对量子力学的理解十篇

发布时间:2024-04-26 02:01:59

对量子力学的理解篇1

1.互补性诠释的逻辑结构

与互补性诠释不同的其它诠释的逻辑结构是,先设计出某种本体实在的模式,再将这种本体实在与量子力学中的某种符号联系起来,然后将这种符号按量子力学演绎的理论结果与观察结果对照来解释量子现象和量子理论。在这些解释中,观察结果不是作为解释的根据,而是作为量子力学演绎的结果。如隐变量理论先假设有因果决定性的亚量子层的隐变量的本体实在,再将这种本体实在隐变量的统计平均与量子力学中的可观察量联系起来,量子力学的理论值就代表着隐变量的统计平均的演化结果,它与统计性的结果相对应,这样隐变量理论就将观察结果和量子力学的描述解释为客体的隐变量的统计平均的表现和对这种统计平均的变化规律的描述。统计系综诠释则先假设统计分布具有实在的客观性,它代表着微观客体的状态和特征,量子力学描述中的波函数ψ的模方就表示客体的这种统计分布,波动方程的解的模方与观察结果的统计分布相一致,表示着客体的统计分布状态。互补性诠释不从一个预先的本体实在模式的假设出发,而是直接对观察结果进行分析和解释,然后从这种对观察结果的分析中推出客体的实在特点和对它进行描述的符号的意义。当然,从一般假设能演绎出一个唯一的结果,而从观察结果只能推出客体实在的某些本质特征,不会得出唯一确定的实在模式和对它描述的符号的完全确定的意义。因为观察结果可以由各种不同的符号系统描述,即使只有一套符号,其数学演算过程也无法与实际的物理过程一一对应,而只能将演算结果与观察结果对应,所以,虽然观察是唯一确定的,但关于它的描述和解释却可以有多种。这说明解释具有一定的灵活性,允许有各种不同的关于实在的假设,但这些假设的实在并不就是真实的实在,而只是在某些方面反映着由观察结果所表征的实在。互补性诠释通过对观察结果的认识特点和描述的语义方面的分析,找到对客体和谐一致的互补描述方式,再从这种描述中找出客体的实在特点,而不是先给出一种实在的模式或图景。

互补性诠释从观察到的原子的稳定性和辐射光谱的不连续性所表征的量子性出发,以量子公设作为其理论的出发点来构建对具有量子性的原子客体的合理描述。量子公设本身意味着过程的非连续性、个体性,也就意味着观察过程中仪器与客体的相互作用过程是不可细分的,观察结果中必然包含了仪器及其对客体的作用。在经典物理中,仪器对客体的作用比客体本身的物理量小得可以忽略,即使不能忽略也能通过对过程的分析将它剔除,但在对原子客体的观察中,仪器对客体的作用与客体的物理量相比拟,其作用过程又是非连续的,所以不可能将仪器的作用剔除,这样,观察结果中就必然包含了观察仪器的作用,而不是代表客体本身的现象,对客体的描述也必然只能是观察下的客体的描述,而不可能是对没有观察的孤立客体本身的描述,所以对客体的任何描述都依赖一定的观察,没有观察,就没有可描述的确定的现象,即使没有对应于客体本身的观察,也必然存在与之相关的其它客体的观察。这不是说,没有观察,现象世界就不存在,而是说,没有观察,确定的客体就不存在,没有观察,世界上可以发生许多事件,但我们却不能确定对它们的描述。

观察对描述的重要性和观察中仪器对原子客体的作用的不可分性是原子现象及其描述的特殊性之所在。正是观察的特殊性带来了概念的定义和描述上的新特点,从而带来描述方式的根本改变和实在的新特点。

在对原子客体的观察中,仪器与客体间的不可剔除的相互作用,使得对客体的时空确定和态的确定间成为互斥的。当我们通过一种仪器如刚性标尺和时钟对客体进行时空的观察和确定时,观察中仪器的作用和对时空的确定条件,排斥对客体的态进行定义,因为这种确定时空的仪器对客体的作用所带来的客体的态的改变是无法确定的,从而客体在另一种确定它的态的仪器下所确定的对态的定义的条件被破坏,而不再可能对时空观察下的客体进行态的定义。当我们利用另一种仪器对客体的能量和动量进行观察和定义时,由于仪器与客体相互作用的时间的不确定性,使得对客体的时空确定成为不可能。客体的时空标示和态的描述间的互斥,不仅在于时空观察带来的态的不可控制的改变,而且也是定义客体两种属性的条件的互斥的表现。态的定义要求消除除态的观察外的任何观察的外来干扰,而时空的观察必包含有对客体的干扰,两种描述所代表的定义的理想化和观察的理想化的互斥,使得它们不能再统一在一种描述图景中对客体进行时空中的因果描述,只能对客体进行这两种互斥的描述。因为它们都是对客体的描述,并且只有两种描述一起才能构成对客体的全面描述,所以二者是互补的。这就是对原子客体的互补性描述方式。

量子公设所蕴涵的仪器与客体的不可避免的相互作用是互补性诠释的一个逻辑起点,作用量子的公式所包含的波粒二象性是互补性诠释的另一逻辑起点。

时空和能量动量描述的互补性意味着经典的粒子图象和波动图象都不完全适于原子客体,它们只是诠释两种原子现象的不同尝试。在这种诠释中,经典概念的局限性以互补的方式表现出来。在粒子图象中,因果要求的满足必伴随对时空描述的放弃;在波动图象中,时空传播规律的描述必伴随因果描述的放弃而只能代之以统计的考虑。如果我们不把时空描述和因果描述看作互补的而坚持经典的时空概念,我们就必会面对光和物质有时表现象波有时又象粒子的矛盾,所以,光和物质粒子的本性不是经典描述的粒子或波,而是时空和因果的互补描述的波粒二象性,即其时空描述遵循波动的叠加规律、其因果描述遵循粒子的守恒定律的两种图象的互补。任何将客体看作经典波或经典粒子的解释都是行不通的。如薛定谔将原子客体看作经典电磁波的电磁波解释,就遇到波包的扩散、波是位形空间而不是真实空间的波以及波函数与测量与所选择的非对易的可观察量有关等问题,这些问题恰恰反映了经典波概念对原子客体描述的局限性。统计系综诠释虽把原子客体看作粒子,但却不是经典的能够对它作时空描述的粒子,而是只能对粒子系综的统计规律进行描述的粒子,因果描述和时空描述的互补性被包含在系综的能量、动量和时间空间的统计散差具有反比性的特殊统计性中。隐变量理论虽然为量子力学描述建立了一个亚量子层的因果描述,但它对可观察的量子层的描述与量子力学的统计描述完全一样,而且在其亚量子层的因果描述中也加入了与经典描述不同的隐变量与测量的相关性。所以,因果描述和时空描述的互补性是不可避免的,用经典的粒子图象或波动图象来解释所有原子现象都会遇到逻辑困难,因而必须将它们加以修正并使它们互补起来。

2.对量子力学描述的统计性的理解

统计性是量子力学描述的一个基本特点,统计或几率概念是量子理论的基本概念,理解它是理解量子力学的关键所在,各种诠释的主要分歧也在于此。按照互补性诠释,统计性是量子性的必然结果,或者说统计性是逻辑地包含在量子概念之中的。因为作用量子的存在本身就意味着原子过程不再是因果连续的,而是非连续的个体性过程,对于这种过程不可能进行因果描述,而只能对个体事件进行统计描述,而且量子公设还意味着观察对原子客体状态的不可控制的改变,从而使我们无法通过观察建立起客体运动变化的因果规律。量子概念中所蕴涵的时空的确定和能量动量的确定间的互斥关系,也使我们不可能给出客体的一个初始状态而对客体进行因果性的描述和预言,所以,量子性必意味着描述的统计性,对非连续的原子过程只能进行几率描述。描述恰当地反映了原子过程的非连续的变化的可能性而不是因果连续变化的必然性,它对原子客体的物理量的描述不再是具有唯一确定值,而是按一定的统计分布具有一系列的值,这些值及其统计分布就是对原子客体的这一物理属性的描述,而量子力学对原子客体的物理量的值谱和统计分布的变化规律的描述就是对原子客体的统计变化规律的描述。这种由量子公设带来的统计描述也必然包含描述的互补性,只有通过时空描述和能量动量描述的互补性才能理解对原子客体的统计描述的这些特点。量子力学描述中波函数按薛定谔方程随时间的演化,往往给人一种感觉,它就是对客体的态或客体的统计性(或趋向性)的因果变化的描述。其实,薛氏方程并不能满足人们对因果描述的追寻,虽然我们可以从波函数中找到关于客体的所有属性的描述,但是波函数的随时间的演化并不代表客体的状态的因果变化,因为波函数与客体的行为并无对应关系,只有波函数的模方才代表客体的几率,波动方程只是以恰当的数学形式包含了对客体满足叠加原理的波动属性的描述,而这种描述的合理性是以客体作为粒子出现的几率对波函数的诠释来达到的,波动方程的解不是描述代表客体的波,而是描述代表客体的粒子的几率,波动方程描述中对量子描述的互补性就表现在这里。所以波动方程并不表示对客体的因果描述,而是以波动描述形式对粒子几率进行描述的波-粒互补性的表现。

3.对测不准关系的理解

测不准关系是量子力学中的一个重要内容,它是量子力学形式体系的一个直接数学结论,所以接受量子力学的人都能接受它,但对于这个数学公式的理解却千差万别。由于测不准关系表现为对物理量的测量的限制关系,所以,不少早期的量子力学教科书把它作为量子力学的一个核心内容和逻辑基础或操作基础,但是,正如karlr.popper所指出的,从薛定谔方程可导出测不准关系而从测不准关系导不出薛氏方程,这说明测不准关系应是某种基础的推论。在互补性诠释看来,测不准关系是量子公设所蕴涵的波粒二象性的结果,它表现的是经典概念的可定义的精确度间的互补关系。玻尔从关于作用量子的基本公式et=iλ=h出发,从其中所蕴涵的经典概念的矛盾推出关于这些经典概念的可定义的最大精确度间的普遍反比关系即测不准关系,从而使这个关系代表了时空和因果描述间的互补性的一种简单的符号化表示,测不准关系中共轭物理量的测量精确度间的反比关系恰当地反映了两物理量的互斥互补关系。

