化学反应的过程十篇

发布时间:2024-04-29 08:32:31

化学反应的过程篇1

关键词:气化过程方程式平衡浓度反应速度

themainchemicalreactionequationsinCoalgasificationprocess

ShiXiaobing

(Shanxijinchenganthracitecoalmininggroupcompany048006)

abstractthe:mainchemicalreactionequationsincoalgasificationprocessarepresentedinthisarticle,whosemechanisms,equilibriumconcentrationandreactionspeedareallanalysesedindetail.Besides,thepossibilityofimprovingspeedofreactionsisalsodiscussed.

Keywords:gasificationprocesschemicalreactionequationsequilibriumconcentrationreactionspeed

一.前言

煤气化技术在生产城市煤气、提高动力工业的发电效率和在化学工业中替代部分天然气和石油产品等方面,受到广泛的重视。中国煤的蕴藏十分丰富,发展煤气化技术对提高城市煤气普及率、发展相应有关工业等方面将起到重要作用。

了解和研究煤气化过程中主要化学反应的机理、速率、平衡组成及影响因素,对于提高煤气中有效组分、气化效率具有重要的理论和实践意义。

二.气化过程主要反应的分析

气化炉中的气化反应是一个十分复杂的体系,由于煤炭的“分子”是碳、氢、氧和其它元素的复杂结构,因而讨论气化反应时先做出如下假定:

(1)仅考虑煤炭中的主要元素碳,用C*表示,称为聚集或者固体的碳,或叫做含碳物质。

(2)气化反应发生时,已经完成了煤的干馏或者热解过程。也就是说,气化过程主要是指煤中的碳与氧、水蒸汽、二氧化碳以及氢的反应,上述反应均为非均相反应,此外煤的气化过程还包括均相反应,即气态反应产物之间相互反应或与气化剂的反应,本文主要介绍前者。

1、碳与氧气的反应

C*+o2Co2+QC*+o21/2Co+Q

一般认为:Co和Co2都是主要产物,在普通燃烧温度时,占优势的是Co,Co在气相中进一步氧化为Co2,这一反应是迅速的,并且由于水蒸汽的出现将进一步加速。原因可能是由于水与气的交替反应引起的;而两种产物的比例是随着温度上升而增加,但是在高温时,Co占优势。

该反应中,影响控制阻力的主要因素是温度、颗粒尺寸、气体与颗粒之间的相对速率及压力等。如果是吸附起控制作用,反应是一级反应;如果是解吸附起控制作用,则是零级反应。

一般说来,对于正常条件下的粉碳燃烧来说,或者是内部化学反应动力学控制反应速率,或者是气孔扩散与化学反应动力学联合控制反应速率;而在高温条件下(≥1000K),对低品位炭、高活性煤或大颗粒的情况,容积扩散变为起控制作用的因素。

炭的燃烧反应在所有气化反应中速率是最大的。气化过程(温度一般高于800℃)中,炭的燃烧反应几乎不可逆的向右进行。若提高反应温度或增大煤焦粒度,则反应可趋于外扩散区;若降低反应温度或减小煤焦粒度,则反应可趋于内扩散区,甚至动力区。

史密斯(Smith)等的研究表明,对于粒径大于100μm的炭粒,在1200K下,燃烧反应为外扩散控制,但对于粒径为90μm的炭粒,在750K下,燃烧反应为表面反应控制;当炭粒粒径小至20μm时,其动力区的温度范围可达1600K。

2、碳与二氧化碳的反应

C*+Co2(g)2Co(g)―Q

一般认为该反应的机理是:

(1)Co2与固体表面的活化区发生反应生成了Co分子和吸附的o原子:

Co2+()Co+(o)

(2)表面周围的o原子与另外的碳原子发生反应,接着生成的Co被解吸附而留出真空的活化位置

(o)+C*Co+()

通常,在低温条件以及高Co2浓度条件下,反应级数是零;低温低Co2浓度条件下,或者高温高Co2浓度条件下,将接近于一级反应。

对于通常的高温下,可能是气孔扩散与化学反应的联合作用控制着总体反应速率。

该反应为强吸热反应,当温度上升时,平衡常数急剧增加,显然温度愈高,愈有利于这个反应进行。

1000℃以上明显发生正反应,若温度在600~900℃范围内,将进行逆反应。研究认为,2000℃以下Co2还原反应处于动力区。因此,在一般气化炉操作条件下,Co2还原反应进行的很慢,不可能达到平衡。Co2还原反应的速率主要与操作温度和原料的活性有关,即提高操作温度和选用高活性煤利于Co2的转化。

因为反应为体积增大的反应,所以随着压力的提高,平衡组成中的Co含量将会降低,但如以空气作气化剂,由于空气中大量氮气的稀释作用,Co和Co2的分压之和要减小,这种情况利于Co2的还原,平衡将向正方向移动。

3、碳与水蒸汽的反应

C*+H2o=Co+H2―Q

但在过量水蒸汽的参与下,又发生如下反应

Co+H2o=Co2+H2+Q

总的方程式为

C+2H2o=Co2+2H2―Q

在相对反应速率和反应机理上都表明,它和碳与Co2的反应是类似的。研究发现,H2在反应中是一种“抑制剂”,而Co的出现却并未出现反应速率降低的现象。实际上还发现了H2可以增加某些炭的气化速率,而对另外的某些炭将降低它们的气化速率。这可能是H2对碳与水蒸汽反应中的炭的某些杂质起催化活化作用。因此,H2对反应的影响随着温度的增加将显著减弱。大多数情况下,反应是一级反应。

