首页范文大全数学建模对数学的要求十篇数学建模对数学的要求十篇

数学建模对数学的要求十篇

发布时间:2024-04-26 01:53:03

数学建模对数学的要求篇1

关键词:数学建模;实验教学;教学改革

作者简介:赵丽君(1982-),女,浙江台州人,台州学院数学与信息工程学院,讲师;

李韶伟(1979-),男,浙江台州人,台州学院数学与信息工程学院,讲师。

基金项目:本文系台州学院数信学院实验教学示范中心建设子项目(项目编号:SXSY2011027)的研究成果。

中图分类号:G642.423文献标识码:a文章编号:1007-0079(2013)14-0124-02

一、数学建模课程有助于提高学生的综合素质

随着教育改革的不断深入,我国目前正在开展以“素质和素质教育”为核心的教育思想与教育观念大讨论。在1983年召开的世界大学校长会议中,对理想的大学生综合素质提出了三条标准:专业知识要掌握本学科的方法论、具有将本学科知识与实际生活与其他学科相结合的能力以及具有良好的人格素质。[1]

数学是一切科学和技术的基础,数学的思考方式对培养学生科学的思维方法具有重要意义,因而数学的重要性是毋庸置疑的。数学和各学科的相互渗透及其在技术中的应用,推动了数学本身的发展和各个学科理论的发展。戴维在1984年说过:“对数学研究的低水平的资助只能来自对于数学研究带来的好处的完全不妥的评价。显然,很少有人认识到当今被如此称颂的‘高技术’本质上是数学技术。”数学的广泛应用性主要取决于数学的思维方式。数学对于学生的培养,不只是数学定理的证明,公式、定义的理解,重要的是培养学生具备正确的思想方法,而且可以依据自己所学到的知识不断创新、不断寻找新的途径。

21世纪以来,数学建模课程的开设在国内高校中稳步展开,并获得了广泛认同。参加数学建模竞赛的学校和人数逐年上升,数学建模课程的重要性得到广泛认可,越来越多的高校开设了数学建模课程。[2-4]与传统数学所给的应用题有所不同,数学建模课程着重培养学生的创造性。由于数学建模是从实际问题着手,经过分析、抽象、简化建立数学模型,然后求解、验证并解释实际问题的过程。社会实践中的有些实际问题,没有一个明确的已知条件,有时甚至连求解目标也要经过分析问题的各种因素自行确定。这就要求建模者具有较宽的基本知识面,分析问题的能力,具有一定的想象力、联想力、洞察力和创新力,具有归纳综合和计算能力等等,即要求具有较好的数学文化素质。

1.数学建模课程拓宽了学生的知识面

一方面,数学专业的基础理论教材内容比较成熟,并且侧重定理证明以及演算方法的训练,对问题的实际背景以及模型提取过程介绍不多,而数学建模课程恰好弥补了这一不足。另一方面,由于数学建模问题的实用性和广泛性,大学生在建模实践中要用到很多知识,这些知识已超出了学生的专业知识范围。除了数学知识外,还必须掌握诸如计算方法、计算机语言、应用软件及其他学科的知识等。它是多学科知识的高度综合,宽泛的学科领域和广博的技能技巧是学生所不曾涉猎过的,只能通过学生自学和讨论来进一步掌握。

2.数学建模课程对学生能力的培养是全面的

数学建模的题目多数直接来源于科研、生产、工程与管理的实际问题,且大多是经过适当简化的正在研究或正在探讨阶段中的尚未完全解决的实际问题的部分或片段。解决数学建模问题的过程是对大学生数学与计算机知识、发现及解决问题能力、信息收集能力、论文写作能力及团队协作能力等各方面能力的综合考查。在数学建模实践中,大多数问题既没有唯一的答案,也没有唯一的方法,要解决问题必须要求学生具有独立的思考能力,充分发挥自己的创造能力、想象能力,深刻了解背景,查阅大量资料,并且参加实际调查,根据自身对问题的熟悉程度和知识的掌握来选择思路与方法。通过对所得结果不断地思考和改进,培养和训练学生的科研能力

3.数学建模课程使学生的毅力、意志以及团结合作精神等人文素质方面得到了培养

每年一期的全国大学生数学建模竞赛采取半封闭的形式持续三个昼夜。这是一个非常艰苦的创新过程,不仅培养了大学生刻苦探索的态度、不屈不挠的精神、坚韧不拔的毅力,还培养了学生孜孜不倦、精益求精和锲而不舍的创新精神,并且数学建模竞赛采取三人一个小组,三名同学在竞赛过程中共同解决一个竞赛题目。这就需要他们在竞赛的不同阶段团结协作,密切配合,取长补短,合理分工。因此,数学建模可以培养学生的团队意识与协作精神。

二、数学建模的理论课程与实验教学

数学模型是由数字、字母或其他数学符号组成的,描述现实对象数量规律的数学公式、图形或算法,它是对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。而创建一个数学模型的全过程称为数学建模,即运用数学的语言、方法去近似地刻画该实际问题,并加以解决的全过程。换句话说,数学建模是从定量化的角度,用数学语言和方法,通过对实际问题抽象、简化建立数学模型,然后通过计算,解决实际问题的过程。[6]数学建模课程与传统的数学教学不同。前者侧重于将数学作为工具,来分析和解决各种实际问题,是以培养学生解决实际问题的能力和应用创新能力为目标的实践性课程。而后者则侧重于公式推导、定理证明等。

数学建模课程包括数学建模理论课程和实验教学。数学建模的实验教学是指学生在教师指导下用计算机和数学软件学习数学,它强调将符号计算、数值计算、数据处理、数学软件和数学建模理论课程相结合的数学课程教学。[5]

数学建模的理论课程和实验教学是相辅相成、不可缺少的,也是互相促进的。首先,数学建模理论课程主要是对实际问题进行分析并得到数学结构模型以及模型结果的解释和应用,而对于模型的求解则很少涉及,相反,实验教学则是借助计算机和数学软件对模型进行求解,充分利用计算机的有利条件,让学生手、眼、脑共用,积极主动地使用数学。其次,数学建模理论课程很少涉及模型的解法,而实验教学则是介绍若干数学方法及相应的软件,以方便地完成模型的求解。最后,数学建模理论课程包含丰富的建模案例,主要对实际问题进行分析以及建立模型等理论过程,而实验教学则通过计算机和软件将所建立的模型进行求解,从而使学生将理论和实践相融合,提高学生运用数学知识解决实际问题的能力。

三、实验教学的改革

教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,开设数学建模课程则是加强后者的一种尝试。

实际问题的解决不仅需要利用数学建模的理论知识,即根据实际问题的内在规律,通过分析做出必要的假设,适当的运用数学工具,得到一个数学结构,更要利用数学建模的实验操作知识将得到的数学结构进行求解(在实际求解中,利用计算机或者软件进行求解),而且求解所得到的结果要能够解释实际问题。因此,实际问题的解决要求数学建模的理论课程内容和实验教学内容配套同步,有机结合。

目前很多高校的数学建模课程共54课时,其中包括课堂理论讲授36课时和实验教学18课时两部分。限于课时和教学进度,现有的实验教学以学生掌握数学软件的基础操作为主要目的,达不到与课程讲授内容的配套同步,学生对于数学软件的学习掌握也存在较多的问题。因此,有必要对数学建模课程的实验教学进行改革。

实验教学改革以问题为引导,采用专题研讨的形式开展,结合台州学校“数学实验在线平台”的建设,学生利用平台掌握基础的数学软件使用方法、命令格式,并且围绕课堂讲授的数学专题模块开展配套的数学建模实验研讨。具体而言,针对不同难易程度的题目类型,实验教学内容分别以三种不同的形式进行。

1.初步的数学软件题目类型

此类题目类型以熟悉掌握数学软件的常用命令格式为目的。例如,绘出某个二元函数的三维曲面图。又如,求一个已知方阵的行列式、逆、特征值以及对应特征向量。再如,求某个具体多项式的根。

这类题目的已知条件比较简单,只需要直接利用软件的某个指令就可以得到所求解的结果,学生在了解相关的软件指令基础上就能独立完成任务。对于这类题目类型,规定学生利用课余时间登录实验平台进行操作,并由授课教师在线评判其正确与否。

2.简单的数学建模题目类型

此类题目类型以提高使用数学软件能力为目的。例如,列出所有的水仙花数(水仙数是一个三位数,其各位数字立方和等于该数本身)。又如,已知某车间生产不同的产品,不同的产品所需要的原料和工时数据,以及不同产品所获得的利润数据。要求在给定原料和工时的条件下,如何安排生产,使得获得的利润最大。再如,给定一片海域一组数据,该数据包括一些离散点的坐标以及在该坐标处的水深,在已知船吃水深度的条件下,求船安全行驶的范围或者容易触礁的范围。

这类题目的已知条件唯一确定,所得到的结果也是唯一的,需要通过简单的编程实现。学生需要对问题进行分析,并具备一定的编程基础才能进行求解并完成规定的任务。对于这类题目类型,授课教师可以利用实验教学的课程时间先进行简单的分析和阐述,然后要求学生利用课余时间独立完成,最后由授课教师进行评判。

3.具有一定综合性质的数学建模题目类型

此类题目以培养学生建立模型和分析求解能力为目的。例如,根据某集团的经济效益指标、发展能力指标、内部运营指标以及客户满意度指标在2011年和2012年的数据,分析并阐述客户满意指标的走势。又如,收集数据,从手机品牌、外观、功能和质量等方面分析目前市场主流手机产品的价格定位规律,以及分析各品牌手机的价格策略与市场占有份额的关系。再如,选择某个事件(例如2010年的上海世博会、全国竞赛题)的某个侧面,建立数学模型,利用互联网或者调查收集的数据,定量分析该事件的影响力。

这类题目的已知条件比较复杂和灵活,有些题目甚至需要自己收集,有时甚至连求解目标也要自行确定。对于这类题目,授课教师应先利用实验教学课程时间指导研讨,然后要求学生通过团队合作完成基本的建模思路整理和模型求解,并以实验报告的形式提交数学模型和模型求解的实验结果。

参考文献:

[1]陈祖福.面向21世纪改革高等教育的教学内容和课程体系[J].教学与教材研究,1994,(1).

