高层建筑结构概念十篇

发布时间:2024-04-26 00:45:41

高层建筑结构概念篇1

关键词:建筑结构概念设计高层建筑结构体系

一、高层结构概念设计的三维层次

对于高层建筑结构,可以设想成为一个从地基升起的竖向悬壁构件,承受水平侧向荷载和竖向重力荷载的作用。侧向荷载是由风吹向建筑物引起的水平压力和水平吸力,或者是由地震时地面晃动引起的水平惯性力。重力荷载则是建筑物自身的总重力荷载。这些侧向荷载和重力荷载的组合,趋向于既可能将它推倒(受弯曲),又可能将它切断(受剪切),还可能使它的地基发生过大的变形,使整个建筑物倾斜或滑移。对抗弯曲而言,结构体系要做到不使建筑物发生倾覆,其支撑体系的构件不致被压碎、压屈或拉断,其弯曲侧移不超过弹性可恢复极限;对抗剪切来说,结构体系要做到不使建筑物被剪断,其剪切侧移不超过弹性可恢复极限;对地基和基础来说,结构体系的各支撑点之间不应发生过大的不均匀变形,地基和地下结构应能承受侧向荷载引起的水平剪力,并不引起水平滑移。由于风力和水平地震作用力对于高层建筑是动荷载,使建筑结构抗弯曲和抗剪切时都处于运动状态,就会导致建筑物中的人有震动的感觉,使人有不舒服感。如果建筑物晃动得太厉害,还会使非结构构件(如玻璃窗、隔墙、装饰物等)断裂,甚至危及屋外行人的安全。所以,高层建筑结构要避免过大的震动。例如:在建造某12层的办公综合楼,它长48m、宽18m、高36m。建筑物两边各有9根柱,横行柱距为18m,纵向柱距为6m,中央有一个6×12m的电梯和管道井筒。考虑水平荷载的传递有几种不同方式,进行结构方案优选,分析两种结构方案:一种为仅由核心筒承受水平力,外柱仅承受大部分竖向荷载,不抵抗水平力,梁和柱铰接;一种为纵横两个方向柱和梁刚接形成框架,来抵抗纵横两个方向的水平力。在方案一中:筒井所受的风荷载1.4×6×8=67.2Kn/m,竖向荷载近似为15120Kn,井简墙自重为6×36×(6+12)×2=7776Kn,可得抵抗倾覆弯矩的竖向荷载为22896Kn。则可计算出合力偏心矩e=m/G=67.2×36×18/22896=1.9m,超过核心范围(6/6=1m),不满足稳定要求。必须加强、加宽基础或采用下部锚固,才能避免基础向上抬起。在方案二中:由横行跨度的框架承担全部水平力。因此,在一个方向风荷载作用下,总框架一侧柱子受压,另一侧柱子受拉,并可近似求得总压力或拉力为:67.2×36×18/18=2418.2Kn,大致由每侧9根柱子平均分担2419.2/9=268,8Kn/柱

二、高层建筑的结构体系

1.框架结构体系

由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由梁联系起来,形成空间结构体系。框架结构的优点是建筑平面布置灵活,可以做成有较大空间的会议室、餐厅、车间、营业厅、教室等。需要时,可用隔断分割成小房间,或拆除隔断改成大房间,因而使用灵活。外墙采用非承重构件,可使立面设计灵活多变。但是框架结构本身刚度不大,抗侧力能力差,水平荷载作用下会产生较大的位移,地震荷载作用下较易破坏。不高于15层宜采用框架结构,可以达到比较好的经济平衡点。

2.剪力墙结构体系

剪力墙结构体系是利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构体系。墙体同时作为维护及房间分隔构件。剪力墙间距一般为3-8m,现浇钢筋混凝土剪力墙结构整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求容易满足,适于建造较高的高层建筑。而且其抗震性能良好,在历次的地震中,都表现了很好的抗震性能,震害较少发生,程度也很轻微。但是剪力墙结构间距不能太大,平面布置不灵活,而且不宜开过大的洞口,自重往往也较大,不是很能满足公共建筑的使用要求,而且其成本也较大。

3.框架―剪力墙结构体系

框架一剪力墙结构体系由框架和剪力墙组成。剪力墙作为主要的水平荷载承受的构件,框架和剪力墙协同工作的体系。在框架一剪力墙结构中,由于剪力墙刚度大,剪力墙承担大部分水平力(有时可以达到80%~90%),是抗侧力的主体,整个结构的侧向刚度大大提高。框架则承受竖向荷载,提供较大的使用空间,同时承担少部分水平力。由于有了剪力墙,其体系比框架结构体系的刚度和承载力都大大提高了,在地震作用下层间变形减小,因而也就减小了非结构构件(隔墙和外墙)的损坏。这样无论在非地震区还是地震区,都可以用来建造较高的高层建筑。还可以把中间部分的剪力墙形成简体结构,布置在内部,外部柱子的布置就可以十分灵活;内筒采用滑模施工,的框架柱断面小、开间大、跨度大,很适合现在的建筑设计要求。

4.筒中简结构体系

筒中筒结构体系由一个或多个简体为主抵抗水平力。通常简体结构基本形式有三种:实腹筒、框筒及桁架筒。筒体结构最主要的特点就是它的空间受力性能。不论哪一种简体,在水平力作用下都可看成固定于基础上的箱形悬壁构件,它比单片平面结构具有更大的抗侧刚度和承载力,并具有良好的抗扭刚度。简中筒结构是一种抵抗较大水平力的有效结构体系,但是由于它需要密柱深梁,当采用钢筋混凝土结构时,可能延性不好,而且造价昂贵。

结语

近些年来,建筑业有了突飞猛进的发展,城市规划设计中的高层建筑越来越广泛。它以其高度强烈地影响着规划、设计、构造和使用功能。这就需要设计师从一开始就应该以一个立体的概念设计和体系为基础并运用到实践中。

参考文献:

[1]GB50011-2001建筑抗震设计规范[S]

