生物质能的特点十篇

发布时间:2024-04-25 21:58:09

生物质能的特点篇1

关键词:结构结构分析官能团

有机化学是高中、中专化学中的一门重要基础课程,由于有机物结构复杂、种类繁多、反应抽象、容易混淆,与前面学习的无机化学联系不多,是学生普遍认为难学的内容之一。因此,教师在教学过程中注意根据教学内容、学科特点灌输学生学习有机化学的理念,使学生掌握学习有机化学的技巧,引导学生利用有机化学的特点去思考、学习、总结,呈现给学生一个系统学习有机化学的学科思维,使学生把有机知识系统化和明朗化,这是作为教师在教学过程中应努力做到的。

一、从C元素的结构特点出发,引导学生牢固掌握有机化合物的结构特点

C在元素周期表中位于第二周期Ⅳa族,最外层有4个电子,既不容易失去,又难以得到4个电子形成阴、阳离子,难以形成离子键,故C原子通常以共用电子对的形式与其他原子形成共价键。而C原子要达到8个电子的稳定结构,则必须形成4对共用电子对,即4条共价键。如C与H在一定条件下要结合形成化合物甲烷时,一个C原子要与多少个H原子结合呢?其分子式是什么呢?这由C原子的结构特点决定:C原子最外层有四个电子,H原子最外层有一个电子,要使C原子形成四对共用电子对,必须要有四个H原子与之结合,故甲烷的分子式(结构简式)为CH4。根据C原子的结构特点同样可推写出乙烷、丙烷的结构简式分别为:CH3CH3、CH3CH2CH3。

有机化合物中碳原子之间可彼此连接成链状如链烃,也可以彼此连接成环状如环烃;碳原子彼此间既可以形成单键(两个原子间共用一对电子)如烷烃,也可以形成双键(两原子间共用两对电子)如烯烃、三键(两原子间共用三对电子)如炔烃;碳原子间除了可以成键外,碳原子还可以与H、o、X(卤素原子)、n等其他元素的原子结合成键,如烃的衍生物,其键型如C-C、C-H、等。不管碳原子以何种方式成键,碳原子总是成4条共价键,氢原子只能形成1条,氧原子形成2条,氮原子形成3条;碳原子成键方式的多样性导致有机物结构的多样性,也导致有机物种类繁多;但只要遵循碳原子的成键规则即可准确写出有机物的分子式、结构简式等。

二、从官能团出发,引导学生掌握同类有机物的性质特点

官能团是反映一类有机物具有共同特征的原子或原子团,同时也是决定有机化合物的化学特性的原子或原子团。官能团能决定有机物的种类及该类有机物的化学性质,并且有机物的许多性质都发生在官能团上。可见,官能团对有机物的性质起决定作用,因此要掌握各类有机物的特点及性质,首先要知道常见官能团有哪些,具有这些官能团的物质具有哪些性质。教师在教学过程中要引导学生学会对每一类物质进行归纳、总结和对比。

如烃类物质因键型不同导致以下区别(C-C、C=C、CC相当于烃类物质的官能团):碳碳链状单键(C-C)构成的物质代表为烷烃类,其通式为CnH2n+2,主要化学性质为取代反应、氧化反应(火焰不明亮且无烟);碳碳链状双键(C=C)构成的物质代表为烯烃类,其通式为CnH2n+2,主要化学性质为加成反应、氧化反应(火焰较明亮并有黑烟);碳碳链状叁键(CC)构成的物质代表为炔烃类,其通式为CnH2n+2,主要化学性质为加成反应、氧化反应(火焰明亮而有浓烟);碳碳环状(苯环)芳烃代表物苯,其主要化学性质为在催化剂作用下发生取代反应、氧化反应(火焰明亮而有浓烟)。

烃的衍生物卤代烃、醇(或酚)、醚、醛、酮、羧酸、酯等有机物的官能团分别是:-X、-oH、-C-o-C-、

-CHo、-C=o-、-CooH、-Coo-,这些官能团分别决定了这些物质的化学性质。如卤代烃的官能团卤原子(-X):在碱性溶液中发生“水解反应”生成醇,在碱的醇溶液中发生“消去反应”,得到不饱和烃。醇、酚的官能团羟基(-oH):伯醇羟基可以消去生成碳碳双键,酚羟基可以和naoH反应生成水,与na2Co3反应生成naHCo3,二者都可以和金属钠反应生成氢气。醚的官能团醚键(-C-o-C-):可以由醇羟基脱水形成。醛的官能团醛基(-CHo):可以发生银镜反应,可以和斐林试剂反应氧化成羧基,与氢气加成生成羟基。酮的官能团羰基(>C=o):可以与氢气加成生成羟基。羧酸的官能团羧基(-CooH):酸性,与naoH反应生成水(中和反应),与naHCo3、na2Co3反应生成二氧化碳,与醇发生酯化反应。酯的官能团酯健(-Coo-):在酸性条件下水解生成羧酸与醇(不完全反应),碱性条件下生成盐与醇。

三、通过结构分析,认识有机化合物的化学性质

有机化学知识庞杂,物质种类繁多,学生不易掌握,教学中教师要充分利用好“结构决定性质,性质反映结构”这一重要线索,引导学生通过分析有机化合物的分子结构,尤其是主要官能团的结构,推导出在一定条件下可能断裂的化学键部位,并将该化学键的断裂与相应的化学反应联系起来,将某种物质繁杂的化学性质进行本质归类,便于理解掌握。使学生轻松地掌握该类物质共同的化学通性,并可以将该通性演绎到具有该官能团的陌生物质的化学性质的预测中去,从而认识有机化学反应的本质,达到举一反三的效果。

如甲酸乙酯、葡萄糖,尽管它们不属于醛类,但它们都含有醛基,因此它们都具有醛的主要性质(如银镜反应等)。甲酸(HCooH)从表面上看就是酸,具有酸的通性,这是无可非议的;但再具体分析其结构,发现甲酸是既有-CooH,又有-CHo,所以就会推断出甲酸既具有羧酸的性质又具有醛的性质,是具有双重性质的一种物质。

四、认识物质普遍性的同时掌握物质的特殊性

在有机化学的学习中,我们通过弄懂一个或几个化合物的性质,来推知同系物的性质,从而使庞大的有机物体系化和规律化,这是学习有机化学的基本方法。但是,在考虑物质普遍性的同时,还要认识其特殊性,这就需要我们运用一分为二的观点去更全面、更深刻地认识有机物的性质。如乙醇、苯酚、乙酸、葡萄糖分子中均含有羟基,因而它们都能与金属钠反应放出氢气,这是含有羟基的物质具有的普遍性。但由于与羟基相连的基团各不相同,基团间相互影响的结果使羟基表现出来的性质又具有明显的差异,如:乙醇、葡萄糖溶液呈中性,苯酚溶液呈弱酸性,乙酸溶液呈明显酸性,这便是这些物质的特殊性。蕴含在有机化学中的普遍性与特殊性关系还有很多,关键在学习有机化学时,我们能对具体问题做具体分析,依据物质的内在特征、外部条件综合考虑,灵活地做出判断、做出处理,养成辩证思维的习惯。

除此以外,在学习有机化学的过程中,我们也常会遇到一些与众不同的“特殊物质”,如醛类中的甲醛、羧酸中的甲酸、羟基羧酸等。它们与同类物质相比,往往具有一些特殊的结构与化学性质,这时就必须在分析理解的基础上强化记忆,攻克难点。

生物质能的特点篇2

【关键词】遥感技术;地质灾害;应用

60年代开始逐渐兴起了遥感探测技术,目前在普查地球资源、观测气象、规划利用土地、监测地震等方面广泛进行了应用。在地质灾害中遥感技术也发挥了重要作用,遥感技术的应用能够有效在发生地质灾害之前提供准确的警报和预防功能;在发生地质灾害之后能够迅速评估受灾状况,为救援工作提供很多有意义的参考资料;为灾后重建科学规划工作运用遥感技术提供参考根据。能够预见,伴随着迅速发展的遥感技术,其在地质灾害中能够发挥重要作用。

一、遥感技术的发展

遥感器不断拓宽的频谱范围,陆续推出的新型传感器,有效提高的分辨率,不但对遥感的观测尺度、分辨对地本领以及识别精细程度进行了提高,使得利用遥感器处理数据、提取信息的方法都产生了一个质的提高,把遥感技术的研究应用推向了一个崭新的高度。

不断提高的遥感探测分辨率,使对地物精细特点的探测也变成了可能。地物的特点具体包括:其一地物具有的几何特点,其二组成地物的物质结构与成分,其三演化地物的特点。根据高空间分辨率遥感、高光谱遥感与高时间分辨率遥感可以探测以上特点的精细度。

遥感数据的空间分辨率在近些年来正在迅速被提高,促使地物精细具有了空间特点,在遥感图像上看清地物的全部相关因素如大小、外形、分布空间、纹理构成、以及其它地物之间产生的空间关系等。地物识别中的地物空间特点在高空间分辨率遥感图像上逐渐占据了重要位置,而色调与统计特点在中低分辨率图像识别中曾经发挥的主要作用转变为次要或者辅助地位。不断兴起与发展的高光谱技术,推动遥感鉴别逐渐变成直接识别地物。高光谱遥感的重要特点是对元光谱进行获取与重建,进一步按照光谱特点对地物外形、组成地物以及具体成分直接进行识别。伴随着逐渐提高的光谱分辨率,在识别过程中地物的光谱特点逐渐占据了重要位置,工作方法从原来的分析图像转变为图谱联合,同时促使遥感逐步脱离看图识字时期,更加倾向于定量分析与理解地物波普。

二、遥感技术在地质灾害中应用的优势

(一)高精度获得数据。在高空中遥感技术能够探测较大的范围地区,并且宏观上获得这一地区范围的数据。按照不同的采集方法,也会产生不同的广度与精度。采集工作使用飞机能够获得10km左右的高度,使用陆地卫星能够获得910km左右的高度。当前tm卫星可以产生15米的影像空间分辨率;而Spot卫星全色波段最高可产生2.5米的影像空间分辨率,多光谱波动为10米。

(二)更新数据时间很短。在同一地区范围利用遥感器探测可以反复周期的采集数据,进一步可以有效获得这一地区最新的各种自然现象的相关数据。按照不断变化的数据,可以动态监测这一地区的自然现象,对地面变化的事物动态反映。遥感平台的不同高度可以对各种周期重复观测,每天noaa气象卫星可以两次收到同一地区的遥感数据,而每半个小时meteosat则能够在同一地区获取图像。

(三)符合各种地面条件。地面条件不会对遥感技术造成限制,在一些沙漠、沼泽等恶劣条件的地区,可以采用遥感技术取代人类采集和探测相关的重要数据。另外,利用各种遥感器和波段,还能够通过遥感技术探测地物内部。例如,深层地面、水下层、冰层下存在的水体、沙漠下地物特点等。

三、遥感技术在地质灾害中的应用

(一)有效预防灾害。第一,在全区范围内利用遥感技术可以积极了解地质情况,找出容易出现地质灾害的范围。在遥感影像上比较常见的地质灾害都体现出了一些特点,联系这些特点,能够准确将地质灾害频发地区进行划分,进一步绘制地质灾害危险等级。应当在高级别地质灾害地区加强防范安全意识和监测强度,争取在每一个人身上都普及防范安全意识。第二,在容易发生地质灾害的地区利用遥感技术重点进行监测,做好预防和警报工作。发生地质灾害的因素是不断变化的地质体,而暴雨天气是造成地质变化的重要原因,当然也可能是发生大地震之后引发的次生灾害,一般体现出了突发性特征。传统的调查方法在暴雨发生时无法有效监测面积较大的易受灾地区,同时准确性与实时性都需要进一步提高。而通过遥感技术能够对变化的气候进行动态监测,及时提醒人们在容易发生地质灾害地区的人们尽快做好预防工作。此外,针对地质变化情况也可以利用遥感技术及时准确的发现,提前做好预防地质灾害的措施,进而降低损失。

(二)迅速组织救援。发生地质灾害时最为显著的特征便是突发性,一旦地质灾害出现,开展救援工作需要具备充分的资料。此外,发生灾害之后,救援人员很难勘测受灾地区。这时可以使用遥感技术勘测受灾地区具体情况,对灾害带来的破坏状况全面了解,为开展救援工作提供重要的参考资料。灾害发生之后救援工作一般非常紧迫,在救援工作中利用遥感技术的较短周期、较高精度等特点为其提供精准、迅速的灾区信息。通常情况下能够应用到的遥感技术包含:受灾地区、范围、破坏建筑的状况、毁坏交通的状况、气候改变的状况等。当前,具体是对比发生灾害之前遥感高精度信息影像和发生灾害之后的高精度信息影像,利用影像具有的特点提供重要根据。这些资料能够为报告灾害情况、评估灾害情况损失、救援措施等提供准确而迅速的参考根据。

(三)灾后重建。造成地区受灾严重的关键原因是缺乏科学合理的规划。发生地质灾害之后,需要对规划重新考虑。了解灾害发生地区的地质状况是科学进行规划的前提。由于发生地质灾害之后会出现不同程度的改变地质的现象,假如使用人工传统的勘测方法,对这些变化地质的情况需要更多的时间组织摸底调查工作,致使快速重建灾区陷入困境。通过遥感技术的应用,能够迅速对变化的受灾地区地质情况进行确定,或者对存在于规划中的失误及时纠正。联系监测评估遥感数据的结果,同时联系国家总体规划政策与地方贯彻落实的具体方案,为重建规划灾后地区提供重要的信息支撑。

结束语

地质灾害中应用遥感技术已经获得了很多成功的经验,我国在研究地质灾害遥感技术几十年内积累了丰富的实践经验,并且获得了一定的成绩。在地质灾害中通过应用遥感技术,也就是应用遥感信息源,辅助计算机图像处理技术,紧密联系遥感破译重点地区成果与现场验证,同时通过其它非遥感资料,科学分析,最终获得准确的结果。不同遥感信息源与技术对地震灾害情况有效的识别,为地质灾害的救援与重建工作提供了宝贵资料,有效减少了地质灾害带来的损失。