两反应平衡常数随温度变化趋势不同,在高温时一水反应的平衡常数增加快的多,而在低温(<700℃)时双水反应所占比重增加,所以提高温度可以相对的提高Co和H2的含量,而降低Co2和水蒸汽的含量。

当反应温度升高时,正向反应进行的比较完全。1000℃以上则可视为不可逆反应。生成Co的反应速率明显大于生成Co2的反应速率,水蒸汽分解反应比Co2还原反应速率快些,但它们是同一数量级的。在一般煤气化炉内水蒸汽的分解反应是达不到平衡的。

研究认为,对于高活性的煤,在1000~1100℃以上,水蒸汽分解反应进入扩散区。相应于一般煤气化炉的还原层温度,反应可能处于扩散区或过渡区。对于活性低的煤,在1100℃时,水蒸汽分解反应仍处于动力区。反应速率主要受温度影响,炉温稍有下降,则煤气质量和气化强度将迅速降低。

变换反应实际是在炭粒表面进行的均相反应,极少在气相中进行。该反应在400℃以上即可发生,在900℃时与水蒸汽分解反应的速率相当,高于1480℃时,其速率很快。

在一般煤气化炉内,可认为该反应能达到热力学平衡。但是实际达到平衡的程度与温度、蒸汽分解率以及料层深度有一定的关系,还与燃料的反应性、灰分的催化活性等有关。在低的水蒸汽分解率下,该反应可以接近于平衡。在水蒸汽分解率足够高时,又有适量的Co2存在,分压乘积(pco2*pH2)/(pCo*pH2o)超过其平衡常数,反应将逆向进行。

4、碳与氢气的反应

C*+2H2(g)CH4(g)+Q

该反应的产物较为复杂。反应经过三个阶段:第一阶段称为热分解或者煤的挥发,继之有蒸汽相的氢化作用,反应速率通常受固体挥发份的释放速率限制;第二阶段是氢气与炭短时间快速作用,因此氢的活性变得越来越小;而后发展到第三阶段,即低活性氢与剩余炭相互反应的时期。第一、二阶段在很大程度上可以重迭,特别是快速加热到1000K以上的条件更是这样。并且高活化阶段和低活化阶段的转化速率的差别将有几个量级。

甲烷的生成速率是很慢的。在1073K和10Kpa压力时,炭和氢的反应速率是Co2还原反应的3×10-3倍。在氢压力为3000~20000Kpa、温度为750~1200K时,200~400μm的炭粒完全反应大约要用0.5h。

当压力增高时,反应物的物质的量浓度增大,反应速率提高。甲烷的生成速率还与煤的反应活性有关,反应活性大的,甲烷生成速率高。为了制取合成气,应该采用较低的气化压力和较高的反应温度。

三、结论

1、对于外扩散控制的反应,提高空速可提高反应速率;对于内扩散控制的反应,减小碳颗粒粒度,增大碳粒内部空隙直径可提高反应速率。这也是流化床和气流床气化效率较高的原因所在。

2、因为气化过程的目标反应均为吸热反应,所以较高的反应温度对有效气含率的提高是有利的,这就需要一方面提高反应物(煤、蒸汽、氧气或者空气)的温度,另一方面提高炉内的反应温度。

3、提高反应物的浓度利于反应向正方向进行,而将Co2气作为反应物入炉,也被越来越多的工厂应用。

4、干煤粉加压气化技术是在1400~1600℃的高温和3mpa及以上高压的条件下运行的,而现有的煤气化动力学数据大多是基于1000℃左右的条件得到的,迫切需要进行高温高压煤气化反应动力学的研究。

化学反应的过程篇2

关键词:化学反应工程;教学改革;教材;实施方案

《化学反应工程》课程是化工类及相关专业的核心课程之一,属于本专业重要的专业基础课和必修课,在化工类学生的培养过程中起着举足轻重的作用。化学反应工程是一门研究与化学反应工程相关问题的一门科学技术,是从上世纪30年代初萌生到50年代末形成的一门由过程控制、传递工程、物理化学、化工热力学、化工工艺学、催化剂等相关学科互相交叉互相渗透而演变成的一门边缘学科[1]。通过近几年的教学经验和调查研究发现,学生普遍认为化学反应工程是大学课程中最难学的基础课程之一,学习过程中发现理论计算公式复杂,反应器种类繁多,课程学习结束后感到一头雾水,抓不住重点。因此,面对这样一门课程,如何进行教学,让学生理解起来更加形象生动,从更本上改变化学反应工程的教学现状是我们目前的重要任务。本文结合不同种类高等学校选用教材的特点和差异,并根据我校化工专业的特色,提出了《化学反应工程》课程教学的侧重点,从多方面对本课程的教学提出了改革实施方案。