[2]叶其孝.数学建模教学活动与大学生教育改革[J].数学的实践与认识,1997,27(1):92-96.

[3]李大潜.中国大学生数学建模竞赛[m].北京:高等教育出版社,1998:313-321.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,31(5):613-617.

数学建模对数学的要求篇2

关键词:数学建模教学模式案例教学

一、数学建模及教学

随着计算机技术的不断进步和发展,数学的应用以空前的广度和深度向工程、经济、生物、医学、环境、地质、人口、交通等新的领域渗透,数学的应用被越来越多的人所关注。当人们在研究某个实际问题时,通常对该问题进行综合分析和合理假设后,用数学语言表示出对应的数学模型,通过计算机软件加以求解,并对结果进行分析检验的过程就是数学建模。

数学建模是数学知识和应用能力共同提高的最佳结合点,是启迪创新意识和创新思维、锻炼创新能力、培养人才的一条重要途径;也是激发学生求知欲望,培养主动探索、努力进取学风和团结协作精神的有力措施。由于数学建模的开放性和实践性,这就要求数学建模的教学不仅要传授给学生解决问题的方法和技巧,更重要的是通过教学培养学生各方面的能力,包括分析问题的能力、对问题的创新能力、结合软件求解的能力、团队协作能力和论文写作能力等,为全面提高学生的综合素养奠定坚实的基础。

二、高职类数学建模教学现状

在高职类的民办院校,学生的数学基础整体而言较薄弱,相比专业课而言对数学不够重视,缺乏学习兴趣和学习热情;而数学建模课是在学习了微积分、线性代数、概率论等课程的基础上开展起来的,学生对微积分的学习积极性都不高,更不用说线性代数、概率论这些课程了,所以开展数学建模课的难度之大可想而知,下面结合我校的实际情况对数学建模教学的开展做出总结。

1.指导过数学建模竞赛的老师都知道,数学建模涉及的数学知识面广泛,包括线性代数、常微分方程、概率论和数理统计、线性规划等,需要一定的课时量做保障,但目前大多数的民办高职院校很难满足指导老师的要求,因为数学作为一门公共课越来越被边缘化,如果学校领导不给予足够重视更是难以开展下去,所以数学建模一般作为选修课开展,课时量有限,这就使得数学建模的教学只能选择相对重要的内容进行讲解。我们学院把选修课的内容大致分成四块:常微分方程和差分方程、线性规划和图论、matLaB和数据分析、概率论和数理统计。

2.数学建模的计算要结合数学软件进行求解,主要是matLaB、lingo、SpSS等数学软件,这就要求学校有比较完善的硬件设施,这些软件的学习也是先介绍一些常用功能,再结合实际案例让学生练习如何用数学软件求解。数学建模的教学不仅是为了提高学生各方面的能力,还有一个重要原因就是参加全国大学生数学建模竞赛,所以针对数学建模竞赛还要指导学生如何写作,主要是科技论文的写作模式、格式、要求等,还有赛前的组织和模拟训练,对学生提交的论文进行讲评,并给出改进意见等。

三、结合本院数学建模教学情况,探讨数学建模教学模式的改革与创新

数学建模是数学和实际问题联系的桥梁,是培养学生综合运用数学知识分析、解决实际问题的意识和能力的一种有效手段,是提高学生数学素质的重要途径。因此,数学建模的教学显得尤为重要,与平时的数学课教学还有很大不同,结合我院教学现状,谈谈数学建模教学的改进建议。

1.将数学建模教学渗透到数学教学的全过程

由于我校数学课时偏少,而且主要讲微积分,没有专门开设线性代数、概率论、数学软件等数学课程,虽然在大一第二学期开设了数学建模选修课,也只是选讲一些基础的理论知识、方法,并且没有上机时间,因此满足不了数学建模和数学实验课程教学需要。所以,要达到数学建模的教学要求,必须将数学建模教学渗透到数学课程教学中,在讲课过程中多引入来源于生活的实际案例。实践证明,在不降低教材知识和教学基本要求的情况下,增添数学模型教学内容和数学建模实践环节,结合相关内容进行相关模型的教学,可以收到不错的效果。

将数学建模的教学渗透到具体教学过程中,要着重培养学生的数学思维能力,掌握解决问题的数学方法,提升学生的数学素养,让学生真正感受到数学的魅力所在,我们在高等数学和数学建模选修课的授课过程中穿插了具体的数学模型,类似于公平席位的分配、椅子四角着地、银行贷款等实际问题,通过对问题的分析、探讨进而列出对应的数学模型,并让学生结合所学的知识加以求解,最后老师再给予讲评,这样就能大大提高学生用数学解决实际问题的能力。

2.加强数学建模教学内容的应用性和教学方法的合理性

在数学建模课程中,教学重点不是向学生系统传授知识,而是让学生在参与解决问题的过程中,学习运用所学知识思考问题、寻找解决问题的有效方法,感受数学发现和创造的乐趣,从而对数学的本质增强理解,培养其应用能力。结合我校的实际情况,要想在此基础上取得更好的教学效果和取得更突出的成绩,数学建模的教学内容和教学方法都应该有相应的改进和提高。

(1)就教学内容而言,一方面在微积分中穿插讲解简单的数学模型,主要涉及最值的应用题、定积分的应用题等,加强与专业的融合,促进相关内容的有机结合和相互渗透,使看起来枯燥的数学内容与各专业之间架起桥梁。另一方面,除了在选修课《数学建模》中讲解对应的数学模型外,还要增加学生的上机时间,熟悉常用数学软件的操作和应用,真正做到教学内容的应用性。

(2)就教学方法而言,教师可采取数学建模案例教学法和互动式教学法相结合。案例教学法可选择一些有建模特点的典型题目给学生,首先让学生认真思考,分析题目的特点,如何做出合理假设等,由教师引导学生建立相应的数学模型,让学生在这个过程中体会到数学建模的特点。互动式教学方就是在整个教学过程中,教师始终处于主导地位,作为必不可少的教学组织者,其职责是创造学生活动的情境,根据问题的实质为学生设计思维活动的“平台”。

四、结语

数学建模的教学没有固定的模式和方法,只有通过不断摸索和实践总结教学经验,由于涉及的知识面很广,教学内容也不可能面面俱到,主要是在整个教学过程中要让学生参与其中,亲身体验,通过数学建模着重培养学生的数学思维,提高学生分析问题、解决问题的能力和用数学软件计算的能力,进而提升学生的综合素养,为以后走上工作岗位奠定坚实的基础。

参考文献:

[1]崔庆岳.高职类经济数学教学理念的初探[J].中外企业家,2015,1.

数学建模对数学的要求篇3

abstract:Discretemathematicsisnotonlycurriculumwithwiderange,butalsoanimportantbasiccourseincomputerscienceandtechnologyprofession,especiallinrecentdecades,duetotherapiddevelopmentandwiderangeofcomputerapplications,alargenumberofmathematicsrelatedtotheactualproblemsoftenneedfirstlyconverttheproblemofdiscretemathematics.thispaperdiscusseddiscretemathematicsandcomputersciencecoursesandmadeitsownassessmentonrelatedissues.

关键词:离散数学;离散建模;课程改革

Keywords:discretemathematics;dispersionmodeling;curriculumreform

中图分类号:tp3-05文献标识码:a文章编号:1006-4311(2010)10-0204-02

0引言

离散数学课程自上世纪70年代出现以来一直是计算机专业的核心课程之一,离散数学课程的教学目的,不但作为计算机科学与技术及相关专业的理论基础及核心主干课,对后续课程提供必需的理论支持。计算机专业中这样重要的课程竟会出现这样奇怪的现象,不禁使人疑惑:离散数学到底出了什么问题?

更重要的是旨在“通过加强数学推理,组合分析,离散结构,算法构思与设计,构建模型等方面专门与反复的研究、训练及应用,培养提高学生的数学思维能力和对实际问题的求解能力。”

由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理

1课程的目标定位

在长达三十余年的课程发展历史中,离散数学在计算机专业,特别是应用型计算机专业中的目标定位,要改变离散数学目前的局面首先需从明确目标定位做起。

1.1一般认为,应用型本科计算机专业目标定位有掌握离散数学的基本理论与方法,同时培养抽象的离散思维能力与逻辑思维能力。为诸多后续课程提供支持。用于计算机领域的离散建模。大多数人怀疑用于计算机领域的离散建模。作为计算机学科工具,离散建模是离散数学区别高等数学的根本之处,是使离散数学成为计算机专业核心课程的原因之一,也是离散数学与计算机紧密关联之处由此可看,明确这个目标定位是离散数学课程改革的当务之急。

1.2离散数学是计算机科学与技术应用与研究的有力工具计算机专业人员通过离散数学逻辑思维能力与抽象思维能力的培养,在这些能力的作用下使他们的应用、研究能力有所提高。这种说法虽有一定道理,但远不止如此。离散数学成为计算机专业的核心课程,主要原因就是由于它与计算机学科直接的、紧密的关联,特别是它作为研究与应用计算机学科的工具,历史的发展可以证明这一点。