海森堡把他所发现的测不准关系看作是对经典概念的适用性的限制和对经典物理量的可确定程度的限制,并且正是由于这种不确定性导致因果律的失效和量子力学的统计描述,这种解释带有明显的操作论和实证论倾向,是一种只讲其然而不讲其所以然的解释。互补性诠释则给出了其所以然的说明,是对测不准关系的更深层的理解,避免了上述操作解释的弊端。如海森堡把物理量的测量的不确定度解释为测量的操作结果,而不是不同概念的可定义和可观察的互补性的结果,就会导致由于我们测量和认识能力的限制,使我们对本来可能存在精确值和因果性的客体只能作有限精确度和统计描述的实证论的和不可知论的问题。测不准关系所表征的一种物理量的测量中仪器的作用导致另一种物理量的不确定,证明了互补性诠释的仪器对客体的不可控制作用的说法,但是这种仪器的干扰作用是对原子客体进行描述所必需的,也是量子力学描述中所包含的,而不是对客体进行描述所要排除的。

popper的统计系综诠释认为,测不准关系的含义是两个正则共轭变量的标准偏差之积有一下限n/4π,它不象互补性诠释的测不准关系是从对理想实验的分析得到的,而是量子力学形式体系的逻辑数学推论,而且由于现在实际的对测不准关系的实验检验还不能达到个体粒子测量所要求的精确度,而往往是对许多粒子的统计平均的偏差的测量,所以统计系综诠释显得比互补性诠释有更坚实的经验支持。我认为,也许统计系综诠释较互补性诠释在数学上更严密,但互补性诠释对量子性的描述特点的分析显得更深刻。

4.对描述的完备性问题的回答和理解

完备性问题和测量问题是量子力学诠释之争的两个焦点问题,近几十年量子力学的基础研究主要围绕这两个问题展开且使问题不断演化,并挖掘出不少新的内容,互补性诠释无论对这两个问题的提出还是发展都有着直接的影响,而它对这两个问题的解释也成为互补性诠释本身的重要内容。

完备性问题是爱因斯坦与玻尔论战的第三次交锋中在著名的e-p-r论文中提出的。文中通过一个e-p-r实验论证了量子力学的描述不是对实在的完备描述。此文引起的首先是关于何为实在的讨论,后来讨论的焦点转移到关于e-p-r关联究竟意味着非局域性、非因果性还是不可分离性的问题。

e-p-r的论文从没有干扰而能预言的客体的物理属性为物理实在这一实在概念出发,通过大家所熟知的e-p-r实验,论证了量子力学描述不是对实在的完备描述。简述如下:相互作用后的两粒子,按量子力学描述,可以通过对第一个粒子的两非对易物理量的测量而不加干扰地得到对第二个粒子的同样的两非对易物理量的预言,既然是不加干扰且两粒子相距无限远,第二个粒子的两非对易量虽对应于第一个粒子的不同时的两次测量,但却是同时属于第二个粒子的物理实在,否则就得假设两粒子间具有超距作用;e-p-r又认为,完备描述应同时对同时存在的物理实在进行描述,但量子力学的描述却将对非对易的两个物理实在的描述看作互补的,即对一个进行精确描述时对另一个则不能进行同时的精确描述,所以e-p-r得出结论说,量子力学蕴涵着e-p-r悖论,其原因是量子力学描述不完备。

大量实验证实了e-p-r关联的存在,也证明了量子力学描述的成功,但如何解决e-p-r悖论却仍有两条道路可以选择,这便是修正e-p-r的两个前提,或者修正实在概念,或者修正分离原理(包括局域性原理和可分离性原理),前者是玻尔对e-p-r的回答,后者是隐变量实在论者对e-p-r关联的解释,虽然实在概念不同(一个是必包含有观察的实在;一个是不包含观察干扰的实在),但却都包含了仪器与客体的状态、客体与其有相互作用的其它客体的状态的相关。

互补性诠释通过修正实在概念,即认为实在必包含有观察的干扰来解决e-p-r悖论。正如互补性诠释的逻辑前提中所认为的,任何描述必是对观察的描述,任何预言也必是对观察的预言,任何实在也必是观察的实在而不是独立自在的实在,观察的作用必包含在实在之中,观察的作用不仅意味着仪器对客体的直接的物理作用,而且意味着一种仪器所特有的对仪器和所观察客体的整体的反映方式和描述方式,所以客体的描述和实在必与进行观察的仪器的类型相关,无论是直接的观察还是象e-p-r实验中的间接观察。这就是量子力学中的相对性,即客体状态与仪器的相对性。所以e-p-r实验中对第二个粒子的非对易物理量的预言所对应的是不同的测量,因而仍是不同时的实在,对它们的描述也是互补的描述而不能是同时的描述,所以这与量子力学描述并无矛盾。e-p-r关联所反映的是仪器类型和描述预言类型及实在类型的必然联系和仪器作用的不可细分所带来的仪器与客体实在的不可分,对第二个粒子的描述与对第一个粒子测量的关联,恰恰表明了观察和描述类型一致的要求和仪器与所描述客体实在的不可分性,不是仪器或第一个粒子对第二个粒子的超距作用使第二个粒子的实在发生了改变,而是它们的实在本身就是一个不可分的整体,它们的状态必然相关而不是独立的,所以互补性诠释在新的实在概念中包含了对可分离性原理的否定,解决了e-p-r悖论。其实,互补性诠释虽然是在对e-p-r悖论的回答中明确了它的新的实在概念,但它的仪器与客体的实在的不可分性,仪器与客体状态、描述的不可分性早在como演讲中作为互补性诠释、互补描述的逻辑前提就已经提出来了,难怪戈革先生说玻尔提前八年预先回答了e-p-r佯谬。

5.对测量问题的回答和理解

测量问题顾名思义就是关于测量过程的解释和描述问题,由于在微观测量中仪器对客体的作用使客体发生了不可忽略的改变,从而使微观测量不再象经典宏观的测量那样可以忽略仪器对客体的作用,直接将客体对仪器作用产生的仪器上的读数当作客体本身的状态,微观测量的结果是测量后客体的状态,它与测量前客体的状态不同。由测量引起的客体状态的突变叫波包收缩,如何解释和描述波包收缩亦即测量过程中客体状态的变化就是量子力学的测量问题。在量子力学描述中,描述客体状态的ψ(x)的变化有两种方式,一种是按薛定谔方程随时间的因果演变,另一种是测量时突变为所测力学量的一个本征态ψ[,n](x),也就是客体由各种可能值的几率分布变为按一定几率实现的确定值,如果测量前的统计分布

,测量后的统计分布

,其中各本征态的相干项消失了。为什么测量时客体状态要变为本征态?为什么相干项消失?这些问题成为量子力学测量问题的中心问题。各种测量理论大都力图通过分析仪器与客体的相互作用过程,并以薛定谔方程来描述这一过程以求找到问题的解答。互补性诠释认为,波包收缩和干涉项的消失是由一种描述方式向互补的另一种描述转换的结果,这种结果的出现是由互补的两种描述的定义的条件不同和观测中仪器和客体的相互作用关系不同造成的。

首先,ψ(x)所表示的是如果测量客体的位置,其位置分布将是怎样的,而不是说测量前客体的状态是怎样的,|ψ(x)|[2]表示的是在x处找到粒子的几率。算符x在坐标表象中对应于确定值x的本征函数是δ(x-x),将ψ(x)按x的本征函数展开即

,虽然包含有干涉项,但对于x[,i]处的几率|ψ(x[,i])|[2]与

是一样的,因为除x[,n]=x[,i]时δ函数不为零外其余都为零,所以干涉项根本就不存在,|ψ(x)|[2]本身就是指测量位置时测得各种位置数值的几率。

其次,双缝实验中双缝后的波函数ψ(x)是两缝的波函数之和即ψ(x)=ψ[,a](x)+ψ[,b](x)但当测定究竟粒子穿过哪一个缝时就会使干涉项消失,这是因为ψ(x)=ψ[,a](x)+ψ[,b](x)所蕴涵的测量条件和描述方式与|ψ(x)|[2]=|ψ[,a](x)|[2]+|ψ[,b](x)|[2]所蕴涵的不同,前者是在双缝后的屏幕上测得的干涉情况,后者是在各单个缝后测得衍射的相加,由于在测粒子是否穿过一个缝时,测量仪器对客体的作用使客体的互补物理量发生了改变,如测粒子动量时就会使它的位置发生不可控制的改变而引起位置的一个不准量,这种不准量将引起相等的条纹位置的不准量,从而不再出现任何干涉效应。所以这里的干涉项的消失不是客体测量前的自身状态向测量后状态的突变,而是观察干涉效应向寻求粒子轨道的描述的转变,是一种观测条件下的态向另一种观测条件下的态的转变,它所表现的是互补性现象在互斥的实验装置下的不同表现。

对于一般力学量q,ψ(x,t)可按q的本征值所对应的本征函数展开,

其中u[,n](x)为q的本征值q[,1]、q[,2]…q[,n]的本征函数,按量子力学,当测量到本征值q[,1]时,系统就处于本征态u[,1](x),其几率是|a[,1](t)|[2],但在观测到确定数值前,量子力学给出的是ψ(x,t)而不是q[,1]和u[,1](x),但实际上,所给出的预言和实际测得q[,1]的几率|a[,1](t)|[2]是一致的,

,由于u[,n](x)是正交归一函数系,u[*,m](x)u[,n](x)=0,当m≠n时,所以干涉项不出现,

,这就是说,ψ(x,t)给出的就是测量时各本征值出现几率的分布,对客体状态的由ψ(x,t)到u[,n](x)的转变只是对客体测量后所有可能状态的几率分布的集合预定到其中一个状态元素按相同几率实现的描述变化,而并不对应客体本身的在有无测量的不同条件下的状态的变化。

所以按照互补性诠释,由ψ(x,t)到u[,n](x)的波包收缩不是测量引起的测量前后客体状态的变化。测量肯定会引起客体的变化,但这种变化已经包含在ψ(x,t)中,而且不同类型的测量会引起不同的变化,这由所测得的不同类型的本征值和本征函数表现出来,如果