高层建筑结构概念篇2

摘要:本文主要阐述了高层建筑结构概念设计的意义依据、设计特点为基础,因地制宜创造出高效可行并适应工程情况的设计方案。关键词:高层建筑结构设计概念设计1概念设计的重要性概念设计是指一般不经过数值计算,根据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法,可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择。所得方案往往概念清晰、定性正确,避免后期设计阶段一些不必要的繁琐运算,具有较好的的经济可靠性能。同时,也是判断计算机内力分析输出数据可靠与否的主要依据。1.1结构概念设计概念设计是运用人的思维和判断力,在设计前期从宏观上决定结构设计中的基本问题。一般指不经数值计算,是从结构概念人手。依据整体结构体系与结构子体系之间的力学关系、相对刚度关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想。从整体角度来确定建筑结构的总体布置和结构措施。1.2结构设计特点水平荷载成为决定因素。一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化;.轴向变形不容忽视。高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果;侧移成为控制指标。与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内;结构延性是重要设计指标。相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。2概念设计的主要内容2.1高层建筑结构设计多样性水平荷载是高层建筑结构设计的主要控制因素,因此如何选择抗侧力结构是结构设计的关键。高层建筑钢筋混凝土结构主要有框架结构、剪力墙结构、框架剪力墙结构、底层大开间上部剪力墙即框支剪力墙结构和简体结构等。为适应结构体系的多样化,结构材料向多样性发展,80年代以前高层建筑主要为钢筋混凝土结构。进入90年代后.由于我国钢材产量的增加,钢结构、钢一混凝土混合结构逐渐采用。此外,钢混凝土结构和钢管混凝土结构在高层建筑中也正在得到广泛应用。高层建筑结构采用的混凝土强度等级不断提高,从C30逐步向C60及更高的等级发展。预应力混凝土结构在高层建筑的梁、板结构中广泛应用。钢材的强度等级也不断提高。我国高层建筑早期多为单一用途,为适应建筑功能需要,向多用途、多功能发展,高层建筑平面布置和立面体型日趋复杂。结构平面形式多样,如三角形、梭形、圆形、弧形.以及多种形式的组合等亦多采用。高层建筑立面体型亦有丰富的变化,立面退台、部分切块、挖洞、尖塔、大悬臂等,使高层建筑的刚度沿竖向发生突变。由于建筑功能的改变,使结构体系、柱网发生变化。因此主体结构要发生转换,即由上部剪力墙结构到下部筒体框架或框架剪力墙结构的转换;或主体结构由上部小柱网、薄壁柱到下部大柱网的转换。结构体系的转换及立面体型变化丰富的结构在地震区建造难度较大,还有待于进一步深入研究,并经历强震的检验。2.2高层建筑的抗震抗风设计高层建筑除必须承担建筑物的垂直荷载外,更重要的是能有效地承受侧向的风荷载和地震作用。一幢高层建筑结构的抗侧力刚度在高度方向上是逐层变化的。因此在多层之间会出现一些相对薄弱层.这是侧向变形和应力集中处。在结构设计中应尽量避免。建筑设计与结构计要密切配合.力求减少各相邻层之间刚度偏心矩的变化率。我国现行抗震设计规范对建筑物抗震提出了三个水准的设防要求和两个阶段的设计方法.其中第一阶段设计采用第一水准烈度的地震动参数.计算出结构在弹性状态下的地震作用效应与构件截面尺寸:第二阶段设计采用第三水准烈度的地震参数核算结构薄弱层或薄弱环节的弹塑性层问侧向位移、转角,使设计小于规范规定的限值。建筑结构的抗风设计.其重要性超越抗震设计,成为高层结构设计中的控制因素。这是因为超高层建筑结构的第一自振周期与场地地面卓越周期相差较大,故地震作用对它的影响远比风荷载小。2.3结构平面布置(1)平面形状(1在高层建筑的一个独立结构单元内,宜使结构平面形状简单,规则、均匀、对称、使结构受力明确,传力直接,有利于抵抗水平和竖向荷载,减少扭转影响,减少构件的应力集中。平面形状的首选具有两个或多1、对称轴的平面。特别对框架一核心筒结构、筒中筒结构更应选取具有两个或多个对称轴的矩形、正方形、正多边形、圆形等;(2平面长度不宜过长。长宽比i.iB不宜过大。突出部分长度不宜过大,因为平面有较长的外伸时,外伸段容易产生局部振动而引发凹角处破坏。《高规》对此都有规定,设计时应尽2.4结构平面布置的一般原则(1)在一个独立的结构单元内,结构布置力求简单、规则、对称、刚度和承载力分布变化均匀,并尽量使结构的刚度中心和质量中心重合,以减少扭转。不应采用平面严重不规则的结构;(2)结构平面不对称,造成质量和刚度偏心。地震时会引起结构的扭转效应。为了减小扭转的影响,《高规》4.3.5条规定:①在考虑偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移,a级高度高层建筑不宜大于该楼层平均值的i.2倍,不应大于该楼层平均值的1.5倍;B级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。此规定的条件是楼板在其平面内刚度为无限大,若楼板开大洞,结构分析中按柔性楼板考虑,实际扭转效应较刚性楼板小。设计时应作具体考虑;②结构扭转为主的第一白振周期tt与平动为主的第一自振周期tt之比,a级高度高层建筑不应大于0.9,B级高度高层建筑、混和结构高层建筑及《高规》规定的复杂高层建筑不应大于0.85。扭转振动的主方向,可以通过计算振型方向因子来判断。在两个平动和一个转动构成的三个方向因子中,当转动方向因子大于0.5时,则该振型可以认为是扭转为主的振型;(3)应避免应力集中的凹角和狭长的缩颈部位}避免在凹角和建筑物端部设置电梯、楼梯间。如因建筑功能需要,确实非设不可则应采用剪力墙予以加强;(4)楼板开洞而使楼板有过大削弱时,应加厚洞口附近楼板或洞口边缘设置边梁、暗粱。采用双层双向配筋或加配斜向钢筋;(5)尽可能设置多道抗震防线。地震有一定的持续时间,而且可能多次往复作用,根据地震后倒塌的建筑物的分析,我们知道地震的往复作用使结构遭到严重破坏,丽最后倒塌则是结构因破坏而丧失了承受重力荷载的能力。适当处理构件的强弱关系,遵守“强柱、弱梁、更强节点、强剪、弱弯、强底层柱”的原则。从而形成多道防线,是增加结构抗震能力的重要措施;(6)对转换层结构应遵守宜低位转换,尽量避免高位转换。转换层结构的形式尽量简单,受力明确。传力合理。3概念设计的步骤(1)结构方案选用一个成功的建筑设计,必须选择一个经济合理的结构方案,即要选择一个切实可行的结构形式和结构体系。结构体系应受力明确,传力简捷,同一结构单元不宜混用不同结构体系,地震区应力求平面和竖向规则。总之,必须对工程的设计要求、地理环境、材料供应、施工条件等情况进行综合分析,并应充分考虑与建筑、水、暖、电等专业所需要相协调,在此基础上进行结构选型,确定结构方案,必要时还应进行多方案比较。择优选用。(2)选择合适的基础方案基础设计应根据工程地质条件,上部结构类型及荷载分布,相邻建筑物影响及施工条件等多种因素进行综合分析,选择经济合理的基础方案,设计时宜最大限度地发挥地基的潜力。一般情况下,同一结构单元不宜采用两种不同的类型。(3)正确分析计算结果在高层建筑结构分析和设计中普遍采用计算机技术,对计算的合理性、可靠性进行判断是十分必要的。但由于目前软件种类繁多。不同软件往往会导致不同的计算结果。因此工程师以力学概念和丰富的工程经验为基础,应对程序的适用范围、技术条件等全面了解;对结构的振型、周期、允许位移、地震作用的分布和楼层地震剪力的大小等,是否在合理的范围中,应做出合理判断。(4)采取相应的构造措施始终牢记“强柱弱梁、强剪弱弯、强压弱拉原则”注意构件的延性性能,加强薄弱部位,注意钢筋的锚固长度,尤其是钢筋的直线段锚固长度,考虑温度应力的影响。除此之外。还应注意按均匀、对称、规整原则考虑平面和立面的布置综合考虑抗震的多道防线尽量避免薄弱层的出现,以及正常使用极限状态的验算等等都需要概念设计作指导。4结束语概念设计是从设计的基本原理,工程的客观规律和方法等出发进行综合考虑,并能尽快确定建筑结构的总体布置,为各专业设计提供相对可靠的结构数据。随着社会的进步.结构设计也在不断的进步,结构工程师和建筑师在设计中应以正确的科学理念为基础,让理论知识和实践相结合,探索新的思路,设计出更加适合经济可靠的方案,为每一个崭新的工程奠定基础,把概念设计推向主流。参考文献[1]高立人,王跃,结构设计的新思路――概念设计,工业建筑1999(1).[2]林同炎,S.D.思多台斯伯利,结构概念和体系,中国建筑工业出版社.[3]JGJ3-2002,高层建筑混凝土结构技术规程[4]iGB50011―2001,建筑抗震设计规范.

高层建筑结构概念篇3

【关键词】:高层建筑结构;抗震;概念设计

中图分类号:[tU208.3]文献标识码:a文章编号:

1、前言

概念设计是利用设计概念并以其为主线贯穿全部设计过程的设计方法,其是完整而全面的设计过程,它通过设计概念将设计者繁复的感性和瞬间思维上升到统一的理性思维从而完成整个设计,它表现为一个由粗到精、由模糊到清晰、由具体到抽象的不断深化的过程。而对于高层建筑抗震设计中,有一些在计算中或者在规范中难以作出具体规定的问题,在这种情况下,如果要确保高层建筑具有良好的抗震性能,就必须靠设计人员运用概念进行分析,作出判断,以便采取相应的措施。高层建筑结构抗震概念设计是概念设计的一次具体运用,其对于提高高层建筑结构的抗震性能具有非常重要的意义。本文以下内容将对高层建筑结构抗震概念设计进行研究和探讨,仅供参考。

2、高层建筑结构抗震概念设计的原则

根据作者多年的实践经验,认为高层建筑结构抗震概念设计的原则主要有如下几个方面:第一,抗震结构体系要求受力明确、传力途径合理且传力路线不间断,使结构的抗震分析更符合结构在地震时的实际表现。建筑结构体系需要具备合理的地震作用传递路径,传力体系的剖面形式,反映了结构沿着竖直方向传递荷载的路径,关系到建筑的实际抗震性能。第二,结构体系需要具备多道防线。结构体系具备多道防线,这样才可以更好的避免由于部分构件的破坏而导致整个体系丧失抗震能力的情况发生。第三,结构构件必须有可靠地连接。抗震设计结构构件之间需要有可靠的连接,因为只有可靠的连接才能发挥各个构件之间的变形协调能力,使整个结构具有很好的抗震性能。第四,需要考虑非结构构件对于主体的作用。在抗震的概念设计中,处理好非结构构件与主体结构相互之间的关系,可以更好的防止震害的发生,减少损失。因此,需要采取措施确保非结构构件与主体结构具有可靠的连接,防止倒塌伤人的现象发生。