在计算机的发展历史中,离散数学起着至关重要的作用,在计算机产生前,图灵机理论对冯#8226;诺依曼计算机的出现起到了理论先导作用;布尔代数作为工具对数字逻辑电路起到指导作用;自动机理论对编译系统开发的理论意义、谓词逻辑理论对程序正确性的证明以及软件自动化理论的产生都起到了奠基性的作用。此外,应用代数系统所开发的编码理论已广泛应用于数据通讯及计算机中,而应用关系代数对关系数据库的出现与发展起到了至关重要的作用。近年来,离散数学在人工智能、专家系统及信息安全中均起到了直接的、指导性的作用。以上充分证明,离散数学在计算机科学与技术的研究与开发中作为一种强有力的工具,起着重要作用。

1.3离散建模是离散数学应用于计算机学科的有效手段离散数学在计算机科学中占有相当重要的地位。因此我们要较好的把握离散数学学习。离散数学与计算机学科发生关系,主要通过离散建模实现了从离散数学到计算机领域的应用。

首先,对计算机(或客观世界)中的某领域建立起一个抽象的形式化(离散)数学模型,称离散模型,而建立模型过程称离散建模。该领域的研究归结为对离散模型的研究。其次,用离散数学的方法对离散模型求解,由于离散模型具有强大的离散数学理论支撑,因此对它的求解比对领域的求解更为有效。最后,可将离散模型的形式化解语义化为某领域的具体结果。

这样,我们可以将对某领域的研究通过建立离散模型而归结为对离散模型的研究,最后可将其研究数学结果返回为领域中的语义结果从而最终实现问题求解的目的。

有关的研究例子有很多,如在数据库研究中建立的关系代数模型、在编译系统中建立的自动化模型、在数字逻辑电路中建立的布尔代数模型以及在数据通讯中建立的纠错码模型等。

下面以关系代数模型为例说明离散数学对计算机科学技术发展的作用。对数据库领域的研究始于上世纪60年代,最初采用的是图论模型从而形成了当时有名的层次数据库与网状数据库,它们对构作数据静态结构起着重要作用。在数据的动态结构要求与数据操作要求越加重要形势下,iBm公司F.F.Codd于1970年提出了数据库的关系代数模型。该模型用离散数学中的关系表示数据库中数据结构,用代数系统中的代数运算表示数据库中的动态结构与数据操作要求。这个离散模型较为真实地反映了数据库发展的需求,因而成为当时数据库中最为流行的模型,它称为关系模型。

2数学建模与计算机的关系

随着计算机的出现和广泛应用,计算机软硬件技术的迅速发展,数学的应用已从物理领域深入到经济、生态、环境、医学、人口和社会等更为复杂的非物理领域。今天,许多基础学科已从定性描绘走向定量分析,边缘学科不断涌现;数学在金融、经济、工程技术以及自然科学中具有广泛的应用,它的重要性已逐渐成为人们的共识。利用数学方法解决实际问题时,要求从实际错综复杂的关系中找出其内在规律,然后用数字、图表、符号和公式把它表示出来,再经过数学与计算机的处理,得出供人们进行分析、决策、预报或者控制的定量结果。数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。

计算机的产生正是数学建模的产物,20纪40年代,美国为了研究弹道导弹飞行轨迹的问题,迫切需要一种计算工具来代替人工计算,计算机在这样的背景下应运而生。计算机的产生与发展又极大地推动了数学建模活动,计算机高速的运算能力,非常适合数学建模过程中的数值计算;它的大容量贮存能力以及网络通讯功能,使得数学建模过程中资料存贮、检索变得方便有效;它的多媒体化,使得数学建模中一些问题能在计算机上进行更为逼真的模拟实验;它的智能化,能随时提醒、帮助我们进行数学模型求解。此外,如mathlab、maple、SaS、SpSS等一批优秀数学软件的出现更使数学建模如虎添翼。再者,数学建模与生活实际密切相关,所采集到的数据量多,而且比较复杂,比如DVD在线租赁,长江水质的评价和预测,银行贷款和分期付款等,往往计算量大,需要借助于计算机才能快捷、简便地完成。数学建模竞赛与以往所说的那种数学竞赛(纯数学竞赛)不同,它要用到计算机,甚至离不开计算机,但却又不是纯粹的计算机竞赛,它涉及到物理、化学、生物、医学、电子、农业、军事、管理等各学科、各领域,但又不受任何一个具体的学科、领域的限制。数学建模过程需要经过模型假设、模型建立、模型求解、模型分析与检验、模型应用等几个步骤,在这些步骤中都伴随着计算机的使用。例如,模型求解时,需要上机计算、编制软件、绘制图形等,数学建模竞赛中打印机随时可能使用,同时,数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展做出杰出贡献的科学家都出身于数学专业,显而易见,比赛中的一个重要环节是使用计算机来解决问题,这对使用计算机的能力的提高是很明显的。

数学模型是描述实际问题数量规律的、由数学符号组成的、抽象的、简化的数学命题、数字公式、图表或算法。当我们使用数学方法解决实际问题时,首先要把实际事物之间的联系抽象为数学形式,这就是数学建模。在数学教学中,利用数学建模,可提高学生的运算能力、分析推理能力,进而提高解决问题和探究问题的能力。

数学建模的目的是构建数学建模意识,培养学生创造性思维能力,在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力,培养创造性思维能力,主要应培养学生灵活运用基本理论解决实际问题的能力,在数学教学中培养学生的建模意识实质上是培养、发展学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动,它既具有一定的理论性,又具有较强的实践性,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立、自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力、直觉思维、猜测、转换、构造等能力,而这些数学能力正是创造性思维所具有的最基本的特征,在培养创新思维过程中要求必须具有一定的计算机基础,只有具有一定的计算机知识才能更好的处理数据,发现事物之间的内在的联系,才能更好的进行知识的转换,才能更好的构造出最优的模型。总之,具有必备的计算机知识是培养建模意识的关键,是培养数模创新能力的前提。计算机也为数学建模竞赛活动提供了有力的工具。

数学建模对数学的要求篇4

一、课题研究背景

1.数学建模能力是社会发展的要求

最近几十年以来,数学发展的显著特征之一就是数学应用的巨大发展.在当今这样一个知识经济飞速发展的时代,数学正慢慢从幕后走向台前,扮演着越来越重要的角色.特别是数学和计算机技术的紧密结合,使得数学能够在许多方面直接为社会创造价值.同时,也开拓了数学发展的广阔前景.我国的数学教育在相当长的一段时间内未能给予数学与实际、数学与其他学科的联系充分的重视,因此,高中数学在数学应用和联系实际方面显得极其迫切。

2.数学建模能力是新课程标准的要求

新高中数学课程大部分内容都是基于实际背景,反映了数学的应用价值,也设立了体现数学许多重要应用的专题课程.还要求让学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。

二、课题研究目的与意义

研究目的:

(1)了解高一学生数学建模能力现状;

(2)调查高二学生对数学建模课程的认识与感受及其与学生的学业成绩之间的关系.

研究意义:

(1)通过对高一学生调查发现,高中生,特别是农村中学高中生数学建模经验缺乏,能力不足,并认为中学数学与实际生活之间关联非常少,初步确定在高中实施数学建模教学是有必要的.

(2)通过对高二学生跟踪调查,了解学生以前对数学建模的认识程度以及上数学建模课程的感受,并调查掌握学生对中学数学与现实生活之间的关系认识变化情况.进一步肯定在高中实施数学建模教学既能满足学生的学习和能力需求,还能提高学生对学习和能力的信心.

三、课题研究方法

(1)文献综述法

对数学建模的相关理论研究与实践材料进行包括中外文著作、期刊及网络资源在内的文献整理,明确本课题的研究内容、研究现状,寻找相关领域的理论支持与实践成果.

(2)比较研究法

通过课后进行跟踪调查,比较学生课前课后对数学建模的了解程度及其变化情况,并比较学生对中学数学与现实生活之间的关系认识和感受变化情况.

(3)问卷调查法

本文首先通过在高一年级进行调查测试了解高一学生的数学建模能力,然后通过在高二实施一节数学建模案例后进行跟踪调查,了解高二学生对数学建模的理解和认识变化.

十一、数学建模与学生的能力培养

(1)数学建模可培养学生的自学能力和使用文献资料的能力。数学建模的对象常常是一些非数学领域的实际问题,需要的很多知识也是学生原来没有学过的,老师不可能有过多的时间为学生讲授或补课,只能通过学生自学和小组讨论来进一步掌握,这将有助于培养学生的自学能力。而且在参加竞赛或研究性课题过程中,需要学生从各方面搜集和吸收自己需要的有用信息从而可提高学生利用和使用资料的能力。这两方面的能力是学生学习和工作所必备的。

(2)培养学生表达能力与科研报告写作能力。在数学建模过程中,要求学生报告自己的论文,参与讨论,表达自己的思想观点。同时建模的结果需要解题报告或论文的形式写出来这需要比常规作业更多的专业语言的表达训练。这都对培养学生的写作与表达能力起到积极的作用。

(3)培养学生的计算机应用能力。许多数学建模过程需要计算机才能完成。面对复杂的实际问题在建模之前往往需要先计算一些东西或直观地考察一些图像,以便据此做出判断或想象来确定模型。在形成数学模型后,模型求解过程中大量的数学推理、计算、画图都需要相应的数学软件包帮助才能完成。论文的准备也离不开计算机,因此通过数学建模教学,将有助于提高学生应用计算机的能力。

(4)培养学生良好的性格品质并形成良好的数学精神。数学建模是一项强调协作的活动,通过参与和合作,能提高学生对数学的情感,形成学习数学的积极的态度,在学生的情感、意志、品质和思维方式上得到提高,有利于培养开拓进取、富于创新、团结协作、意志坚强的良好的性格品质并形成良好的数学精神。