1《化学反应工程》教学在化工专业中的作用

化学反应工程的主要任务是研究化工生产过程中反应器内的反应规律和传递现象,使化学反应实现工业化生产的一门技术科学,是提高化工生产技术所必需的科学技术理论。化学反应工程在化学化工领域中起着举足轻重的作用,目前各种化学品的生产和应用无不借助于化学反应工程相关的理论知识。在20世纪40年代,一个化学反应过程的技术开发到真正的工业生产大概需要十年以上的时间,而现在只需要三到五年。此外,随着计算机技术的快速发展,中试试验的规模不断缩小,试验的次数也不断减少,大大加快了化工厂建设的步伐,降低了投资建设的成本[2]。因此,作为一门理论教学课程,将化学反应工程这门课程作为化工专业方向的重点课程进行建设,对于高等学校教学改革的促进、本科教学质量的提高、优秀化工专业人才的培养具有十分重要的意义。济南大学作为一所省部共建的大学,化学工程与工艺专业一直是本学校的特色学科,学校对化工类学生的培养目标一直是培养应用型高技术的人才,每年为我国的精细化工和石油化工行业输送大约240名高水平人才,对精细化工和石油化工行业的发展起到重要的作用。为此在化学反应工程教学过程中,我们紧密结合我校的特点和化工实际生产的需要,着重提升学生的反应工程知识储备,培养学生分析解决实际工程问题的能力,并在教学过程中不断地进行教学改革和实践,把课程、教材的理论研究和教学方法相结合,不断提升《化学反应工程》的教学效果。

2不同类型高校选用教材的特点和差异

直到20世纪70年代,化学反应工程的相关研究成果才开始被大量地介绍到国内,其中华东理工大学的陈敏恒教授,天津大学的李绍芬教授,浙江大学的陈甘棠教授,四川大学的王建华教授等是国内最早从事反应工程教学的学者。到了80年代以后,国内从事化学反应工程学科教学研究的队伍迅速壮大,并且化学反应工程的研究逐渐渗透到各种化工领域,与世界研究水平之间的差距也不断缩小,不同版本的教科书和各种各样的专著也相继出版。反应工程已经成为我国化工类专业学生的一门非常重要的专业课程。目前国内已有120所大学和科研单位培养化工类相关专业的人才,例如清华大学、天津大学、华东理工大学、北京化工大学、中国石油大学、南京工业大学、浙江大学、大连理工大学、四川大学、华南理工大学和济南大学等。目前化学反应工程学科正在蓬勃发展,由于国内高校地区和专业特色的不同,不同高校在化学反应工程教材选择上也存在差异,各有各的特点。作者就不同高校所使用的《化学反应工程》教材进行了汇总和分析。首先介绍一下陈甘棠教授主编的《化学反应工程》(第三版),这本教材是国内许多化工类高校选用的主要教材之一,随着我国在化学反应工程这一重要学科的教育方面日渐普及,该部教材自1981年第一版问世以来,已经出版到了第三版,受到广大化工类专业师生的好评[3]。该部教材的特点是着重基础,本书共分为十章,分别介绍了均相反应过程,包括均相反应动力学基础、均相反应器、非理想流动:非均相反应过程,包括气—固相催化反应过程、非催化两流体相反应过程、固定床反应器、流化床反应器;聚合反应过程,包括聚合过程的化学与动力学基础;生化反应过程,包括生化动力学基础、生化反应器。该部教材注重反应工程研究方法的介绍,在不同的章节内容中论述了反应工程学的发展方向,有助于读者进一步深入研究。朱炳辰老师主编的《化学反应工程》也受到国内很多工科类高校化工专业老师和学生的青睐。本部教材的第一版是由化学工业出版社于1993年出版,截至目前本部教材已经出版到第四版,其中第三版累计发行量高达32000册。《化学反应工程》第四版主要吸收了一些关于现代化学反应工程发展方向方面的知识,本部教材的主线是围绕化学反应与动量、质量、热量传递交互作用的共性归纳综合的宏观反应过程,以及如何解决反应装置的工程分析和设计。该书对近年来出现的化学反应新概念、新理论和新方法做了大量阐述。另外,对于国内一些偏工科的化工类高等院校,选用的教材大多数以郭锴老师主编的《化学反应工程》为主,本部教材的主要内容包括:均相单一反应动力学和理想反应器、复合反应和反应器选型、非理想流动反应器、气固相催化反应本征动力学、气固相催化反应宏观动力学、气固相催化反应固定床反应器、气固相催化反应流化床反应器、气液相反应过程与反应器、反应器的热稳定性和参数灵敏性。本部教材的特点是主要突出了该门课程的重点和难点,删除了一些与教学大纲联系不是十分密切相关的内容,并着重讲解解决化学工程问题的基本方法。除此之外,罗康碧老师主编的《化学反应工程》教材结合了理科和工科的综合优势,吸收了国内外相关教材的许多内容和好的经验,增添了一些反应工程研究方面的最新成果。另外,本部教材在贯彻“少而精”的原则上更注意删繁就简,将重点放在化工专业领域内共性的基本问题上,并且同时体现了其教学性。本部教材先重点阐述基本概念和基本原理,然后结合实际生产,详细论述各种常用反应器的设计方法,并列出详细的例题和课后习题,用于帮助学生利用所学到的反应工程原理去分析和解决实际应用问题。近年来,梁斌等老师主编的《化学反应工程》第二版也受到国内许多化工类高校老师和学生的欢迎。在本部教材中,主要内容是以《化学反应工程》、《反应器理论分析》及国内外相关优秀教材为基础,致力于培养学生的分析问题能力和提高学生的工程实际知识储备,减少了教材内容在模型分析上的过程描述,加强学生在建立模型方面的训练。另外,本部教材还增加了工业应用背景的实例分析和课后习题,在分析解答这些习题的过程中让学生充分掌握反应工程的基本原理和相关知识,使教学内容尽量与科学研究和工程实践同步。