3、高层建筑结构抗震概念设计应注意的问题

根据作者多年的实践经验,认为高层建筑结构抗震概念设计应注意以下几个方面的问题:

第一,应对高层建筑结构抗震设计理论有深入的认识。①底部剪力法(拟静力理论)。底部剪力法是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。其基本思想是在静力计算的基础上,将地震作用简化为一个惯性力系附加在研究对象上,其核心是设计地震加速度的确定问题。②阵型分解反应普法,阵型分解反应普法是在20世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,对地震动加速度记录的特性进行分析后取得的一个重要成果。其基本思想是在静力计算的基础上,将地震作用简化为一个惯性力系附加在研究对象上,其核心是设计地震加速度的确定问题。③动力时程分析法。动力时程分析法也称动态设计理论,是20世纪60年代逐步发展起来的抗震分析方法。用以进行超高层建筑的抗震分析和工程抗震研究等,至80年代已成为多数国家抗震设计规范或规程的分析方法之一。它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计。

第二,结构体系布置的问题。《抗规》3.5.3条对结构体系提出了多道抗震防线的要求,对于在大震作用下结构抗倒塌具有重要意义。一个抗震结构体系首先应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作,其次应具有最大可能数量的内部、外部赘余度,有意识的建立起一系列分布的塑性屈服区,以使结构能吸收和耗散大量的地震能量。

第三,要确保高层建筑结构的整体性。结构的整体性是保证结构各个部分在地震作用下协调工作的重要条件,确保结构的整体性是抗震概念设计的重要内容。为了充分发挥各构件的抗震能力,确保结构的整体性,在设计的过程中应遵循以下原则:①保证构件间的可靠连接。提高建筑物的抗震性能,保证各个构件充分发挥作作用,关键的是加强构件间的连接,使之能满足传递地震力时的强度要求和适应地震时大变形的延性要求。②增强房屋的竖向刚度。在设计时,应使结构沿纵、横2个方向具有足够的整体竖向刚度,并使房屋基础具有较强的整体性,以抵抗地震时可能发生的地基不均匀沉降及地面裂隙穿过房屋时所造成的危害。③结构应具有连续性。尽量避免传力构件的中断保持结构的连续性是使结构在地震作用时能够保持整体的重要手段之一。

第四,结构应具有一定的延性。在抗震设计中,结构的延性具有与抗震承载力同等甚至更大的重要性,特别是对于大的地震作用来说,必须采取增加延性的措施,这是结构抗震设计有关规定的出发点。因此,抗震结构除按规定进行抗震设计外,还要满足延性的要求。延性是指构件或结构具有承载力不降低或基本不降低的塑性变形能力的一种性能。综合以上对于构件和结构延性产生影响的因素,可以得出延性结构的设计原则如下:①强剪弱弯:要使构件抗剪承载力大于塑性铰抗弯承载力。②强节点、强锚固:要保证节点区和钢筋锚固不会过早破坏,不在梁、柱、墙等构件塑性铰充分发挥作用前破坏。③强柱弱梁或强墙弱梁:要控制梁—柱或梁—墙的相对承载力,使塑性铰首先在梁端出现,尽量避免或减少柱、墙中的塑性铰。

第五,结构刚度、承载力和延性要有合理的匹配。当结构具有较高的抗力时,其总体延性的要求可有所降低;反之,较低的抗力需要较高的延性要求相配合。对结构提出了“综合抗震能力”的概念,就是要综合考虑整个结构的承载力和构造等因素,来衡量结构具有的抵抗地震作用的能力。地震时建筑物所受地震作用的大小与其动力特性密切相关,与其具有合理的刚度和承载力分布以及与之匹配的延性密切相关。但是,提高结构的抗侧刚度,往往是以提高工程造价及降低结构延性指标为代价的。要使建筑物具有很强的抗倒塌能力,最理想的是使结构中的所有构件都具有较高的延性,然而实际工程中很难做到。有选择地提高结构中的重要构件以及关键杆件的延性是比较经济有效的办法。因此,在确定建筑结构体系时,需要在结构刚度、承载力及延性之间寻找一种较好的匹配关系。

4、结尾

以上内容首先对高层建筑结构抗震概念设计的原则进行了论述,随后对高层建筑结构抗震概念设计中应注意的问题进行了研究和探讨,提出了高层建筑结构抗震概念设计的具体措施,表达了观点和见解。但是作者深知,要切实掌握高层建筑结构抗震概念设计,必须加深对基础理论的学习和研究,并积极投入到实践中,提高自身的理论修养和实践经验,只有这样才能不断提高高层建筑结构抗震概念设计的水平。

【参考文献】

[1]《复杂高层建筑结构抗震理论与应用》吕西林等;科学出版社

高层建筑结构概念篇4

关键字:高层建筑;结构设计;概念设计

abstract:theindustryofhigh-risebuildingsinChinawiththedevelopmentofcityandarearestrictionsandvigorousdevelopment,inadditiontobuildingcommunityincreased,formandstructuredesignofmainbuildinghasbecomeincreasinglydiversified,enrichment,inwhich,thestructuredesignofhigh-risebuildingbroughtmoreproblemstotheengineeringdesigner,isbrieflydescribeddesignfeaturesofstructuredesignofhigh-risebuildingstructurefirstly,architecturaldesignofhigh-risebuildingsandhigh-risebuildingsoftheproblem,introducestheconceptofhigh-risebuildingstructuredesign.

Keywords:high-risebuilding;structuredesign;conceptualdesign

中图分类号:tU972文献标识码:a文章编号:

我国经济市场的快速发展决定了城市建筑多功能化的趋向,人口数量的急剧增长和建筑用地日趋紧张决定了高层建筑列入城市发展规划的必然趋势,进而促进了相关产业的不断壮大和发展。除此以外,科技技术的进步也为高层建筑提供了更为轻质的高强度材料,设计计算理论方面的发展也为高层建筑结构设计带来了更为夯实的理论基础,而计算机技术的普及应用与建筑结构设计分析相结合,更为高层建筑的发展提供了必要的技术支持。

一、高层建筑的建筑设计状况概述

近些年来,随着我国社会经济的快速发展,市场对于高层建筑的需求也越来越高,伴随着这种社会需求形式,高层建筑在各地如雨后春笋般涌现,这为建筑行业的发展提供了良好地机遇,于此同时,高层建筑的特点为占地面积较小,建筑面积大,建筑造型较为独特,具有高集约性的特点。这些特点能够充分满足城市建筑日益紧张的用地局面,能够占用更少的用地,进而有效节约城市用地,同时能够有着良好地采光,日照以及通风效果。这些优点使得高层建筑在现代化城市中得到了快速的发展。然而随着高层建筑高度的快速增加,如何有效进行建筑的防火防灾,已经成为了城市建筑一个不可避免的难题。正是这些特点,使得高层建筑在现代化大都市中得到了迅速的发展,但是,随着建筑高度的增加,建筑的防火、防灾、热岛效应等已成为人们急待解决的难题。

二、当下高层建筑的结构设计特点

高层建筑的结构设计与多层或底层建筑的设计相比,结构的设计项目比其他工程项目的内容要重要一些,由于建筑结构设计与建筑的平面布置、立体构型、建筑高度、施工技术的标准、水电管道的布设、工程竣工时间的耗费以及工程造价投资等方面有着十分密切的关系,下面,笔者就对高层建筑的结构设计特征进行详细介绍。

2.1水平力是结构设计的重要因素

多层或底层的建筑结构设计中,通常都是将以重力代表的竖向荷载来对整体的房屋结构设计进行控制,而高层建筑的结构设计中,竖向荷载所起到的控制因素占比不大。由于高层建筑的自重和楼面使用所产生的荷载在竖向构件中所产生的弯矩及轴力的数值与建筑高度的一次方呈正比关系;而该荷载在水平构件中所产生的倾覆力矩以及在竖向构件中引起的轴力则与建筑高度的二次方呈正比;从另一个角度来说,若建筑高度到达一定程度时,其竖向荷载的数值为定值,而水平荷载则因为受到各种环境因素的影响,其数值会因为结构动力性的不同而产生较大的变化。