中有干涉项,那么新的测量所引起的变化还会表现在干涉项的消失上。因此,波包收缩中干涉项的消失是由互斥的测量导致的由一种描述向互补的另一种描述的转换造成的,而波包收缩中由对许多可能值的预言到其中一个值的实现的波函数的变化,只是预言条件的变化引起的统计预言的变化,而不对应客体本身的状态变化。

由此可见,在测量的波包收缩过程中,引起客体状态变化的是不同的测量的实验条件和它们对客体的不同类型的作用,关于客体知识的变化引起的是对客体的统计预言条件的变化,而不是客体本身的状态变化,所以,这里没有任何主体的作用,也不需要引入主体意识的最后一瞥。冯.诺意曼之所以需要引入人的最后一瞥,是因为他把仪器在测量中的作用当作一个纯粹的量子客体,而没有看到在仪器身上所必须兼有的使确定的观察结果和经典概念的适当运用成为可能的特性,这样一来,就象冯氏所分析的那样,我们的观察和描述就必然要无限后退,直至求助于意识的最后一瞥。

当然,从量子现象的普遍性上讲,仪器也与微观客体一样具有量子性,但量子性又必须通过我们的宏观观察和经典概念来观察和描写,所以,仪器又是认识的一个逻辑起点,它必须能够直接被观察且能用经典概念进行描述。只有这样我们才能通过仪器来观察和描述微观客体。仪器的这种既是量子客体又是宏观客体的二重性是互补描述的基础。我们的认识必须从直接观察和由这种观察而定义的概念开始,但又必须对超出这种直接观察和日常概念框架的新现象进行逻辑一致的描述,这就必然导致概念框架和描述方式的改变。如果没有仪器的直接可观察性,就不能得到任何微观客体的经验、现象和可描述的东西,而如果没有仪器与客体的一致性,仪器也就不可能对客体的信息进行反映记录,所以,仪器的二重性是认识微观客体的必然要求。这并不会引起宏微分界问题(即把世界分为宏观和微观两个截然分裂的世界的问题),而只意味着一个可直接认识,而另一个则需借助于宏观仪器的观察,因为量子性是客观物体具有的普遍特性,只是由于这种特性超出了日常概念的理解范围而必须借助于对日常概念的修正来达到对它的理解。量子性的认识特殊性并不在于它的微观尺度,而在于它的非连续的、个体的观察条件与我们建立日常概念时的连续的、无限可分的观察条件不同,这种不同就需要我们对各概念的适用条件和相互关系进行修正。实际上,宏观客体的观察也一样需要借助于我们建立概念时的观察,这里不是宏观微观的不同,也没有二者的截然分界,只有所描述现象在多大程度上与我们建立概念的观察条件的符合程度的不同,所以,微观描述一方面是对经典描述的修正,一方面又以经典概念为基础,这不是一个逻辑矛盾,而是意味着微观描述必须以可直接理解的经典概念为起点,通过对这些概念在新的观察条件下适用程度和相互关系的修正来达到对微观现象的合理描述,这不是互补性诠释的矛盾,而是理解量子概念与经典描述的矛盾所必需的。

对于企图用量子理论来描述测量过程以求得到一个统一的描述的做法,互补性诠释认为是不会有结果的。因为我们对微观现象的观察和描述必须借助于我们的日常的观察和概念,而这种观察和概念建立的条件是无法形式化的。 主要参考文献

1] 玻尔:《原子论与自然的描述》,北京:商务印书馆,1964。

2] 玻尔:《原子物理学和人类知识》,北京:商务印书馆,1978。

对量子力学的理解篇2

关键词:经典相对论;宇宙学;量子引力;概念解释;形而上学

正如巴特菲尔德和厄尔曼编撰的《物理学哲学》一书所言,近半个世纪以来,物理学哲学充满活力有两个重要的原因,第一是与所分析的科学哲学的形成期相关,第二则是近半个世纪以来物理学自身的研究有关。也正因此,在物理学哲学发展的进程中,其研究的论题和研究方法也随着科学哲学和物理学自身的论题和方法进行着改变。在很长一个历史时期内,物理学哲学曾经关注经验物理学领域,物理学哲学的探讨与对客观性、真理性以及科学合理性的辩护分不开。而在当前宇宙学、量子引力发展的前沿时刻,《物理学哲学》一书体现了当代物理学哲学研究的新特点。本书与以往物理学哲学书籍最大的不同之处就在于,在以往物理学哲学著作往往重点讨论统计物理学、相对论和量子力学的哲学问题的基础上,增加了新的领域:“这些支柱的结合”———量子引力,并运用决定论和对称性这两个“能架起联结物理学理论间(甚至三大支柱间)鸿沟的桥梁”的主题,把最终的讨论由具体引向一般,从而让我们看到两个结论:第一,物理学哲学和物理学之间并不存在清晰的界限。第二,物理学概念的复杂化,想要借由物理学去丰富哲学,并非容易。本文主要就书中的“经典相对论”、“宇宙学中的哲学问题”和“量子引力”等内容进行分析,指出它们所揭示的物理学概念解释的新特征以及物理学理论理解的新特征。

一相对论、宇宙学和量子引力哲学概要

巴特菲尔德在引言中指出,数学的相对论者在不断深化我们对广义相对论基础的理解。大卫•马拉蒙特的“经典相对论”[1]一文就明显具有这样的特点,并不讨论经典相对论的历史发展及其实验依据,而是以微分几何的语言,从概念和形式化的角度对相对论的结构以及相对论引发的一些基础问题进行了分析和讨论。首先从描述相对时空的结构开始,相对论的弯曲时空是一类几何模型(m,gab)表示的相对时空,其中m为一个平滑的连续的四维流形,gab是m中的一个平滑的半黎曼度规。其中每个模型都代表一个与理论的约束条件相容的可能世界。m可以解释为世界中点事件的流形,而gab的解释则关乎四个物理学解释性原理,由点粒子和光线的行为决定,由此把引力和时空几何效应等同起来。当粒子只受到引力作用时,它的轨迹为弯曲时空的测地线。而任何质量粒子的加速度即偏离测地线的轨迹,由引力以外的力决定。马拉蒙特详细地描述了gab的解释性原理和限定条件。在此基础上分析了本征时间、某一点的空间时间分解及粒子动力学、物质场、爱因斯坦方程、类时曲线的汇与“公共空间”、基灵场与守恒量等内容。经典相对论中所有发生的事件都可以用物质场F表示,为时空流形m中的一个或者多个平滑张量或旋量,满足包含gab的场方程。tab为与F相关的能量-动量场,时空的弯曲受物质分布的影响,任意区域的时空度规和物质场会发生动力学相互作用,遵循爱因斯坦方程。在专题讨论部分,关于闵可夫斯基时空中的相对同时性的地位,试图还原爱因斯坦定义同时性对标准关系选择的特定背景;关于牛顿引力理论的几何化,将引力化的牛顿理论与爱因斯坦相对论进行了结构上的对比;关于时空的整体“因果结构”,关注了什么程度上时空的整体几何结构能够从其“因果结构”中得到。“宇宙哲学中的问题”[2]的作者是乔治•F.R.埃利斯。宇宙学哲学的部分在书中起着承上启下的作用,因为一方面,宇宙学哲学的研究基于爱因斯坦广义相对论引力理论时空曲率和宇宙的演化由物质决定的思想,用广义相对论描述宇宙远古时期之后的演化;另一方面,由于在黑洞以及宇宙大爆炸初期物质高密度状态下无法忽略引力问题,因而无法避免引力理论。总的来说,整篇文章把当代宇宙学看作是观测宇宙学、物理宇宙学、天文宇宙学与各种形式的量子宇宙学共生共长、互惠互补的综合理论系统,想要给出一个“描绘真实宇宙起源和演化的理论”。主要内容分为两大部分,第一部分为宇宙学概论,包括基本理论、热大爆炸、宇宙观测、因果和可视世界、理论的发展、暴胀、极早期宇宙、一致性模型等内容,并澄清了关于宇宙暴胀和超光速等问题的一些误解。在埃利斯看来,“宇宙学正在由一种猜测性的事业向真正的科学转变,这不仅带来了与科学革命相近的多种哲学问题,也使得其他哲学问题更加紧迫,例如关于宇宙学中的说明和方法等问题。”因此文章第二部分进行的问题讨论围绕这些说明和方法问题展开,讨论了宇宙的唯一性、宇宙在空间和时间上的巨大尺度、早期宇宙中的无约束能量、宇宙起源的解释问题、作为背景存在的宇宙、宇宙学明确的哲学基础、有关人类的问题:生命的精细调节、多元宇宙存在的可能性和存在的本质等九大问题。在此过程中,埃利斯提出了34个论点,关涉到这9个问题的方方面面,包括人择原理和多重宇宙存在的可能性等。这些论述关乎几何学、物理学和哲学,它们构成了宇宙学面面临的哲学问题的环境及其与局域物理学之间的关系。埃利斯期望通过这一系列讨论改变人们认为宇宙学只不过是确定一些物理参数的简单看法。“量子引力”[3]一文的作者是卡罗尔•罗韦利,内容大致可分为四个方面。第一,量子引力的研究方法,包括早期的历史和方向、目前的主要尝试性理论等。量子引力的早期思想可以概括为“用一个理论来描述引力的量子特性”。期间出现的第一种方法是罗森菲尔德等人的“协变化”方法,通过引入一个虚构的“平坦空间”来考虑周围度规的微小涨落,并且运用电磁场中的方法来对这些波进行量子化;第二种是伯格曼等人的“正则化”方法,研究和量子化整个广义相对论的哈密顿函数,而不只是量子化其围绕平坦空间的线性化函数;第三种是米斯纳等人的路径积分方法。目前主要的尝试性理论主要介绍了基于协变化方法发展起来的弦理论和基于正则化方法发展起来的圈量子引力理论以及它们之间的争论。第二,关于量子引力研究方法论问题。指出量子引力研究的理由包括经验数据的缺乏和对引力是否应当量子化的思索。分析了当前量子引力研究中的各种态度以及科学知识的累积性和科学哲学的影响。第三,空间和时间的本质,包括广义相对论的物理意义、背景无关性、时间的本质等。第四,与其他未决问题之间的关系,包括统一、量子引力学的解释宇宙学常数、量子宇宙学等等。这些章节的详细内容不是本文的重点,我们想要做的,是分析作者的研究方式所代表的当代物理学哲学研究的视野和方法的转变。本书的研究方式明显地具有两个特征:第一个特征关乎物理学概念的解释:物理学的概念解释脱离不开数学形式化下的整体系统;第二个特征关乎新的物理学理论的理解:在理论的发展中处处显示物理学和形而上学的交织统一。这两个特征与这些物理学研究领域实验检验的缺乏以及理论构造的特征密切相关。