十二、数学建模思想方法对我国数学教育改革的启示

1.中学数学建模与素质教育

随着时代的发展和实施素质教育的要求,目前中国数学教育中存在着一些亟待解决的问题,体现在教学内容相对偏窄、偏深、偏旧,学生的学习方式单一、被动,缺少自主探索、合作学习、独立获取知识的机会;对书本知识、运算和推理技能关注较多,对学生学习数学的态度、情感关注较少;课程实施过程中基本以教师、课堂、书本为中心,难以培养学生的创新精神和实践能力。

2.数学建模活动对数学教师提出了新的要求

数学建模过程是个复杂的、系统的过程。解决数学建模问题不仅要求熟练掌握数学的基本知识、基本能力,还要求具备其他一些学科的基础知识,另外,还应具备数学解释、交流能力及团结、合作能力等等。指导这样复杂的活动,教师不但要具备同样的能力,还需要不断调整自己的角色。这对已习惯于传统教学过程的我国数学教师来说,无疑是一种新的要求和挑战。为了尽快地适应这种要求和挑战,数学教师应注意自身的不断充实和完善。

数学建模活动不同于一般的课堂教学活动,是一个开放的过程,不仅问题本身是开放的(问题的发现、表述方式有情有景、解答方法不唯一等等),而且学生活动也是开放的(学生在建模过程中独立性、活动性强,不仅要动脑、而且要动手、动口),会临时出现许多意想不到的情况。

数学建模对数学的要求篇5

随着社会经济和科学技术的飞速发展,特别是计算机技术普及,使得数学知识广泛应用于各个领域的实际问题之中。数学模型主要是使用数学知识来解决实际问题,因此,数学是人们掌握和使用数学模型这个工具的必要条件和重要的基础。没有广博的数学力学知识,严格的数学力学思维训练,是很难使用数学力学模型来解决实际问题的。因此,数学模型是连接实际问题和数学理论的中间桥梁。

数学模型是一种具有创新性的科学方法,它通过抽象和简化,使用数学语言对现实问题进行简化,以便人们更加深刻地认识所研究的对象。数学模型不是对于现实系统的简单模拟,它是人们用以认识显示系统和解决实际问题的工具,数学模型是对现实对象信息进行提炼、分析、归纳、翻译的结果,它使用数学语言精确地表达了对象的内在特性,然后采用恰当的数学方法求解,通过数学上的演绎推理和分析求解,进而对现实问题进行定量分析和研究,最终达到解决实际问题之目的。应用数学知识解决实际问题的第一步必须要面对实际问题中看起来杂乱无章的现象,从中抽象出恰当的数学关系,用数学符号和语言把这个数学关系描述为数学公式,这个过程就是数学建模。数学建模活动的开展不但增强了大学生的创新意识、协作意识、竞争意识和奉献意识,更培养了他们的创造能力、分析问题和解决问题的能力。

在我国,创办于1992年的全国大学生数学建模竞赛,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2013年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、印度和马来西亚的1326所院校、23339个队(其中本科组19892队、专科组3447队)、70000多名大学生报名参加本项竞赛。在这样的大环境下,传统的数学教学已经阻碍了高等教育的发展,因此数学建模教学课程的创设也就成为高等学校改革的突破口。通过何种手段实施数学建模思想,采取何种数学建模教育来切实提高学生的数学素质,也就成为高校教师教学中的一个重大课题,培养学生应用数学建模的意识和能力已经成为教学的一个重要方面。

一、数学模型的分类

数学模型的分类繁多,但是按人们对事物发展过程的了解程度可以分为:

白箱模型,指那些内部规律比较清楚的模型。如:力学、热学、电学以及相关的工程技术问题。

灰箱模型,指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。如:气象学、生态学、经济学等领域的模型。

黑箱模型,指一些其内部规律还很少为人们所知的现象。如:生命科学、社会科学等方面的问题。但由于因素众多、关系复杂,也可简化为灰箱模型来研究。

二、数学建模的过程

一般说来,建立一个能够反映现实问题的数学模型必须经历几个过程(图1):

第一,建立模型的准备,在建模前首先通过搜集相关资料来了解问题的实际背景知识。根据题目的要求,明确其实际意义,有目的地收集相关的信息和数据,尽量弄清研究对象的特点,用数学思路贯穿问题的全过程,初步确定用何种数学工具建立哪一类数学模型;

第二,模型假设,这是建模的关键一步。根据研究对象的特点和研究目的,抓住问题的主要方面以及本质,忽略次要因素。对研究问题做出必要的、合理的假设,从中将实际问题抽象并简化出一个简单化的数学问题;

第三,模型构成,分析处理已有的数据和资料等,在已做假设的基础上,综合运用适当的数学方法,选用合理的数学语言、符号、图形并分析其内在的逻辑关系来描述研究对象。所采用的数学工具要尽量简单,其模型也一定可行,能够方便地用数学工具求解;

第四,模型求解,所建立的模型必须是可行的,根据不同的数学模型要用到相应的数学方法来求解其结果,即能够使用数学工具(Fortran,matlab,C++等),对模型进行求解(解析解或近似解);

第五,模型分析,对模型求解的结果进行数学上的分析(误差分析,统计分析,灵敏度分析和稳定性分析等),分析模型中各个参数之间的相互关系,同时还需要根据所得结果给出数学式的预测和最优决策、控制等,指出结果的实际意义和模型的适用范围等;

第六,模型验证,将模型分析的结果运用懂时间问题的解决中并和实际情况比较,用时间的现象和数据来验证模型的合理性、实用性、可靠性和准确性等。如果求解结果为数值解,还要同时考虑所得到的误差应该在实际问题允许的误差范围之内。若比较相互吻合,说明模型是合理正确的。反之,则说明模型是失败的,问题可能出在假设上,此时应根据检验的情况对假设进行不断的修改并完善数学模型,重新求解进行分析,知道分析结果和实际情况符合,并且可以满足精度要求,则认为模型可行,便可以进行模型的应用和推广。另外,一个正确的模型不但可以解释已知现象,而且还可以预测一些未知情况;

第七,模型应用,将验证正确的数学模型进一步推广到一些实际领域内,用以解决实际问题,在应用中不断改进和完善,从而对实际工作进行指导,最终产生经济效益。

图1

可见,完整的数学建模是一个互动的过程。在建模过程中,就要把本质的东西及其关系反映进去,要真实地、系统地、完整地、形象地反映客观现象,若结果不理想,还得修改模型,重复上述过程,以期达到理想的结果。要想获得一个比较正确的数学模型,就必须熟悉并掌握一些建模的方法。

三、数学建模教学的改革

数学建模教学在高等学校实现素质教育及人才培养方面具有不可替代的作用,它是对加强学生知识,技能、能力、创新和综合素质培养这一中心工作不可缺少的重要组成部分。因此,国外的一些院校对数学建模教学的环节非常重视。然而,我国的数学建模却没有得到足够的重视,以我校的数学建模教学为例,主要存在两个方面的问题:第一,教学方式单一,往往是教师一个人在讲台上先把板书写好,然后按照固定的模式一步一步操作下去,台下学生快速地记笔记,课后按部就班地完成作业。这样就导致有的学生虽然可以完成作业,但是不能够真正地理解数学建模的原理,不会将实际问题转换为数学问题,从而难于发现问题和解决问题。第二,教学内容陈旧,始终处于停滞状态,局限于书本上的例题,这些例题往往和时展相脱节,教学内容已经不能适应相应的社会发展要求。第三,数学建模课程缺乏时代性,学校没有形成对应的管理机制去监督数学建模教学的改革,现有的教学缺乏针对性,没有达到与时俱进。甚至,有的高校教学内容沿用了几年甚至十几年一成不变的教学大纲,以至于学生后来工作后无法将课堂上学到的知识灵活地运用到实际工作中从而满足自己的工作需要,实现个人价值和社会价值的统一。

针对以上数学建模教学中存在的问题,可以采取以下措施进行改革创新:

(一)传授模式的改变

数学建模是一个老师和学生互动的过程,为了改变传统的教学模式,可以改变教师一人讲授的传统方式,也可以采用多媒体教学。学生既是被动接受知识的载体,又是整个过程的主要参与者。期间老师可以将该讲授内容以录像、动画和视频的形式表现出来,也可以通过讲授并且启发提问的方式,便于学生思考、提问和讨论、从而调动了学生的主动性。建模过程是一个复杂的过程,往往没有现成的解决方案,此时老师和学生必须进行实际背景调查,每个学生都应该参与其中,充分发挥各自的主观能动性,以便培养学生在课堂上独立思考问题的能力。另外,在课堂上还要培养学生发散思维的能力,没有一个数学模型可以完全解决实际问题。反之,同样的一个问题也可以有几种不同的解决方案,基于假设的不同就会有这样那样的数学模型,教师和学生应该紧密结合,充分发挥学生的想象力和创造力,力争有一个满意的解答。

(二)传授内容的改革

数学模型教学内容的选取上,优先关注那些教学插件的典型性和案例背景的实用性、前沿性和数学方法的综合性的例题。内容上,应该尽力精选一些实际应用的例题进行建模教学示范,所选的数学模型不但要密切联系生活,更要和本专业课程紧密结合。通过展示这些例题的建模过程,不但使学生进一步加深对于数学建模原理的理解,还应该使学生明白如何将本专业所遇到的实际问题转换为理论问题,帮助学生理论联系实际,提高学生解决本专业实际问题的能力。

(三)引入数学软件,开设数学实验

随着计算机技术的空前发展,对于数学模型的求解完全可以借助于一些数学软件来快速实现。这就要求在大学课堂中除了要求学生掌握建模原理之外,更应该要求学生了解和掌握利用数学工具(C语言,matlab,maple,mathematica,Gauss,Xmath等)来计算和解决比较复杂的科学问题。因此,必须开设相对应的课程以普及和介绍数学软件的各种运算和图形处理功能,同时还根据专业情况利用各个软件现有的工具箱来简化建模过程和扩充符合计算功能和仿真功能。在此基础之上,把数学工具软件应用到现有的数学建模教学中,可以提高数学建模的效率和质量,丰富了数学建模的方法和手段。

四、结语

目前,欧美国家的一些学校和教师早已经把数学建模实验课运用到实际中,切实发挥学生的动手能力和思考问题能力,培养了一大批能为社会作贡献的科学家。作为发展中的国家,我们更应该重视数学建模教学质量的提高,切实实现面向未来、面向世界的教育模式。然而,数学建模教学的改革是一个循序渐进的过程,在这个过程中就要扬长避短,抛弃陈旧观念,为高等学校的改革创造一个良好的环境。

[参考文献]

[1] 李晓莉.数学建模的教学与实践[J].铁道师院学报,2002,(2).