3我校化工专业的特点和教学侧重点

济南大学的化学工程与工艺专业属于理论性和应用性兼顾的一门特色化工学科,本专业始建于1992年,前身为山东建材学院精细化工专业,1993年招生,是济南大学重点学科的重要组成部分,2007年被学校授予校级特色专业,2012年成为山东省品牌(特色)专业,现为山东省氟化学化工材料重点实验室依托专业之一。其中化学反应工程这门课是本专业重要的专业基础课和必修课,另外,化学反应工程课程的理论教学是本专业本科教学的重要组成部分,起着理论指导和基础知识培养的作用。另外,从学校每年安排的工程实习学时就可以看出,学校对学生的动手能力和实践能力提出了更高的要求。例如学校每年组织化学工程与工艺专业大三学生去山东金城医药化工有限公司进行生产实习,主要参观和学习2-甲氧羰基甲氧亚胺基-4-氯-3-氧代丁酸生产车间的反应器设计和工艺装置流程图。通过调研每年的学生生产实习效果发现:学生在学习完实际工业生产装置后,对课本上的基本概念和原理理解的更加透彻。根据我校化工专业的特点,在《化学反应工程》的课程教学上,我们选择的教材是郭锴老师主编的《化学反应工程》第二版。在课堂教学过程中我们的教学目标为:通过对反应工程理论的学习,能够运用化学反应工程的理论方法建立数学模型,优化设计反应器、或者改善化学反应场所、改进现有的化工生产工艺;进一步提高学生的理论联系实际的能力,培养学生判断和解决问题的能力,使学生学会研究的方法,为进入研究生学习打下良好的基础;掌握由化学动力学特性建立动力学方程、建立数学模型、优化和设计反应器及改进化工工艺的理论;运用化学反应工程的知识,能够进行基本化工反应装置反应器的设计。

4拟采用或已经实施的教学方法

化学反应工程具有跨接多种学科的特点,结合本校化学工程与工艺专业的特色和优势,笔者从以下方面进行了教学方法的改进。(1)结合我校特点济南大学在医药中间体工业化生产、氟化学材料合成、精细化学品制备和环境催化方向具有鲜明的特色和优势,已经发展成为以新产品开发、新工艺设计、新技术应用为特色的精细化工和化工领域高级人才培养、科学研究和新技术开发的重要基地之一,并多次获得国家科技进步奖和发明奖。因此,在本科教学过程中,要结合我校化工专业的特色,着重讲解气固相催化反应和气液相反应过程,并要求学生能够运用化学反应工程的知识进行基本化工反应装置或反应器的设计,进一步提高学生的理论联系实际的能力,培养学生判断和解决问题的能力,为社会培养优秀的化学化工(医药中间体、氟化学材料和精细化学品)相关人才。(2)阐述方法和教学方式的改进目前全国高等学校的教学方式还是以灌输式教学为主,老师主动讲,学生盲目听,导致课堂利用率低,学生学习效率不高。随着计算机技术的不断发展,多媒体技术在高校已经普遍使用,虽然这样可以改善课堂教学方式,丰富课堂教学内容,提高学生的学习兴趣,但是多媒体技术的使用导致每节课的授课内容大大增加,学生并不能高效率的吸收每节课中所有的知识点,导致在学期末时学生对这门课的了解程度并不高[4]。例如,我在第一次讲授《化学反应工程》这门课程时,由于讲课经验和技巧都很欠缺,所以在整个课堂教学过程中完全按照多媒体上的内容进行阅读,这样生硬的填鸭式的教学模式,导致整个课堂教学效果很差。因此这样的灌输式教学模式会导致学生盲目听从,其自主性和能动性大大缺失,所以在以后的教学过程中,我们要“授之以渔”,而非“授之以鱼”,这需要我们在教学方式上加以引导[5]。笔者认为改变这种填鸭式的教学模式,主要的突破口就是让学生参与到课堂教学过程中,充分调动学生的积极性并培养学生对本门课的学习兴趣。针对这一措施,笔者在教学过程中进行了一些探索和改进,取得了很好的效果。具体探索过程如下:在阐述一些基本概念和原理的时候,可以在课前让学生充分的查阅资料,然后在课堂上让学生进行讲解,在这过程中并进行充分讨论,最后老师做总结,并纠正学生的错误观点。这种“查阅资料-主题讨论-问题反馈”的教学模式,能够让学生参与到课堂教学过程中,让学生做课堂真正的主人,提高学生的主观能动性,改变填鸭式教学的不足。(3)注重理论和实际的结合在高校的课堂教学过程中,教科书是一种不可或缺的教学工具,但也不能作为唯一的使用工具,教科书在本科教学过程中只能作为一种辅助的工具。这样就要求老师在教学过程中要灵活应用教材,既不能完全拘泥于教材,也不能完全脱离教材,在讲清楚基本原理和基本概念的基础上,注重理论和实际相结合。在每一章的讲述过程中,把每一个知识点都与实际工业应用相互关联,并阐明其主要的热量传递、动量传递、质量传递及化学反应在实际过程中是如何应用的,以加深学生对每一个知识点的理解。另外,还要注意结合科研成果,对学科前沿知识进行讲解,让学生了解目前化学反应工程的研究动向,例如在讲解气固相催化反应本征动力学时,可以引入最新发表的经典文献,通过对文献的讲解,加深学生对气固相反应本征动力学的理解,知道如何来研究一个催化剂的本征反应活性。通过这种理论与实际相结合的方法,可以大大提高学生在课堂上的学习效率。在对《化学反应工程》课程教学方法不断改进后,获得了良好的课堂效果,这不仅对教师的教学能力是一种转变和提高,对化工类学生思维和能力的培养也具有重要的意义。

参考文献

[1]金涌,程易,颜彬行.化学反应工程的前世、今生和未来[J].化工学报,2013,64(1):34-43.