二物理学概念解释的新特征:数学形式化整体系统中的关联解释

巴特菲尔德相信当前基本物理学中的基础问题会为物理学哲学提供从最为有趣且最为重要的问题,而我们关注的是本书处理这些基础问题的方式。虽然从章节上来看,物理哲学的论题被划分为若干个领域,但从内容上,完全可以看到作者的用心,站在当代数学物理学发展的高度用整体微分几何等数学语言对物理学系统进行重新形式化和解释,每一章节的紧密联系使得物理学作为一个整体系统得以呈现。其中对每一个物理概念解释的细节,正是物理学哲学追求的基础问题的答案。可以说,概念解释居于本书的核心地位,物理学哲学解释问题的最重要的方式就是处理当代物理学中的概念和解释问题。

(一)物理学概念的解释:我们理解世界的基础

物理学的发展时时刻刻影响着人们对世界的理解方式,其途径就是物理学概念的解释。经典物理学、相对论和量子力学曾极大地改变我们对世界的看法,它们在经验上的有效性曾经强化过我们对科学理论客观性和真理性的观点,也曾让很多物理学家追求理论的实用性而认为有些基础性的问题毫无意义。但当前宇宙学和量子引力理论的提出,使人们重新注视广义相对论和量子力学的不相容性的时候,从广义相对论以来的一些基础性问题和哲学问题得以重新复兴。相对论为我们宇宙的时空结构确定了一类几何模型,其中每个模型都代表了一个与理论的约束条件相融的可能世界或区域。而我们对时空的理解涉及整体时空结构和爱因斯坦方程的约束条件等等。宇宙学和量子引力的研究则让我们明白,改变我们对空间和时间的理解的广义相对论是在可以忽略引力的量子特性时对引力进行描述的场理论,那么真正的空间和时间的本质又是如何呢?我们对宇宙起源的理解绕不开量子引力方法的尝试,但这种尝试要受到很多约束,比如成熟量子引力理论的缺乏、量子力学基础问题,比如测量问题、波函数的塌缩问题等。现在人们期望得到的成功量子引力的路径基于目前理论的发展,比如惠勒-德维特方程和宇宙波函数思想、来自弦论思想的高维时空方法,或者圈量子引力的应用等。但这些问题是否能真正解决宇宙起源的问题却并没有确切的答案,比如维兰金的创生虚无的真理论的理解要依赖于量子场论的精致框架和粒子物理学标准模型等很多结构,而这些基础本身也是需要解释的。可以说,我们理解世界的基础就在于我们用于理解它的那些概念的意义。

(二)概念解释的新特点:数学形式化下整体系统中的关联解释

巴特菲尔德在经典力学的辛约化中指出,经典力学的核心理论原理已经被欧拉、拉格朗日、哈密顿和雅可比等改写,“我们已经认不出来了,因此对它们的哲学反思也发生了变化。”因此引入辛几何、李代数等语言对理论进行形式化,旨在利用辛约化理论使连续对称和守恒量之间产生联系的特征,从理论结构上显现经典力学与量子物理学的联系,这是运用数学形式化系统展现物理学理论的对称性本质。相对论、宇宙学和量子引力哲学部分,情况也是如此。整本书是站在当代数学发展的高度,运用拓扑学、群理论和微分几何等重新形式化物理学的整个体系,并对其概念进行剖析的一个过程。而对基本问题的理解,则建立在概念剖析的基础之上。在这些文章中,理论发展的历史状况和实验成果,只是系统阐释整个理论概念和解释的背景而已。作者们的重点则放在用数学领域的发展和物理学理论形式化的诉求,促进对物理学理论结构的探索,进而把论题转化为对其哲学问题的探讨。理论的形式化体系、概念结构和物理学解释是有机地结合在一起的。在牛顿引力的几何化中,也是站在当代物理学和数学发展的高度,重新形式化作为相对论弱场近似的牛顿理论,得到与广义相对论类似的数学结构,正是在这个意义上,才能够好地发现两个理论在何种条件和何种程度上是相符的,又在何种条件和何种程度上是区别的。在这个形式化的整体系统中,对于物理概念的解释不再是孤立的解释,而是站在理论的数学结构的高度,成为一个整体系统中的关联解释。这在很大程度上突出了物理学哲学中语义分析方法的重要性,因为没有完全独立的概念,物理学的概念定义之间互相依赖,只有在一个系统的语义结构中才能理解概念的意义。如普斯洛斯在这套爱思唯尔哲学手册的《一般科学哲学》一书中所言:“理论解释的唯一方式就是把它嵌入到同类概念的框架中,并尝试着解开它们的相互关联。”[4]

(三)旧概念重新解释的意义:还原理论创立过

程中概念选择的特定背景在物理学的发展中,每一次理论创新和进步都伴随着新概念的提出或旧概念的重新解释,站在理论发展的角度考虑,这样的解释会让我们更好地理解物理学理论的提出、发展和变迁的合理性。比如蒙特在经典相对论一文中对闵可夫斯基时空环境下相对同时性关系的重新考虑。蒙特指出,当相对于一个四维速度矢量将一点上的矢量分解为“时间”和“空间”分量进行讨论时,我们理所当然地相信包含正交性的相对同时性的标准认同。在解释这种认同的理由时,根据方便在闵可夫斯基时空结构即狭义相对论体系下进行分析。他援引霍华德•斯坦的论述,指出采用相对同时性的标准(ε=1/2)的惯例是需要特定背景的。在他们看来,爱因斯坦是为了解决我们无法检测到地球相对于以太的运动而采取的解决方案,以一种特定的方式(ε=1/2)来思考同时性,但如果并非从爱因斯坦最初的思路来考虑,而是从一个成功理论的高度来理解它,把相对论视为是针对时空结构不变性的论述时,其意义就完全不同了。这在很大程度上还原了爱因斯坦对同时性做出的“定义”中挑选出来的这种标准关系的实质,它可能并非一种自然的存在,而是理论选择的特定需要,还原这个过程,对我们更好地理解理论和概念的本质有着重要的意义。

(四)新理论的概念澄清:科学进步的必然现象

物理学史上每一个新理论的诞生都会引起旧的概念的澄清,量子引力就是个很典型的例子。量子引力是对空间和时间本质的探索,它引导我们重新思考关于时间、空间、“在某处”、运动和因果观测者的地位等很多问题。作为试图把广义相对论和量子理论结合的理论,我们需要以历史的眼光重新追问。我们都知道,广义相对论改变了我们对牛顿独立于物质运动的绝对空间和时间的理解。量子力学则用我们关于运动的一般性理论替代了经典力学,并改变了物质、场和因果性的观念。但量子力学的外在时间变量和量子场论静止的背景时空都是和广义相对论不相容的。而广义相对论中引力场被假设为一个经典决定论的动力学场,无法处理小尺度引力的量子特性。因此,想要把二者进行结合的量子引力就遇到了困难。正因为如此,罗韦利直言尽管基础物理学在经验上有效,但它正处于一种深刻的概念混乱的状态。虽然20世纪后半叶,物理学注重实用而忽略了这些基本问题,但量子引力告诉我们这些基本问题必须得到新的答案。但问题的澄清并没有一条唯一明确的路可以走,超弦理论和圈量子引力在假设、成就、具体结果以及概念框架上都有着显著的不同,但它们都有自己的代价,弦理论的思想基础是为了消除广义相对论的微扰量子化的困难,保留了量子场论的基本概念结构,其代价之一是放弃广义相对论的广义协变性。圈量子引力植根于描述广义相对论的协变性,但它的代价是忽略了理论的不完备性,放弃了幺正性、时间演化、基本层次上的庞加莱不变性以及物理学对象是在空间中局域化的且在时空中演化的概念。可以看出的是,新理论澄清概念的过程是科学理论进步的必然现象,而这一过程是通过分析在描述世界结构时所产生的概念上的困难来对以往科学的研究框架予以质疑或辩护,这涉及的是对世界本质更深刻的哲学和形而上的思考。

三物理学理解的新特征:物理学和形而上学的交织统一

对量子力学的理解篇3

【关键词】量子力学;教学方法;物理思想

“量子力学”是20世纪物理学对人类科学研究两大标志性贡献之一,已经成为理工科专业最重要的基础课程之一,学生熟练掌握量子力学的基本概念和基本理论,具备利用量子力学理论分析问题和解决问题的能力。对提高学生科学素,养培养学生的探索精神和创新意识及亦具有十分重要的意义。但是,量子力学理论与学生长期以来接触到的经典物理体系相去甚远,尤其是处理问题的思路和手段与经典物理截然不同,但它们之间又不无关联,许多量子力学中的基本概念和基本理论是类比经典物理中的相关内容得出的。思维上的冲突导致学生在学习这门课程时困惑不堪。此外,这门课程理论性较强,众多学生陷于烦琐的数学推导之中,导致学习兴趣缺失。针对这些教学中的问题,如何激发学生学习本课程的热情,充分调动学生的积极性和主动性,已经成为摆在教师面前的重要课题。对“量子力学”课程的教学内容应作一些合理的调整。