[2] 陈国华,黄勇,江惠民.数学建模与素质教育[J].数学的实践与认识,2003,(33):110-112.

[3] 冯永明,张启凡,刘凤文.中学数学建模的教学构想与实践[J].数学通讯,2000,(7):56-57.

数学建模对数学的要求篇6

一、精拟建模问题

问题是数学建模教与学的基本载体,所选拟问题的优劣在很大程度上影响数学建模教学目标能否实现,并影响学生对数学建模学习的态度、兴趣和信念。因此,精心选拟数学建模问题是数学建模教学的基本策略。鉴于高中学生的心理特点和认知规律,结合建模课程的目标和要求,选拟的建模问题应贴近学生经验、源自有趣题材、力求难易适度。

1.贴近学生经验

所选拟的问题应当是源于学生周围环境、贴近学生生活经验的现实问题。此类问题的现实情境为学生所熟悉,易于为学生所理解,并易于激发学生兴奋点。因而,有助于消除学生对数学建模的神秘感与疏离感,增进对数学建模的亲近感;有助于激发学生的探索热情,感悟数学建模的价值与魅力。

2.源自有趣题材

所选拟的问题应当源自富有趣味的题材。此类问题易于激起学生的好奇心,有助于维护和增强学生对数学建模课程的学习兴趣与探索动机。为此,教师应关注学生感兴趣的热点话题,并从独到的视角挖掘和提炼其中所蕴含的数学建模问题,选取学生习以为常而又未曾深思但结论却又出乎意料的问题。

3.力求难易适度

所选拟的问题应力求难易适度,应能使学生运用其已具备的知识与方法即可解决。如此,有助于消除学生对数学建模的畏惧心理,平抑学生源于数学建模的学习压力,增强学生对数学建模的学习信心,优化学生对数学建模的学习态度,维护学生对数学建模的学习兴趣。为此,教师在选拟问题时,应考虑多数学生的知识基础、生活背景及理解水平。所选拟的问题要尽量避免出现不为学生所熟悉的专业术语,避免问题过度专业化,要为学生理解问题提供必要的背景材料、信息与知识。

二、聚焦建模方法

数学建模方法是指运用数学工具建立数学模型进而解决现实问题的方法,它是数学建模教与学的核心,具有重要的教学功能。掌握一定的数学建模方法是实现数学建模课程目标的有效途径。为此,数学建模教学应聚焦于数学建模方法。

1.注重建模步骤

数学建模方法包含诸如问题表征、简化假设、模型构建、模型求解、模型检验、模型修正、模型解释、模型应用等多个步骤。数学建模教学中,教师应通过数学建模案例,注重对各步骤的基本内涵、实施技巧及各步骤之间的内在联系和协同方式进行阐释和分析,这是使学生从整体上把握建模方法的必要手段。有助于学生掌握数学建模的基本过程,有助于为学生模仿建模提供操作性依据,进而为学生独立建模提供原则性指导。

2.突出普适方法

不同的数学建模方法,其作用大小和应用范围也不同,譬如,关系分析方法、平衡原理方法、数据分析方法、图形(表)分析方法以及类比分析方法等均为具有统摄性和普适性的建模方法。教师应侧重对这些普适性的建模方法进行教学,使学生重点理解、掌握和应用。此外,分属于几何、代数、三角、微积分、概率与统计、线性规划等数学分支领域的建模方法等,尽管其普适性程度稍逊,但其对解决具有领域特征的现实问题却具重要应用价值,因而,教师也应结合相应数学领域内容的教学,使学生通过把握其领域特性及其所运用的问题情境特征而熟练掌握并灵活应用。

3.加强方法关联

许多现实问题的解决往往需要综合运用多种数学建模方法,因此,在数学建模教学中,应加强数学建模方法之间的关联,注重多种建模方法的综合运用。为此,应在加强各建模步骤之间联系与协调运用基础上,综合贯通处于不同层次、分属不同领域的数学建模方法,在建模各步骤之间、具体的建模方法之间、不同领域的数学建模方法之间进行多维联结,建立数学建模方法网络图,以使学生掌握数学建模方法体系,形成综合运用数学建模方法解决现实问题的能力。

三、强化建模策略

数学建模策略是指在数学建模过程中理解问题、选择方法、采取步骤的指导方针,是选择、组合、改变或操作与当前数学建模问题解决有关的事实、概念和原理的规则。数学建模策略对数学建模的过程、结果与效率均具有重要作用。学生掌握有效的数学建模策略,既是数学建模课程的重要教学目标,也是学生形成数学建模能力的重要步骤。因此,应强化数学建模策略的教与学。

1.基于建模案例

策略通常具有抽象性、概括性等特点,往往需要借助实例运用获得具体经验,才能被真正领悟与有效掌握。因此,数学建模策略的教学应基于对建模案例的示范与解析,使学生在现实问题情境中感受所要习得的建模策略的具体运用。为此,一方面,针对某特定建模策略的案例应尽可能涵盖丰富的现实问题,并在相应的案例中揭示该建模策略的不同方面,以为该建模策略提供多样化的情境与经验支持;另一方面,应对某特定建模案例中所涉及的多种建模策略的运用进行多角度的审视与解析,以厘清各种建模策略之间的内在联系。基于案例把握建模策略,将抽象的建模策略与鲜活的现实问题密切联系,有助于积累建模策略的背景性经验,有助于丰富建模策略的应用模式,有助于促进建模策略的条件化与经验化,进而实现建模策略的灵活应用与广泛迁移。

2.寓于建模方法

建模策略从层次上高于建模方法,是建模方法应用的指导性方针,它通过建模方法影响建模的过程、结果与效率。离开建模方法而获得的建模策略势必停留于表面与形式,难以对数学建模发挥作用。因此,应寓于建模方法获得建模策略。为此,应通过数学建模案例,解析与阐释所用策略与方法之间的内在联系与协同规律,使学生掌握如何运用建模方法,知晓何以运用建模方法,从而获得具有“实用”价值的数学建模策略。

3.联结思维策略

思维策略是指问题解决思维活动过程中具有普适性作用的策略。譬如,解题时,先准确理解题意,而非匆忙解答;从整体上把握题意,理清复杂关系,挖掘蕴涵的深层关系,把握问题的深层结构;在理解问题整体意义基础上判断解题的思路方向;充分利用已知条件信息;注意运用双向推理;克服思维定势,进行扩散性思维;解题后总结解题思路,举一反三等,均为问题解决中的思维策略。思维策略是数学建模不可或缺的认知工具,对数学建模具有重要指导作用。思维策略从层次上高于建模策略,它通过建模策略对建模活动产生影响。离开思维策略的指导,建模策略的作用将受到很大制约。因此,在建模策略教学中,应结合建模案例,将所用建模策略与所用思维策略相联结,以使学生充分感悟思维策略对建模策略运用的指引作用,增强建模策略运用的弹性。

四、注重图式教学

数学建模图式是指由与数学建模有关的原理、概念、关系、规则和操作程序构成的知识综合体。具有如下基本内涵:是与数学建模有关的知识组块;是已有数学建模成功案例的概括和抽象;可被当前数学建模问题情境的某些线索激活。数学建模图式在建模中具有重要作用,影响数学建模的模式识别与表征、策略搜索与选择、迁移评估与预测。因此,应注重数学建模图式的教与学,为此,数学建模教学应实施样例学习、开展变式练习、强化开放训练。

1.实施样例学习

样例学习是向学生书面呈现一批解答完好的例题(样例),学生解决问题遇到障碍或出现错误时,可以自学这些样例,再尝试去解决问题。样例学习要求从具有详细解答步骤的样例中归纳出隐含其中的抽象知识与方法来解决当前问题。在数学建模教学中实施样例学习,学习和研究别人的已建模型及建模过程中的思维模式,有助于使学生更多地关注数学建模问题的深层结构特征,更好地关注在何种情况下使用和如何使用原理、规则与算法等,从而有助于其建模图式的形成。在实施样例学习时,应注重透过建模问题的表面特征提炼和归纳其所蕴含的关系、原理、规则和类别等深层结构。

2.开展变式练习

通过样例学习而形成的建模图式往往并不稳固,且难以灵活迁移至新的情境。为此,应在样例学习基础上开展变式练习,通过多种变式情境的分析和比较,排除具体问题情境中非本质性的细节,逐步从表层向深层概括规则和建构模式,不断地将初步形成的建模图式和提炼过的规则和模式内化,以形成清晰而稳固的建模图式。开展变式练习时,应注重洞察构成现实情境问题的“数学结构框架”,从“变化”的外在特征中鉴别和抽象出“不变”的内在结构。