[2]王安杰,周裕之,赵蓓.化学反应工程[m].北京:化学工业出版社,2005:1.

[3]陈甘棠.化学反应工程[m].北京:化学工业出版社,2011:1-3.

[4]吴元欣,朱圣东,吴迎.以多尺度理念构建新的化学反应工程体系[J].武汉工程大学学报,2011,33(1):2-3.

化学反应的过程篇3

   一、开设课程设计、培养学生应用知识和反应器优化设计的能力

   我院开设了为期2周的化学反应工程课程设计,要求每个学生独立完成硫酸转化器设计,采用二转二吸中的“3+1”或“2+2”式工艺、四段间接换热绝热式固定床催化反应器。每个学生的设计规模、进一段的原料气组成、净化率、转化率、吸收率不相同,学生自己查阅文献资料、查找设计方法、搜集计算公式、选择工艺参数进行设计。完成后撰写设计说明书,内容包括设计任务书、目录、设计方案简介、工艺计算、设计结果汇总、设计评述与讨论、参考文献,等等。设计过程中学生之间广泛讨论,商讨设计方法,学习氛围浓厚。虽然过程相似,但设计条件不同,每个学生都要单独完成自己的设计任务。通过该课程设计,学生对固定床催化反应器的形式和特点,固体催化剂的性能、内扩散有效因子的概念和计算方法,平衡温度、平衡温度曲线的概念和绘图方法,最佳温度、最佳温度曲线的概念和绘图方法,各段进出口温度、进出口转化率的最佳分配方法,利用本征动力学方程,通过数值积分计算反应时间的方法,催化剂用量的计算及校正方法,反应器直径、高度及其它附件尺寸的计算方法等知识点,有了深刻的理解和较好的掌握。

   二、逐步加大实验、巩固所学知识、培养实验动手能力

   对于化学反应工程这种实践性很强的工程学科来说,实验是学生参加实践获取知识所必需的学习途径。而化学反应工程的主要研究方法也是应用理论推演和实验研究工业反应过程的规律而建立的数学模型方法。所以教会学生如何建立各类实验反应器,如何进行实验设计、反应条件选择和数据处理非常有用。为此在课程建设中,我院通过专业实验课、综合设计型实验课,逐步加大与化学反应工程有关的实验。目前开设多釜串联流动特性的测定、管式反应器流动特性测定两个验证型实验;开设乙酸乙脂水解反应动力学的测定、乙醇催化裂解制乙烯反应动力学测定、乙苯脱氢制苯乙烯、反应精馏制乙酸乙酯等四个综合设计型实验。通过实验,学生对返混、脉冲法、阶跃法的概念以及停留时间分布的测定方法,多釜串联模型、轴向混合模型的流动特性,理想流动反应器与实际反应器停留时间分布的区别,连续均相流动反应器的非理想流动情况及产生返混原因,全混釜中连续操作条件下反应器内测定均相反应动力学的原理和方法,反应精馏与常规精馏的区别,连续流动反应体系中气——固相催化反应动力学的实验研究方法,温度、浓度、进料流量对不同反应结果的影响,转化率、选择性及收率的概念及计算方法等知识点,有了透彻的理解。课堂上学习的理论知识,不但在实验中得到验证和巩固,而且得到了应用,掌握了反应动力学的实验测定和相关设备的使用方法。

   三、开展仿真实训、培养实践操作能力

   我院以前有四周生产实习,实习中遇到企业为了安全和效益等因素不允许学生亲自动手操作时,学生得不到实际操作设备的锻炼机会;一般实习一个化工产品的生产过程,学生掌握了工艺流程、生产原理之后,实习后期学习兴趣、主动性降低,影响实习效果等问题。而且目前大部分化工企业采用DCS控制,技术员主要在控制室通过电脑操作控制生产过程。随着信息时代的到来,计算机仿真技术的应用越来越广泛,采用仿真技术将复杂的工业反应过程虚拟化,从而在计算机上以“慢速”再现反应过程及变化特征,将“抽象”化为“形象”,动态演示工业生产过程。并且,仿真实训具有无消耗、无污染、可重复操作等优点。为此我院购买了北京东方仿真软件技术有限公司的化工培训软件,在校内建立仿真实验室,开展仿真实训教学。将以前四周全在企业的生产实习改为前两周在企业生产现场实习,后两周在校仿真实验室开展仿真实训。目前我院开设的与化学反应工程有关的仿真实习项目有固定床反应器单元、流化床反应器单元、间歇反应釜单元,以及30万吨合成氨生产工艺中的反应部分、甲醇生产工艺中的反应部分,等等。学生要进行冷态开车操作、正常生产操作、停车操作、故障处理操作,以及单人单工段、多人单工段、多人多工段等操作环节的实训。通过仿真操作训练对于学生了解化工反应过程、以及工艺和控制系统的动态特性、提高对化工生产过程的运行和控制能力具有特殊效果。这种运行、调整和控制能力,集中反映了学生运用理论知识解决实际问题的水平。所以,仿真训练是运用高科技手段强化学生掌握知识和理论联系实际的新型教学方法。