【参考文献】

生物质能的特点篇3

一、遥感技术的发展

遥感器不断拓宽的频谱范围,陆续推出的新型传感器,有效提高的分辨率,不但对遥感的观测尺度、分辨对地本领以及识别精细程度进行了提高,使得利用遥感器处理数据、提取信息的方法都产生了一个质的提高,把遥感技术的研究应用推向了一个崭新的高度。

不断提高的遥感探测分辨率,使对地物精细特点的探测也变成了可能。地物的特点具体包括:其一地物具有的几何特点,其二组成地物的物质结构与成分,其三演化地物的特点。根据高空间分辨率遥感、高光谱遥感与高时间分辨率遥感可以探测以上特点的精细度。

遥感数据的空间分辨率在近些年来正在迅速被提高,促使地物精细具有了空间特点,在遥感图像上看清地物的全部相关因素如大小、外形、分布空间、纹理构成、以及其它地物之间产生的空间关系等。地物识别中的地物空间特点在高空间分辨率遥感图像上逐渐占据了重要位置,而色调与统计特点在中低分辨率图像识别中曾经发挥的主要作用转变为次要或者辅助地位。不断兴起与发展的高光谱技术,推动遥感鉴别逐渐变成直接识别地物。高光谱遥感的重要特点是对元光谱进行获取与重建,进一步按照光谱特点对地物外形、组成地物以及具体成分直接进行识别。伴随着逐渐提高的光谱分辨率,在识别过程中地物的光谱特点逐渐占据了重要位置,工作方法从原来的分析图像转变为图谱联合,同时促使遥感逐步脱离看图识字时期,更加倾向于定量分析与理解地物波普。

二、遥感技术在地质灾害中应用的优势

(一)高精度获得数据。在高空中遥感技术能够探测较大的范围地区,并且宏观上获得这一地区范围的数据。按照不同的采集方法,也会产生不同的广度与精度。采集工作使用飞机能够获得10km左右的高度,使用陆地卫星能够获得910km左右的高度。当前tm卫星可以产生15米的影像空间分辨率;而Spot卫星全色波段最高可产生2.5米的影像空间分辨率,多光谱波动为10米。

(二)更新数据时间很短。在同一地区范围利用遥感器探测可以反复周期的采集数据,进一步可以有效获得这一地区最新的各种自然现象的相关数据。按照不断变化的数据,可以动态监测这一地区的自然现象,对地面变化的事物动态反映。遥感平台的不同高度可以对各种周期重复观测,每天noaa气象卫星可以两次收到同一地区的遥感数据,而每半个小时meteosat则能够在同一地区获取图像。

(三)符合各种地面条件。地面条件不会对遥感技术造成限制,在一些沙漠、沼泽等恶劣条件的地区,可以采用遥感技术取代人类采集和探测相关的重要数据。另外,利用各种遥感器和波段,还能够通过遥感技术探测地物内部。例如,深层地面、水下层、冰层下存在的水体、沙漠下地物特点等。

三、遥感技术在地质灾害中的应用

(一)有效预防灾害。第一,在全区范围内利用遥感技术可以积极了解地质情况,找出容易出现地质灾害的范围。在遥感影像上比较常见的地质灾害都体现出了一些特点,联系这些特点,能够准确将地质灾害频发地区进行划分,进一步绘制地质灾害危险等级。应当在高级别地质灾害地区加强防范安全意识和监测强度,争取在每一个人身上都普及防范安全意识。第二,在容易发生地质灾害的地区利用遥感技术重点进行监测,做好预防和警报工作。发生地质灾害的因素是不断变化的地质体,而暴雨天气是造成地质变化的重要原因,当然也可能是发生大地震之后引发的次生灾害,一般体现出了突发性特征。传统的调查方法在暴雨发生时无法有效监测面积较大的易受灾地区,同时准确性与实时性都需要进一步提高。而通过遥感技术能够对变化的气候进行动态监测,及时提醒人们在容易发生地质灾害地区的人们尽快做好预防工作。此外,针对地质变化情况也可以利用遥感技术及时准确的发现,提前做好预防地质灾害的措施,进而降低损失。

(二)迅速组织救援。发生地质灾害时最为显著的特征便是突发性,一旦地质灾害出现,开展救援工作需要具备充分的资料。此外,发生灾害之后,救援人员很难勘测受灾地区。这时可以使用遥感技术勘测受灾地区具体情况,对灾害带来的破坏状况全面了解,为开展救援工作提供重要的参考资料。灾害发生之后救援工作一般非常紧迫,在救援工作中利用遥感技术的较短周期、较高精度等特点为其提供精准、迅速的灾区信息。通常情况下能够应用到的遥感技术包含:受灾地区、范围、破坏建筑的状况、毁坏交通的状况、气候改变的状况等。当前,具体是对比发生灾害之前遥感高精度信息影像和发生灾害之后的高精度信息影像,利用影像具有的特点提供重要根据。这些资料能够为报告灾害情况、评估灾害情况损失、救援措施等提供准确而迅速的参考根据。

(三)灾后重建。造成地区受灾严重的关键原因是缺乏科学合理的规划。发生地质灾害之后,需要对规划重新考虑。了解灾害发生地区的地质状况是科学进行规划的前提。由于发生地质灾害之后会出现不同程度的改变地质的现象,假如使用人工传统的勘测方法,对这些变化地质的情况需要更多的时间组织摸底调查工作,致使快速重建灾区陷入困境。通过遥感技术的应用,能够迅速对变化的受灾地区地质情况进行确定,或者对存在于规划中的失误及时纠正。联系监测评估遥感数据的结果,同时联系国家总体规划政策与地方贯彻落实的具体方案,为重建规划灾后地区提供重要的信息支撑。

生物质能的特点篇4

运动学部分(机械运动,匀速直线运动);热学部分(影响熔点的因素,内能,比热容,比热容与比热);力学部分(力的作用效果之一是力可以改变物体的运动状态,弹力,弹力的作用点,牛顿第一定律,惯性,力和运动的关系,摩擦力,能量);电学部分(半导体,欧姆定律);光学部分(光线,人眼看物体的原理)及特性与属性的区别.共19个难点知识.

关键词:初中物理;难点知识;提升;基础教育;教学水平

作者简介:钟西友(1962-),男,四川宜宾人,中学物理高级教师,本科学历,主要从事初中物理教育教学研究.

物理是基础教育中的一门重要课程之一,虽然初中物理也比较简单,但其中有些知识点也比较难理解.有的老师对其中的难点知识的理解、把握也不一定很透彻,特别是边远贫困地区,有大一部分物理老师是由中等师范毕业,通过函授学习而改教物理的,即使有的老师是刚从本科院校出的大学生,他们对这些难点知识的理解、把握也不是很准确、很透彻,那么,他们在给学生讲解过程中,也就讲不透彻,学生也只能囫囵吞枣,不能达到“悟理”的效果,只能被动接受,这也是在基础教育中物理成绩较差的原因之一.所以在此笔者认为的初中物理难点知识做一下解读,供同仁商榷,以提升基础教育教学水平.

1运动学部分

11机械运动

在物理学中,把物置的变化叫做机械运动,简称为运动.

分析:这个概念中的关键词是“位置”,它包含“距离”和“方位”.“位置”的变化就是“距离”和“方位”的变化,也就是说研究对象相对于参照物的距离发生了变化,或方位发生了变化,研究对象就是运动的.如做匀速圆周运动的物体,相对于圆心,虽然它们之间的距离没有改变,但它的方位在时时刻刻地发生改变,所以它是运动的.

12匀速直线运动

物体沿着直线且速度不变的运动叫做匀速直线运动.

分析:在这个概念中的关键词是“沿着直线”和“速度不变”.“沿着直线”就是物体的运动方向不变;“速度不变”在这里是指速度的大小不变,因为“速度”包括两个因素:速度的大小和方向,而前面已经有“沿着直线”,即运动方向不变了,所以,这里就指“速度的大小”了(注:初中物理不提“矢量”一词).因此匀速直线运动的特点:运动快慢不变、方向不变.还要强调:①“快慢不变”:指物体在任何相等时间内通过的路程相等.如,某物体以60m/min的速度运动,它是做匀速直线运动吗?不一定,它可能是匀速运动,也可能是变速度运动.②“方向不变”:指相对于同一参照物而言.

2热学部分

21影响熔点的因素

人教版八年级物理上册p56小资料,几种晶体的熔点,括号中标有标准大气压,可见晶体的熔点也不是固定不变的,学生就会问:老师,熔点受那些因素的影响呢?

分析:熔点的高低是晶w物质本身的一种特性.不同的晶体物质的熔点不同;同一种晶体物质的熔点还和外界的气压(压力)大小及含杂质的多少有关.气压越高晶体的熔点也越高;含杂质越多,晶体的熔点越低(如在结冰公路上撒盐是为了降低冰的熔点).因此影响熔点的因素有:①熔点与物质的种类有关;②熔点与大气压有关;③熔点与内含杂质多少有关.

22内能

物体内部所有分子做无规则运动的动能和分子间相互作用的势能的总和叫做物体的内能.

分析:(1)决定内能大小的因素

①物体的温度:温度是影响内能的主要因素.温度升高时,物体的内能增加;温度降低时,物体的内能减少.

②物体的质量:质量决定分子数目.内能就是由微观势能和微观动能所决定的,即质量和温度都影响物体内能.一般说来,在温度相同、物态相同的情况下,质量大的物体内能高.但是在温度不确定时,质量大的物体内能就未必高了.

③物体的体积:体积决定了分子势能(相互作用力不同).分子平均势能与物体的体积有关.分子间距离改变时,分子平均势能也随之改变(类似于弹簧);宏观上物体体积改变(分子间距离改变),则物体的势能通常改变.在其他量不变时,体积越大内能越大,因为分子动能不变,分子之间的间隙大,分子势能大,所以内能就大.

改变体积可以改变内能的时候是因为体积增大对外做功释放能量,从而引起内能变化.但有的时候体积变化内能也不一定变化,例如在绝热的情况下让气体在真空中膨胀,其内能不会改变.

④物体的种类:物质的种类不同,其分子间的结构不同,即密度不同.因此,分子运动及分子间的作用力也就不同,所以内能不同.

⑤物体的状态:物体的状态不同,其分子运动及分子间的作用力也就不同,所以它们的内能就不同.如质量为1kg、温度为0℃的水比质量为1kg、温度为0℃的冰的内能大;质量为1kg、温度为100℃水蒸气的内能比质量为1kg、温度为100℃水的内能大.

(2)内能的特点

①整体性:从内能的定义可知,是整个物体内部“所有分子”具有的动能和势能的总和,不是“少数分子”,更不是“单个分子”.“少数分子”或“单个分子”是谈不上内能的,所以内能具有整体性.

②普遍性:因为一切物体在任何情况下都具有内能,对内能只能说有,不能说无,这就是它的普遍性.

③难测性:由于内能受很多因素的影响,而且有的因素无法用宏观的方法进行测量,所以不能准确知道一个物体内能的具体值.

23比热容

一定质量的某种物质,在温度升高时吸收的热量与它的质量和升高的温度乘积之比.

分析:①比热容反映了物质吸热或放热的本领大小,这是比热容的物理意义.

②比热是物质的一种热学特性,不同物质的比热容一般不同.强调:“不是不同,而是一般不同.”如冰和煤油虽然物质不同,但它们的比热容是相同的.同种物质在状态一定时,其比热容是相同的.

③比热容也是物质的一种热惰性[1].比热容越大的物质越不容易传递热量,因此比热容是物质的一种热的惰性,也就是说,比热容大小是温度变化快慢的难易程度的一种体现.如:c铁

④比热容描述单位质量的物质容纳热量本领的物理量.可以简单理解为“热容量(热的容量)”、“热的容器”.比如,c铁=046×103J/(kg・℃),c铝=088×103J/(kg・℃),质量都为1kg的铁和铝,温度都升高1℃,铝就可容纳088×103J的热量,而铁只能容纳046×103J的热量,铝的“热容量”几乎是铁的“热容量”的二倍.

⑤比热容的大小只跟物体的种类、状态有关.而与物体的质量、体积、形状、温度、位置以及吸收(或放出)热的多少无关.

24比热容与比热

分析:比热容和比热是两个截然不同的物理概念.

比热容的大小是一定质量的某种物体吸收的热量与质量和升高温度的乘积之比.在国际单位制中,比热容的单位是焦耳/(千克・摄氏度)[J/(kg・℃)];物质的比热定义是一定质量的物质升高一定的温度所需吸收的热量与相等质量的水升高相同的温度所需吸收热量之比.比热就如同动摩擦因数一样,不过是一个无量纲的因数(系数)而已.比热容才是描述单位质量的物质容纳热量本领的物理量.

3力学部分

31力的作用效果之一是力可以改变物体的运动状态

分析:运动状态的改变就是速度的改变,而速度是包含两个因素:速度的大小、速度的方向.所以只要速度的大小或速度的方向两个因素之一发生改变,那么它的速度就发生了改变,它的运动状态也就发生了改变.如匀速转弯的汽车,其中“匀速”是指速度的大小不变,而“转弯”则是指速度的方向在改变.所以“匀速转弯的汽车”的运动状态发生了改变.

32弹力

物体发生弹性形变而产生的力叫做弹力

分析:(1)弹力产生条件:从弹力的定义可知弹力产生的条有两个:⑴要接触;⑵要有挤压(即要有弹性形变).两个条件要同时满足,缺一不可.例如在图1甲中,挨着墙立在墙边的砖与墙之间并没有力的作用,因为它们虽然接触了,但它们之间没有挤压;在图1乙中,用一根轻弹簧把两个球连接起来,放在水平面上,当它们稳定后,球与弹簧之间没有力的作用,因为它们虽然接触了,但弹簧的长短没有发生变化.