1合理安排教学内容

1.1理清脉络,强化知识背景

从经典物理所面临的困难出发,到半经典半量子理论的形成,最终到量子理论的建立,对量子力学的发展脉络进行细致的、实事求是的分析,特别是对量子理论早期的概念发展有一个准确清晰的理解,弄清楚到底哪些概念和原理是已经证明为正确并得到公认的,还存在哪些不完善的地方。这样一方面可使学生对量子力学中基本概念和基本理论的形成和建立的科学历史背景有一深刻了解,有助于学生理清经典物理与量子理论之间的界限和区别,加深他们对这些基本概念和基本理论的理解;另一方面,可使学生对蕴藏在这一历程中的智慧火花和科学思维方法有一全面的了解,有助于培养学生的创新意识及科学素养。比如:对于玻尔理论,由于对量子化假设很难用已经成形的经典理论来解释,学生往往会觉得不可思议,难以理解。为此,在讲解这部分内容时,很有必要介绍一下玻尔理论产生的历史背景,告诉学生在玻尔的量子化假设之前就已经出现了普朗克的量子论和爱因斯坦的光量子概念,且大量关于原子光谱的实验数据也已经被掌握,之前卢瑟福提出的简单行星模型却与经典物理理论及实验事实存在严重背离。为了解决这些问题,玻尔理论才应运而生。在用量子力学求解氢原子定态波函数时,还可以通过定态波函数的概率分布图,向学生介绍所谓的玻尔轨道并不是真实存在的,只是电子出现几率比较大的区域。通过这样讲述,学生可以清晰地体会到玻尔理论的承上启下的作用,而又不至于将其与量子力学中的概念混为一谈。

1.2重在物理思想,压缩数学推导

在物理学研究中,数学只是用来表述物理思想并在此基础上进行逻辑演算的工具,教师不能将深刻的物理思想淹没在复杂的数学形式之中。因此,在教学过程中,教师要着重于加强基本概念和基本理论的讲授,把握这些概念和理论中所蕴含的物理实质。对一些涉及繁难数学推导的内容,在教学中刻意忽略具体数学推导过程,着重于使学生掌握其中的思想方法。例如:在一维线性谐振子问题的教学中,对于数学方面的问题,只要求学生能正确写出薛定谔方程、记住其结论即可,重点放在该类问题所蕴含的物理意义及对现成结论的应用上。这样,学生就不会感到枯燥无味,而能始终保持较高的学习热情。

2改进教学方法

“量子力学”这门课程本身实验基础薄弱、理论性较强,物理图像不够直观,一味采取传统的灌输式教学,学生势必感到枯燥,甚至厌烦。学习效果自然大打折扣。为了提高学生学习兴趣,激发其学习的积极性,培养其科学探索精神及创新能力,在教学方法上应进行积极的探索。

2.1发挥学生主体作用

在必要的教学内容讲解外,每节课都留出一定的师生互动时间。教师通过创设问题情景,引导学生进行研究讨论,或者针对已讲授内容,使学生对已学内容进行复习、总结、辨析,以加深理解;或者针对未讲授内容,激发学生学习新知识的兴趣(比如,在讲授完一维无限深方势阱和一维线性谐振子这

两个典型的束缚态问题后就可引导学生思考“非束缚态下微观粒子又将表现出什么样的行为”),这样学生就会积极地预习下节内容;或者选择一些有代表性的习题,让学生提出不同的解决办法,培养学生的创新能力。对于在课堂上不能解决的问题,积极鼓励学生利用图书馆及网络资源等寻求解决,培养学生的科学探索精神。此外,还可使学生自由组合,挑选他们感兴趣的与课程有关的题目进行讨论、调研并完成小组论文,这一方面激发学生的自主学习积极性,另一方面使其接受初步的科研训练,一举两得。

2.2注重构建物理图像

在实际教学中着重注意物理图像的构建,使学生对一些难以理解的概念和理论形成较为直观的印象,从而形成深刻的记忆和理解。例如:借助电子束衍射实验,通过三个不同的实验过程(强电子束、弱电子束及弱电子束长时间曝光),即可为实物粒子的波粒二象性构建出一幅清晰的物理图像;借助电子束衍射实验图像,再以光波类比电子波,即可凝练出波函数的统计解释;借助电子双缝衍射实验图像,可使学生更易接受和理解态叠加原理;借助解析几何中的坐标系,可很好地为学生建立起表象的物理图像。尽管这其中光波和电子波、坐标系和表象这些概念之间有本质上的区别,但借助这些学生已经熟知和深刻理解的概念,可使学生非常容易地接受和理解量子力学中难以言明的概念和理论,同时,也可使学生掌握这种物理图像的构建能力,对培养学生的创新思维具有非常积极地作用。

3教学手段和考核方式改革

3.1课程教学采用多种先进的教学方式

如安排小组讨论课,对难于理解的概念和规律进行讨论。先是各小组内讨论,再是小组间辩论,最后老师对各小组讨论和辩论的观点进行评述和指正。例如,在讲到微观粒子的波函数时,有的学生会认为是全部粒子组成波函数,有的学生会认为是经典物理学的波。这些问题的讨论激发了学生的求知欲望,从而进一步激发了学生对一些不易理解的概念和量子原理进行深入理解,直至最后充分理解这些内容。另外课程作业布置小论文,邀请国内外专家开展系列量子力学讲座等都是不错的方式。

3.2坚持研究型教学方式

把课程教学和科研相结合,在教学过程中针对教学内容,吸取科研中的研究成果,通过结合最新的科研动态,向学生讲授在相关领域的应用以培养学生学习兴趣。在量子力学诞生后,作为现代物理学的两大支柱之一的现代物理学的每一个分支及相关的边缘学科都离不开量子力学这个基础,量子理论与其他学科的交叉越来越多。例如:基本粒子、原子核、原子、分子、凝聚态物理到中子星、黑洞各个层次的研究以量子力学为基础;量子力学在通信和纳米技术中的应用;量子理论在生物学中的应用;量子力学与正在研究的量子计算机的关系等,在教学中适当地穿插这些知识,扩大学生的知识面,消除学生对量子力学的片面认识,提高学生学习兴趣和主动性。

量子力学从诞生到发展的物理学史所包含的创新思维是迄今为止哪一门学科都难以比拟的。在20世纪初,经典物理学晴空万里,然而黑体辐射、光电效应、原子光谱等物理现象的实验结果严重冲击经典物理学理论,让经典物理学陷入危机四伏的境地。量子力学的诞生,开启了人类科学发展的新思维。开展好量子力学的教学活动,在教学过程中展现量子力学数学形式之美,使学生在科学海洋中得到美的享受,有利于极大的提高学生的科学素养,从精神上熏陶他们的创新精神。

【参考文献】

[1]周世勋.量子力学教程[m].高教出版社,1979.

对量子力学的理解篇4

本书是由两位在此领域中有颇多成果的意大利著名专家根据这方面的最新进展所写的一本新的教科书性质的专著,它包括了热动力学,统计力学和多体问题的经典课题和这方面的最新进展。

19世纪末,开尔文公爵发表著名的演说,其中提到以经典力学、经典热力学和经典电磁理论为基础的物理学大厦已经建成,后人只需要做些小修小补的工作。然而在明亮的物理学天空中飘着两朵乌云,其中之一便是黑体辐射问题。实验发现黑体辐射无法用连续能量的观点来处理,这对经典的物理学提出了巨大的挑战。为解决这一问题,一个崭新的学科――量子力学应运而生。它是由普朗克最先提出,由爱因斯坦、波尔、薛定谔、狄拉克等天才的物理学家们发展完善,是公认的20世纪物理学最伟大的突破之一。本书回顾了量子力学的发展历史,介绍了量子力学的基本知识,是一本优秀的量子力学教材。

全书共12章,分4个部分。第一部分量子力学的提出与建立,包括第1章。分析了经典物理学对处理黑体辐射、光电效应和康普顿散射的困难,介绍海森堡不确定性原理、波尔对应原理、含时的与定态的薛定谔方程、物理实际对薛定谔方程解的限制、本征波函数与本征值、波函数的完备性与正交性、叠加原理、互补原理以及相位的概念。最后明_了量子力学的几个基本假设,强调了薛定谔方程本质上是一种假设。第二部分使用薛定谔波动方程处理量子力学问题,包括2-7章:2.求解一维无限深势阱;3.自由粒子;4.线性谐振子;5.一维半无限有限高势垒;6.势垒隧穿处理α粒子衰变;7.一维有限深势阱等模型的薛定谔方程的解。介绍球坐标空间,引入分离变量法,求解了氢原子的薛定谔方程。第三部分使用海森堡矩阵力学处理量子力学问题,包括第8-10章:8.介绍角动量理论和自旋算符理论;9.介绍微扰理论;10.定态一级微扰和二级微扰,并成功应用于解释Stark效应。最后介绍含时微扰,给出了费米黄金规则公式。第四部分弹性散射理论,含第11-12章:11.并以刚球散射和方势阱散射模型为例,求解散射振幅与微分截面;12.介绍狄拉克发展的酉算子和酉变换。

本书内容简单,利于理解,适合作为物理系本科生的专业教材。与常见的量子力学教材相比,本书有两个优势,一是求解的数学过程完整且准确,可以帮助读者建立坚实的数学基础;二是在每一章的前言部分,都有对量子力学发展历史的介绍,其中对当时的物理学家们的言行描写尤为生动,妙趣横生。如果读者阅读英文有困难,也可以参考北大曾谨言教授编写的《量子力学》,两本书内容相近,可以互为辅助。

本书内容涉及2个领域:热力学和经典统计力学,其中包括平均场近似,波动和对于临界现象的重整化群方法。作者将上述理论应用于量子统计力学方面的主要课题,如正规的Feimi和Luttinger液体,超流和超导。最后,他们探索了经典的动力学和量子动力学,anderson局部化,量子干涉和无序的Feimi液体。

全书共包括21章和14个附录,每章后都附有习题,内容为:1.热动力学:简要概述;2.动力学;3.从Boltzmann到BoltzmannGibbs;4.更多的系统;5.热动力极限及其稳定性;6.密度矩阵和量子统计力学;7.量子气体;8.平均场理论和临界现象;9.第二量子化和HartreeFock逼近;10.量子系统中的线性反应和波动耗散定理:平衡态和小扰动;11.无序系统中的布朗运动和迁移;12.Feimi液体;13.二阶相变的Landau理论;14.临界现象的Landauwilson模型;15.超流和超导;16.尺度理论;17.重整化群方法;18.热Dreen函数;19.Feini液体的微观基础;20.Luttinger液体;21.无序的电子系统中的量子干涉;附录a.中心极限定理;附录B.euler伽马函数的一些有用的性质;附录C.Yang和Lee的第二定理的证明;附录D.量子气体的最可能的分布;附录e.FeimiDirac和Boseeinstein积分;附录F.均匀磁场中的Feimi气体:Landau抗磁性;附录G.ising模型和气体-格子模型;附录H.离散的matsubara频率的和;附录i.两种液流的流体动力学:一些提示;附录J.超导理论中的Cooper问题;附录K..超导波动现象;附录L.tomonagaLuttinger模型确切解的抗磁性方面;附录m.无序的Fermi液体理论的细节;附录n.习题解答。