3.强化开放训练

数学建模具有结构不良问题解决的特性。譬如,条件和目标不明确;“简化”假设时需要高度灵活的技巧;模型构建需要基于对问题的深邃洞察与合理判断并灵活运用建模方法;所建模型及其形式表达缺乏统一标准,需要检验、修正并不断推广以适应更复杂的情境;有并非唯一正确的多种结果和答案等等。鉴于此,数学建模教学中应强化开放训练,以促进学生形成概括性强、迁移范围广、丰富多样的建模图式。为此,应通过改变问题的情境、条件、要求及方法来拓展问题。即对简化假设、建模思路、建模结果、模型应用等建模环节进行多种可能性分析;将问题原型恰当地转变到某一特定模型;将一个领域内的模型灵活地转移到另一领域;将一个具体、形象的模型创造性地转换成综合、抽象的模型。在上述操作基础上,对建模问题进行抽象、概括和归类,从一种问题情境进行辐射,并以此网罗建模的不同操作模式,从而使学生形成关于建模图式的体系化认知,进而提升建模图式的灵活性和可迁移性。

五、活化教学方式

鉴于数学建模具有综合性、实践性和活动性特征,因而其教学应体现以学生为认知主体,以运用数学知识与方法解决现实问题为运行主线,以培养学生数学建模能力为核心目标。为此,应灵活采取激励独立探究、引导对比反思、寻求优化选择等密切协同的教学方式。

1.激励独立探究

数学建模教学中,教师应首先激发学生独立思考、自主探索,力求学生找到各自富有个性的建模思路与方案。诚然,教师和教材的思路与方案可能更为简约而成熟,然而,学生是学习的主体,其获得的思路与方案更贴近学生自身的认知水平。因此,教师应给予学生独立思考的机会,激励学生个体自主探索,尊重学生的个性化思考,允许不同的学生从不同的角度认识问题,以不同的方式表征问题,用不同的方法探索问题,并尽力找到自己的建模思路与方案,以培养学生独立思考的习惯和探究能力。

2.引导对比分析

在激励学生探寻个性化的建模思路与方案基础上,教师应及时引导学生对比分析,归纳出多样化的建模思路与方案。为此,应将提出不同建模方案的学生组成“异质”的讨论小组,聆听其他同学的分析与解释,对比分析探索过程、评价探索结果、分享探索成果,以使学生认识从不同角度与层次获得的多样化方案。引导学生对比分析,既展现了学生自主探索的成果,又发挥了教师组织引导的职能,还使学生获得了多元化的数学建模思维方式。

3.寻求优化选择

在获得多样化的建模方案基础上,教师应继续引导全班学生对多样化的建模方案进行观察与辨析,使学生在思维的交流与碰撞中,感受与认知其它方案的优点和局限,反思与改进自己的方案,相互纠正、补充与完善,寻求方案的优化选择。引导学生寻求优化选择,不仅仅是求得最优化的结果,还是发展学生数学思维、培养学生创新意识的有效方式。在此过程中,教师应与学生有效互动,深度交流,汲取不同方案的可取之点与合理之处,以做出优化选择。

上述数学建模教学策略之间存在密切联系。精拟建模问题是有效实施数学建模教学的载体;聚焦建模方法是有效实施数学建模教学的核心;强化建模策略是有效实施数学建模教学的灵魂;注重图式教学是有效实施数学建模教学的依据;活化教学方式是有效实施数学建模教学的保障。在数学建模教学中,诸策略应有机结合,协同运用,以求取得最佳效果。

参考文献

[1]wernerBlumpeterL.GalbraithHans-wolfgangHenn.mogensniss.modelingandapplicationsinmathema-ticseducation.newiCmiStudySeriesVoL.10.publishedundertheauspicesoftheinternationalCom-missiononmathematicalinstructionunderthegeneraleditorshipofmicheleartigue,presidentBernard,R.Hodgson,SecretaryGeneral.2006.

[2]中华人民共和国教育部.普通高中数学课程标准.北京师范大学出版社,2003.

[3]李明振,喻平.高中数学建模课程实施的背景、问题与策略.数学通报,2008,47(11).

[4]李明振.数学建模认知研究.南京:江苏教育出版社,2013.

[5]mingzhenLi,QinhuaFang,ZhongCai,Xinbingwang.aStudyofinfluentialFactorsinmathematicalmod-elingofacademicachievementofHighSchoolStudents.Journalofmathematicseducation.Vol4no.1.June,2011.

[6]mingzhen,,HuYuting,Li,Yuping,ZhongCai.aComparativeStudyonHighSchoolStudents’mathematicalmodelingCognitiveFeatures.Researchinmathematicaleducation.June,2012.

数学建模对数学的要求篇7

关键词:常微分方程;数学建模;人口预测;传染病

1引言

方程是数学学科的重点内容之一,如线性方程、对数方程等,在一些实际问题的求解方面有着十分重要的应用,但是依旧存在许多的问题无法通过初等数学中的一些常见方程进行刻画和求解。一般来说,微分方程就是联系自变量、未知函数以及未知函数的某些导数或微分的关系式。数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型。而由于常微分方程能够有效地对复杂的实际问题进行刻画,因此在数学建模问题的求解方面有着十分广泛的应用。

2常微分方程模型

微分方程与物理、天文学以及日异月新的科学技术有着密切的联系。微分方程是自变量、未知函数及函数的导数组成的关系式。在反映客观现实世界运动过程的量与量之间的关系中,大量存在满足微分方程关系似的数学模型,需要我们通过求解常微分方程来了解未知函数的性质。构造常微分方程的数学模型有如下几种方法:

(1)运用已知的基本定律或基本公式建立常微分方程模型

主要利用各学科中已知的定理或定律来建立的。如力学中万有引力定律等。

(2)利用导数的定义建立微分方程模型

(3)利用微元法建立常微分方程模型

(4)模拟近似

模拟近似是在事物发展的规律不很清楚的复杂问题中常用的方法,该过程往往是近似的,需要对最后的求得的解进行分析,将计算结果与实际相比较是否符合实际。

3常微分方程求解数学建模问题

3.1基于常微分方程的经典数学建模问题

用数学语言来对研究目标随时间变化过程进行描述,建立的动态模型就是微分方程模型。微分方程模型的建立通常是依据物理、化学、工程科学等中的基本原理,待定函数的导数或微分的数学关系式表示出来。下面我们由浅入深地介绍一些微分方程模型。

例1细菌群落增长问题

已知初始时刻细菌群落的总数为y0,t时刻为yt,求解0~t时刻内任意时间细菌数量。

例3红绿灯问题

交通红绿灯在人们生活中有着重要的作用,其中黄色指示灯对保障交通安全发挥了重要作用,那么黄灯持续时间多长为宜?

分析:驾驶员看到黄色信号灯后立即做出决定是否停车。若停车,则需要判断停车距离是否满足条件,该条件是由速度决定的。而已经过线无法停住的车辆,黄灯需留有一定的时间保障其能够通过。据此,对上述问题进行求解:

(1)根据法定最高限速v0计算停车线位置,使得停车线到路口的距离满足刹车需求;

(2)根据停车线和速度v0计算黄灯持续时间。

如上图所示,绿色曲线为实际人口统计,蓝色为指数模型预测结果,红色为阻滞增长模型预测结果。可见,指数模型在19世纪以前预测结果与实际基本吻合,但是之后的预测值大大超过实际值。而阻滞增长模型具有较高的预测精度,符合实际变化规律。

3.3基于常微分方程的传染病预测模型

目前,大多数传染病模型都是对由Kermark和meKendrick所建立的SiR模型的修正而得到的。SiS模型中染病者康复后可以再次被感染;SiR模型中康复者后获得终身免疫力:而SiRS模型中康复者有暂时免疫力,一段时间后重新成为易感者。下面,本文以北京市SaRS传播为研究对象,建立传染病模型进行分析研究。SaRS的传播可以分为三个阶段:

(1)控制前的自然传播模式阶段。

(2)过渡期阶段,政府采取隔离措施前的一段时期内。

(3)控制阶段,即政府采取隔离治疗措施阶段。

4小结

本文对常微分方程模型在数学模型中的应用进行了研究分析,对建立微分方程的方法进行了介绍,并给出了生物学、社会科学、统计学、物理学、医学等多个学科的实例,基于常微分方程建立相关数学模型对实例中的问题进行了求解。随着社会的进步和发展,基于常微分方程的数学模型对解决复杂的实际问题发挥着日益重要的作用。

参考文献

[1]王高雄等.常微分方程[m].北京:高等教育出版社,2001.1.

[2]姜启源,谢金星,叶俊.数学模型[m].北京:高等教育出版社,2003.6.

[3]东北师范大学微分教研室.常微分方程[m].北京:高等教育出版社,2005.4.

[4]刘双等.SaRS临床病例及影像学分析[m].中国医药科技出版社,2003.5.