(2)弹力的三要素:

①弹力的大小:与物体形变量有关,形变量越大,弹力越大(胡克定律:f=-kx).弹簧(橡皮筋)中弹力大小遵循胡克定律,F=kx;非弹簧中的弹力一般根据平衡条件[或牛顿运动定律列方程(高中)]解答.

②弹力的方向:弹力方向与物体形变的方向相反.例如,压力、支持力的方向垂直于接触面,绳子中拉力方向沿绳子方向.

③弹力的作用点:作用在迫使这个物体形变的那个物体上.

33弹力的作用点

分析:弹力的作用点在迫使这个物体形变的那个物体上.有以下几种情况:(1)如果物体间是面与面接触:作用点在接触面上,并垂直于接触面(如,一个粉笔盒放在讲桌上,如图2所示);(2)如果物体间是点与面接触:作用点在切点,并垂直于切面(如,一个铁球放在课桌上,如图3所示);(3)如果是点与点接触:作用点在切点,并垂直于切面(如,放在篮球筐里的篮球,如图4所示).

34牛顿第一定律

一切物体在没有受到力的作用时,总保持静止状态或直线运动状态.

分析:(1)“一切物体”:指所有物体(固、液、气;大到天体,小到微粒).

(2)“没有受到外力的作用”:指物体所处的条件.这是一种理想状态,实际上等效于物体受到的合力为零的状态.

(3)“总”:指总是这样,没有例外.

(4)“或”:指两种状态必居其一,不能同时存在.即由初始状态决定,也就是说物体原来是运动的,就保持运动状态;物体原来是静止的,就保持静止状态.

(5)“保持”:指物体不受力时,一直静止不动或一直做匀速直线运动.

35惯性

物体保持运动状态不变的性质叫做惯性

分析:理解惯性应注意以下几点:

(1)惯性是物体的固有属性.一切物体在任何状态下都具有惯性.物体无论受力与否,运动与否,运动状态改变与否,地理位置、温度及物态变化与否都具有惯性.

(2)惯性有大小,可以用质量来量度,而与物体运动速度无关.也就是说,物体的质量越大,它的惯性就越大;物体的质量越小,它的惯性就越小.

(3)惯性又叫惰性,是改变物体运动状态的难易程度,所以惯性又叫惰性.惯性大的物体,它的运动状态难改变,惯性小的物体,它的运动状态易改变.

(4)惯性不是力.不能说“惯性力”或“物体受到惯力的作用”.

(4)口溜:物体有惯性,惯性物属性;大小看质量,不论动与静.

36力和运动的关系

分析:在讲“力和运动的关系”时,这个力是指物体受到的合力,力和运动到底有什么关系?如果合力为零,那么物体就处于静止状态或匀速直线运动状态;如果合力不为零,那么物体就做变速运动;从而得出力是改变物体运动状态的原因,而不是维持物体运动的原因.

力和运动的关系

F合=0,静止状态匀速直线运动状态

F合≠0,加速运动状态,F与v的方向一致减速运动状态,F与v的方向相反

37摩擦力

两个相互接触的物体,当它们要发生或将要发生相对运动时,在接触面上产生一种阻碍相对运动的力,这种力就叫做摩擦力.

分析:(1)产生条件:从摩擦力的定义可以看出其产生条件有四个:①要相互接触;②要有挤压(即要发生形变,或有压力);③要有相对运动或相对运动趋势;④接触面要粗糙(光滑表面无摩擦力)而且四个条件同时具备,缺一不可.

(2)方向:跟物体相对运动方向相反(跟物体相对于接触体的运动方向相反),不是跟物体的运动方向相反.

(3)作用:阻碍物体的相对运动.不是阻碍物体的运动而是阻碍物体的相对运动.

对摩擦力的概念的认识中的关键词:“相对”二字,少了“相对”二字的说法就是错的.

38能量

一个物体能够做功,就说这个物体具有能量.

分析:①能量简称为能;②物理学中,能量和功有密切的联系,功是能量的一种量度.能量反映了物体做功的本领.不同的物体做功的本领一般不同.一个物体能够做的功越多,表示这个物体的能量越大.③能量定义中的关键词:“能够做功”.能够做功≠正在做功.

4电学部分

41半导体

导电能力介于导体和绝缘体之间,叫做半导体.

分析:半导体具有哪些特殊性质?

(1)热敏性:当环境温度升高一些时,半导体的导电能力就显著地增加;当环境温度下降一些时,半导体的导电能力就显著地下降.这种特性称为“热敏性”.利用半导体的电阻率[2]与温度的关系可制成自动控制用的热敏元件(热敏电阻).

(2)光敏性:当有光线照射在某些半导体时,这些半导体就像导体一样,导电能力很强;当没有光线照射时,这些半导体就像绝缘体一样不导电,这种特性称为“光敏性”.利用它的光敏特性可制成自动控制用的元件,像光电池、光电管、光电二极管、光电三极管和光敏电阻等.

(3)掺杂性:半导体还有一个最重要的性质,如果在纯净的半导体物质中适当地掺入微量杂质测其导电能力将会成百万倍地增加.利用这一特性可制造各种不同用途的半导体器件,如半导体二极管、三极管等.

(4)压敏性:有的半导体在受到压力后电阻发生较大的变化.用途:制成压敏元件,接入电路,测出电流变化,以确定压力的变化.

(5)气敏性:主要是半导体气敏材料需要在一定温度下对待测气体有足够的吸附,气体分子可以充分在气敏材料表面(及晶界)扩散,引起材料的热电阻变化,这时测量电路就可以测量的准确.简单的说就是不加热气敏材料不够“灵敏”,有待测气体时材料本身电阻变化幅.

42欧姆定律

通过导体的电流跟导体两端的电压成正比,跟导体的电阻成反比.

分析:⑴在讲这个定律时,一定要强调定律中的“隐含条件”.即前者是在“电阻一定时”,后者是在“电压一定时”.

⑵公式中的i、U、R具有同一性.即①对同一段电路;②对同一时刻.不能张冠李戴.

5光学部分

51光线

表示光传播的路径和方向的直线(用实线表示).

分析:光线是表示光传播的路径和方向的直线,其实,只有大小不同的光束,没有真正意义上的光线,是为了研究光的传播特点,借用了几何中的直线,属于建立模型法的研究方法.

52人眼看物体的原理

分析:在讲光的反射时,首先就必须知道人眼看物体的原理.

(1)必须有光进入人的眼睛,人才能看见物体;

(2)人眼看东西是按光沿直线传播的;

(3)人眼睛确定光源的位置时应用“两条直线相交有且只有一个交点.”

53特性与属性的区别

分析:属性是指事物在任何条件下具有的性质,是所有物质共有的性质.如运动是物体的属性,因为一切物体都在运动;质量是物体的属性,因为质量不随形状、温度、状态、位置等改变;惯性是物体的属性,因为任何物体、在任何条件下都具有惯性.还有长度、速度、温度等等.

特性是物质在一定条件下具有的性质.通常条件变化时,这种性质也会发生变化.如状态是物质的特性,因为状态与温度有关;熔点是晶体的特性,因为熔点与种类、压强及参杂等有关;沸点是液体的特性,因榉械阌胍禾灞砻娴钠压有关;密度是物质的特性,因为密度与温度、状态、压强等有关;比热容是物质的特性,因为比热容与状态等有关;热值是燃料的特性,气体料的热值与压强有关;电阻是导体的特性,因为有温度降低到一定温度时,会出现超导体.音色是发声体的特性,因为不同的物体发出的声音不同.

注:

[1]热惰性:就是指物体的蓄热和导热的一个基本关系.

[2]电阻率:某种材料制成的长1米、横截面积是1平方米的导体在常温下(20℃时)的电阻,叫做这种材料的电阻率.电阻率与导体的长度、横截面积等因素无关,是导体材料本身的电学特性.

参考文献:

[1]主编:彭前程,副主编:杜敏.《八年级物理》[m].人民教育出版社,2012.

[2]主编:彭前程,副主编:杜敏.《八年级物理》[m].人民教育出版社,2012.

[3]主编:彭前程,副主编:杜敏.《九年级物理》[m].人民教育出版社,2013.

生物质能的特点篇5

1根据学生实际,指导学生学习方法

1.1根据学生年龄特征及其思维特点,指导学生联系生产、生活实际、环境保护、医药卫生等理解化学知识。

1.2根据学生原有的知识水平,注意培养学生学习兴趣,启发学生思维,指导学生理解知识的方法即如何提出问题,多层次、多角度地分析问题的思路,如何通过知识的概括,领会知识的实质内容。同时还要注意根据学生的个别特征进行个别辅导。

2根据学生的学习程序,引入竞争机制

2.1指导学生课前预习,培养良好的自学习惯。

预习首先要逐字逐句阅读教材,边思考边动笔,把教材中的疑点和难点标出来,以便在听课时有的放失地听讲;其次要掌握本节教材的知识体系,注意把握知识点以及知识点之间的相互联系。

2.2指导学生学会听课,提高学习效果。

首先要保持良好的精神状态,要集中注意力,跟上老师的讲课思路,主动地思考、听讲,还要把教师所讲的重点、难点、典型问题的分析思路以及知识体系简要地记录下来。注意加深预习时对知识的粗浅认识,纠正原来的错误想法,改变学生上课不得要领、似懂非懂的现象,倡导学生敢于发表自己的见解,对有争议的问题展开讨论。通过举行化学知识竞赛和学习方法经验交流,提高学习效果。

2.3指导学生独立作业,灵活地分析和解决问题。

改变学生不复习书上内容、盲目做作业的习惯。应当先复习课本和笔记的有关内容,再独立完成作业,特别是遇到难题时,要树立信心,想方设法通过自己的思考解决问题,不要立即就问老师、同学;其次,指导学生学会审题,要抓住关键的字词,把所要解决的问题和所学的知识结合起来,理清解决问题的思路,用正确的形式表达出来。

2.4指导学生及时复习,巩固教材内容。

指导学生根据教师的讲解和教材内容,有条理、有重点地把知识归纳起来,并指导学生用科学的记忆方法,在理解的基础上记忆知识。例如对化学基本概念和基本理论采用“分层次重点尝试记忆法”即对记忆内容先分层次找出重点字词,再分层尝试记忆。特别对每章内容要通过进行分析、综合、分类、对比、抽象、概括,用提纲的形式进行系统的小结,加深对知识的理解和巩固。

3根据教学内容、教学特点,指导学习方法

化学学习内容可分为基本概念和基本理论。元素化合物知识、有机化合物的基本知识、化学实验和化学计算等进行分类指导。

3.1基本概念和基本理论。

要按照教学要求掌握概念和理论的实质,要让学生学会抓住关键字词理解其实质。例如“物质的量”和“摩尔”的概念。“物质的量”是表示物质所含微粒数目多少的物理量。(微粒可以是分子、原子、离子等)。物质的量的单位叫“摩尔”。每摩尔物质含有阿佛加德罗常数(约6.02×10^23)个微粒,因此“物质的量”是表示物质所含的微粒数是阿佛加德罗常数多少倍的物理量。通过1摩尔物质的质量叫“摩尔质量”,理解“物质的量”与“物质的质量”的关系,明确“物质的量”是联系“物质的质量”与“物质所含微粒数”的桥梁。再如,通过原子最外层电子数和原子半径等周期性变化来理解元素周期律。

元素化合物知识。要让学生领会物质的结构决定物质的性质,物质的性质决定物质的存在、制法和用途的内在规律,特别要注意同族元素在性质上的异同。

3.2有机化合物的基础知识。对烃类及其衍生物等按照同系物结构中,“官能团”的特征,揭示典型反应规律及表现的性质,例如将烃类中烷烃、烯烃、炔烃的结构特征加以对照,揭示反应性质的异同。

3.3化学实验学法指导在于指导学生操作、观察、思考、分析、归纳、总结的方法。在明确实验目的要求、实验原理、实验步骤及装置的基础上,学会基本操作方法。按照实验步骤从不同角度抓住恰当时机去观察,在观察过程中对观察到的现象思考分析,认真记录。并将其和所掌握的理论知识联系起来,还要学会得出实验结论并进行讨论,写出事实求是的实验报告。培养学生严谨、求实的科学态度和化学实验的操作技能,加深对化学知识的理解。

生物质能的特点篇6

一、教学目的要求

(一)要求学生比较系统地掌握关于细胞、生物的新陈代谢、生物的生殖和发育、生命活动的调节、遗传和变异等方面的基础知识,以及这些知识在农业、医药、工业、国防上的应用。

(二)通过生物学基础知识的学习,使学生受到辩证唯物主义和爱国主义思想的教育。

(三)要求学生掌握使用高倍显微镜,做简单的生理实验等的基本技能。

(四)培养学生自学生物学知识的能力,观察动植物的生活习性、形态结构、生殖发育的能力,分析和解释一些生物现象的初步能力。

二、确定教学内容的原则

(一)从学生今后进一步学习和参加社会主义现代化建设的需要出发,认真选取生物学基础知识:选取生物的结构和生理的知识。结构知识是理解生理知识的基础。生理知识是阐明生物的新陈代谢,生长、发育和生殖等的基础知识。因此,必须重视选取形态结构和生理的知识。

(二)选取生物学基础知识,必须做到理论密切联系实际。

1.选取生物学基础知识,要密切联系工农业生产实际。生物学是农业、畜牧业和医学等方面实践的理论基础,通过学习生物学知识,要使学生知道生物与生产的关系十分密切,应该利用和改造有益的生物,防除有害的生物。

2.要密切联系各地的自然实际。由于我国幅员广大,各地的生物种类有很大差别。因此,所选取的植物和动物,既要重视其典型性,又必须尽可能是各地比较常见的,以便学生可以直接观察到这些动植物和了解这些动植物的生活规律。