2.2侧移是结构控制的重要指标

结构侧移在多层和底层建筑的结构设计中并没有受到重视,而高层建筑的结构设计中,结构侧移扮演着十分重要的角色,水平荷载结构的侧向形变与建筑高度的四次方成正比,因此其数值会随着建筑高度的增加而增加。除此以外,高层建筑的高强度轻质材料的应用、侧向位移的速增、新型结构设计和建筑形式都会随着建筑高度的突破而一一出现,这样一来,高层建筑的结构设计不仅在强度标准上有所提升,同时结构的抗推刚度也要随之增强,只有这样才能保证在该结构设计下建筑由于水平荷载而产生的侧移量被控制在一定范围内,若超过限定范围,则会出现以下现象:1.附加内力的增强会在侧向位移增大时加剧偏心现象,而附加内力超过了限定大小数值时,就会导致房屋恻塌;2.填充墙或室内装饰产生裂缝或损坏,导致建筑物的机电设备管道受到冲击,会造成电梯轨道变形而停止运行;3.建筑主体结构构件产生裂缝,甚至出现损坏;4.给建筑使用者带来心理上的不适合压力。

2.3对建筑的抗震性能要求更高

风荷载和竖向荷载是高层建筑正常使用时所涉及的基础抗震性能设计的内容之一,具备抗震设防的高层建筑结构设计,除了要考虑到以上正常使用的荷载以外,还要保证建筑结构具备良好的抗震性能,大震不倒、小震不坏是高层建筑抗震性能的表现。

2.4轴向变形重视的加强

现代高层建筑常见的设计结构中,框架体系的应用较为普遍,而在这种建筑结构中,框架的中柱轴压应力会比边柱的轴压应力要大,也就是说中柱的轴向压缩变形会比边柱轴向压缩变形要大。建筑高度越大,中柱和边柱轴向形变的差异就会越大,当超过限定范围时,会导致连续梁中间支座下陷,从而导致连续梁中间支座位置的负弯矩值减小,端支座负弯矩值和跨中正弯矩值变大。

三、高层建筑结构设计中存在的问题

3.1高层建筑结构受力性能设计问题

无论是多层、底层建筑还是高层建筑,在对水平和竖向的结构系统进行设计时,所涉及到的基本原理都一样的,设计思想方面的唯一差异就是,在建筑高度有所增加的状态下,结构设计应该提高对竖向结构体系的重视,原因有两点:1.侧向荷载与竖向荷载相比,其侧向力所产生的倾覆力矩会大很多;2.在垂直荷载比较大的情况下,应该保证结构设计中加入墙、柱或井筒等承受力较大的空间构建。

3.2高层建筑结构扭转问题

刚度中心、结构中心和几何形心是建筑结构的主要内容,统称为结构三心。高层建筑的设计原则之一是要做到三心合一,也就是建筑三心的点尽可能集中在一个点上。所谓结构扭转现象就是指建筑的整体结构设计没有达到这一要求标准,进而使得建筑在水平荷载的作用之下发生结构扭转振动的现象。

四、高层建筑结构概念设计思想

4.1选择有利的抗震场地

应尽量选择有利的地段,避开对建筑抗震不利的地段,实在无法避开时,应尽量使建筑物场地选择建在基岩或薄土层上,或具有较大“平均剪切波速”的坚硬场地土上,从根本上减轻地震对建筑物的破坏作用。

4.2确保结构的整体性

结构的整体性是保证结构各部件在地震作用下协调工作的必要条件。不开洞或者是开洞较小的现浇钢筋混凝土结构楼盖和钢混凝土组合楼盖具有整体性好、平面内刚度大的优点,增加结构的整体性,有助于结构的协同工作。因此优先选用现浇楼板,且尽量要少开洞或不不开洞。

4.3减轻结构自重,控制结构刚度

地震作用的大小与建筑自重成一定比例,自重越轻,地震效应也就越小,因此附属结构要尽量选用轻质材料。同时结构刚度在满足位移的基础上宜小不宜大。增大结构构件截面,提高了结构刚度和抗力大小,但同时也会招来更大的地震力。因此,不可盲目增大结构的刚

度,而要对其加以控制。

五、结束语

综上所述,高层建筑的结构设计作为一个长期、复杂且往复循环的一个建筑发展过程,其间,负责建筑设计的工程师不仅要按早建筑业内的规范来进行设计规划,更要在设计的过程中结合建筑区域的地质地况来进行结构设计,运用多种设计方案和设计思想,通过对比分析出最佳的设计图纸,从而保证高层建筑结构设计的质量和效率。

参考文献:

[1]天水市建筑勘察设计院陈龙;浅谈建筑结构设计中的概念设计[n];天水日报;2008年

[2]刘洁;建筑结构概念设计[J];河南广播电视大学学报;2006年03期

高层建筑结构概念篇5

关键词:超高层建筑结构概念设计结构体系

中图分类号:[tU208.3]文献标识码:a文章编号:

随着经济的高速发展,人们对建筑功能的要求多样化,超高层建筑相继拔地而起。由于超高层建筑结构复杂多样,设计计算结果与实际相差较大,分析计算往往不能满足结构安全性、可靠性的要求,不能达到预期的设计目标,所以必须重视概念设计。

一、结构设计特点

1.重力荷载迅速增大

随着建筑物高度的增加,重力荷载呈直线上升,作用在竖向构件柱、墙上的轴压力增加,对基础承载力的要求也将提高。

2.建筑物的水平位移

①风作用效应加大

风是引起结构水平位移的主要因素,作用在建筑物上的风荷载沿高度方向呈倒三角形状。建筑物越高,风合力就越大,合力作用点就越高,对建筑物产生的作用效应也越大。

②地震作用效应加大

建筑物高度的增加使结构自重增加、重心提高,地震作用产生的水平剪力和竖向力增大,作用位置提高,整个结构内力增加,地震时将加速薄弱部位的破坏。

3.p效应

超高层建筑高宽比大,侧高刚度较弱,水平位移大,重力与水平位移所产生的附加弯矩常大于初始弯矩的10%,必须考虑重力二阶p效应。

4.竖向构件产生的缩短变形差对结构内力的影响增大

竖向构件的总压缩量主要由受力变形、干缩变形和徐变变形三部分组成。构件的总压缩量随着构件的高度H、平均亚应力的增加而加大。

5.倾覆力矩增大,整体稳定性要求提高

建筑物高度的增加使侧向力引起的倾覆力矩增大,抗倾覆要求提高。工程中常采取增加基础埋深,加大基础宽度等措施来满足整体稳定性要求。

6.防火、防灾的重要性

超高层建筑多采用钢混结构和钢结构,钢结构有很多优点,但其缺点是导热系数大,耐火性差。因此防火、防灾设计尤为重要。

7.围护结构的抗风设计

建筑物高度的增加使得垂直于围护结构表面上的风载标准值也迅速增大,因此必须对围护结构进行抗风设计。如采用玻璃幕墙围护,其风载更大,须采用结构玻璃满足强度要求,铝合金龙骨满足变形要求。

8.超高层建筑的节能问题

从超高层建筑的建筑节能优化设计技术看,建筑的高度变化导致相关参数的变异,进而很大影响建筑能耗的变化。高度超过100米的高空风速会提高到3米/秒,若高达400~500米时风速可达到5米/秒以上,温度随高度的变化也会有明显的降低,通常会有每百米高度的温度下降0.6~1.0℃,仅这个变化足可以相当于把建筑物移动了一个2级气候区。建筑节能设计标准所能约束的节能技术还不能够完全适用于超高层建筑,在现行建筑节能设计标准中设计到遮阳、通风等技术的规定,对超高层建筑无法适用,标准规定的建筑能耗的权衡判断方法也是基于建筑物全楼整体建模的一种评价方法,而受目前能耗模拟工具的计算能力所限,超高层建筑中的计算对象规模远远超出了软件的计算能力。

9.建筑物的重要性等级提高

超高层建筑作为当地的标志性建筑,在政治、经济、文化中所起的作用大,破坏影响较大,波及范围较广,因此结构设计的可靠度要提高。一般情况重要性系数取1.1。

二、结构设计方法

1减轻自重,减小地震作用

采用高强轻质材料,全钢结构、幕墙围护、轻质隔断等,减轻结构自重,减小地震作用。

2降低风荷载作用力

①减小迎风面积

正方形平面形式横向迎风面最小,如果计算对角线方向的迎风面宽,则圆形平面最小。在立面上适当位置开阔泄风,风力能很好有效地降低。

②采用上窄下宽的立面体型,既减小高风压在高处的迎风面积,又降低风作用重心,使建筑物底部的倾覆总弯矩减小,同时上窄下宽的立面体型对建筑物底部来说增大了抵抗矩,提高了稳定性。