本书适于理工科大学物理系的大学生、研究生、教师和理论物理、材料物理、超流和超导以及相变问题的研究者参考。

对量子力学的理解篇5

关键词:因子分析成绩评价SpSS软件应用

中图分类号:G420文献标识码:a文章编号:1672-3791(2014)12(b)-0154-02

高等院校学生成绩的综合评价是一项非常重要的常规工作,我们经常要评定奖学金、评定优秀、推荐研究生等,解决这些问题的关键是如何对学生在校期间的表现给予科学地、合理地综合评价,而评价的基础一般是学生在校期间通过多门课程的学习所获得的多方面的知识和能力以及掌握的技能情况。在我国现行的教学体制中,学生的这些知识和能力具体表现在对所学课程的掌握程度上,通常就是考试成绩。几十年来一贯实行的学生成绩的评定模式随着教育改革的不断深化,日益显示出它在思想和实践上的缺陷。目前,主要采用的是多门课程的平均分排名的方法以及学分制方法。用因子分析法对学生成绩进行综合评价,比较有效的解决了其它方法存在的问题。

1因子分析基本思想和模型[1]

因子分析是多元统计分析中的一种重要方法,它是把多个变量化为少数几个综合变量的多变量分析方法,其目的是用有限个不可观测的隐变量来解释原始变量之间的相关关系。因子分析主要用于:(1)减少分析变量个数;(2)通过对变量间相关关系探测,将原始变量进行分类。即将相关性高的变量分为一组,用共性因子代替该组变量。可以通过数学模型①来表示。设有多个观测变量,每个变量可作如下分解:

上式为因子模型,用矩阵表示为,其中叫做公共因子,它们是在各个变量中共同出现的因子,表示影响的独特因子。为因子载荷矩阵,叫做因子载荷,它是第个变量在第个主因子上的负荷,它反映了第个变量在第主因子上的相对重要性。因子分析的基本问题就是要确定因子载荷。

2应用SpSS软件进行因子分析的过程及结果分析

该文以兴义民族师范学院数学科学学院数学教育专业2008级的138名学生所学24门必修课的考试成绩为原始数据,用因子分析方法对学生的成绩进行综合评价。

2.1指标的选取

原始数据来自学院的学生学籍管理档案(注:此处没有考虑每门课程的教学时数;不及格的科目按第一次考试成绩计算)。各科成绩在进行因子分析之前SpSS会自动对原始变量进行标准化。选取如下24个指标:初等几何(X1)、初等代数(X2)、初等数论(X3)、大学英语(X4)、概率论与数理统计(X5)、高等代数(X6)、高级语言程序设计(X7)、贵州省情(X8)、计算机辅助教学(X9)、计算机基础及应用(X10)、教育学(X11)、解析几何(X12)、离散数学(X13)、思想概论(X14)、普通物理学(X15)、数学分析(X16)、数学建模(X17)、思想品德修养与法律基础(X18)、心理学(X19)、形势与政策(X20)、运筹学(X21)、中学数学教材教法(X22)、中学数学专题讲座(X23)、教师职业基本技能(X24)。

2.2检验原始指标变量是否适合因子分析

采用Kmo样本测度及Bartlett球形检验法进行检验。检验结果在表1,结果显示Kmo统计量为0.878,>0.5,说明变量间的偏相关性比较强,因子分析的效果非常好。因此认为此数据适合作因子分析。

2.3旋转后因子载荷矩阵

由于初始因子的综合性较强,各因子在哪些变量上的载荷较高很难看出,这样就难以找出因子的实际意义,故需进行因子旋转,该文采用方差极大法得到旋转后因子载荷矩阵,见表2。

由表2可知第一因子变量中概率论与数理统计、离散数学、初等代数、初等几何都有较大的载荷,反映了学生解决实际问题的专业数学能力素质和能力水平,因此定义为解决实际问题数学能力因子;第二因子变量中计算机辅助教学、教育学、心理学,这些课程是教育教学基础理论课,可以定义为教育教学素质因子;第三因子变量在高等代数、解析几何、数学分析上的载荷较大,这说明高等代数、解析几何、数学分析对第一因子变量的影响较大,可以定义为数学专业基础理论因子;第四因子变量中中学数学专题讲座,可定义为中学数学专题能力;第五因子变量中计算机基础及应用较大的载荷,可定义为计算机能力;第六因子变量中在普通物理学上有较大载荷,可定义物理因子;第七因子变量中在数学建模上有较大载荷,数学建模是数学知识的具体应用,定义为数学应用能力因子;第八因子变量在贵州省情上有较高的载荷,说明大学生掌握本省的省情和地方基本常识是非常有必要的,可定义为地方基本常识因子;第九因子变量在思想品德修养与法律基础上有较高的载荷,定义为思想品德素质因子;第十因子变量在思想概论上有较大的载荷,定义为思想理论素质因子;第十一因子变量在形势与政策上有较大的载荷,可定义为形势与政策因子,高等学校形势与政策教育是高校大学生思想政治教育的重要内容。

2.4因子提取结果

如果根据特征值大于1选取公因子,只需选取7个公因子即可,但在解释因子的实际意义时不容易区分,且有几门课程变量的信息大量流失,没有被充分提取,该文是根据累积方差贡献率超过75%选取的,共选取了11个公因子,见表3。

2.5计算因子综合得分

把11个公因子对应的方差贡献率作为权数计算如下综合统计量:

计算出的综合得分结果和学习成绩平均分按从高到低进行了排序,如表4。

根据表4中的因子综合得分排名可以对这些学生进行综合评价,也可以只针对某个因子得分进行排序,针对这个因子进行评价,例如只针对第一因子得分进行排序,就可以知道这些学生中哪些学生的解决实际问题的数学能力素质较高,指导他们积极参加数学实践活动,这在全国大学生数学建模比赛中就得到体现,36号、112号学生参加数学建模比赛就取得了优异的成绩;对第二因子得分进行排序,就可以知道这些学生中哪些学生的教育教学素质较高,指导他们从事中学数学的教育教学活动,并向重点中学推荐教育教学素质较高的学生等等。

3结语

综上所述,因子综合得分排序与传统的平均分排序基本吻合,但它比传统的平均分排序更加合理。用因子综合得分排序法评价大学生,我们可以掌握大学生更多的信息,通过对各个因子得分的排名能更清楚地知道各个大学生在不同能力素质上的差异,了解学生各方面的个性特点及优劣势所在,其排名结果将减少主观因素,更符合实际情况,其能清晰地揭示影响大学生学习成绩的主要原因,对促进大学生能力不断发展具有重要意义,从而能帮助教师更好地了解学生情况,提高高校教学和管理质量。

参考文献

[1]张尧庭,方开泰.多元统计分析引论[m].北京:科学出版社,1997:35-46.

对量子力学的理解篇6

本书从简要概述经典物理、统计物理与量子力学之间的明显不同开始,论证为什么量子力学的应用可以超出物理学的范围,并且定义了量子社会科学。指出所谓的量子社会科学并不是要用适用微观尺度的量子力学原理重新表述社会,而是尝试借助量子力学的一些形式理论和概念,研究社会科学中的一些问题,包括在心理学、经济学与金融学中量子概率效应的存在,提出并解答了一些基本问题。他们论证了社会科学体系中的信息处理在一定程度上可以利用量子力学的数学工具形式化的奇妙方法。本书建议了一种类-量子方法可以作为理解经济学与金融学中心对象决策问题的有效工具。两位作者还论证了概率相干性能够用来解释著名的ellsberg决策佯谬中总概率规律的破坏,本书两位作者对这一新奇的研究领域做出了一些领先的贡献。

两位作者深知这样一本书所讨论的内容是与直觉相反的,他们要把解释亚原子行为发展起来的物理学理论用于解释我们日常生活世界。尽管我们掌握了很多亚原子世界的精确知识,但是从来没有关于这个世界的直接经验。把微观世界有效的理论用于宏观世界可信度如何?这样奇特的做法会不会令人担忧?感兴趣的读者都可能提出这类问题。两位作者的想法是,关于他们开创的这种做法的可行性,应该由读者在读过该书之后自己得到答案。

本书陈述的模型可以称之为类-量子的,他们与量子物理没有直接关系。作者强调指出,对于复杂的社会系统所做的信息处理可以通过量子力学的数学工具描述。正是在这个意义上,本书阐释了金融市场、行为经济学和决策问题。

把精确科学与社会科学联系起来不是件轻而易举的事。其中最为困难的问题是消除这样的一种误解,即似乎在物理学与社会系统模拟之间本来就应当存在一架桥梁。实际上,在一些特殊的社会系统中,所得结果的“物理等价物”几乎毫无意义。

全书内容分4个部分,共15章。第1部分社会科学中的物理概念,含第1-3章:1.经典、统计和量子力学,三合一概览;2.经济物理学;3.量子社会科学。第2部分数学与物理的预备知识,含第4-6章:4.矢量的微积分学及其他数学预备知识;5.量子力学基本要素;6.Bohm力学的基本要素。第3部分心理学中量子概率效应:基本问题及其答案,含第7-9章:7.简略概述;8.心理学中的干涉效应——导论;9.决策的类量子模型。第四部分经济学、金融学与脑科学中的其他量子概率效应,含第10-15章:10.危机中的金融学/经济学理论;11.金融与经济学中的Bohm力学;12.BohmVigter模型和路径模拟;13.对于经济学/金融学理论的其他一些应用;14.大脑的类-量子处理的神经心理学起源;15.结论。

本书是面向经济学和心理学以及物理学的研究人员的一部具有新颖、独特观点的专著,很具启发性和创新性,对于希望开拓新的研究领域,特别是交叉学科相关领域的研究生以及研究人员很有参考价值。作者概述了进入该领域所需的数学预备知识和量子力学的基本概念以及社会科学相关的基础知识,这对那些对这一问题感兴趣并打算阅读该书的读者很有益处。