3.选取的生物学基础知识,要密切联系学生的日常生活实际,使学生加深对生物学知识的理解,同时更加深刻地认识学习生物学的意义。

(三)适当选取反映现代生物科学水平的生物学基础知识。

现代生物科学发展很快,生物课必须重视用现代生物科学的观点来阐述教学内容,并且适当地增加反映现代生物科学水平的知识内容,使学生对生物科学发展的现状有个初步的认识,为他们进一步学习现代生物科学知识和参加工农业生产打下必要的基础。

三、班级现状分析

本学期我任教高二(2)、(3)、(4)三个班级,三个班级人数分别为:46、45、46人,虽然通过班主任,我对个班的现状有了一点了解,但由于生物是从高二开始的起始课程,所以具体情况还不能下定论。

四、教学进度安排

高中阶段学习的生物学知识,是在初中生物教学内容的基础上进行的,学习生物的基本特征,侧重于生命活动的共同规律的内容。主要包括细胞、新陈代谢及其调节、生殖和发育、遗传和变异的知识。初中和高中两个阶段所学的生物学基础知识,既有所分工、又互相衔接,高中生物学是初中生物学知识的综合、概括和提高。

高中二年级开设的生物必修课(第一学期),每周2课时,共计34课时。讲述细胞、生物的新陈代谢、生物的生殖和发育、生命活动的调节、遗传和变异等生物学基础知识。

五、教学内容及其课时安排

高中生物必修课教学进度

单元

知识

学生实验

课时

要点

教学要求

项目

绪论

生物的基本特征

生物科学的新进展

高中生物课学习的要求和方法

b

a

a

2

生命的物质基础

组成生物体的化学元素

组成生物体的化合物

b

c

实验:显微镜的结构和使用;生物组织中还原糖、脂肪、蛋白质的鉴定。

2+1+1

生命的基本单位-细胞

细胞主要的亚显微结构和功能

细胞周期

细胞分裂

b

c

a

实验:

1.颤藻和水绵细胞的比较观察

2.植物细胞的有丝分裂。

生物的新陈代谢

光合作用的发现,光合作用及其重要意义

根对水分的吸收和利用

植物的矿质营养

动物的营养

呼吸作用

a

b

b

b

b

实验:

1.叶绿体色素的提取和分离

2.植物细胞的质壁分离与复原。

2+5

应激性和生命活动的调节

植物生命活动的调节

高等动物的激素调节

高等动物的神经调节

a

a

b

1+1+2

生殖和发育

减数分裂和配子的形成

a

2

具体教学内容如下:

绪论

生物的基本特征(细胞结构,新陈代谢,生长现象,应激性,生殖和发育,遗传和变异,生物与环境的相互影响)的概述。

生物学的研究对象和发展方向。学习生物学的重要意义。

说明:生物学的研究对象和发展方向,只要求学生作一般了解。

一、细胞

细胞的发现。细胞学说。原生质的概念。

细胞的化学成分:水,无机盐,糖类,脂类,蛋白质,核酸;上述物质特别是蛋白质和核酸的重要作用,构成细胞的化学元素。

细胞的结构和功能:原核细胞和真核细胞的区别。真核细胞的亚显微结构——细胞膜,细胞质(其中含有线粒体、质体、内质网、核糖体、高尔基体、中心体等细胞器),细胞核(核膜、核仁、核液和染色质)。细胞各个组成部分的功能。一个细胞是一个有机的统一整体。细胞的分裂:无丝分裂。有丝分裂——细胞周期;细胞的分裂期分为前期、中期、后期、末期,各个分裂期的细胞核结构变化的特点。动物细胞和植物细胞的有丝分裂过程的异同。有丝分裂的重要意义。减数分裂是一种特殊方式的有丝分裂。

〔实验〕用高倍显微镜观察植物细胞的有丝分裂,初步学会使用高倍显微镜。

说明:在《细胞》中,以下内容只要求学生作一般了解。

1.细胞的发现,细胞学说,原生质的概念。

2.内质网、核糖体、高尔基体、中心体等细胞器。一个细胞是一个有机的统一整体。

3.无丝分裂。减数分裂是一种特殊方式有有丝分裂。

二、生物的新陈代谢

新陈代谢的概念。同化作用和异化作用的概念。

绿色植物的新陈代谢:水分代谢——细胞在形成液泡以前靠吸胀作用吸水;细胞在形成液泡以后主要靠渗透吸水。渗透吸水的原理。渗透作用的概念。质壁分离和质壁分离复原。水分散失的方式和意义。

矿质代谢——植物需要的元素(大量元素和微量元素)。根吸收矿质元素的过程——交换吸附。植物对离子的选择吸收。矿质元素的利用。

光合作用——光合作用的重要意义。高等植物叶绿体中的色素及其作用。光合作用的过程(光反应,暗反应)。atp(三磷酸腺苷)的简式,atp与adp(二磷酸腺苷)的相互转变。

呼吸作用——呼吸作用与光合作用的本质区别。呼吸作用的生理意义。呼吸作用的过程(有氧呼吸和无氧呼吸的过程)。有氧呼吸的过程与无氧呼吸的过程的异同。

动物的新陈代谢:体内细胞的物质交换——单细胞动物与外界环境直接进行物质交换;多细胞动物(如哺乳动物)的体内细胞通过内环境与外界环境间接进行物质交换。

物质代谢——食物的消化(单细胞动物、低等的多细胞动物、高等的多细胞动物消化食物的特点。哺乳动物的消化过程概述)。营养物质的吸收(小肠在形态结构上适于吸收的特点,营养物质的吸收过程)。物质代谢的过程(糖类代谢、蛋白质代谢的过程概述)。

能量代谢——气体交换(单细胞动物和多细胞高等动物进行气体交换的特点)。能量的释放、转移和利用。高等动物在缺氧状态下通过无氧呼吸获得能量。

新陈代谢的基本类型:同化作用的两种不同类型(自养型、异养型的概念和特点)。异化作用的两种不同类型(需氧型、厌氧型的概念和特点)。

〔实验〕(1)观察植物细胞的质壁分离和复原。

(2)观察根对矿质元素离子的交换吸附现象。

(3)叶绿体中色素的提取和分离。

说明:1.在《生物的新陈代谢》中,以下内容只要求学生作一般了解。

(1)细胞在形成液泡以前靠吸胀作用吸水。渗透吸水的原理。*渗透作用的概念。

(2)根吸收矿质元素的过程——交换吸附。

*(3)植物对离子的选择吸收。

(4)呼吸作用的过程(有氧呼吸和无氧呼吸的过程)。有氧呼吸的过程与无氧呼吸的过程的异同。

(5)单细胞动物与外界环境直接进行物质交换。

(6)单细胞动物、低等的多细胞动物、高等的多细胞动物消化食物的特点。

三、生命活动的调节(4∶0)

植物生命活动的调节:生长素的发现。植物的向光性和向光性形成的原因。生长素的生理作用及其在实践上的意义。

动物生命活动的调节:高等动物的激素调节(甲状腺激素、性激素、生长激素的分泌部位和生理作用)。昆虫的激素调节(内激素、外激素的分泌部位和生理作用,昆虫激素在生产上的应用)。神经调节(神经系统的调节功能)。≤第一范文网整理该文章,版权归原作者、原出处所有≥

说明:在《生命活动的调节》中,以下内容只要求学生作一般了解。

*1.生长素的发现。

*2.昆虫的激素调节。

四、生物的生殖和发育(9∶0)

生物的生殖。生殖的概念。

生殖的种类:无性生殖(分裂生殖,孢子生殖,出芽生殖,营养生殖);有性生殖(配子生殖中的卵式生殖)。这些生殖方式的特点和概念。

减数分裂与有性生殖细胞的成熟:减数分裂的概念和意义。的形成过程。卵细胞的形成过程。受精作用的概念和意义。

生物的发育。发育的概念。

植物的个体发育(以荠菜为例):胚的发育过程,胚乳的发育过程。

动物的个体发育(以蛙为例):胚的发育过程(包括卵裂、囊胚、原肠胚各期),各种组织、器官和系统的形成。胚后发育。胚的发育与环境的关系。

说明:在《生物的生殖和发育》中,以下内容只要求学生作一般了解。

*1.生殖的种类。

*2.无性生殖和有性生殖方式的特点和概念。

*3.植物的个体发育(以荠菜为例)。

1.在高中二年级学习高中生物知识的基础上,以下内容要求掌握:

(一)生命的基础

细胞的化学成分——水,无机盐,糖类,脂类,蛋白质,核酸;上述物质特别是蛋白质和核酸的重要作用,构成细胞的化学元素。

原核细胞和真核细胞的区别。真核细胞的亚显微结构——细胞膜,细胞质(其中含有线粒体、质体),细胞核(核膜、核仁、核液和染色质)。细胞各个组成部分的功能。

有丝分裂——细胞周期;细胞的分裂期分为前期、中期、后期、末期,各个分裂期的细胞核结构变化的特点。动物细胞和植物细胞的有丝分裂过程的异同。有丝分裂的重要意义。

2.在高中二年级生物课中作为一般了解的以下教学内容,要求达到掌握:

内质网、核糖体、高尔基体、中心体等细胞器。一个细胞是一个有机的统一整体。

无丝分裂。减数分裂是一种特殊方式的有丝分裂。

3.〔实验〕用高倍显微镜观察植物细胞的有丝分裂,学会使用高倍显微镜。

(二)生物的新陈代谢(5∶2)

1.在高中二年级学习高中生物知识的基础上,以下内容要求掌握:

新陈代谢的概念。同化作用和异化作用的概念。

细胞在形成液泡以后主要靠渗透吸水。质壁分离和质壁分离复原。水分散失的方式和意义。植物需要的元素(大量元素和微量元素)。矿质元素的利用。

光合作用的重要意义。高等植物叶绿体中的色素及其作用。光合作用的过程(光反应、暗反应)。atp(三磷酸腺苷)的简式,atp与adp(二磷酸腺苷)的相互转变。

呼吸作用与光合作用的本质区别。呼吸作用的生理意义。

多细胞动物(如哺乳动物)的体内细胞通过内环境与外界环境间接进行物质交换。

哺乳动物的消化过程概述。营养物质的吸收(小肠在形态结构上适于吸收的特点,营养物质的吸收过程)。物质代谢的过程(糖类代谢、蛋白质代谢的过程概述)。

气体交换(单细胞动物和多细胞高等动物进行气体交换的特点)。能量的释放、转移和利用。高等动物在缺氧状态下通过无氧呼吸获得能量。

3.在高中二年级生物课中作为一般了解的以下教学内容,要求达到掌握:

细胞在形成液泡以前靠吸胀作用吸水。渗透吸水的原理。

根吸收矿质元素的过程——交换吸附。

呼吸作用的过程(有氧呼吸和无氧呼吸的过程)。有氧呼吸的过程与无氧呼吸的过程的异同。单细胞动物与外界环境直接进行物质交换。

单细胞动物、低等的多细胞动物、高等的多细胞动物消化食物的特点。

4.〔实验〕(1)观察植物细胞的质壁分离和复原。

(2)观察根对矿质元素离子的交换吸附现象。

(3)叶绿体中色素的提取和分离。

(三)生命活动的调节(2∶0)

在高中二年级学习高中生物知识的基础上,以下内容要求掌握:

植物的向光性和向光性形成的原因。生长素的生理作用及其在实践上的意义。

生物质能的特点篇7

【教学目标】

1.掌握主动运输的特点和实例。

2.掌握主动运输的特点和实例。

3.了解物质跨膜运输的方式与细胞膜结构之间的关系。

【教学重难点】

1.重点:

主动运输的特点和实例。

2.难点:

胞吞、胞吐过程的特点和意义。

【教学过程】

一、教学策略:

采用讲授与讨论相结合的方法,基本思路可以确定为:展示现象提出问题解释原理总结概念。

列举物质逆浓度梯度跨膜运输的现象,提出这些物质为什么能够逆浓度梯度运输的问题,进行解释,总结主动运输的概念(被动运输的概念也可在此对比总结),说明主动运输的意义。最后可让学生列表总结不同运输方式的特点。

二、教学中还应注意以下几点:

1.注意培养学生提出问题的能力,比如“问题探讨”中第3道讨论题,应该充分重视。第1节“被动运输”中已说明离子和小分子有机物能通过协助扩散顺浓度梯度运输,而本节“问题探讨”中的现象表明碘离子是逆浓度梯度进行跨膜运输的,学生可以就此提出问题。

2.可以采用比喻或类比的方法,以便于学生理解,如“逆水行舟”等。

3.注意联系社会实际,让学生通过搜集资料,了解与物质跨膜运输有关的疾病的研究进展,理解变形虫通过胞吞和胞吐过程的生活史,强化学生的个人卫生观念。

4.引导学生比较和总结三种物质运输方式的异同,进一步获得提升。

二、答案和提示

(一)问题探讨

1.可以看出,甲状腺滤泡上皮细胞吸收碘不可能是通过被动运输实现的,被动运输的重要特征之一是顺浓度梯度运输。

2.提示:和逆水行舟一样,甲状腺滤泡上皮细胞吸收碘需要细胞提供能量,来克服逆浓度梯度导致的浓度差。

3.提示:这种逆浓度梯度的主动运输并不是特例,它具有一定普遍性,因为某些特殊的细胞环境需要富集特定的物质。

(二)思考与讨论

1.胞吞、胞吐过程的实现不仅需要膜上蛋白质的参与,更离不开膜上磷脂双分子层的流动性,这些都与生物膜结构的特性有关。

2.附着在内质网上的核糖体合成的蛋白质主要为分泌蛋白,分泌蛋白需要通过内质网膜进入内质网腔,再穿过细胞膜在细胞外发挥作用,需要都有胞吞和胞吐过程参与运输。

(三)技能训练

1.和是通过主动运输进入细胞的。

2.和是通过主动运输排出细胞的。

3.提示:因为以上四种离子细胞膜内外的浓度差较大,细胞只有通过主动运输才能维持这种状况。

三、参考资料

1.生物膜对小分子的转运

细胞膜是细胞内与细胞所处环境之间进行物质交换的通透性屏障,物质进出细胞必须通过细胞膜。物质跨膜运输的方式与物质的大小及性质有着直接的关系。气体分子和小的脂溶性分子可直接穿过细胞膜完成运输,带电离子或大一些的分子需经由离子通道或载体蛋白协助进行运输。