③选用体型系数较小的建筑平面形状

体型系数从大到小依次正方形-正多边形-圆形,采用流线尖滑的外形,避免凹凸多变的建筑形状,减小整体和局部风压的体型系数。

④采用剪力墙结构系统

采用剪力墙结构体系以增加建筑物的侧向刚度,是控制建筑物水平位移的有效方法。

3加强抗震措施

①选用规则结构使建筑物具有明确的计算简图,合理的地震作用传递途径。采用圆形、正多边形、正方形等平面形状,可以使整体结构具有多向同行,避免强弱轴的抗力不同和变形差异。功能复杂的建筑常常是各种结构体系的综合,具体设计应注意以下几个问题:

a结构平面形状尽可能对称,由于地震作用的方向具有随机性。风作用虽然有主导方向,但最大值也具有随机性。因此选用具有对称性、多向同性布置的抗侧力结构体系,有利于形心和刚心的重合。

b竖向构件尽可能连续,避免抗侧力构件的间断,从而形成薄弱层、薄弱部位,对抗震不利。

c应设计成具有高延性的耗能结构,设置多道抗震防线。

d增加超静定次数,增加重要构件的传力线路,提高结构的抗震能力。

e在满足强度、刚度要求的前提下,选择具有较好延性的结构材料,增加总体变形能力,增加结构耗能。

f建立整体屈服机制,避免失稳破坏,并做到强柱弱梁、强剪弱弯、强节点弱构件设计,对容易失稳的结构做到强支撑,对受弯构件做到强压弱拉。

g注意调整结构布置、防震缝的设置、转换层、转换层和水平加强的处理、薄弱层和薄弱部位的加强。

②进行小模型风洞试验,获取有关风荷载作用参数;通过振动台试验,获取有关地震作用参数。

③采用智能化设计,提高结构的可控性。应用传感器、质量驱动装置、可调刚度体系等和计算机共同组成主动控制体系,提供可变侧向刚度,控制结构的地震反应等。

④提高节点连接的可靠度,刚结构节点的焊接处理,钢混结构中型钢、钢板与混凝土的连接等。

4减小震动,耗散输入能量

采用阻尼装置加大阻尼比,减少振动影响。选用耗能、减振的结构体系,如采用偏心支撑的钢结构具有耗能的水平段,采用橡胶支座可以减振等。

5结构底部的嵌固部位的确定

在进行超高层建筑结构设计计算分析之前,必须首先确定结构嵌固端所在的位置。确定嵌固部位可通过刚度和承载力调整迫使塑性铰在预期部位出现,嵌固端的选取可能因建筑物的各种不同情况而定:

①不设地下室但基础埋深较大。

②有地下室但地下室层数有多有少,而且基础形式不同,产生不同的技术问题。

三、结构材料选用

超高层建筑结构材料要求更轻、更强、更具有延性。钢筋混凝土、型钢混凝土、钢管混凝土和纯钢混凝土都可作为结构构件的主要材料;而外墙围护多采用玻璃幕墙、铝合金幕墙、钢塑复合材料等;内部隔墙多为轻质隔断;在普及C50、C60级混凝土的工程应用,扩大C70、C80级的工程试点的同时,开发配制C100级高强混凝土。

四、结构体系选用

更具整体性,更具各道抗震抗线,更具延性的结构体系是超高层建筑结构体系的首选,按照建筑适用功能的要求、建筑高度的不同以及拟建场地的抗震设防烈度以经济、合理、安全、可靠的设计原则,选择相应的结构体系,一般常见有以下几种结构体系:

1框架-剪力墙结构体系

2巨型框架结构体系

3框-筒结构体系

4筒中筒结构体系

5束筒结构体系

6内筒外巨型框架加外斜撑结构体系

7内筒外框并带多个加强层的结构体系

8钢结构

高层建筑结构概念篇6

关键词:抗震概念设计;高层建筑;结构设计

1高层建筑结构设计中抗震概念设计的意义

概念设计的应用范围广泛,包含了极多的结构设计,从中可以知道概念设计的作用越来越重要概念设计的重要性主要有以下几点:(1)如今的计算理论及结构设计理论有待完善,存在着各种各样的缺陷以及不可计算性所以,概念设计的应用则不仅解决了计算理论的缺点,还解决了在结构设计中实际存在的那些大量无法计算的问题,更加合理的完成了建筑的结构设计。(2)结构设计过程需要进行大量的数学计算,需要借助计算机来完成而在方案的初级设计阶段不能使用计算机来辅助计算因此,需要熟练掌握结构概念的结构工程师根据自己的合理计算和准确的判断来筛选高效低造价的结构设计方案。(3)对于结构设计的工程中存在的大量繁琐的计算,往往需要借助计算机完成构设计人员也过分依赖计算机,这样会降低工作人员对设计数的敏感性,对于计算中存在的数据错误和运算方法不合理问题不能辨别和纠正,从而使结构设计存在诸多问题,并给建筑结构留下很多安全隐患由以上分析可知,概念结构设计对建筑结构设计有相当重要的影响,其地位是不可取代的。

2高层建筑结构设计中抗震概念设计的原则

2.1结构的整体性

在高层建筑结构中,楼盖的整体性对高层建筑结构的整体性起到十分重要的作用,其相当于水平隔板,不仅要求聚集和传递惯性力至各个竖向抗侧力的子结构,还要求这些子结构具有较强的抗震能力,能够抵抗地震作用,尤其是当竖向抗侧力子结构的分布不均匀、结构布置复杂以及抗侧力子结构的水平变形特征存在差异时,整个高层建筑就依靠楼盖使抗侧力子结构进行协同工作。

2.2结构的简单性

结构的简单性指的是结构在地震作用下具有明确、直接的传力途径。在高层建筑抗震设计规范中明确规定“结构体系应该有明确的计算简图与合理的地震作用传递途径”,只有结构简单,才能对结构的位移、内力以及模型进行分析,准确的分析出高层建筑抗震的薄弱环节,然后采取相应的措施,避免薄弱环节的出现。

2.3结构的刚度

结构的刚度和抗震能力水平在地震作用下是双向的,确定结构的刚度,然后合理的布置结构能够抵抗任意方向上的地震作用。通常状况下,地结构沿着平面上两个主轴方向都应该具有足够的刚度与抗震能力,结构的刚度不仅仅应该控制结构的变形,还应该尽可能降低地震作用对高层建筑结构的冲击,如果结构发生较大的变形,将会产生重力二阶效应,导致结构失衡而被破坏,降低高层建筑的抗震可靠性,因此,在抗震概念设计中,应该重视结构的刚度设计。

3抗震概念设计在高层建筑结构设计中的应用

3.1地基基础与建筑场地的合理选择

在建筑结构抗震设计之前需要对建筑场地进行选址,在工程选址过程中应尽可能选在抗震性能相对较好的建筑场地,尽量避免抗震性能较低的场地,若无法避免,那么应做好相应的预防措施,以免遭受地震的居民受到危害。而对于建筑地基基础的选择,要保证建筑地基基础选择的科学性,首先应对建筑所在地的地质状况进行全面勘察,应尽可能选择土质坚实的场地,这样对建筑结构防震抗震有一定的帮助。若地质条件不允许,则应结合当地建筑结构场地实际情况,因地制宜选择建筑地基结构,一般情况下建筑地基结构可分为刚性结构与柔性结构两种,对于建筑场地相对较为坚硬的土质,应选择柔性结构,反之则应该选择刚性结构,以此来降低地震灾害给建筑物以及人们带来的危害。

3.2建筑物结构、外形与尺寸的设计

对于建筑物而言,影响建筑抗震性能的主要因素有建筑物结构、建筑外形以及建筑各结构的尺寸等等,所以抗震设计人员在设计过程中要充分考虑影响建筑抗震性能的因素,对建筑结构、尺寸以及外形等因素进行综合考量,从而做出合理性安排。在建筑平面设计中首先要考虑建筑的防震性能,在设计过程中要有意识的提高建筑防震性能,尽可能选择易于进行防震设计的建筑设计方案。据相关调查研究得知,不规则建筑物与普通建筑物的抗震性能相比,其抗震性校对较低,因此在不规则建筑物结构设计中,为了防止地震的过度危害,应采取一定的防护措施。

3.3科学处理建筑主体结构与非承重结构构件的关系

建筑主体结构与非承重结构构件有着密切关系,如何科学处理建筑主体结构与非承重结构构件的关系是现今建筑概念设计中尤为关注的话题。科学处理两者之间的关系尤为必要,因为保证建筑主体结构与非承重结构构件的关系,可以有效降低用户在地震灾害中的损害,具有一定的防震减震效果。在地震灾害中对于已经破坏的非承重结构构件应及时更改设计,避免其影响整个建筑主体结构的安全性能。在建筑抗震概念设计中要充分考虑两方面因素,一方面需要考虑非承重结构构件遭受地震灾害后可能对建筑主体结构造成的影响。