   四、参与科研活动、培养创新能力

化学反应的过程篇4

关键词:离子反应;化学实验;意义建构;学习影响

文章编号:1008-0546(2014)04-0002-03中图分类号:G632.41文献标识码:B

离子反应是中学化学重要的基本概念之一,是从微粒层面了解溶液中物质反应的实质,其教学价值体现在发展学生从水溶液中微粒及微粒间的相互作用的角度认识物质及其变化的化学科学认识方法。[1]引导学生对物质变化的认识方式从宏观角度向微观角度转变,对培养学生从现象看本质的思维能力及解决实际问题的能力上都起到重要作用,因而也是高考中重点考查内容。本文在了解学生离子反应学习情况的基础上,设计了离子反应教学的化学实验,考查化学实验对学生学习离子反应的影响,揭示了学生学习离子反应概念的原理。

一、离子反应学习状况

为了了解目前离子反应的教学效果及其原因,笔者在湖南师范大学附属中学和长沙市第十九中学高一年级进行了调查,结果显示学生对离子反应概念学习存在很多缺陷,主要表现在以下几个方面:

(1)学生对离子反应概念的建构不完整。在大部分学生的理解中,离子反应“是生成沉淀、气体或水的反应”,“是离子之间的反应”,“是电解质在溶液中的反应”。这些定义对离子反应的概括并不完整。

(2)学生对离子反应的本质认识尚不清晰。有的学生认为其本质是“生成沉淀、气体或水”,这部分学生对离子反应本质的认识还只是停留在宏观表象上;有的学生则认为是“离子之间的反应”,这部分学生没有深入认识到离子的变化情况;还有的学生认为是“离子浓度减小”,但这仅仅是针对两种电解质在溶液发生离子反应而言的。

(3)学生缺乏对物质在溶液中的存在状态的认识意识。针对“离子方程式的书写步骤是‘写、拆、删、查’,什么物质不拆、为什么不拆”的问题,学生的回答绝大多数是“沉淀、气体和水”、“除易溶于水的强电解质”,至于为什么不拆,大多数学生认为这些物质“难溶于水,或是弱电解质”。这说明学生只是机械地记忆离子方程式的书写步骤和规则,而并非了解电解质在溶液存在的实际状态。

离子反应概念学习中,认识的对象是离子反应,因此离子反应实验是学习的基础,也是思维产生的基础。并且,从分子、离子等微粒层面了解溶液中物质的存在及反应的实质具有抽象性,不能简单地通过语言描述和学生讨论的方式来建立,因此必须以化学事实和反应现象为依据。考虑到高一学生对化学思维方式还比较生疏,对离子反应的认识还只能从实验的表观现象“产生水、气体和沉淀”等现象的层次开始,要进一步建立微粒观则需要通过教师引导学生透过现象分析本质,帮助学生真实地了解电解质在溶液中进行反应的微观过程,从而形成水溶液中微粒及微粒间的相互作用的微观认识。

二、离子反应教学中化学实验及教学设计

1.离子反应概念构建的化学实验

实验材料:Ba(oH)2溶液、稀H2So4溶液、酚酞溶液、烧杯、胶头滴管、铂电极2根、电池、导线、G型电流计

实验步骤:

(1)如图1所示连接实验装置。

(2)在烧杯中加入Ba(oH)2溶液没过电极,滴加1-2滴酚酞,读出电流计示数。(注:实验时用玻璃棒或磁力搅拌器不断搅拌溶液,防止溶液发生微弱电解产生的气体附着在电极表面影响电流计读数。)

(3)用胶头滴管往烧杯中缓慢滴加稀H2So4溶液,观察溶液中的现象和电流计示数的变化。(注:当电流计示数在0-2之间时,要慢慢逐滴滴加稀H2So4溶液,以免电流计示数变化太快,学生观察不到电流计示数为0的时刻。)

(4)当电流计示数为0,再继续滴加稀H2So4溶液,读出电流计示数。

2.离子反应教学过程设计

要使学生观察到真实的离子反应过程是学生自主建构离子反应概念基本条件。教学过程第一步是观察Ba(oH)2溶液和H2So4溶液的导电性以及Ba(oH)2与H2So4反应过程中溶液导电性的变化,引导学生对电流计示数的变化原因进行分析,帮助学生认识到Ba(oH)2和H2So4在水溶液中的存在形式以及反应过程中离子浓度的变化,使学生认识反应中离子的变化及离子之间的相互作用,初步认识离子反应过程。在实验认识的基础上,通过用化学方程式和离子形式表示的化学方程式认识离子反应的具体过程,认识离子反应,写出离子方程式。然后,通过提供三个离子反应的实例(盐酸与碳酸钠、盐酸与氢氧化钠、铁与硫酸铜),引导学生模拟Ba(oH)2和H2So4反应实质的思维过程,从微粒角度认识这些化学反应,写出这些反应的化学方程式、离子形式的方程式和表示离子反应实质的方程式――离子方程式。从这些反应的式子总结共性,达到对离子反应本质上的认识,构建离子反应的概念并认识离子方程式。最后,让学生概括出离子反应定义和离子方程式以及离子方程式书写规则,达成离子反应概念的全面意义建构。