这类蛋白在细胞膜上形成特定的孔道,并且这种孔道的开与关是可调控的。控制开关的机制之一是胞外的信号分子通过与通道蛋白的结合,改变这些蛋白的构象,使通道打开或关闭。这种通道称为配体门通道。另一种控制方式是细胞内或细胞外特定离子的浓度发生变化而导致膜电位变化,而膜电位的变化又导致通道蛋白构象变化,由此来控制通道的开关,此类通道称为电位门通道。例如,当胞液中游离的浓度增加时,一些的通道打开。通道开放的时间是非常短的,常常只有几毫秒,被运输的物质顺浓度梯度迅速穿过通道。不同通道常形成一个完整的系统,相互间协调,共同产生某一效应。

载体蛋白位于细胞膜上,它能与特定的分子和离子,如糖类、氨基酸,或金属离子等结合,将这些分子或离子从膜的一侧转运到另一侧。载体蛋白具有高度的特异性,一种载体蛋白通常只能转运一类分子或离子。载体蛋白与分子或离子的结合是可逆的,即它转运到一侧后,就会与所运载的分子或离子分离。载体蛋白的转运效率与分子在膜两侧的浓度梯度的大小有关。在协助扩散过程中,载体蛋白将物质从膜的一侧运输到膜的另一侧,不需要细胞提供代谢能量,因为物质是顺着浓度梯度进行运输的。例如,哺乳动物肝细胞上的葡萄糖载体,是一种横跨膜的蛋白,这种蛋白有两种构象,一种构象是载体的葡萄糖结合点面向细胞膜外侧,另一种构象是结合点面向细胞膜的内侧。这种蛋白可将葡萄糖通过膜向细胞内外两个方向运输。究竟向哪个方向运输,决定于物质在膜两侧的浓度。

2.生物膜对大分子的转运

大分子物质,如蛋白质、多核苷酸、多糖、胆固醇与脂蛋白形成的颗粒等,很难直接穿过细胞膜。这些物质通过与膜上某种蛋白的特异亲和力而附着于膜上,这部分细胞膜内陷形成小囊,将附着物包在里面,然后分离下来形成小囊泡进入细胞内部。这个过程称为内吞作用。吞噬泡或吞饮泡一般与细胞质内的溶酶体融合,逐步将吞进的物质消化分解。

与内吞作用相反,有些物质通过形成囊泡从细胞内部逐步移至细胞表面,囊泡的膜与细胞膜融合,将物质排出细胞。这个过程称外排作用。

内吞作用与外排作用属于主动运输,因为它们与其他主动运输一样,也需要能量供应。有实验证明,如果氧化磷酸化被抑制,巨噬细胞的吞噬作用就会停止,如果是糖酵解被抑制则无阻碍作用。内吞与外排作用的一个重要特征,是细胞摄入的或分泌的大分子被收入在小囊泡中,而不与细胞中其他大分子或细胞器混合。小囊泡快速地大规模地形成和融合,是所有真核细胞的特征之一。

生物质能的特点篇8

方特征的理论对宇宙红移、太阳系的观测特征、赫罗图、黑洞、地质演化等自然现象进行验证性分析,证实空间运动的哲学观点对客观物理事件具有强烈的解释力,从而证实了中国古典哲学中本已蕴涵着现代科学基本内容的逻辑基础。这同时也说明东方哲学的内容与现代科学的基本理论之间具有相互连通的逻辑通道。

主题词:空间性质产能机制引力板块动力

空间是一种具有无形无相认知特征的客观存在形式,用现有的科学手段难以直接地将其作为边界清晰、目标明确

的研究对象,因而运用观察、测量、实验的方法获得相应感性事实资料的有效性受到了硬性的制约。物理学发展为一门实证科学的整个过程所获得的全部关于空间性质的认识,在总体上存在着以下两个方面的缺憾:其一是所提供的事实资料在绝对数量上不足以构成涵盖空间主要属性的有效样本集,达不到归纳过程据以发挥创造性联想所需的最低限度,不可能在构建适用的空间性质理论过程中发挥应有作用。其二是紧紧束缚于各种事实中心点周围的关于空间性质的陈述,不能廓清空间这一实体的内涵和外延而难于脱离客观事实表象的规定性,无法为假设、猜想等思维活动的起飞提供有效和合理的客观基础。所以这些已有的关于空间性质的事实资料及对其进行简单理性加工形成的认识群,象散布于大海上的孤立岛屿一样相互间缺少关联,无法以空间这一最基本的视角形成简明有效的基本概念,去排列和阐明相关事实、建构出实用的空间性质理论。本来在无法获得直接观测结果的情况下,还可以通过分析空间与其它物理对象相互作用产生的结果的途径,间接地找到理性认识所必须的逻辑起点。然而,科学发展的历史却并不按理想的状态进行,也正是由于空间存在形式无法观测的这一特征,使得空间这一

客观实体在有史以来的物理学研究中往往不被当作物理过程的平等参与对象,空间自身参与物理作用产生的效果常常被先验地、不加分析地划属于参与同一物理过程的空间以外的对象,空间自身的属性在人们的观念中成了这些非空间对象的伪属性,空间自身却被剥夺得一无所有。因此,空间成了理性认识活动中一个明知存在却又不能清晰辩识的怪物。由于上述原因,在作为认识对象的空间客体与企图探究这一问题的好奇者之间形成了一条难以跨越的鸿沟。对空间这一特殊对象的理性认识活动中,最为困难的已经不是一般情形下由事实资料上升为理性陈述的发现过程,而是阻滞于建立对空间客体性质感性认识的过程,这项工作的现实难度使哲学认识的发展过程就此停顿。以往针对空间性质建立假说和理论尝试大体上有三种形式:要么为玄学或形而上学,处于理性认识自身营造的环境中不能自拔,与现实空间存在形式缺少对应;要么由于理论自身的内涵不能容纳客观事实的实证要求而被淘汰;要么由于理论过于繁难,不知所云而缺乏实际应用价值。相关于空间性质的理论与一般意义上成熟理论所应具有的内容充实、形式完备、适用边界清晰、实用性强的要求有着较大差距,写实地描述空间性质的理论图象始终没有出现过,人们不能象运用引力计算相类似的方法处理空间的问题。

但空间并不是不可以认识的自然对象,依据世界上所有事物之间都存在着普遍联系的这一观点看,空间的存在绝不会是孤立的,其必然与物质、能量等其它形式的物理对象发生着各种各样的作用与联系。这是自然界为我们寻找认识空间性质问题的突破点所插上的一块免费的路标。无论我们对空间与其它物理对象间的关系持什么样的观点,只要是将空间作为一个明确的研究对象时就会发现,它几乎是所有基础性的物理学理论和实验都回避不了的内容。由于这样的原因,近代物理学在对不同的研究领域,不同的研究内容,进行不同目的的观测和实验的过程中,实际上已经不自觉地获得了大量的相关于空间性质的事实资料,只是由于忽视了空间的客观存在所造成的作用效果界定不清、对空间基本概念和理解错误造成的事实性质判定不准两个原因,使得这些事实资料在目前的科学认识中被认为是无关于空间性质的内容而不能直接地用来说明空间某一方面的性质。现存科学事实的陈述形态也不是以研究空间性质的面目而出现的。想要利用这些科学事实阐明空间性质的问题,有必要在判定这些事实资料具有客观性的同时重新审视其陈述形式,从新的视角来确定其内涵、外延关系,剔除附着于其上的主观影响因

素,还其作为空间性质理论基本素材的本来面目。作类似的操作需要对已有的相关于空间性质的科学事实的实质有比较深刻理解的同时,还要对空间自身存在状态作出整体及宏观性的理性把握,以求新确立的理论框架能自洽地容纳科学及哲学两个方面的内容,从而使理论更加有效地逼近自然的真相。

单纯的数学方法作为研究工具所提供的空间模式并不是真实物理世界的描述。掺入物理因素形成的数理方法是对予设前提下过程的一种描述,其逻辑的完备性和过程描述的精确性不是理论的全部内容,只是理论的构成要件之

一。认识空间性质的逻辑起点在数理方法之前,所以逻辑起点的构建才是空间性质理论这一特殊对象的基础和核心。数理方法的合理性和表达力取决于这个逻辑起点的涵盖性、科学性以及规范性。如逻辑起点构建的合理,则数理形式就会有相对简洁的特征;如逻辑起点的内涵不科学或不合理,则命题表述就会以复杂的数理形式出现。所以简洁性历来是理论选择性判别的一个基本原则。这里想着重说明的是:所谓简洁性是指理论的数理形式及数理形式运行过程的可操作性两个环节均应具有直观、简单和有效的特征。形式的简洁不代表运行过程可操作性的简洁,这两个方面中的任何一个方面不具有简洁性,则就标志着概念的理论规范工作做得不够完美,毕竟本质对于现象而言是简洁的。

空间性质的研究直接地是自然观的一个组成部分,作为认识对象其内涵和外延均涉及较广泛的内容,单纯地以数理形式对这一命题内容进行研究,其涵盖性及表述能力远没有哲学形式更为有效。在数理方法之外哲学对存量知识进行综合、抽象的优势研究方法,可以尝试作为研究工具直接介入到空间理论框架的建构中来。运用哲学研究所擅长的思辩功能,对二十世纪科学提供的素材进行不设前提的深入思考和加工提炼,也许能够创造哲学与科学

再次融合的成功范例。将哲学引入这一问题研究的另外的原因是:①空间性质研究需要宏观的视野和理性的综合;②自亚里斯多德以来,空间就是哲学所关注的内容,关于空间性质的理性思考大多数以哲学论述的面目出现于哲学著作中;③空间感性认识过程本身的特殊原因(存在形式)。

东方哲学对自然规律宏观的、形象的描述与现代物理学对自然现象的许多理论解释有着形式和内容的相似性(比如阴阳的概念),这一事实已经引起近代和当代国内外许多科学家及哲学家的充分重视。只是由于非中文基础的研究者对中国文化理解的局限以及中文基础的研究者对古代哲学与科学关系的错误观念,迟滞了东方传统哲学与西方哲学基础上发展的主流科学之间在本质上的交流、融合进程,没有发展出新的具有杂交优势的科学成果。东方哲学与现代科学对自然现象的相似性描述可以肯定地说,并非完全是一种认识结果的偶然巧合。它证明了一种观点:即比类取象的认识方法对宏观现象的本质性的理解有着独特的效果。对现代自然科学而言,东方哲学关于自然的理解无疑是提供了一种全新的认识视角。借鉴宏观摹写自然规律这一全新视角,并以现代科学理论及其认识论作为重新审视、诠释传统哲学内容的方法,对空间性质及其与其它作用对象间的相互关系进行逻辑表述,也

许会成为认识自然存在的新方法,从而产生新的符合科学规范的有效认识。

1.空间客观性质的哲学证明过程

《易经·系辞》中“易有太极是生两仪,两仪生四象,四象生八卦”的论述以及卦爻的结构方式包容着建立空间性质理论感兴趣的两条自然规律:其一是已经成为现代科学以及哲学基本法则的阴阳对立观念。这一观念在高度抽象地、理论性地刻画宏观自然规律的同时写实地描述了电子等粒子的电性对称。其二是《易经》提出了一种解释物质存在和发展规律的三层结构模式,客观地表述了自然界的生成和发展过程。同样的物质生成发展思想也出

现在《道德经》中:“道生一,一生二,二生三,三生万物,万物负阴而抱阳,中气以为和”。可以注意到其生成层级的数量描述同为三。两种理论描述的关于物质创生的模式都是在既存背景基础上连续发展的动态变异。它不是一种存在形式的出现以另一种存在形式的消失为代价的交换过程,事物由简到繁发展的过程是在同类基础上进行的反复叠加,在新生成的异类中包容着旧有的存在形式,新旧形式相互将对方作为共存元素构成系统。同一事物整体与局部的上下级之间由于至简原则的制约有着全息模写的对应关系。佛教经典《般若波罗蜜多心经》中有:“色不异空,空不异色。色即是空,空即是色”的理论陈述。其主要含义是说自然界(或物质)与空在本质上是同一种存在形式。用现代科学的理解、译介这些沉淀在我们民族潜意识中的智慧晶体时,首先碰到的问题是它们究竟说的是什么?阴阳的概念由于现代科学知识的普及在中国人的观念中已经与实指的科学概念(如正负粒子)相融合而可以无障碍地接受。《道德经》的数字“一二三”显然不可以理解为毕达哥拉斯数本原式的对自然界的认知和描述,作为存在于本原规律(道)与万事万物之间中介环节的“一二三”不仅仅是数字,而是代表了

三个层次的具有本原色彩的、性质特征可以类比的、相互联系着的事物,由于古人的表义符号系统与现代科学的复杂的表义符号系统不同,原著对此又没有做进一步解释,其意旨我们现在无法了解。同样地,释迦“空”这一概念的原始含义究竟是指空间还是空无,其意旨我们现在也无法了解。但只要是把宇宙或物质的创生过程作为描述对象,则可以用运的基本构成要素毕竟只有有限的几种,内容正确但表述不同的理论之间必然可以找到相互融通的逻辑通道。我们将现代科学已经建立的完善的陈述系统与东方哲学理解自然现象的内容及其逻辑形式强行进行综合或者说嫁接,将上述兼有东西方特色的、纵跨古今的、对空间性质的认识作为研究空间性质的基本假设,则有:

能量与物质是同一客观存在实体——空间的异化表现形式;空间凝聚则成能量,能量凝聚则成物质;三种存在形式的动态指向是自然界规定性的演化顺序。

我们将上述假设称为空间性质的同一性假设(简称同一性假设)。所谓同一性就是说空间、能量、物质三种存在形式在本质上是同一个客观实体,外在特征上的不同是且仅只是聚集状态的不同;自然界三种存在形式之间存在着的动态变化也就是空间密集程度的不断变化。三种存在状态在所知自然界的由空间聚集产生能量进而由能量聚

集产生物质的演化顺序,不是任意发展的,而是有着明确指向以强规律的形式发展的。

由于在一般物理作用中康德称之为感性纯直观的时间和空间有着相似特征的缘故,牛顿以后的物理学已经根深蒂固地将时间和空间归为一类,常用时空的联合概念来为物理过程提供背景,在天文观测中甚至以光速为基础将二者当作一个可换算的量。正是这一看似合理的分类造成了对空间性质理性认识的逻辑困难。常规观念中时空同一的概念割裂了现实世界中空间与非空间事物的本质联系。时间和空间两种在本质上不具有类比性的物理对象的并

列,诱导人们将空间视若无物,放弃了对空间物质性特征及其与其它对象相互作用的关注。对于自然的三态存在而言,如果我们剔除了时间的因素,则这种存在的形式没有任何改变。但如果在存在关系中剔除了空间因素,则存在状态就无法想象[1]。这个事实说明将空间划出三态结构与时间并列是对空间性质了解不足的表现。有鉴于此,将空间、能量、物质当作统一实体描述的同一性假设,提供了以分析空间、能量、物质的相互关系作为基本出发点进而研究空间性质的理性认识基础。

自然存在的空间是物质、能量存在的背景、条件和本源,因而空间是具有更加本质意义的存在形式,能量次之,

物质再次之。由此形成了一个物质、能量、空间三态存在本质性的序列关系。这一序列阐述了自然界进化形式的发展特征。空间作为能量创生的背景和本源其自身已经是最本质的存在,因而否定自外于空间的其他本源和背景的存在,所以能量被无可选择地包容在空间中;空间的存在先于能量,空间必然独立于能量。能量作为背景和本源的特性有别于空间同一特性的是——能量只是空间内属的存在物——它不可能整个地充满空间,所以能量在空间中必然是有界的存在形态。同时空间独立于能量的存在特性在任意能量存在的边界之外提供了与此相同条件,能量的存在就不能排除与此完全相同的另外的存在,换句话说就是能量的存在不是唯一的。以能量作为观察问题的立场,对此作出表述就是:能量是不连续的,因而它与空间之间必然是有界的。由空间能量依存关系相同的道理推论可知,能量与物质的依存关系为:在能量背景基础上生成的物质不可能独立于能量存在;相反能量可以独立于物质而存在(即电磁辐射)。在客观现实中物质不能有独立于能量的存在这种依存关系表现为:一方面物质自身就是能量历史的积累;另一方面物质总是能量的载体。电磁辐射可以看作是物质边界以外的能量,这是其作

为物质存在背景有自外于物质存在边界的证明,也即是其存在本质性的证明。这也造成这样的存在状态:除电磁辐射外物质与能量总是以相互伴生的面目出现。而且由于物质不能脱离能量存在的规定性使这种依存关系表现得极为明显,常使人将两者看作是相互平等且相互作用的物理对象。空间和物质的关系可由空间和能量、能量和物质的逻辑从属关系获得解释,显然物质不可以独立于空间存在,空间可以独立于物质存在。

总而言之,空间、能量、物质的依存关系可以表述为:物质和能量不能脱离空间而独立存在,空间能够脱离物质

和能量独立存在;能量能够独立于物质,但不能独立于空间存在;物质不能脱离空间和能量而独立存在。所以存在独立性与本质性在这里是内涵相同的两个概念,它们均源于创生关系。对自然界三态存在形式的关系进行实际的考察,不难取得三态依存关系理论的有效和直接的事实证据。自然界空间不断地转化成能量,进而转化成物质这种生成秩序维持着宇观系统、微观系统的能量支出及其结构的稳定性。光子的运动若没有这种生成秩序作为其不向空间方向转化的保证就不会保持稳定,存在着自动消解为空间的可能性;物质如果没有能量增生维持着电子自旋等结构稳定的需求就会向能量方向转化而解体。在三态转化的过程中,空间是最为活泼的存在状态;而物质是终态存在形式,是空间和能量运动的结果,也就是最为稳定的存在形式。对于存在形式的动态系统而言,质量和能量的守恒都是对各自形态封闭层级上稳定性的一种表述,超出这种封闭的系统,意味着能量和物质都不会守恒——质量有可以观测到的增加,能量则处于一种动态的转化过程中。空间和物质相互关系在这里提供了的能量和物质质量的定义,它是以空间为背景或计量起点的空间聚集量的同意语。可以说由此我们得出的能量和质量概

念是绝对能量和绝对质量的概念。

对于三种的存在状态而言,主要有三个可以描述的特征:①连续性:指空间域内任选点间均可以找到不超出该域的路径相连通的特性。②均匀性:指自然存在空间的存在特征处处相同。③简洁性:指存在形式具有单一的、有效的和直接的特性。如果定义理想性的含义为:指称对象的存在和作用具有最高形式的均匀性、连续性、简洁性特征。那么,以存在状态来说,空间是最理想的形式,能量次之,物质再次之。造成这一现象的根本原因是,从空间到物质的每一次异化所提供的新的存在形式都是在原有存在形式上的叠加,因而也就是存在形式的复杂化,连续性以及均匀性都向远离理想状态的方向发展。以三态间相互作用的形式来说,由其理想性决定了一个不同存在状态之间相互作用的理想性序列:空间和能量(光子在真空中的运动)>物质与空间(有质量的粒子在真空中的运动)>能量与物质(热传导、电传导)>物质与物质(流体运动)。这个序列内涵的一种判别方法是参与作用的所有对象的异化次数之和较小的作用形式相对而言理想性较高。以本体的属性而言,三种存在状态属性的理想性也具有类似的排列。以上即是关于空间性质及其在三态关系中作用效果的理性表述。这些内容本身是客观性

的,只是其认识的抽象程度更高而适合于哲学性描述。由此可以逻辑地推论得出以下成为物理学范畴的空间性质:

*物质性:

由三态同一性假设可以推论:由于能量、物质是空间这一客观实在的异化表现形式,且三态存在的转化是一种连续的发展过程,而非断然的变异(而且在转化过程中互为存在背景)。所以三态中的任何一种存在形式,必然蕴涵着其它存在形式的属性,只是其表现的形式有理想性程度的差别。必然地空间具有与物质相同的某些属性。空间的物质性是空间在异化为物质的历程中保持着的空间自身的属性,因为这种属性在空间和物质中都可以发现,因而称做空间的物质属性,不是指物质属性向空间的反向延伸。如空间拥有可测的介电常数、光子以恒定速度在真空媒介中运动。

*运动性:

由连续性和空间同一性假设联合推论:空间不可能以撕裂等破缺形式转化为能量而消失,缺失的部分只能由相邻物空间给予补充的唯一形式就必然会造成空间实体此一局部与彼一局部的相对运动。空间之所以可以运动是由于我们已经将空间从空无的观念形态中寻找出来,并恢复了其实体物质的固有属性。空间的运动也就有了逻辑的基础。从一般意义上说,空无的存在状态本身是无所谓运动和静止的,“存在”这一哲学概念是划在空无与实有相

互边界上的判据。历史上人们为了客观地描述空间的实在性,避免空间作为异己或外在的存在形式给人带来的不可知特征,曾提出了各种各样的描述,其中中国古典哲学中“气”的概念以及西方近代“以太”的概念都有效地描述了空间的物质性,只是由于不知道如何将这种物质性与其他物理常识逻辑地联系起来,被掩埋于错误观念的历史封尘中。据说以太概念是由于迈克尔逊—莫雷的实验结果才被否定,实际上这一实验所说明的是空间的物质特性与空间的运动特性具有相对独立性,同时空间存在的理想性不等同于我们所知物质或能量的理想性。

*刚性:

在存在形式上空间已经是最高形态,它与物质和能量的区别是没有独立于自身的外在存在背景,或者说是空间以自身为存在背景的。这就可以推论,当我们承认空间是均匀的这一基本的原理时,也就等于承认了空间没有局部的稀薄化或稠密化。空间具有物质性就等于是说空间的存在是有即存量的概念的。这个量的概念不是数学上的概念可以人为地设置增减变量来表达一种发展的趋势。现实世界的即存量的改变,是要相关系统的相互作用才能实现的。空间即存量的增减如果没有找到相关系统的改变足以抵偿这种改变的事实依据,则其结论就是违反基本逻辑的。上述两点推论的明确结论是只要空间具有均匀而稳定的存在形式,也就是说空间具有绝对的刚性。空间大爆炸理论就是一个缺乏哲学底蕴的理论,因为消散和稀薄化是物质的属性,这种动态过程的背景和参照是空间,空间扩张应该需要物质的补充,由此形成的宇宙结构应具有可观察物质组织消解的特征,这与普遍存在的物质状态基本特征不符。

*广延性:

空间的广延性是指能够被人为设定的坐标体系描述的空间的可测度特性。广延性是由于空间的连续性没有方向的限定所表现出的一个特性。由于物质及其运动的原因使人们的理解有了外延于物质的条件,于是空间的广延性成

为进入人们感觉世界的唯一特性。真实的自然空间是没有超出其范围的事物的。

2.空间性质哲学解释的数学模型化描述

物质是异化的空间形式,区别于空间的特征是其存在形式有形有相。有形就是有可观测的特征,拥有一定的体积。也正是这种可观测特征使空间和物质的关系显化,空间因为物质的这种存在特征而可以被物质提供的尺度所度量。目前物理学已有的关于空间的度量形式(如体积和位置等)都是物质度量形式向空间的延伸。物质的存在为物质与独立存在的空间划上了一条明确的边界。在这个边界之外是纯粹意义上的空间。边界之内是纯粹意义的物质,物质内部的空间已经成为物质的属性——体积——这是空间异化为物质过程中所保留的自身属性,由于物质自身可感知的原因被显现出来。空间向能量的转化造成了空间的收缩运动。空间的收缩可以发生在空间自身范围(如微波背景辐射),同时也可以发生在能量存在的范围,或者发生在物质的内部。我们从纯粹空间的存在角度考察空间收缩的数量关系,即建立空间存在量与收缩量之间的数量关系时不难理解,在空间存在均匀性作为规范前提下的空间收缩必然会具有处处相同的观测特征,空间没有内涵任何不同于其它点的特殊点表现出优先或滞后

的收缩倾向。这种观测特征表现在量上即为所有空间点的产能量处处相同。由此可知产能的数量与空间的既存量呈正比例。对于能量和物质内部的空间收缩而言,可以将物质和能量视作是空间量的历史积累值,所以在能量内部空间的收缩要比空间自存状态的收缩表现的强烈,而其在物质内部的收缩则是最强烈的。对此还可以引入透明度的概念,空间对其自身的完全透明的,而对绝对密实的物质则是完全不透明的,不透明的物质对空间有阻断作用,由此诱发空间恢复其连续性的运动,则透明度正相关于空间的收缩强度。

这里主要研究物质内部空间收缩所造成的空间运动效应。对于空间的运动给出什么样的度量这是研究空间运动效应的基本问题。由于空间存在无形无相的特征无法为空间的度量提供设定基准、相互比较等技术操作方法,且空间存在的均匀性和连续性不提供任何可分割的依据,所以从空间自身是无法给出关于空间的度量的。现实中空间的度量所依据的是物质在空间中的可见形式,是物质度量特性在空间的延伸。

球体是宇宙间物质的普遍存在形式,这一形式自身也是空间运动的产物。以球体物质系统为例描述空间运动的宏

观效应,可以较好地说明宇宙间物质与空间运动的关系。如果我们将物质的存在及其相关的空间独立地划作一个系统,则可建立用于描述空间和物质相互作用的理想物质系统模型(如图1):设虚线的位置距地心足够远,空间在此处的运动的速度小于特定的微量而可以忽略不记,则认为物质系统在虚线的位置运动速度为零,称虚线为物质系统的外边界。具有外边界的物质系统定义为理想物质系统。真实的物质系统将不具有运动速度为零的外边界,所以上述理想物质系统是对真实物质系统的近似,由此所获得的理想物质系统的表述也相应地是对真实物质系统的近似。

p

图1地球物质系统中物质的运动模型

以下我们用数学方式对空间运动描述的有效性和精确性作为基本方法,建立与现代物理学的关系,以此证明空间性质哲学论证的正确性。首先明确以下数学表述的前提:

*如果物质的既存质量随时间的变化较为缓慢时,可以认为在研究空间运动所选定的时间跨度内(如千年、世纪),空间的运动是只相关于物质存量的定常流动。

*空间的三维存在特性要求在空间性质的研究中采用体积(线形量的立方)作为描述空间运动的基本度量形式。

*物质边界内不再是纯粹意义上的空间,所以空间的运动将不存在(速度为零)。

*描述空间的运动需要引入时间参数,在习惯的观念中存在是一个时间概念。实际上存在首先是一种形式,当我们讲述一种存在时往往是说他的形式而抽离了时间概念。当我们讲述运动或变化的概念时才用到时间的概念,所以说空间的运动是时间的原因。如果没有空间的运动宇宙间将没有物质的运动及变化,没有运动和变化也就不会有时间的概念,或则说没有时间的存在。所以说时间只是空间运动的属性,在这里为了简化研究对象假设时间是独立于空间的一个参数。

若以空间的体积度量指标描述单位时间内流入物质的空间数量规律,则显然有:

*物质存在的形式决定了空间运动是围绕球体物质的、具有数学理想特征的球形空间流场。

*理想的物质球体的质心是一个特殊点,空间从所有方向均布指向质心的结果是空间运动在质心的相互抵消(虚拟状态),空间的运动将以该点作为参照点。

*空间运动的状态正相关于物质的存量,即相同的物质存量在相同的时间内,所吸收的空间量相同。

由此不难推论:空间从虚线位置开始到物质边界为止的运动是相对于质心的理想的匀加速运动。所谓匀加速运动是指从物质理想系统的外边界到物质边界的整个运动中,空间以体积量为度量的加速度具有恒定的数值,且数值

与物质质量成正比例。为研究空间运动过程,标定一个随空间运动的虚拟点p。则以质心为圆心过p点的同心球面的运动,就等价于同心球面所围空间被物质逐渐吸收消失所造成的运动。满足上述前提的空间运动的数学描述是:

gv=4πh2g(1)

其中gv为以体积度量的空间运动加速度(m3/s2),它不同于空间框架下有体积存量物质流体的匀加速过程描述方式。t为空间消失的时间(sec)。h为物质系统内任意点距质心的距离(m)。g为相应距离点的线形加速度(m/s2)。在目前物理学观念中,重力加速度随距物质质心距离的平方反比变化,就是将gv转化为线形量表示的结果。

考虑物质表面具有特殊性,建立空间运动在物质表面的运动描述,由式(1)得到:

d2v/dt2=4πR2g0(2)

其中,V是过p点的同心球面所围空间以体积度量的数量(m3)。t是从边界开始记录的时间(sec)。g0是空间流入球体物质表面的最大线量速度(m/sec),等于物质表面最大加速度和一个时间量的乘积。R为物质球体的半径(m)。

对于上述物质与空间的运动体系,可表述为以点p为表征的空间流动的线速度,则其速度值是位置的函数。由

此解析空间运动速度、加速度与位置的关系可建立物质球体周围空间的理想流动方程。在空间任选点,距物质中心为h。以h为半径的空间球体体积V的改变写作线形表达形式代入式(1),并对时间微分得空间速度、空间加速度、物质的位置三者的关系为

h2g+2hν2=R2g0︳h>R(3)

其中g是任意选定点空间运动的线量加速度,v为该点空间运动的线量速度,g0是空间在物质球体表面运动的线量加速度,三者均指向质心。式(3)揭示了在物质系统系统中,任意选定点的空间运动速度、加速度都可以表示为空间位置的函数。即在任意选定的空间位置,都有相应的空间运动的速度、加速度数值。空间作为其自身的存在形式在其越过物质边界的瞬间将不复存在,因此当h=R时,空间的运动亦不复存在,其表述形式即空间运动速度为零。因此式(3)是一个间断函数,只在h>R的范围内连续。空间在其流入物质内部后虽然作为空间的运动形式不存在了。但其具有物质属性的原因,作为物质仍然发挥着特殊的作用。式(3)是物质系统中空间运动的基本方程,揭示了空间运动的一般形式,而与目前物理学的内容相同。

建立了物质存在决定的空间运动场之后,以下研究空间运动场中的四种现象:

a.物质相对于运动空间静止的运动

空间与物质之间相对静止的含义是引入空间场的另外的物质与空间场自身相对于引起空间运动物质的质心两者的运动速度相等,即物质系统中物体p的运动完全等同于空间的运动。将式(1)积分,整理并用线量代替体积量可得:

h3/t2=3/2R2g0(4)

其中h为物体p所在位置与质心的距离。R是物质的半径。g0是空间运动在接近物质表面时的最大加速度。t是物体p所在位置到地心的空间运动时间。式(4)描述的是物体从远离质心的位置下落所遵循的规律,是物质随空间运动

的理想落体方程。在这一过程中物体不受力的作用。

物体作圆周运动基本条件是离心加速度等于向心加速度。如果t为一个物体在距质心一定位置绕质心作圆周运动的环绕周期,则由式(1)和圆周运动加速度的定义式经过推导可建立其与落体时间的关系:

(5)

将式(4)和式(5)比较则有:

t2/t2=6π2(6)

式(5)即是从空间运动的前提出发,获得的理想物质系统的开普勒第三定律。物理意义显然是描述了过理想物质系统任意点且以物质质心为圆心的封闭球面运动物体的运动规律。式(6)是圆周运动条件(离心加速度和向心加速度相等)的另一种写法。

B.惯性力与引力的区别与联系

考察运动物体与其上放置小球所组成的系统(图2)。当物体加速运动时,小球会向物体运动相反的方向滚动。经典物理学认为这一现象是小球受到了惯性力的作用,而这是一种找不到施力者的虚拟力。

图2运动物体与小球系统

虚拟的惯性力与引力之间没有任何实质性的可区别的作用特征。这种描述有一种将事物本质联系割裂的感觉。用空间运动论的观点解释这一现象可以得出以下结论:将空间和物质作为运动过程中平等的参与者,空间相对于物质与物质相对于空间的加速运动应具有相同的效应。引力即是加速运动空间对存在于该空间物体作用结果的显示;而惯性力是主动运动物体相对于空间加速运动产生的效应。这就是说,力是空间和物质的相对加速运动产生的

作用效应,惯性力和引力仅由于参照系选择的不同才分别给出了两种力的不同定义,没有本质的区别。牛顿万有引力定律所表述的就是空间运动对于物体作用的结果,牛顿第二定律所表述的惯性力就是物体自身运动作用于空间所产生的结果。由于在人类认识发展的历史上还没有发现两者之间内涵的一致性,将惯性力与引力看作了两种具有不同特征的作用力。如认为空间的作用是系统响应的原因(小球运动),则惯性力只是物体相对空间加速运动时空间对小球的作用。引力质量与惯性质量高精度相等这一现象即有力地证明了引力和惯性力是同一种作用以不同立场得出的结论(分别认定物体和空间作为运动对象)。由于此前的物理学不加论证地假定空间是静止的,因而对万有引力的作用方法和性质都无法给出事实以外的、富余逻辑的解释。忽略空间的物理存在及其对物质作用前提得到的引力作用被认为是一种由物质出发到物质的超距作用,对这种力究竟如何传递这一问题就有了光子传递引力的近乎玄学的解释。建立了空间运动的概念后引力的传递方法和过程就可以进入理性认识的范围。由此也可以合理地解释引力能够被运动所抵消这一物理事实的含义:空间加速运动对物质的作用效果等同于物质相对

于空间的加速运动的效果。

C.空间相对物质加速运动

经典物理学清晰地辨析了引力和惯性力的不同,实际上就是将相同作用形式在不同参照系描述产生结果所表现出的细微差异给出了区别,这就将一个最有可能影响其体系完整性的因素在自觉与不自觉之间有效地排除了。牛顿第二定律给出的关于物质运动和力的关系实际上是物质和空间作用关系精致的数学描述,可以看作是对实际的空间结构及其与物质作用关系进行理想性抽象得到操作模型系统后,用实验方法确定的物质与空间相互作用效果的定量关系。之所以说牛顿第二定律是理想的操作模型系统,是因为其成立预设了以下的前提:

*空间相对于物质运动的参照系是静止的;

*空间独立于物质的存在,不参与物质的运动过程;

*运动过程产生的所有效果只相关于物质,而与空间的存在无关;

*物质在空间中的运动速度不至于使我们感觉到空间流速场的等速曲面的影响;

*在选定的物体运动范围内,空间的性质处处相等。

理解了牛顿第二定律的上述预设前提之后,就可以将牛顿第二定律的观念扩展运用于考察物体p在地球理想物质系统行为。相对地球质心静止的物体p若以空间作参照就必然相对于空间作加速运动,因而产生力的作用效果,由式(1)可得:

F=mR2g0/h2(7)

其中F是引力力值(n)。由前面的论述可知:恒定的物体质量获得恒定的表面加速度,加速度与物质质量成正比,若G0为比例常数,则:

4πR2g0=G0m,令G=G0/4π,

则式(1)可表述为:

F=Gmm/h2(8)

式(8)牛顿万有引力定理可以由其第二定律无任何假设地推导出来。引力随距离变化采用平方反比衰减的方式就是空间球体运动的结构特性在万有引力定律中的反映,这就可以圆满地解释万有引力的平方反比率的由来。引力

常数(G)的含义可以解释为:单位质量物质所能引发的空间流动在物体表面的加速度值,其单位的量纲对此结论是一个有效的证据,只是目前引力常数与此常数差4π因子。

牛顿第二定律提供了绝对质量的有效测试方法,由加速运动过程测出的可由长度和时间标志的物质质量数值是绝对质量。质量不再是密度和空间占有量的关系常数和纯粹物质自身量的相互比较,质量是物体运动过程中空间与物体相互作用所产生效果的一种具体的表征,由此可以建立运动和重力联系,进而由此出发研究空间的运动。如果没有空间和物质的这种作用,物质将只有可以测量的体积,而没有可测度的质量。因而质量归根到底只是物质与空间相互关系的度量。在现有观念中把质量看作只是物质自身的属性,原因是不懂质量的根本意义。

D.理想物质系统中近地表空间对物体的作用

在近地表运动距离较短时,g=g0为常数,自由落体可视作任意点初速度为零时物体随空间的运动。这时物体的运动速度不等于空间的速度,运动过程中仍受空间的作用。物体运动遵循规律是:

h2dh/dt=R2g0t(9)

整理并略去小量得:

V=g0t(10)

其积分形式便是伽利略斜塔落球实验所求证的结果,自由落体等同于匀加速运动。

由于式(1)在地表是间断的函数,结合式(10),从空间方向逼近地表可得最大空间运动速度:

h2dh/dt=R2(dh/dt+g0t)(11)

整理,当hR时,

Vmax=(1/2Rg0)1/2(12)

代入数值Vmax=5.587km/s,此即流入地表的空间速度。显然式(12)适用于所有天体系统。物体运动的切向速度等于径向速度时为正圆周运动,由此合成的环绕速度为:

(13)

其中V1为第一宇宙速度。

以上四个方面的表述并不谋求给出经典力学定理新的数理推导,而是希望籍此证明空间性质新的哲学解释在具体应用中的可能性,并用数学推导过程完备的逻辑来检验空间运动论所提供的这种哲学观念的正确性。如果承认上述推导过程所证明的空间运动理论提供了此前物理学所没有的内在逻辑的和谐性和简洁性,使的牛顿第二定律、开普勒定律、万有引力定律之间的相互关联剔除了空间运动假设以外的所有其它主观假设,就应该从理论判断方法的角度承认空间具有受物质作用而产生运动的特性。上述推导过程直接应用了牛顿力学中的速度、加速度、动量等概念而没有重新定义,显示了空间运动理论可以兼容经典力学的所有方面。建立动态空间的观念就可以清晰、完整地理解开普勒第三定理、牛顿第二定理、万有引力定理、加俐略落体实验等经典理论内涵的哲学统一致性,并对其数学的结构形式、常量、适用范围等作出合乎理性的解释。

3.空间性质哲学描述所蕴涵的新的宇宙观

自然界凡物质聚集的地方均存在着不同程度的能量释放过程,例如恒星辐射、星云红化、太阳系行星及卫星均含有内部热源等。天文观测中质光关系的发现更进一步地为这一现象提供了定量的表述。从空间同一性的观点出发宏观地解释这一问题所得到的结论是明确的:伴生于物质存在的能量过剩现象是空间凝聚产能导致的结果。空间在异化为能量与物质之后已经有三种具体的存在形式,这为空间的收聚产生能量提供了三种不同形式的场所,即空间收聚产能分别在空间、能量、物质的内部发生。在空间场所发生的空间产能现象,如宇宙空间的无源x-ray等高能射线爆发、微波背景辐射等都是这一现象的理想侯选对象。空间在能量场所的聚集目前无法观测,因为我们无法对光子或电磁波在统一地点作两次能量变化的测试,对此高能物理的研究也许会提供光子或电磁波在空间的运动中会得到能量的补充证据。相比较而言在物质场所空间聚集产生能量的过程是最容易发现和证明的。对宇宙间普遍存在的能量过剩作空间收聚产能的解释,要比目前通行的核能解释合理和有效。由于以往物理学所知道的产能方式有限,将无法理解的自然过程统统装入了核能解释的口袋。对其解释逻辑上的致命缺陷只能采取视而不见的态度:物质释放核能必然要带来引力持续减小的后果,引力数十亿年持续减小积累的结果对于一个星系发展的历史而言,会造成星系的结构消散的现象,这与星系普遍盘卷、收聚的有序化、组织化的观察特征不相符。相

反,能够合理解释物质收聚的原因只有一个,那就是引力的增加改变了物质的固有存在结构。进而引力的增加只有一种可能的原因——物质质量的增加。核能解释还有一个缺陷——不能对不同聚集态度物质的能量产生过程给出统一解释,例如将太阳发光解释为核聚变,太阳系行星的地热解释为核裂变,但无法解释星云红化。这与本质的存在形式具有单一性的基本认识特征存在深刻的矛盾。对所有现象做个别性的分析不能理解这些现象之间所蕴含的共同特征,而正是这些隐藏在现象背后的共同特征的才是理解过程所要达到的真正目的。直接地将现象所共同拥有的作用要素(如空间、能量)选择作为研究对象去理解不同现象间共性的产能方式是一种宏观的、绕开了复杂的综合和抽象的过程的更为有效的认识方法。

空间在某种意义上说是一种蔬散存在的能量形式,大量流入物质内部在向质心收聚的过程中转化为能量的形式,这种能量是宇宙间能量的根本来源,它维系着宇宙基本能量的过剩支出形式。恒星质光关系和赫罗图的发现更为彻底地揭示物质存量与能量的上述依存关系。物质瞬时存量与空间的流入量可由式(4)导出以下关系:

V=3.546×10-5m(1/ρ)1/2(14)

其中v为物体表面的空间流速,m为物体的质量,ρ为物体的密度。

空间收缩量与能量值的数量关系为:

e=ηV(15)

以地球引力定义的太阳质量m=1.9892e30KG。代入式(14)得V=1.8793e24m3/S。

太阳总辐射功率Q=3.83e26J/S。则得空能转换系数η=203.8J/m3由太阳数据获得空能转换系数没有考虑其质量增长,因而数值偏小。

对于恒星辐射、星云红化、超新星爆发、类星体发光、太阳系行星及卫星含有内部热源等现象所说明的宇宙物质普遍存在着的能量过剩支出机制,由空间运动论所给出的解释是:我们所知的自然宇宙空间,其最根本的运动是以物质为最终目标的聚集和收缩,因而不可能是膨胀或扩张的。目前公认的、有较大影响的宇宙大爆炸理论的解释是:所有能量来源于更高级的能量存在状态(爆炸前的奇点)。显然这是形而上学的理论推演方法,对一种现象无法解释时往往假设一个更高的同样无法解释的原因来解释现有问题,这从特征上类似于用乌龟下面还是乌龟来解释大地不沉,或者用上帝来解释第一推动的问题,是是哲学对于宇宙间普遍存在的空间、物质、能量的依存关系的认识处于初级阶段的标志,不能发现现象背后的本质而导致对不同的现象本身提出了相对独立的解释。

物质自增长理论得出的关于新星、超新星爆发的主要原因有两种:a.固体小星体(例如地球)增长到一定质量时,星体温度会增加到其构成物质的气化温度,星体在较短的时间内气化膨胀,并抛射出物质外壳;b.中心星体引力增大使星系坍缩,其环绕星体落入中心星体产生的爆发现象。与上述理论相吻合的是观测到新星爆发有向银心聚集的趋势。

5.空间性质哲学的结论

生物质能的特点篇9

一、依靠基本理论为指导,来减轻学生的记忆负担

元素化合物知识包括金属和非金属两部分,是高中化学的基础知识之一。知识特点是作为化学基本概念、原理、实验和计算的载体,其信息量大,反应复杂,常作为综合试题的知识背景或突破思维的解题题眼。元素化合物知识虽然内容繁多,但其中有许多内容和化学基本理论紧密联系在一起,复习时可以用相应的化学原理去统率和掌握元素化合物知识,而不需死记硬背。例如:卤素原子最外层均有七个电子,而且在同周期中卤素原子的原子半径最小,因而与其同周期其它元素相比,卤素元素最易得到电子,故而具有很强的非金属性(即单质具有很强的氧化性);碳族元素的原子最外层有四个电子,在化学反应中既难得电子又难失电子,故该族元素易形成共价键,单质的氧化性和还原性都不强。

而对于单质、化合物的性质,又可根据晶体理论来掌握其性质。例如物理性质的变化规律,就可以从晶体理论来理解。如按照一般的常见情况,晶体的硬度、熔沸点由高到低的顺序依次为:原子晶体、离子晶体、金属晶体、分子晶体。不同晶体熔沸点影响因素又不尽相同,例如,影响原子晶体熔沸点高低的因素主要是共价键的强弱,共价键越强,原子晶体熔沸点就越高。而对于结构和组成相似的分子晶体,其熔点的高低则受分子的相对分子质量的大小影响,相对分子质量越大,分子晶体的熔沸点就越高,因此在卤素中,单质的熔沸点随着单质相对分子质量的逐渐增大而逐渐升高。用元素周期律理论,可从宏观上总体来系统的统摄元素及化合物的变化规律,掌握总体的学习方法。这些方法又具有普遍性,因此说,熟练而牢固地掌握和理解元素周期律、物质结构、元素性质三者之间的内在联系和规律,是学好元素化合物性质的一把金钥匙!

同时,要熟练的将平衡理论运用到化合物性质的学习中。像化学平衡、弱电解质的电离平衡、盐类的水解平衡、饱和溶液中的溶解和结晶平衡、络合平衡等。这些理论都是由元素的性质基础上抽象和高度概括而来,它从平衡这个角度揭示化合物的一些性质,是全面掌握元素和化合物性质的重要知识体系之一。

二、建立元素化合物的结构网络,理清知识体系

氧化还原反应能从许多方面揭示物质性质间的一些规律性的东西,以每族典型元素为代表,如氧族元素以硫元素为例,按照其主要化合价由低到高的顺序,其主要化合价有-2、-1、0、+4、+6等。按照氧化还原反应理论,对于变价元素,最低价态只有还原性,最高价态只有氧化性,中间价态既有氧化性又有还原性。H2S只有还原性;H2So4(浓)只有氧化性;S和So2既有氧化性又有还原性。而且不同的化合态之间的物质有时能发生归中或歧化反应。例如:2H2S+So2=3S+2H2o。这种同元素不同价态之间的氧化性和还原性之间的反应规律也具有很强的普遍性原则。同时利用价态分析主要存在的物质,如+4价的硫主要物质有So2、H2So3、na2So3、naHSo3等,然后依次分析其主要性质及相互关系。将零碎的知识编织成网络,建立起完整的知识体系,做到滴水不漏。因此它具有很高的指导意义!

除了利用基本理论来指导外,还可从另一角度对其研究。在元素化合物的复习中,各个知识点以化学性质为抓手,依次学习其存在、制法、用途、检验等“一条龙”知识,做到牵一发而动全身。因此,对每一个重点知识可引导学生按此方式进行联想复习。

三、要掌握研究元素化合物性质的一般通法

元素及化合物的性质,无非就是通性、特性等。因此要注意用这种通法去掌握和理解,避免不加理解的单纯死记硬背。举例如下:在学氧化硫的化学性质时,首先想到:它是酸性氧化物,具有酸性氧化物的通性,能与碱性氧化物反应生成盐;能与碱反应生成盐和水;能与水反应生成酸等。另外,由于显示+4价,它还有氧化性,能与硫化氢反应生成单质硫;有还原性,能被氧气、氯气、高锰酸钾等强氧化剂氧化成更高价的化合物。此外它还有特性――漂白性,能使一些有机物褪色。再例如,碘单质的化学性质,除了具有卤素单质的一般通性外,还有特性――能使淀粉变蓝。

生物质能的特点篇10

科技档案这一提法源于中国。新中国成立后,随着社会主义经济建设和科学技术的发展,科技文件大量产生,这些文件不光是管理活动的文字记录,更多的是用图表、公式、配方、实验记录、蓝图、底图等形式记录和反映生产和科学实验活动的成果,与文书档案具有较明显的不同特征。于是为适应现实工作与学术研究的需要,出现了科技档案的提法,且根据其内容和形成特点,通过对档案概念的限制,为科技档案下了定义。

科技档案概念的形成体现了在科学的世界观与方法论指导下,人类认识的深化发展;同时正确地指引着对科技档案本质属性与特点的揭示。

一、科技档案的本质属性与档案的本质属性是个别与一般的关系

科技档案的本质属性与档案的本质属性反映了矛盾的普遍性与特殊性相统一的唯物辩证法原理。矛盾的普遍性和特殊性的辩证关系显示着事物之间共性和个性、一般和个别的关系。(1)共性和个性、一般和个别之间是相互对立的,共性、一般只是同类个别事物的共同本质,这种共性、一般不可能包含个性、个别的全部内容和所有方面,通常只包含了个性、个别的某一方面、某些特点,任何事物的个性都比共性丰富;(2)共性和个性、一般和个别又是同一的,是相互联结,相互依存的,个性中包含着共性,共性就存在于个性之中,共性、一般只能通过个性、个别才能显示出来。[1]由上述原理推知,科技档案与档案的关系是个别与一般的关系,科技档案的本质属性与档案的本质属性是个性与共性的关系,换句话说科技档案的本质属性既具有与档案的本质属性共同的一致性,也具有自己的个性。

档案是人们在社会活动中直接形成的原始性信息记录,它对以往社会活动具有直接的原始记录作用。一直以来,对于档案的本质属性出现过多种不同的提法,有“原始记录性”、“备以查考性”、“归档保存性”、“非现行性”、“历史再现性”等说。目前,我国档案学界的大多数学者认为“原始记录性”是档案的本质属性,是档案区别于其它事物尤其是相邻事物的独一无二的根本所在。

科技档案是全部档案按照一定的分类标准划分出来的一大类,也许科技档案与文书档案、专门档案的划分在逻辑上不够严密,或许“科技档案”这一概念不够准确,但“科技档案”属于“档案”是没有异议的,档案是由文书档案、科技档案、专门档案等种类共同组成的。在这一前提下,我们得出科技档案的本质属性是原始记录性,科技档案是原始性和记录性的统一。

二、科技档案原始记录性的相对论

“科技档案是直接记录自然现象或具体项目的运动过程和实体,是人们认识自然和改造、利用自然活动的原始记录。”[2]科技档案是一种原始记录,可以从两方面来理解:从内容上看,科技档案记载了当时当地人们从事科技活动的过程和结果,能真实地再现当时科技活动的场景;从形式上看,科技档案载体上保留着科技档案形成者当时活动的各种标记,能客观地反映科技档案形成过程中的原始特征。原始记录性是科技档案与科技图书、情报、资料等相区别的本质依据。

《现代汉语词典》对“原始”的解释是“最初的、第一手的”[3],“原始记录”即指“最初的、第一手的记录”。原始记录一般都是由特定的形成者当时当事直接形成的,往往具有稀缺性,甚至唯一性,表现在档案注重原本、原稿和孤本,很多档案往往只有一份。原始记录的意思不难理解,但若要确定怎样才算是“最初的”、“第一手”的记录,并以此判定其是不是档案就不是一件容易的事情了,必须采取科学的、辩证的态度,运用发展的观点,从特定对象、特定时期、特定范围相对地理解原始记录性。

一般来说,只要特定的形成者当时当事直接形成的档案原件(即原始信息内容与原始载体的统一体)尚存,那么其原始记录性和档案价值均不会被其他任何形式的承载了相同原始信息内容的记录(如复制件、套用件)所替代。然而当档案原件由于各种原因缺失、损坏、不存在或不可识读了,其原始记录性则顺延至承载该原始信息内容的与之最接近的记录上。该记录就成为现时相应原始信息内容的最初的、第一手的记录,具有稀缺性、甚至唯一性。这样的文献应当作为档案保存,这是相对论原理带给我们对档案的原始记录性的启示,科技档案也不例外。

三、科技档案的本质属性是绝对的,特点是相对的

根据辩证法原理,科技档案的本质属性与特点的辩证关系是:本质属性是绝对的,特点是相对的。

本质属性的绝对性是指事物的本质属性是一事物区别于他物的客观体现,是内在的,客观的,抽象的。它包括两个方面的涵义:(1)事物的本质属性规定了事物的质,划分一事物与它事物的主要因素是本质属性,事物本质属性的变化会引发质的变化,进而一事物也就变成了它事物;(2)事物的本质属性在物质范畴内是永远不会被推翻的,是客观的,无条件的。

科技档案的本质属性直接决定着科技档案与其他事物的质的差异,脱离“原始记录性”的“科技档案”不会存在,这一本质属性是不会因为时间、形式而改变的。

特点的相对性是指事物的特点是事物表象的体现,是表面的,具体的,有条件的。它包括三个方面的涵义:(1)相对于不同的参照物来说,事物呈现出不同的特点。如:科技档案对于文书档案体现出专业性的特点,但对于专门档案来说并不体现这一特点;(2)特点的体现存在一定量的比例关系。事物的特点有时因为两事物属于同一属种,存在一定程度的相交性,当某一性质在其中某种事物中占据绝对量的比例时,我们会将之归为此种事物的特点;(3)事物的特点是发展变化的。科技档案的特点即具有多样性。

四、科技档案的特点不是绝对的,科技档案的特点是有条件的

通过对特点相对性理论的分析可知研究事物的特点,一要找准比较对象,二要考虑比例关系。

比较对象(即参照物)不同,表现的特点也不同。科技档案的特点是相对于一般文书档案而言的。总结前人的研究成果,普遍认为科技档案的特点主要有:(1)科研生产活动的专业性,决定了科技档案记录内容具有明显的专业性;(2)科研生产活动所使用的专业术语和符号,赋予了科技档案记录形式和载体的特殊性和多样性;(3)科研生产活动具有设计与实施两大阶段,因而导致了科技档案形成和使用上的分段性及使用中的修改补充性;(4)科研生产活动的继承性和科技成果的共用性,使得科技档案具有广泛的重复使用性和套用性;(5)科研生产活动严格的科学性和规律性,要求科技档案具有成套性;(6)科技文件在归档成为科技档案之后仍然具有现行效用,即科技档案的现实性;(7)科技档案产生于国家经济建设的各个领域,记录和反映了各企事业单位的各项科技成果和各种科技活动内容,无论从它产生与使用的领域,还是包含的内容看,都体现出经济性的特点。以上归纳不难看出,这些作为科技档案特点的表述都是与文书档案相比较而体现出来的。

比例关系是指科技档案的特点为大多数科技档案拥有,但不排除少数科技档案不具有某些特点,也不排除其它种类档案中的少数特例可能含有这些特点,即科技档案的特点不是绝对的。在反映诸特点时要考虑到量的比例关系,排除特例。由于科技档案与文书档案同属于档案,其中某些特点并非科技档案独有,只是在科技档案中是普遍的,而在文书档案中是特殊的。如科技档案的两大重要特点――成套性和现实性就在某些文书档案中也表现存在。

围绕着实物对象所形成的科技档案具有较强的成套性特点,尤其是在基建档案、科研档案、设备档案、产品档案中表现最为明显。基建档案以工程项目为套;设备和产品档案以型号为套;科研档案以独立的课题为套。但文书档案中会议文书的整理归档也常以一次会议为套,将某次会议形成的所有文件材料组成一卷。