丁亦兵,教授

(中国科学院大学)

对量子力学的理解篇7

HpS是History、philosophyandpociologyofscience的缩写,即科学史、科学哲学与科学社会学。HpS教育是融科学史、科学哲学与科学社会学为一体的科学教育的新型教学模式。我国基础教育课程改革目标是从知识与技能、过程与方法及情感态度与价值观这三个维度对学生进行能力培养的。通过教学,促进学生对科学本质的理解,不但使学生学到科学的知识与技能,而且培养他们的科学精神和创新能力。

二、教学案例

我们以《普通高中课程标准实验教科书》(人民教育出版社,2010年4月第3版)选修3-5中《玻尔的原子模型》一节为例,尝试在物理教学中融入物理学史,使学生体会知识产生的过程与方法。

【教学目标】

知识与技能:了解物理学史以及有关经典实验;了解玻尔理论的内容;了解量子化、能级以及基态、激发态的概念。

过程与方法:让学生认识科学家所进行的科学探究;通过对玻尔理论的学习,会用它来解释氢光谱。

情感态度与价值观:学习科学家勇于质疑的勇气;理解玻尔理论的重要意义:从宏观现象的“连续”概念到微观世界的“不连续”概念的转变,是人类认识物质世界的一次飞跃。

【教学设计】

1.提出问题

教师提问:卢瑟福的核式结构模型能很好地解释α粒子散射实验,但是,当时很少有物理学家能接受这种电子绕核旋转的模型,大部分物理学家认为这种模型是不稳定的,为什么?

学生回答:根据经典物理学理论,电子在库仑引力的作用下绕核旋转会激发电磁波,电子就会将自己绕核旋转的能量以电磁波的形式辐射出去,它会失去能量,早晚会落到原子核上,故认为原子是不稳定的。

2.玻尔的原子理论

教师:正当物理学家们为卢瑟福的原子核式结构模型争论不休时,玻尔敏锐地看到:应该否定的不是卢瑟福的核式结构模型,而是经典物理学对它的解释。继而,他提出了自己的原子结构假说。假说的内容主要有哪些呢?

学生:假说的内容主要有两个方面。

第一个假设:原子中的电子在库仑力的作用下绕核运动的半径不是任意的,必须满足一定的条件,只能是某些分立的数值。电子在这些轨道上绕核旋转不产生电磁辐射,是稳定的。电子在不同轨道上具有不同的能量,故原子的能量是量子化的,这些量子化的能量值叫能级,这些状态叫做定态。

第二个假设:只有电子在不同轨道间,即不同能级间跃迁时,才会放出或吸收一定频率的光子,光子的能量由两能级间的能量差决定,即hν=em-en(m>n)。

3.玻尔理论对氢光谱的解释

教师:玻尔理论是如何对氢原子光谱进行解释的呢?

学生:根据玻尔理论,原子从高能级向低能级跃迁时会放出光子,放出光子的能量等于两能级之差。由于原子的能级是分立的,故放出光子的能量也是分立的。因此,原子的发光光谱是分立的线状谱。

根据玻尔理论,可以推导出巴耳末公式,从理论上算出里德伯常量,其值与实验值符合得很好。玻尔理论不但成功地解释了氢光谱中的巴耳末系、帕邢系,还预言了当时尚未发现的氢原子的其他谱线系。

4.证明能级存在的实验——弗兰克-赫兹实验

教师:激发原子的手段除了让它吸收电磁辐射外,还可以利用加热或使粒子碰撞等方式。

1914年,弗兰克和赫兹利用电子轰击汞原子。他们测量电子与汞原子碰撞后损失的能量和汞原子在这些碰撞中获得的能量,发现能量的损失或获得是分立的,从而证明了玻尔关于原子存在着不连续能级的假说是正确的,具体的实验原理和方法请大家课后阅读“科学足迹”。

5.玻尔模型的局限性

教师:玻尔首次将量子观念引入原子领域,成功地解释了氢光谱,但是用来解释稍微复杂的原子光谱时却遇到了困难,理论结论与实验事实出入很大。问题出在哪儿呢?

学生:玻尔理论的成功之处在于它引入了量子观念,不足之处在于过多地保留了经典物理理论。

教师:实际上,原子中的核外电子并没有确定的轨道,我们只能知道电子在原子内各处出现的概率。玻尔的电子轨道,只不过是电子出现概率最大的地方。电子在原子核外的运动情况,通常用“电子云”来描述。电子云图形象地给出了电子在原子核周围各处出现的概率。

玻尔理论虽有瑕疵,但他开创了原子核物理学,引领着量子力学的发展。通过对量子力学、狭义相对论和原子核物理的研究,人类找到了核能,建立了以计算机控制为主导的现代工业,步入了信息时代。

对量子力学的理解篇8

量子力学不同于以往力、热、光、电这些经典物理,它有自己独特而全新的理论框架体系,初次接触该课程的学生很难接受,量子力学的创建者之一波尔就曾说过“如果谁在第一次学习量子概念时不觉得糊涂,他就一点也没有懂”。本人从2011年开始讲授《量子力学》课程,先后教过5届学生,对于如何教好普通地方工科院校的学生,有一些体会。

1讲授量子力学建立背景很重要

对于任何一门课程,只掌握书本里相关的公式、定律,能熟练地做课后题是不够的,这些只能让学生知其然而不知所以然。更何况正如波尔所说,初次接触量子力学的人本身就很困惑,如果刚开学直接讲授物质波、波函数的统计解释、不确定性原理,用薛定谔方程计算能级和波函数,学生会一头雾水,不知道这些知识是什么,有什么用?如果我们回顾一下量子力学产生过程:开尔文的“两朵乌云”、普朗克解释“黑体辐射”、爱因斯坦解释“光电效应”(包括康普顿散射实验的验证)、波尔的氢原子理论,物理学的发展还是有规可循的,有这些前期成果作铺垫,德布罗意物质波理论、薛定谔方程、波函数的统计解释容易被接受,再告诉学生势阱看做简化的原子模型,得到的能级与原子发光机理相联系,学生学起来就会明白一些。这样适当增加量子力学建立背景,使学生明白它不是凭空产生的,是人类认识世界到了微观层次,由实验和理论相互促进的必然结果,教学效果会好很多。

2讲授数学知识储备和课本的组织框架很重要

量子力学中微观体系的状态用波函数来描述,每一个状态可以看成数学中的希尔伯特空间的一个矢量,线性代数中所学的矢量运算法则(如矢量的加法、数乘、内积等)成了量子力学中基本运算。在矩阵力学中,态和力学量又可以用一个矩阵来表示,矩阵的运算法则及相关概念也是掌握量子力学所必须的。薛定谔方程本身就是一个偏微分方程,量子力学中的期望值也需要与概率相关的知识。《量子力学》课程一般开设在本科大三年级,所有数学知识都已学过,同时学生也有所遗忘,如果在正式授课前带领学生复习一下相关数学知识,不仅使学生学习更轻松,也有助于一些考研同学的复习,起到事半功倍的效果。

学生在接触一门新课时,随着学习的深入很容易陷入“只见树木不见森林”的困境,所以讲授一些书本的理论框架也比较重要。我们使用的是周世勋的《量子力学教程》,该书浅显易懂,逻辑清晰,适合普通地方工科院校的学生作为量子力学的入门课本。如果学生明白课本的安排,包括这么几部分:描述一个状态及状态随时空的演化法则、状态中物理量的获取、微扰理论、自旋及多体,外加一独立成章的矩阵力学,学习起来会清晰许多,明白自己的学习进度,前后章节的联系,教学效果自然会得到提升。

3讲授名人轶事,联系学科最新进展

和其他理论课程一样,《量子力学》抽象难懂、推导过程复杂,讲授会枯燥乏味。所幸量子力学建立的年代是上世界物理学发展的黄金时代,英雄辈出,群星璀璨。量子力学的缔造者如普朗克、爱因斯坦、波尔、德布罗意、薛定谔、海森堡、狄拉克、泡利等人身上都充满了传奇,从他们身上不仅可以学到知识、启迪智慧,每一个物理规律发现背后的故事、名人之间的师承门派还可以作为调节课堂氛围的资料,让学生感受到量子力学也是有血有肉的活生生的诞生在现实社会中,而不是如天外飞仙那般突然现世。学生有了这种亲近感,学习起来也会有动力。

尽管量子力学理论框架于20世纪30年代已经基本建立,成功的解释了很多实验现象,也影响了诸如化学、生物、材料等诸多学科的发展,但围绕量子力学基本概念、原理、物理图像的理解一直争论不断,随着实验手段的进步,诸如量子通讯、量子计算、拓扑绝缘体、量子霍尔效应、外尔半金属等许多新成果不断涌现,成为当今世界一个又一个的研究热点,不断提升人类认识物质世界的高度和深度。课堂上介绍这些学科的前沿进展,让学生感受量子力学的魅力和生命力,能极大的促进学生学习的兴趣。

4合理实用多媒体课件教学

随着网络和计算机应用的发展,多媒体课件丰富了教学手段和内容,为教学带来了诸多便利。在讲授氢原子的量子理论时,公式繁琐、推导冗长,如果一一板书讲授,学生很容易听到后面忘了前面,如果提前做好课件,推导过程以幻灯片的形式播放,重点讲授推导逻辑和几个关键点,这样学生学习起来会省力很多。还有如果把电子衍射图像形成过程用动画演示的方式播放,学生对波函数统计解释的理解会加深很多。

多媒体教学会加强课堂上教学的交流、提高学生信息获取量,激发学生学习的积极性,但事物都具有两面性,多媒体课件能为教学引入很多便利,也有一些不足。如过分的使用多媒体课件,一张张的过幻灯片,除了信息量太多,学生还会被课件中动画、视频所吸引,忽视其中公式推导,及和老师的交流,这样学习层次很容易流于表面,不能深入;反之如果教授板书讲授,物理过程仔细推导,关键处点评交流,学生有时间去思考和参与讨论,能够加深对知识的理解,有利于构建他们的知识体系。总之“尺有所短寸有所长”,只有传统板书教学与多媒体教学有机结合,才能达到提高教学效果这一根本目标。