三、教学实践研究

1.被试选择与研究方法

本研究选取湖南师大附中(示范高中)和长沙市第十九中(普通中学)高一年级中化学学习水平相近的学生共20名,将各校学生平均分成实验组和对照组(每组10人)。实验组进行离子反应实验教学,对照组采用常规的教师讲授的方式教学。

2.教学结果及分析

(1)学生课堂学习情况分析

按照实验教学设计进行教学,其教学情况列于表1。

通过对学生的课堂表现的对比可以看出,在有化学实验的教学中,学生通过完成实验使思维得以有真实的对象,学生的概念构建可以在教师的引导下主动完成,课堂中学生表现出学习的积极性。这是因为学生通过实验观察到实验现象,产生了真实的问题,也就产生了解反应进行的实际过程的愿望。在教师引导下,真正地了解了溶液中离子的反应行为,离子反应的概念不是“听说”的,而是“看到”的,这样在后来的对离子反应的描述(将化学方程式表达成离子形式)及反应实质(离子反应方程式)的表述中顺利形成,因而很自然地构建了概念。

而在教师讲授的教学中,学生概念的形成是建立在语言描述上的,并且学生几乎是以接受的方式进行学习,所以学习的积极性不高。其次是因为讲授教学是以语言的形式学习的,学生学习的是一些规则,其思维并没有与真实的离子反应联系起来,因此他们学习的内容是一些语言表达,包括离子方程式的写法,学生对这些写法所表示的真正意义并不了解。

(2)学习结果及分析

a.学生对离子反应概念延伸认识和离子方程式书写情况及分析

学生对离子反应的认识和离子方程式书写情况分别列于表2和表3。

表2数据表明在理解离子反应概念上实验组的学生的正确率都明显高于对照组的学生;表3数据说明学生对于简单离子方程式书写差异不大,但对于难度稍大的题目,实验组的学生的正确率都明显高于对照组的学生。两个题目测试结果表明采用实验教学对学生掌握离子反应概念和离子方程式的书写是大有裨益的。

这种学习结果说明:(1)由于常规教学中教师对离子反应的概念只是用语言描述,对照组学生对离子反应的理解基本上是建立在课堂上教师例举的为数不多离子反应实例上,学生对离子反应的认识缺乏完整性;而实验组的学生在动手实验的情境下,思维得以开阔,能够将各种离子反应联系起来,概括出离子反应的共性内涵,形成准确且完整离子反应概念。(2)在书写离子方程式的方面,对于生成物中有难溶、难电离、易挥发的物质的离子反应,实验组和对照组的学生都能正确写出离子方程式,但是当反应物中有难溶的物质时,对照组的正确率就远低于实验组。这是因为对照组的教学中,教师过于强调“写、改、拆、查”的书写规则和离子反应发生的条件,学生对生成物中是否难溶、难电离、易挥发的物质太过关注,而忽略了难溶的反应物。另外常规教学中用硫酸钠与氯化钡的反应作为学习书写离子方程式的例子,给学生造成了离子反应是阴离子和阳离子反应的第一印象的误导。而实验组的教学注重的是物质在溶液中的实际存在的形式,并且通过化学实验,学生对反应过程有完整的认识,对以离子形式存在溶液中的物质还是难溶的物质都有了直观的感受。同时学生对离子方程式的意义能脱离语言层面的理解,写离子方程式时,不再是对规则的单纯记忆,而是理解了规则,对规则有了直觉的认识,所以有很好的知识迁移性。

b.学生微观认识发展结果及分析

学生从微观角度对物质的定性变化和定量变化的认识情况列于表4中。

题3主要考查学生思维能力发展中对新问题的判断能力,题4是从量的角度考查学生的思维发展。从上述这两个测试题的结果中可以发现,在具体问题的解决中,对照组的学生是从宏观现象和宏观物质的角度来分析问题,而实验组的学生能够从微观角度对问题进行把握。

在针对离子反应中物质变化的题3中,对照组的学生下意识沿用的是初中学习的酸、碱、盐和复分解反应的知识来进行分析,经过提醒后才在书写化学方程式的过程中发现离子方程式的不同。这说明常规方式教学在教师的说明下经过化学方程式的“改、拆、查”后而产生,这样将离子方程式的书写演变成了教师的讲述下的形式学习,将离子方程式演变成了化学方程式的形式转化,导致了学生认为离子方程式是化学方程式的变形结果的错觉,学生的对反应实质认识能力比较薄弱。而实验组教学通过化学实验中电流表的读数反映出物质是以离子形式存在于溶液中,并且通过电流表的读数变化让学生认识到发生的化学变化是离子之间的相互作用,从而将宏观表象和微观粒子反应联系起来,在对物质的变化过程的实质进行探究的同时,实现认识从宏观角度向微观角度转变。另外在解决题4的定量问题中,实验组的学生能从微观角度对化学变化中量的关系进行快速又准确的把握,而对照组的学生仍然要依赖于化学方程式,说明实验教学能促进学生思维能力发展有很好的促进作用。

四、结论

在离子反应的化学实验中,水溶液里存在的微粒以及微粒之间的相互作用通过实验现象表现来刺激学生的视觉神经和大脑,学生的思维得以激发,在教师引导下学生通过实验现象的表象由表及里地分析和思考,从而能够自主构建离子反应的概念,并领会离子方程式的实际意义,同时,学生微观认识水平的也会得到发展,并且从观念上形成的微观认识更容易在问题的解决中得到迁移。