3.4选择适合建筑特征的抗震结构体系

每个建筑物都有其独特之处,对于不同建筑物其所选择的建筑抗震结构体系也有所区别。通常情况下建筑抗震结构可以大致分为两类,一类是材料类结构,另一类则是结构形式类结构。建筑抗震结构体系选择是建筑概念设计的重要内容,建筑所处环境不同在抗震设计也有一定的差异性,在建筑抗震结构体系选择过程中,应根据建筑实际特性选择建筑所需的抗震结构,这是一个较为细致复杂的工作,设计人员要充分利用自身所掌握的知识以及经验对抗震结构体系进行有效分析,对建筑抗震设计中所要运用的材料、抗震结构体系以及抗震技术等进行综合考量,确保建筑抗震结构体系选择的合理性与科学性。

3.5对材料质量进行严格把关,确保抗震施工质量

建筑抗震性能如何在很大程度上取决于抗震材料,由此可见抗震材料选择在建筑概念设计中的重要性。从某种角度上来讲,建筑概念设计对建筑抗震施工质量具有一定的保障作用。完善的概念设计能够正确引导建筑抗震设计,避免抗震施工走入误区,对抗震施工的各项工序具有指导性意义。在材料选择及使用中要对材料质量进行严格把关,充分考虑材料的抗震性能是否符合国家标准,选择优质合格的抗震材料,达到抗震的最终目的。

4结语

综上所述,抗震概念设计作为高层建筑结构设计中的一个重要组成部分,通过合理的抗震概念设计,能够有效的提高高层建筑的抗震可靠性。因此,相关设计人员应该熟练的掌握和运用抗震概念设计,全面的考虑各项因素,从而建造出更多精品高层建筑工程,为社会造福。

参考文献:

[1]华颖.抗震概念设计在高层建筑结构设计中的应用[J].中华民居,2013(06)

高层建筑结构概念篇7

关键词:高层建筑;结构设计;设计特点;结构体系;抗震概念设计

abstract:inthestructuredesignofhigh-risebuildingshouldpayattentiontoconceptdesign,attachedtothestructuretypeselectionofpeace,elevationlayoutrules,merit-basedselectionofseismicandwindresistanceperformanceisgoodandtheeconomicandreasonablestructuralsystem,strengthentheconstructionmeasures.inaseismicdesign,itshouldensurethattheoverallstructureoftheseismicperformanceofthestructurehasthenecessarycapacity,stiffnessandductility.therefore,thispaperanalyzesthelowtemperatureregioninthestructuredesignofhigh-risebuildingstructureseismicconceptdesign.

Keywords:high-risebuilding;structuredesign;designfeatures;structuralsystem;seismicconceptdesign

中图分类号:[tU208.3]文献标识码:a文章编号:

1、高层建筑结构设计特点

1.1水平荷载成为决定因素

(1)因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中引起的轴力,是与楼房高度的两次方成正比;

(2)对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。

1.2轴向变形不容忽视

高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。

1.3侧移成为控制指标

与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

1.4结构延性是重要设计指标

相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。

2、高层建筑的结构体系

2.1框架―剪力墙体系

当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架―剪力墙体系。在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平剪力。框架―剪力墙体系的位移曲线呈弯剪型。剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架―剪力墙体系的能建高度要大于框架体系。

2.2剪力墙体系

当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。剪力墙体系属刚性结构,其位移曲线呈弯曲型。剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架―剪力墙体系。

2.3简体体系

凡采用简体为抗侧力构件的结构体系统称为简体体系,包括单简体、简体―框架、筒中筒、多束筒等多种型式。简体是一种空间受力构件,分实腹筒和空腹筒两种类型。实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。筒体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,多应用于大跨度、大空间或超高层建筑。

3、低温度地区高层建筑结构设计中的结构抗震概念设计

3.1场地条件和场地土的稳定性

根据房屋震害的直接原因,选择建筑场地时,应根据工程需要,掌握地震活动情况、工程地质和地震地质的有关资料,对抗震有利、不利和危险地段作出综合评价。对不利地段,应提出避开要求;当无法避开时应采取有效措施;不应在危险地段建造甲、乙、丙类建筑。避免因地基土的不均匀沉陷、地震引起的地表错动与地裂等引起结构的破坏。

3.2建筑设计和建筑结构的规则性

建筑及其抗侧力结构的平面布置宜规则、对称,并应具有良好的整体性;建筑的立面和竖向剖面宜规则,结构的侧向刚度宜均匀变化,竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小,避免抗侧力结构的侧向刚度和承载力突变。建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。不规则的建筑,在结构设计时要进行水平地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施。体型复杂、平立面特别不规则的建筑结构,可按实际需要在适当部位设置防震缝,形成多个较规则的抗侧力结构单元。

3.3结构材料选择与结构体系的确定应符合抗震结构的要求

单从抗震角度考虑,作为一种结构材料应轻质、高强、材质均匀;构件间的连接应有良好的整体性、连续性及延性,且能发挥材料的全强度。按照这一原则,不同材料结构的抗震性能优劣排序是:钢结构;型钢混凝土结构;混凝土-钢混合结构;现浇钢筋混凝土结构;预应力混凝土结构;装配式钢筋混凝土结构;配筋砌体结构。采用哪一种结构材料,什么样的结构体系,经技术经济条件比较综合确定,以保证经济性的情况下使结构具有必要的抗震性能,同时力求结构的延性好、强度与重力比值大、匀质性好、正交各向同性,尽量降低房屋重心,充分发挥材料的强度,并提出了结构两个主轴方向的动力特性(周期和振型)相近的抗震概念。对结构体系及结构分析应符合《建筑抗震设计规范》(GB50011-2001)中3.5、3.6条规定,本文不再赘述。我这里重点强调的是结构的整体性和延性。传统意义上的抗震结构体系,是指依靠结构的整体承载能力和变形能力来吸收和耗散地震能量,从而使建筑物免于倒塌。所谓整体性是指结构在整个承受地震作用的过程中(不论在弹性工作阶段或结构部分进入塑性并形成塑性铰机制阶段)各结构构件都能协同工作,保持对竖向荷载的支承能力,它是抗倒塌的必要条件。结构的延性是相对于脆性而言,结构的脆性破坏都具有突发性,不可恢复性,而延性破坏往往有一个时间过程,并是可恢复的。延性表现了结构耗散能量的大小,经实验证明结构延性破坏所消耗的能量大于结构脆性破坏所消耗的能量,因此延性结构是有利于抗震的。防倒塌是建筑物抗震设计的最低要求,也是抗震设防最重要的必须得到确实保证的要求。房屋破坏的根本原因是结构的某些构件破坏结构丧失整体性变成了机动构架,因此结构的超静定次数愈多,进入倒塌的时间过程就越长。从耗散地震能量的角度出发,结构每出现一个塑性铰,就可吸收和耗散一定的地震能量,在整个结构变成机动构架之前,若能够出现的塑性铰愈多,耗散地震输入的能量也就愈多,就更能经受住较强的地震而不倒塌。故在选择抗震体系时应尽量采用超静定次数多的结构,并采取一定的构造措施保证合适的塑性铰的形成。选型上框架优于排架,刚接框架优于半刚接或铰接框架;并联的多肢抗震墙优于并列的多片单肢抗震墙;具有交叉腹杆的支撑优于单腹杆支撑;带支撑框架优于单一框架。另外我们可以有选择的提高结构中的重要构件以及关键杆作的延性是比较经济有效的办法。对于框架和框架筒体,应优先提高柱的延性。在工程设计中另一种提高结构延性的办法是结构承载力无明显降低的前提下,控制构件的破坏形态,减小受压构件的轴压比,提高柱的延性。

3.4多道抗震设防体系

无论选用何种材料、何种结构体系的抗震结构,适当处理构件的强弱关系,使其形成多道防线,是增加结构抗震能力的重要措施。一次地震持续的时间少则几秒,多则十几秒甚至更长。这样长时间的地震动,一个接一个的强脉冲对建筑物产生多次往复式冲击,造成累积式破坏;如果建筑物采用的是单结构体系,仅有一道抗震防线,一旦破坏后接踵而来的持续地震就会使建筑倒塌;而设了多重抗震体系的建筑物,在第一道防线的抗侧力体系遭破坏后,后备的第二道、第三道防线立即接替,抵挡后续的地震冲击,特别是对于因“共振”而引起的破坏,在第一道防线失效后,结构转入第二道、第三道防线工作,此时随着第一道防线破坏塑性铰出现,结构基本周期已发生变化,从而错开了地震动卓越周期,建筑物免遭进一步破坏。这种抗震设计概念是对付高烈度地震的一种经济有效的办法。在水平地震作用下,梁的屈服先于柱的屈服,就可以做到利用梁的变形消耗地震能量,使框架柱退居到第二道防线的位置。