《量子力学》在物理专业的课程体系中占有重要的地位,对学生的发展更为重要,让学生更容易的认识、接收、理解、应用相关知识,让学生在学习过程中加深对物理学的热爱,是我们教学的最终目标,也是我们教师的责任。希望这些粗浅的思考能为其他地方工科院校的教学提供一些参考。

【参考文献】

对量子力学的理解篇9

关键词:抽象理论;类比教学;生活化策略

曾有一句话这样说到:“文科是将简单的问题复杂化,理科是将复杂的问题简单化。”然而在整个高中化学教学过程中,往往碰到很多的化学理论和化学概念,这些抽象的知识让教师教的辛苦,学生学得困难。比如“物质的量、化学平衡、原子结构”等知识点是学生高中阶段普遍感觉是难学的部分,尤其在刚开始接触时是一头雾水,难于理解和掌握。教师采用“告诉式”教学,显得单一、枯燥,空洞。面对这一现状,怎样解决这个困扰教师和学生的问题,笔者对此作了一些思考和探索与同仁交流,恳请批评指正。

一、教与学的双困原因

1.教师的困扰:对于理论教学,教师绝大部分就理论讲理论,没有其他的教学资源。不像物质性质部分的教学丰富,可以采用实验证实、实物或模型展示、图表对比、动画模拟等方式便于学生理解,加深印象。只能依靠大量的练习题去加深、巩固所学知识,采用题海战术,费时又费力。在新课程背景下,这样的教学从某种程度上已经背离了新课改理念,又回到了传统教学模式。

2.学生的困扰:对于理论和概念的学习,首先比较抽象,高中生已经具备科学的抽象思维能力,但还没有成熟,形象思维和迁移思维能力欠缺,导致理论部分学习找不到落脚点,感觉是飘在半空中,理论理解和掌握有相当大的难度。其次,学生知识储备不够,在西南部地区,大部分学生基础知识偏弱。对化学的理解更多的是从课堂,书本中来。学科素养相对中东部沿海教育发达省市,学科素养偏低。最后,在纯理论讲解与纯理论学习的环境下,显得枯燥无味,学习兴趣不大,积极性不高。

二、抽象理论教学对策—生活化策略

要想让教师教的轻松,学生学得愉快,就要让这些抽象的理论以某种方式呈现,使之变得通俗易懂,简单明白。在理论呈现采取直观化,形象化,生活化的策略。以类比的方式将生活中经验或实例与抽象理论对接,帮助学生建立直观化的感性形象,形象比喻,将抽象理论的理解和掌握化难为简。举例如下:

1.物质的量

学习内容:物质的量是七个国际基本物理量之一,符号:n;单位:mol。用于表示微观粒子数目,将12克12C所含有的C数目规定为1mol,约为6.02×1023。于是把含有约6.02×1023个微粒数目规定为1mol。

学情分析:此部分内容为必修1第一章第二节内容,学生刚由初中升入高中,很多概念陌生。怎样区分微观与宏观?基本物理量与常规物理量?1mol与6.02×1023之间的关系?为什么要引入物质的量?只有把这些疑问解决,才能让学生清晰的理解和掌握。

类比对策:分别称取1克与500克小米让学生数其米粒数目。介绍一滴水约0.05ml,却含有1.67×1021个水分子,50亿人一秒数100个,一直数100年还数不完。感受微观与宏观区别。生活中1打12个,一刀纸500张。1打与12、1刀与500、1nol与6.02×1023是相似的道理。在最初计算时学生往往找不着头绪,容易计算错误。如:

2.原子结构

学习内容:原子由原子核及核外电子构成,原子核由质子和中子构成,核电荷数=质子数=核外电子数,a=Z+n。原子核在原子中所占比例很小,核外电子在原子周围运动。核外电子排布规律为:①核外电子总是尽可能先排布在能量较低的电子层里,然后由里向外,依次排布在能量逐渐升高的电子层里。②原子核外各电子层最多容纳2n2个电子③最外层电子不超过8个,次外层不超过18个,倒数第三层不超过32个。

学情分析:怎样区分微观粒子体积大小关系?电子排布规律的先后次序?

类比对策:将原子核比作乒乓球,原子就相当于地球。周杰伦在鸟巢体育馆举办一场演唱会,中心舞台比喻原子核,核外电子比喻观众,电子层比作每一排观众席,为了更好的视听效果观众均会由里向外依次坐满。这样比喻每层电子数以及排布次序就会有更深刻的理解了。

3.化学平衡

学习内容:平衡概念——在一定条件下的可逆反应里,当正反应速率等于逆反应速率时,反应物与生成物浓度保持不变的状态。特征:逆、等、懂、定、变。判断平衡标志:①从本质判断,V正=V逆。②从表面特征判断,各物质浓度保持不变,从而衍生至各物质m、n、v、w%、n%、v%等保持不变。③其他,压强、温度、体系颜色、体系密度、平均相对分子质量。

学情分析:初步介绍可逆反应后就开始进入化学平衡内容,对可逆反应还不是彻底理解,对它存在化学平衡现象就比较迷茫。当V正=V逆时,各物质浓度保持不变这两者之间的因果关系不清晰。以致后面平衡状态判断标志就模糊了,各物质m、n、v、w%、n%、v%等保持不变,为什么能达到平衡状态?压强、体系密度、平均相对分子质量还要根据计量数大小关系分情况考虑,就更难掌握了。只能靠背,大量练习巩固。

将收入比作正反应速率,支出比作逆反应速率,当收入与支出相等,那么公司刚好保本,维持平衡状态。这时员工数量,工资福利待遇,产品年产量等均会保持不变。当外界条件如金融危机,或厂房火灾等外界因素导致支出大于收入时,公司亏本,于是裁员,工资福利待遇下降,产品年产量减少。当市场环境转好,或国家政策扶持,于是收入大于支出,公司盈利,规模扩大,员工增多,工资福利待遇提高,产品年产量增加。因此,员工数量,工资福利待遇,产品年产量就能作为这家公司发展的评价指标。类似于可逆反应中各物质m、n、v、w%、n%、v%等。而公司文化,男女比例等则与公司发展无关,不能作为评价指标。

三、小结

从上面的分析发现,事物之间均有联系,而且原理异曲同工。如:事物发展只要存在相反过程就会产生平衡,如经济学里的收支平衡,国家进出口贸易平衡,物理学的受力平衡:动力和阻力、重力和支持力,化学有化学平衡,水解平衡,溶解平衡,电离平衡,道家哲学思想的阴阳平衡,万事万物,相生相克。因此,在教学中用一个比较通俗易懂道理去类比解释另一个相似但抽象难懂的原理有何不可?这些比喻生动、形象,有助于概念和理论的建立,也有助于概念和理论的掌握。使抽象理论由无形变有形、由枯燥变生动、由复杂变简单。美国教育学家杜威说过:“思维起源于直接经验的情景。”我国教育家陶行知也说过:“教育要通过生活才能发出力量,成为真正的教育。”能够实现课堂教学与教育、科学、人文统一,才能使课堂教学得到升华,才能真正体现教育人、培养人和发展人的教育意义。(作者单位:六盘水市第三中学)

参考文献

[1]吴超,邓善银.让化学概念教学与新课程同行[J].中学化学教学参考,2012,(12):15-16.

对量子力学的理解篇10

与初中物理相比,高中物理具有以下三个特点:1.知识深度,理解加深.高中物理,要加深对重要物理知识的理解,有些将由定性讨论进入定量计算,如力和运动的关系、动能概念、电磁感应、核能等.2.知识广度,范围扩大.高中物理,要扩大物理知识的范围,学习很多初中未学过的新内容,如力的合成与分解、万有引力定律、动量定理、动量守恒定律、光的本性等.3.知识应用,能力提高.高中不仅要学习物理知识,更重要的是提高学习物理知识和应用物理知识的能力,高中阶段主要是培养学生的自学能力和物理解题能力,并学会一些常用的物理研究方法.

高中物理与初中物理相比,知识是螺旋式上中国知网论文升的.而现在的高中,主要的教学方法还是讲授法.讲授法是人类教育史上最为古老的一种教学方法,也是高中教师教学普遍采用的方法.但是,同一个物理知识,让不同的教师讲授,会有不同的讲法,而不同的讲授方法所产生的教学效果也是不同的.我们知道,兴趣在物理学习中起着至关重要的作用,是推动学生学习的心理动因,它制约着学习的持久性和效率.在教学中利用通俗形象的语言,可以使学生把难以理解的物理知识与日常生活紧密联系,唤起学生的求知欲,激发学生的学习兴趣.

下面结合自己的教学实践,浅谈如何利用通俗形象的语言提高物理教学水平.课堂教学的通俗形象化,要求教师应当用最为通俗形象的语言来表达深刻的道理.通俗形象化永远值得每个教师积极追求,我们平时所说的深入浅出,反映的就是这个要求.能否通俗形象化地表达,也是衡量一个人是否真正透彻理解某个知识的标志.图1要使讲授做到通俗形象化,教师应当善于寻找物理概念在生活中典型的原型.只有这样,物理概念才会使学生感到是亲切的,可以感知的.例如,在讲气体压强的微观解释时,气体压强是大量气体分子频繁撞击器壁所产生的作用在器壁单位面积上的平均作用力.气体的压强取决于气体分子的密度(单位体积内的分子数)和分子平均动能两个因素.由于学生很难感知微观分子的运动,所以对压强的微观解释也很难理解.为了帮助学生跨越这个台阶,我们可以将分子运动的微观现象与雨天时雨伞的受力类比(如图1):这就像密集的雨点打在伞上一样,单个雨滴对伞面的作用力并不明显,大量密集的雨滴接连不断地打在伞面上,对伞面就产生了持续不断的压力.把雨滴比作分子,把大量雨滴对伞面的作用力比作大量分子对器壁的压力.

这样,学生对决定气体压强的两方面因素,即气体分子密度(单中国期刊位体积内的分子数)和分子的平均动能也就找到了各自的类比对象,对气体压强的微观解释理解起来就容易多了.要使讲授做到通俗形象化,教师应当善于建立形象直观的物理图景与物理规律相对应.只有这样,学生才会把抽象的物理规律理解透彻,以后在应用物理规律时,才会得心应手.