今,已售出4000余册,被国内数十家高校选作微电子工艺或集成电路工艺基础等课程的教材使用。由此可以说该教材得到了同行的普遍认可。

3.2课堂教学方法及评价

在以整合教学模式进行的“微电子工艺”课堂教学实践中,每次课的前几分钟都进行了提问,以便督促学生在课后复习,并引出本次课教学内容;课堂上讲授了基本单项工艺的原理、模型、物理基础,以及基本方法等重要内容;而对于大量工艺技术与设备等内容,先提出问题,再组织学生自学后讨论,最后进行归纳总结;对学生回答问题和讨论发言都作为平时成绩进行记录。在课堂教学期间,组织学生参观了哈工大微电子平面工艺线,以利于他们对基本工艺方法与设备等内容的理解。

从课程结束后所作的问卷调查可知,学生喜欢的教学方式与实际所采用的授课方式大体一致(如图5所示)。学生对本课程的评教结果为“a+”。而且,微电子课程群后续课程主讲教师也反映:这届学生的微电子工艺基础知识较扎实。

3.3实践教学及评价

微电子工艺的实验和实习是在我校微电子实验室进行的。首先开设了“高纯水制备”“微电子清洗”两个讲座;然后学生自制了晶体管,进行了工艺实验;最后,组织学生参观了哈尔滨晶体管有限公司的器件生产工艺线。

在图2中,把晶体管制作划分为了6个关键工序。因此,学生自制晶体管也分为6个组,要求每个组负责一个关键工序:确定工艺条件、进行工艺操作、解决出现的问题、记录工艺现象、条件、参数等。这样尽管学生人数较多(全系64人),也能保证每名学生都参与到自制晶体管和相关的生产管理过程中来。另外,鼓励学生在完成自己组工作之外参与其他组的工作。在整个实践教学过程中学生积极性很高,充分发挥出各自的综合能力。

从学生递交的总结报告来看,这次微电子工艺实践教学效果很好,学生们普遍认为:提高了动手能力,学会了分析、解决问题的方法,更重要的是培养了团队意识和团队合作能力。对今后的学习与工作都有较大帮助。

4结束语

我校对“微电子工艺”“微电子系列实验”和“生产实习”这3门教学形式不同,内容相近课程进行的教学整合研究表明:在专业课程教学改革中,将课堂教学和实践教学整合为一个专业课程模块,建立统一的课程体系,编写涵盖理论与实践2方面内容的教材,由一个课程组进行连续穿插授课,这种整合教学模式是可行的,教学效果良好,同时又减少了授课学时数。

参考文献

[1] 张瑞,姚凌江,吴向文.运用混合式立体化教学模式培养应用型创新人才[J].现代教育技术,2010,20(1):77-81

[2] 汪凌.整合教学法:为了学生素质的发展[J].全球教育展望,2007,36(10):3-7.

[3] 张园.整合教学法在模拟电子技术教学中的应用[J].科教文汇.2011.10(下):58-59.

[4] 桂峰,孙静亚,梁娟.“环境监测”课程理论与实验教学整合初步研究[J].科教文汇,2010,12(下):54,65.