数学建模对数学的要求篇8

关键词:经济数学模型;建立;应用

经济数学模型(economicmathematicalmodel)就是把经济活动各要素表示成抽象的数学公式,即:经济活动中数量关系的简化的数学表达,简称经济模型,是研究分析经济数量关系的重要工具。是将经济现象或经济问题中各要素之间的关系抽象出来,利用数学原理、数学方法建立起一套能够对经济现象、经济问题进行分析、统计、总结、预测的研究方法。

一、经济数学模型对研究经济学的意义

数学是与经济学息息相关的学科,是研究经济学不可或缺的重要工具。经济学从产生开始就有涉及面广、经济现象复杂、经济数据繁杂等特点,每一项研究、决策都离不开数学的应用。研究经济问题时,不仅要对经济现象进行定性分析,也要对大量经济数据进行相应的定量分析。经济数学模型能起到理清思路、简化抽象问题、加工处理信息、得出理论成果并用于指导经济实践的作用,可以对过去的经济活动进行统计、总结,对正在发生的经济现象进行监控,还能作为经济预测、经济决策的工具。经济数学模型里涉及到的数学理论知识比较广泛,包括线性规划方法、非线性规划方法、极值最值理论、不动点理论、概率统计方法、微分方程等。经济数学模型广泛运用在经济学中的许多学科分支和研究领域,包括数理经济学和计量经济学,也包括系统分析、计量分析、成本收益利润分析、投入产出分析、最优化分析及平衡理论研究等方面,并使用电脑技术对分析统计预测结果进行模拟演示以检验理论成果的可行性。这里不仅用到经济数学模型,也需要利用信息技术。

二、如何建立经济数学模型

建立经济数学模型是通过对现实经济问题进行分析,作出合理的假设,直接从实际问题中抽象出数学问题,并利用数学语言将问题表述出来,利用数学方法和数学理论对经济数学模型进行演绎、推理、求解,再将结果与现实比对检验的过程。建立经济数学模型大概分为三个阶段:现实经济世界数学世界现实经济世界。

构建一个经济数学模型时,应注重了解实际问题的经济背景,通过假设把问题抽象简化出来,分析影响模型的各个因素,并设置变量和参数表示这些因素,利用数学知识建立变量之间的关系式,利用数学方法进行分析。因此经济数学模型的建立通常分为如下六个步骤:准备建模、提出模型假设、构建经济数学模型、对数学模型求解、分析、检验等。

(一)准备建模

在建立经济数学模型之前要深入了解待研的经济问题,了解该问题的相关知识背景,查阅收集整理归纳相关数据。由于是给本科生讲授数学建模方法,所以还要根据本科生的数学知识储备情况选择合适的数学工具。

(二)提出模型假设

假设的过程就是将经济问题用数学问题简化抽象出来的过程,简化的目的是用简单模型反应复杂经济问题。好的模型不仅不会降低真实性,还能提高模型的科学性和实用性。但不能无限制的简化,还要真实准确反应出经济问题。简化抽象程度由经济对象的误差范围和应用相关数学方法的前提决定。这就要求建模人员不仅要具有对资料的较强的整合能力,还要有相当的知识储备和知识运用能力,所建模型要难易程度适当并具有现实意义。经济数学模型分为普通经济模型、计量经济模型、投入产出模型和数学规划模型。要根据具体问题建立适当的模型。

(三)构建经济数学模型

这一步是建模关键。根据前面所做的假设将经济问题中涉及的经济量用变量或相关参数表示,用公式或函数关系或方程等数学语言及相关数学理论描述经济问题,建立起变量之间的关系式,从而建立经济数学模型。比如计量经济模型是以数学、统计、和经济三类学科的理论知识为基础,将经济问题与数学数量关系相关的知识方法相结合建立经济数学模型。投入产出模型是对投入产出数额进行分析,主要研究投入时依据的条件和对应的产出数额。这种模型能反映出部门间的关系、收入产出的关系及相关经济活动。

对经济数学模型求解。模型建立以后就要根据相关经济数据和数学理论进行求解。大部分经济数学模型的求解都不需要高深的数学理论知识,需要的是复杂计算,这个问题可以依靠计算机软件来完成。甚至有些运算利用excel就可以完成。

模型分析。模型分析就是对运算结果做进一步的分析和推断,从而确定结果的相对合理性。运算出模型结果后,将模型结果与经济问题的现实状况进行对比分析,分析研究所得结果的合理性。如果二者是一致的,证明所建模型合乎现实,模型结果具有可信性,可以把开发的模型用到现实中去;如果二者不一致,就需要重新检查模型,寻找问题根本和出错原因,对模型进行改进。

模型检验。将抽象出来的经过比对相对合理的模型结果转换成现实经济问题中,用现实的经济数据再检验数学模型求解的合理性。如果检验结果与实际不符或不如预期的精准,需要对模型重新修改到合理为止。点评模型好坏的标准就是模型与实际的相符程度和实用性。伴随经济状况的变化,模型也要与时俱进持续修改和更新。

三、建立经济数学模型需要注意的问题

数据的收集要具有可靠性,确保准确无误。因此在建立经济数学模型之前,对经济现象的观察调研应当周全深刻,对经济数据的统计整理要真实谨慎可信。

数学建模对数学的要求篇9

关键词:中等职业院校数学教学数学建模思想教学改革

数学建模思想在数学教学活动中已经得到广泛的认可,在不同阶段、不同层次的教学中取得了良好的教学效果。但是对于中职教育而言,数学教学体系的构建并不完善,出于学生基本情况、数学教材使用情况、数学教学认知与能力水平情况的影响,数学建模思想尚未完全运用于中职数学教学实践中。为了中职数学更深层次的教学改革,本文以理论联系实际的方式,从实践教学的视角对数学建模思想在中职数学教学中的应用进行深入的分析。

一、中职数学教学中数学建模思想运用可行性分析

数学建模思想在中职数学教学中运用是否具备可行性,需要结合实际进行调查验证。为了完成本文的研究,对笔者所在学校所开展的数学教学实际情况、学生数学学习实际情况进行了详细的调查分析。调查采用问卷调查的方式,包括学校学生数学应用能力、数学建模思想解决实际数学问题的社会需求、数学建模思想在当前中职院校数学教学中体现情况以及学生对数学建模思想的认知四个方面。

调查结果显示,笔者所在学校学生在数学建模正确率、验证模型正确率方面的表现差强人意,表明学生在数学知识的实际运用上并未表现出应有的水平。对中职院校的数学课本抽样调查结果发现,虽然绝大多数数学教材的设计已经涉及了数学建模思想,但是培养学生数学应用能力方面的内容仍然欠缺;在中职数学所能够涉及的社会岗位抽样调查结果显示,比如资源环境领域、物流运输领域等对运用数学建模思想解决实际数学问题的能力需求空间巨大。

对学生的综合问卷调查结果则表明,超过80%的学生认为数学建模能力的建立十分必要,对于其以后的就业具有积极的帮助,他们乐于接受数学学习中的数学建模能力构建。从这些实际调查结果可知,当前中职数学教学中引入数学建模思想具有较强的可行性。

二、数学建模思想在中职数学课堂教学过程中的构建

1.融入数学建模思想的中职数学课堂

融入数学建模思想的中职数学课堂教学与其他教学模式一样,同样需要经过五个基本步骤,而且在每个步骤中需要结合数学建模思想的特征、优势、原则、规律以及中职学生数学学习的基本情况进行针对性的课堂设置,并且课堂教学整体上要遵循构建主义理论。

首先在备课阶段,教师需要对构建主义、人本主义以及数学建模思想、中职数学教学内容、中职学生基本情况具有充分的了解和认知,以全新的数学建模教学观念准备教学材料;其次在课堂引入阶段,教师在备课时已准备的丰富教学素材的基础上,以构建主义要求导入新知识,尤以数学软件进行教学演示为宜;再次在引导教学阶段,教师引导学生对新知识进一步挖掘,遵循启发引导、循序渐进的原则;第四在课堂结束阶段,通过一堂课的教学,学生对所学的数学建模知识获得了基本的了解和掌握,在结束阶段需要进一步总结以巩固学生的数学建模思想;最后在课后的巩固阶段,以传统的课外作业和学期测评方式对学生进行考核评价,使学生及时发现问题并分析和解决问题,使数学建模知识得到进一步巩固。

2.中职数学基础知识的铺垫

从整体上来看,中职数学教学中的数学建模能力的培养是一个系统工程,需要经历一系列的步骤,而基础知识的铺垫则被视为第一步。在中职数学基础知识的铺垫阶段,通常所采取的教学方式为“讲解-传授”式,要求教师自身对数学建模思想具有足够的了解和掌握,然后结合自己的了解和实践,以讲解的方式向学生传授数学建模的基础知识,以使学生对数学建模具有初步的认知,进而引导和帮助学生建立基础的数学知识体系和数学建模基础知识体系。此外,在教师进行数学建模讲解时,除基础认知之外,还需要引导学生对数学建模的基本运用方法进行初步的感悟,并建立系统的数学基础语言体系。

3.数学建模思想融入课堂的教学阶段

在中职学生获得初步的数学建模基础知识后,应在数学教师的引导下进入下一阶段的学习,即课堂融入阶段。在中职数学教学中,数学建模思想的课堂融入通常以“活动―参与”的教学模式,其强调数学建模课堂教学中学生的主动参与性,突出学生在学习中的主体地位。数学建模融入课堂教学阶段至关重要,对教师本身的素质和要求较高,要求教师对课堂教学具有整体的、灵活的把握能力。课堂融入阶段通常包括情景创设、师生合作活动探索、师生交流和讨论、师生总结与研究拓展、课后实践活动五个步骤。

4.中职学生数学建模思想的应用

中职教育对人才培养具有较高的实际运用能力要求,这就需要中职数学教学同样要求实际应用能力的训练和锻炼。经过以上阶段的教学实施之后,中职学生基本获得了系统数学知识和基本的数学建模能力,接下来需要在教师的引导下进入实践应用联系阶段。该阶段的目的在于锻炼学生自主完成数学实习作业、体会运用数学建模思想模拟解决实际数学问题的经过,进而巩固学生的建模思想。

在该阶段,教师应该坚持学生自主的原则,指导学生完成自我检验和自我修正。学生的自主练习可采取独立完成、小组合作完成等形式,数学实习作业题的设置则需要难易适中,能够给学生预留足够的发挥空间。

三、中职数学建模思想的教学应用实践

在中职数学建模教学中,教师设计的教学内容应以日常生活中遇到的数学问题为例,这样能够强化学生的理解和记忆。

比如在基础知识铺垫阶段,以城市用水收费标准为例来引导学生学习分段函数,使其结合自身日常生活中经常遇到的事情来加深对数学基础知识的理解,并在此基础上引导学生对日常生活中常见的涉及分段函数知识点的案例进行常识性应用和巩固,比如出租车的收费模式等。

而在数学建模思想融入课堂教学阶段,可在学生已掌握知识点基础上,教师设置情境进行互动性学习,比如“函数知识在手机卡计费中的应用”,教师创设情境,让学生通过建立函数模型来解决实际问题。

数学建模思想的实际应用是中职数学教学的最终目的,在此阶段,教师不妨将实际生活中的问题设计成数学案例,要求学生在课余时间独立或以团队合作的方式完成练习。

例如:某蔬菜大棚黄瓜种植中,由于菜农对于市场行情并没有准确合理地把握,因此对出售价格和时间的关系掌握不准,进而无法确定最佳经济收入。在这个背景下,请学生结合历年市场发展趋势与行情解决如下问题:建立黄瓜市场出售时间与价格的函数关系,并解释市场发展趋势;建立黄瓜种植时间与成本的函数关系,并解释成本的变化原因;在哪个时间段上市能够使菜农获得最大收益?