高层建筑结构概念篇8

关键词:抗震概念设计;高层建筑;应用

Doi:10.16640/ki.37-1222/t.2016.03.064

0引言

地震是一种比较普遍,同时也是随机发生的对人们的生命构成重大威胁的自然现象,我们可以预测到地震的发生,却没有能力去阻止地震的发生。这也就是人类在大自然面前渺小的体现,虽然不能阻止,但是我们可以通过一定的措施来降低地震带来的危害。其中抗震概念设计在高层建筑设计中的应用就是很好地例子。抗震概念设计是通过不断地科学实践,并结合以往的抗震经验而形成的设计理念,抗震概念设计的应用有效的提高了高层建筑的安全性能,一定程度上保障了人们的生命财产安全。

1抗震概念设计的概述

概念设计主要指的是设计思维和理念,由于在实际的设计阶段给不出确定的计算结果,所以一般是不需要精确地计算的。需要注意的是,在抗震概念设计时要注意高层建筑本身的实际情况,根据建筑物的高度以及结构体系来大致明确它们之间的力学关系,根据力学关系来对建筑物实际受到的和地震作用带来的损坏进行估算。由于地震的破坏力是不能准确估算的,这也就导致了上述的损坏程度无法准确计算。因此,从抗震的角度来看,在进行高层建筑设计时应用到抗震概念设计是很有现实意义的。概念设计本身包含了很多方面,内容较为广泛。在高层建筑中选择对建筑物抗震有利的结构方案和结构设计,加强对薄弱部位的分析,并且制定相应的补救措施,让高层建筑的安全性能更高,也让人们的生活更安全、更有保障。

2抗震概念设计的大致内容

2.1选择合适的场地

场地的选择是建筑能否顺利进行的最基本也是最重要的问题,一块好的场地不仅可以降低造价,更对整个工程的稳固程度有着重要的影响。选择场地时一定要避免高危地段,比如容易产生滑坡、地陷、泥石流等现象的地段应当坚决避免。尽量选择防震效果比较理想的地段,比如,空旷、地表和地下都比较密实均匀的地段。在选择建筑地段时可以借助一些较为先进的仪器,这样选择的结果安全性更高。

2.2合理布置建筑的平立面

房屋的布置和自身的建筑布局可以决定建筑物性能的优劣,根据抗震概念的原则,合理的结构设计和建筑布局可以增强房屋的抗震性能。换句话说,如果建筑布局不符合抗震设计的要求,即使有精细的地震分析也不能很好地达到抗震的效果。建筑物的高度和宽度都应当符合结构体系和地震烈度区的要求,只有这样才有利于建筑物抗震效果的体现。

2.3合理的结构选型和结构布置

合理的结构体系需要满足抗震要求同时又经济实用,要同时考虑到建筑物的地基基础,经济指标,功能价值,施工的技术难度等一系列的问题。在结构选型过程中,要特别注意场地的实际情况,建筑物本身的刚性等带来的影响。结构布置要满足对称性和匀称性,结构平面布置和竖向布置都应该进行严格的控制。

2.4设置多条防震线

多条防震线的设置可以保证抗震结构体系的可靠性,增强建筑物的抗震能力。设计多条防震线简单来说就是设置多个延性较好的分体系,在设置分体系时应该注意选用实用性能较高的结构构件使用。需要特别注意的是,由于各个部件在建筑中的功能不同,受力条件也不尽相同,因此在选择的过程中应该注意有所区分。

3抗震概念设计在高层建筑结构设计中的应用

(1)降低地震时能量的输入。根据以往的地震调查结果,增强高层建筑物抗震能力一个有效途径就是减少地震能量的输入。在进行高层建筑物的建设过程时,除了要考虑到局部地形的因素外,也应当将地震时的能量输入纳入考虑范围之内,选择地震输入能量较少的地方相对来说较为安全。

(2)有机结合刚度和延性。一般来说一栋建筑物的静力荷载是相对稳定的,变化度不大,但是当地震来临时,建筑物所承受的作用力一般不是静力荷载,与其动力特性密切相关。如果建筑物的抗侧移的刚性大,它的自振周期短,地震给它带来的影响就相对来说更为明显,更容易受到影响。在建筑工程的实施前一定要对抗震概念设计有一定的研究,以达到更为理想的结果。

(3)处理好非结构部件。非结构部件一般指的是在结构分析中不参与考虑重力荷载和侧向荷载的部件,这些侧向荷载主要包括风和地震。内隔墙、建筑墙等属于非结构部件,这些部件虽然一般不参与荷载分析,但是在地震来临时,这些部件都会或多或少的起到一定的积极或消极作用,甚至改变整个结构的承载力度,从而产生意料之外的抗震效果,或者是破坏原有的抗震效果,带来局部危害。因此,为了建筑更好的抗震效果,有必要重新审视这些非结构部件,以达到理想效果。

(4)遵从建筑结构整体性。高层建筑抗震能力的前提是建筑的整体性。当地震来临时,力的作用是沿着平面不同方向同时传递的,此时,楼顶就像相当于水平隔板,成为力的传播载体。尤其是在楼盖有较大的空洞时,应该特别注意建筑结构整体的保持。

4总结

总而言之,在高层建筑结构设计中加入抗震概念设计对于整个建筑物的抗震能力有着非常重要的作用。在了解并掌握抗震概念基本原则的基础上,将抗震概念设计深入到建筑的设计当中去,有利于增大高层建筑在抵抗地震方面的安全系数。同时,对建筑结构设计进行科学合理的考虑考察,才能使建筑工程满足时代的要求。

参考文献:

[1]万龙.试探抗震概念设计在高层建筑结构设计中的应用[J].城市建设理论研究(电子版),2013(28).

高层建筑结构概念篇9

高层建筑结构抗震概念设计在依据数值计算的基础上,还增加了实践经验元素,并且结构概念设计甚至比分析计算更重要,使得这一抗震设计理念能够满足区域差别下从事高层建筑结构设计的实际需求。强调高层建筑结构设计中抗震概念设计的重要性,其目的是为了引起高层建筑结构工程是在进行建筑结构设计时,特别重视相应的结构规程以及抗震概念设计中的相关规定,从而摆脱传统的结构设计中只重视计算结果的误区,要求结构工程师严格的按照结构设计计算原则,再结合地区的抗震规范,以此保证高层建筑结构的抗震性能。

2高层建筑结构设计中抗震概念设计的原则

(1)结构的整体性。

在高层建筑结构中,楼盖的整体性对高层建筑结构的整体性起到十分重要的作用,其相当于水平隔板,不仅要求聚集和传递惯性力至各个竖向抗侧力的子结构,还要求这些子结构具有较强的抗震能力,能够抵抗地震作用,尤其是当竖向抗侧力子结构的分布不均匀、结构布置复杂以及抗侧力子结构的水平变形特征存在差异时,整个高层建筑就依靠楼盖使抗侧力子结构进行协同工作。

(2)结构的简单性。

结构的简单性指的是结构在地震作用下具有明确、直接的传力途径。在高层建筑抗震设计规范中明确规定“结构体系应该有明确的计算简图与合理的地震作用传递途径”,只有结构简单,才能对结构的位移、内力以及模型进行分析,准确的分析出高层建筑抗震的薄弱环节,然后采取相应的措施,避免薄弱环节的出现。

(3)结构的刚度。

结构的刚度和抗震能力水平在地震作用下是双向的,确定结构的刚度,然后合理的布置结构能够抵抗任意方向上的地震作用。通常状况下,地结构沿着平面上两个主轴方向都应该具有足够的刚度与抗震能力,结构的刚度不仅仅应该控制结构的变形,还应该尽可能降低地震作用对高层建筑结构的冲击,如果结构发生较大的变形,将会产生重力二阶效应,导致结构失衡而被破坏,降低高层建筑的抗震可靠性,因此,在抗震概念设计中,应该重视结构的刚度设计。

(4)结构的规则性与均匀性。

高层建筑的竖向和立面的剖面布置应该规则,结构侧向刚度的变化应该巨晕,避免侧向刚度以及抗侧力结构承载力的突变。沿着建筑物的竖向,机构布置和建筑造型应该规则和相对均匀,避免传力途径、刚度以及承载力的突变,防止结构在竖向上的某一楼或者少数楼层之间出现薄弱的环节。