学生通过团队配合所做出的最佳方案如下。

第一步,进行市场调研,包括网络资料搜集与蔬菜市场实地调研。经过为期三天的调研,学生获得了2015年2月15日起300天的市场资料和数据,在经过教师的指导后,学生通过直角坐标系下的离散点图找到了市场变化趋势,成功地将日常生活中的实际问题转化成为了数学问题。

第二步,学生结合300天的数据进行了模型假设,即假设一:所搜集到的数据为真实可靠的数据;假设二:种植成本与市场售价间的差额为菜农的实际纯收益。

第三步,在该问题的关键点上引入建模思想,即种植成本与上市时间在2月15日起第150天时出现最低拐点,而市场售价与上市时间关系函数则在2月15日起第200天时出现最低拐点。在该处引入建模思想,可以得出种植成本Q与时间t之间的函数关系,以及市场售价p与时间t之间的函数关系。

对所出现的两个时间拐点而言,由于气候的影响,黄瓜在资料时间起点后的150天进入高产期,种植成本达到最低,此后黄瓜的市场供给开始增加,进而在此后的50天左右,市场供给达到最大化,造成市场售价最低,之后随着产量的减少,市场供需逐渐平衡,市场售价也开始回升。将生产成本与实践的关系函数进行整理,然后将其与销售价格和时间的关系函数进行整合,得出生产成本、销售时间、市场售价之间的综合函数,在此函数的基础上对时间区间进行计算,便可得到最佳值。

第四步,讨论分析,假设菜农的最大收益为K,则K=p-Q,那么:

当100≤p≤300而且0≤t≤200时,那么当p=250且t=50时,K得到最大值为100;

当100≤p≤300而且200≤t≤300时,在p与t的限制条件下,p取值400无意义,因此p应当取值300,对应的t取值300,此时K值为87.5;

由以上分析可知,当从2月15日起第50天时,菜农选择上市所获得的收益最大。

在学生完成此案例之后,一方面可以使学生对数学知识的实际运用获得了直观的认知,另一方面也培养了中职学生的数学应用能力。

四、实践教学效果分析

在笔者所在学校数学建模思想实践教学实施一段时间之后,采用问卷调查的方式分别对学生和教师进行了调查。结果显示,学生对于该模式的教学认可度明显提升,并表现出积极的兴趣和主动的参与,而且阶段性的测试结果也表明其数学成绩获得了明显的提升。实践应用结果表明,数学建模思想在中职数学教学中的应用明显改变了中职生学习数学的态度,学习的积极性和兴趣不断提升,学习方式也由原来的被动模式转变为主动模式,学生的综合能力和学习成绩大大提升。

此外,对教师的调查结果也显示,教师也更乐于采用此类教学方式,更乐于引入数学建模思想来进行中职数学教学。综合实践表明,中职数学教学中融入数学建模思想的教学模式具有推广价值。

参考文献:

[1]李涛.中等职业学校数学建模课程建设之研究[D].鲁东大学,2013.

[2]王娟,侯玉双.数学建模思想在数学分析课程教学中的应用[J].科技信息,2013(23).

数学建模对数学的要求篇10

【关键词】数学建模思想;高职;数学教学

将数学建模思想融入高职数学教学中具有重要的实际意义.高职数学老师将数学建模的思想引入数学教学中,可以用来培养学生的数学建模意识和数学建模能力以及运用数学建模的方法解决现实生活问题的能力.高职教育在人才培养过程中具有工具性和基础性的作用,因此,在教学的过程中应该坚持适度地融入数学建模思想,培养学生的建模意识,提升建模能力,在指引学生进行实际应用的过程之中,重视对能力的培养,将实际生活中的问题作为载体,对传统使用的教材进行改革.教师在对公式、原理和概念教学的过程中,应该向学生渗透相关的数学建模思想和数学建模方法,尤其是在对导数、极限和积分等概念进行阐述的时候,应该将新的数学问题向以往解决过的问题进行转化.

一、数学建模思想的阐述和意义

我们通常所说的“数学建模”就是在解决现实世界中的问题时,运用数学理论及工具构建出一个数学的模型,这个模型的本质是一种数学结构,可以是若干数学式子,还可以是某种图形表格,能够用来解释现实对象的特性和状态,推测对象事物的未来状况,提供人们处理事物的决定策略以及控制方案.数学建模的思想就是对数学的应用思想,将其融入高职数学教学中,充分体现了数学的真正价值——从现实出发再应用于现实.

在高职数学教学中融入建模思想,有利于激发学生的数学学习兴趣,让学生在解决问题的同时,发现自己数学知识的欠缺,从而回到课堂寻求数学知识,这样循环反复不仅促进了数学教学,更提升了学生的实际应用能力和动手能力.数学建模中涉及的问题往往是多种多样的,解决方法也是新奇个性的,将其思想融入数学教学是对学生的创新能力的锻炼与激发,使得课堂更加丰富多彩,教学更加热情积极.

二、建模思想的培养策略

1丰富数学教学内容,突出数学思想

对于高职院校的数学教学要融入数学建模思想,就要对教学的具体内容作出必要的变通,在教学数学的理论时,转变以往重视推导证明的教学过程,在推导的过程中不必追求过高的完整性和严密性,将教学的重点移向基本概念的深入理解,熟练掌握和应用技术、技巧与方法.针对各个专业的特征,设置有侧重点的数学课程.如理科方面的电子电气专业,就可以多重视学生的微分、极限、重积分变换等教学;在经济方面的专业应强调如数理统计学、线性代数学以及线性规划学的教学内容,而且在微积分方面最好简略;计算机类型的专业就可以适当增加像离散数学的教学内容.总体上强调实际应用价值高的教学部分,同时增添教学素材,融入新的技术来开阔学生的观念.

2培养建模意识,用建模的思想指导课程

高职数学教学的数学建模思想要从灌输意识开始,和以往教学略有不同的是,要在教导学生学习基本数学知识技巧时,用数学建模的思想指导他们理解概念,认识本源.很多问题都可以用建模去讲解,比如最优化、最值问题、导数问题、极限问题、微分方程问题、线性规划问题等.

这就要求我们高职数学老师要精心设计课程教学方案,充分发挥数学建模的思想,培养学生的建模意识.如老师在讲解《函数》一章时,不能按照以前的方法只讲解函数是一种关系,而要在其基础上赋予它更新的内容,以数学建模的思想,将函数公式应用到实际问题中,这样让学生能够有更深的理解,开阔学生的思维.举例如下:

给出一个函数式子:s=12gt2.

这是一个描述不同变量之间的联系而建立起来的函数关系,我们在教学中就可以构建具体的数学模型,这就是自由落体在整个运动过程中的下降距离s和时间t之间存在的函数关系,经过这样的简单设计之后再讲解给学生,会使教学的积极性有很大改善,也会使这种建模思想慢慢植入学生以后的学习之中.

3提升建模能力,将建模的思想融入学生的习题

注重培养学生“数学模型的应用能力”和“数学模型的建立能力”.能力培养重点放在平时学生的数学习题设计上,可以使用“双向翻译”的培养方式,这就要在讲解习题之前做好准备工作,在课堂上为学生讲解清楚概念的来源、公式的实际内涵和可用的几何模型,举例说明它们之间可以转换,从而布置“翻译”习题,培养建模能力.例如,可以出类似下面的习题:

函数关系式f(x,y)=(x-2)2+y2+x2+(y-1)2,请说明函数所能表示的具体含义,并求其最小值.在做具体解答的时候学生会寻找课堂所学,找出答案.这就是通过翻译激发其建模能力,对于这个问题就是求算一动点与两定点之间的距离之和,学生自然在求算最小值时联系实际寻找到两定点的中点就是最小的值所在点,从而简单地解决问题.也可以给出实际问题而不是公式,让学生去求解,以达到“双向翻译”,增强数学建模能力.

4增设数学实验的教学,将数学软件纳入学习之中

高职数学教学中大部分都是微积分,具有抽象性和复杂性的特征,不容易求算和解决,学生在课堂上学习到的知识和方法的所用之处少之又少.作为高职院校,学生学习数学的目的是应用所学去处理实际问题数学软件在微积分的学习中可以起到很大的作用.对于一些微积分中的问题,教师可以运用实验来指导教学,这样既可以使实践大为缩减,更能使学生学习理解的程度加深,还能应用数学软件matlab及mathematica使复杂的求算不再困扰学生,在数学教学上是很大的进步,充分体现数学建模思想的重要作用.