3抗震概念设计在高层建筑结构设计中的应用

(1)抗震概念设计应该重视高层建筑的结构规律。

在高层建筑的抗震概念设计应用中,应该对高层建筑的体型设计进行科学的修正,保证在质量、刚度、对称、规则上分布均匀,保证设计的整体性,避免局部出现刚度过大的问题。高层建筑的结构布局对抗震概念设计具有十分重要的作用,简单、对称的建筑在地震中的应力分析和实际反映很容易做到,并且能够达到相一致,但是在凹凸的立面与错层设计的高层建筑中,当地震发生时将会产生复杂的地震效应,很难做到对高层建筑抗震效果的最佳分析。因此,高层建筑的抗震概念设计应该重视结构的规律性。

(2)抗震概念设计在结构体系上的应用。

高层建筑抗震结构体系是抗震概念设计的关键,抗震概念设计在结构体系上的应用依据高层建筑物的高度以及抗震等级选择合适的抗侧力体系,通过概念近似手算确定结构设计方案的可行性以及主要构件的基本尺寸。抗震结构方案选择的合理性,直接影响建筑抗震概念设计的经济性与安全性。合理的选择建筑结构体系,应该注意以下三个方面:其一,选择建筑结构体系时,应该对因为部分结构或者部分构件的破坏而导致整体建筑结构体系丧失对抗震能力或者重力荷载的承载能力,应该坚持抗震设计原则中的赘余度功能和内力重分配功能,这一原则的重要性在许多建筑物地震后的实际状况中都得到了很好的印证;其二,选择建筑结构体系时,不仅仅应该要求建筑体系的受力明确、传力合理以及传力路线,还应该有合理的地震作用传递途径和明确的计算简图,这些都应该和不间断的抗震分析相符合;其三,其中延性是建筑结构中的重要特性之一,结构体系的变形能力取决于组成结构的构件和连接的延性水平,提高结构构件的延性水平,是提高高层建筑抗震设计概念在建筑结构设计应用中的重点问题,通过采用竖向和水平向混凝土构件,能够增强对砌体结构的约束,当配筋砌体在地震中即使产生裂缝也不会倒塌或者散落,保证高层建筑早地震中不至于丧失对重力荷载的承载能力。

(3)抗震概念设计在结构构件上的应用。

高层建筑抗震的实现需要各个构件的支撑,因此,抗震结构体系中的各个构件都必须具有一定的刚度与强度,并且还应该具有可靠的连接性。高层建筑的结构体系是一个多层次超静定结构,因此其抗震结构也应该设置多道抗震防线,这样在地震作用下,即使一部分构件先被破坏,剩余的构件依然具备支撑的作用,形成独立的抗震结构,承受地震力与竖向荷载。因此,合理的预见高层建筑结构先屈服或者破坏的位置,适当的调整构件的强弱关系,形成多道抗震防线,实现对高层建筑结构体系的合理控制,这是结构抗震耗能的一种有效措施,是建筑抗震结构概念设计的重要内容。

4结束语

高层建筑结构概念篇10

1.1选择合理的结构方案

建筑设计师运用结构概念设计理念和方法的目的是想要从整体把握设计结构,从而实现设计方案合理性、可靠性和节约成本,这就要求选择一个合理的建筑结构形式和结构体系。在结构概念设计之前,建筑设计师必须明确建筑的总体布局,还要对建筑结构模型进行抗震抗压应力分析。在概念设计时,要坚持平面和竖向的规则,不能在同一结构单元中混用不同的结构体系。总之,建筑设计师在运用结构概念设计方法和理念时,必学与业主和施工单位进行细致的沟通,充分了解业主对建筑设计的要求、施工单位采用的建筑材料的特点、施工的气候和地质条件进行充分的了解和综合分析之后,从备选的结构方案当中选择最优方案,才能体现出建筑设计中结构概念设计的作用和效果。

1.2选择恰当的计算简图

结构计算的前提和基础是计算简图,只有选择恰当的计算简图,才能使建筑结构没有缺陷,从而保证建筑的结构安全、可靠,避免安全事故的发生。建筑设计师既要选择恰当的计算简图,同时还要在设计时配套相应的结构措施来保证建筑结构的安全。虽然建筑概念设计允许一定的设计误差,但是这个误差必须在设计允许的范围内,否则选择的计算简图就是不合理的。

1.3选择合适的计算软件

21世纪是计算机技术时代,计算机计算和设计软件的应用把人从繁琐的数据计算中解放出来,这是一大进步。然而,计算机软件始终是人类设计的一种程序,不是万能的。随着技术的发展,建筑结构设计中的软件种类繁多,不同的软件有着不同的优点和缺点。选择的计算软件不同,其计算结果存在着很大的差异。因此这就要求建筑设计师在借助计算机软件进行结构设计时,一定要根据自己的专业知识和设计经验,根据建筑的特点,选择合适的计算机软件。同时,在得到电算结果之后也要对所得数据进行细致全面的分析,从而选择最优结构设计方案。

2建筑设计中结构概念设计的应用

2.1抗震概念设计

当今世界任何一个国家都不能准确的提前预报地震灾害的发生,地震有其自身的复杂性和不确定性,因此在建筑结构设计中根本无法获得精确的地震参数。这就要求建筑设计师采用概念设计的理念,从整体上把握建筑结构,以实现建筑抗震性和经济适用性的结合。

在建筑抗震的建筑结构概念设计当中应把握以下几个问题:(1)地基选择。地基是否牢固,直接关系到地震后建筑的抗震能力。从现场施工的角度来讲地基,地基可分为天然地基、人工地基。当土层的地质状况较好,承载力较强时,应采用天然地基,既可以减小工程量,又可以起到很好的抗震效果。而在地质状况不佳的条件下,如坡地、沙地或淤泥地质,或虽然土层质地可较好,但上部荷载过大时,为使地基具有足够的承载能力,则要采用人工加固地基,即人工地基。这样虽然增加了施工成本,但是也可以达到抗震效果。(2)建筑物的外观应符合抗震设计。其外观应简单、对称,内部结构的质量和刚度变化要均匀,结构规则。建筑概念设计师时一定要对建筑进行合理的布置。大量实验和现实案例表明,简单且对称的结构类型建筑物在地震时具有较好的抗震性能,其原因是该种结构建筑容易估计出其在遭受地震时的结构变化,从而能够采取相应的措施予以应对。(3)从建筑结构的整体着眼。各类构件之间的连接必须牢固,在保证连接部位的强度的同时,还应使其具备一定的变形能力,从而使整个结构具有稳定、可靠的抗震性能。同时还要注意结构空间的整体性,根据平面和竖向不同的规则,加强平面的连接,确保竖向具备足够的整体刚度。(4)刚柔相济原则。如果在建筑结构的抗震设计中,只考虑增加结构抗力,片面追求建筑物结构刚度,而不考虑建筑结构的韧性,则会导致在地震发生时,建筑物局部遭到破坏后,引起整体性的坍塌。因此在高层建筑物设计过程中应坚持刚柔相济原则,即建筑物在地震过程中既能满足变形要求又能减小地震力的双重目标。

2.2高层建筑结构概念设计随着我国城市化进程的加快,城市内土地供应日益紧张,城市高层建筑发展迅速。

在城市高层建筑中引入结构概念设计不同于低层建筑物,我们应重视以下几个问题:(1)高层建筑自身重量大,对地基压力大。同时高层建筑受气流影响也非常大,这些问题都需要建筑设计师采用结构概念设计的方法,在设计之前,应正确认识高层建筑的受力特点,选择刚柔相济的结构,使其结构既具有足够的强度,又具有足够的韧性。结构设计时着重对水平荷载进行宏观控制和把握。(2)选择合理的结构体系。在高层建筑设计中,抗水平力是最难克服的问题,是其结构设计中的“牛鼻子”,因此选择何种抗侧力机构是高层建筑结构概念设计中最核心和关键的问题。在选择结构体系时,必须综合考虑建筑的功能和建筑的高度。(3)选择合理的结构布置。结构布局对建筑的安全性、实用价值以及工程量的大小都有着非常大影响。如果结构布置不合理,不但增加了工程量,提高了建筑成本,同时也会存在巨大的安全隐患。因此在设计时,必须选择合理的结构布置,在宏观上把握建筑的整体刚度,构建连接处一定要牢固,结构的薄弱环节和应力复杂部位也要使其具有足够的强度。

3小结