化学反应的过程篇5

【关键词】高中化学氧化还原反应教学策略

【中图分类号】G632【文献标识码】a【文章编号】1674-4810(2013)30-0141-01

一高中化学氧化还原反应的传统教学方式

传统的教学中以教师为中心,学生往往在教师的要求下进行学习,学生处于被动学习的状态。这样会压抑学生学习的自主性和积极性,导致学生学习效率低下,影响教学效率。

在氧化还原反应教学中,许多教师认为氧化还原反应是高中教学内容的重中之重。氧化还原反应的知识在不少高考题目中都已出现过,大部分老师都认为这部分知识非常重要。所以在教学过程中教师往往以灌输的形式为主,让学生被动接受,认为这样才算是完成教学任务。于是部分老师从得氧、失氧的特征到化合价升降的现象,到电子转移的本质原因,最后再加上针对性的练习来巩固所讲授的概念。在教学中并没有引导学生思考,学生所学习的知识都依靠教师,不是通过自己思考而得到的。学生在课堂上是被动的学习者,这不仅不符合新课程的要求,而且还会产生新的问题。还有不少教师在教学中把自己看成是知识的播种者,学生只是知识的接受者,其实学习是师生的双向活动,学生是主体,老师在教学中发挥着引导者的作用。

二高中化学氧化还原反应的全新教学方案设计

氧化还原反应作为高中化学重要内容,其安排有着极其重要的意义。氧化还原反应在中学阶段的基本概念和理论知识中,占有重要的地位,贯穿于高中化学教学的全部,是高中化学教学的重点和难点。只有充分掌握了氧化还原反应的基本概念,才能理解其反应的本质。

第一,首先要帮助学生正确认识和掌握氧化还原反应的基本概念,这是氧化还原反应教学中的基础。氧化还原反应定义如下:根据化学反应中物质是否得到氧或失去氧,把反应分为氧化反应和还原反应。具体可以分为以下两种:(1)得失氧情况。得到氧气的反应成为氧化反应,失去氧的反应成为还原反应。(2)化合价升降情况。物质所含元素化合价升高的反应被称为是氧化反应,而物质所含元素化合价降低所发生的反应则称为还原反应。在高中化学氧化还原反应教学中,只有让学生理解并掌握氧化还原反应的概念,才能开展进一步的学习。同时在教学过程中还应注意概念教学技巧的使用。如老师在提出问题后要根据问题的难度给学生足够的思考时间,而不是直接给出答案。教师要以健康的心态对待学生,在教学的过程中要放下架子,以教学伙伴的身份融入化学教学中。在教学过程中鼓励学生提出自己的疑问,教师通过及时的引导、启发,提示学生,再加上鼓励,让学生自己总结出所学习的内容。教师可以通过课后练习了解学生对知识的掌握程度。在氧化还原反应的教学过程中,要注意知识的连贯性、条理性,对于一些较难理解的概念应当多讲解几遍,再通过举一反三,让学生独立解决,这样不仅能使学生掌握氧化还原反应的知识,同时还能培养学生解决问题的能力。

第二,在学生对氧化还原反应概念产生感性认识的基础上,可以通过一些例题来进一步引导学生对概念的思考和掌握。除对概念和例题的讲解之外,一定的习题练习是非常必要的,而且由于氧化还原反应所涉及的范围比较广泛,所以需要大量的练习才能让学生对氧化还原反应有足够理性的认识和理解。

如果在化学教学中只演示实验过程,而没有对应的讲解以及相关试题的训练,那么学生的观察只能停留在表面现象上,不能深入研究学习化学现象的本质,这样会降低教学效果,也会影响学生对知识的吸收和学习。在教学过程中应当将多种教学方法结合起来使用,进行相互补充和配合,以达到较好的教学效果。

三结束语

氧化还原反应是高中化学课程中的重点内容,也是高考化学中常见的考题。本文主要对高中化学课程中氧化还原反应传统教学方法进行了分析,然后提出一些教学策略,以能提高教学质量。总之,高中化学老师要在教学过程中,与时俱进,不断反思教学中的不足之处,不断完善自己的教学过程,不断提高自己的教学水平,以便更好地为学生服务。

参考文献

[1]雷建平.高中化学氧化还原反应教学探究与实践[J].中学生数理化(学研版),2013(7):120~122

化学反应的过程篇6

[关键词]教育教学中学化学化学方程式含义

化学方程式的教学是化学教学中最重要的内容之一,也是教学难点之一,是教育教学中老话题。其中化学方程式的含义尤其重要。在对化学方程式的含义的研究中,较多的是关于化学方程式的“质”“量”的两方面的阐述,虽然有许多新成果,但是或多或少具有一定的缺点,不能做到理论清晰,使得学生很难理解、很难掌握。笔者在十几年的教学实践中发现并运用比较研究的方法,通过比较研究揭示化学方程式的含义,理论清晰,易于理解,利于使用,教学实践中简单易学,深受学生欢迎,效果很良好。现将笔者自己的一点所得做个介绍,以期抛砖引玉,供广大同行朋友指正、参考。

一、过去研究中化学方程式表示意义的一般表述

在过去研究中化学方程式表示意义的研究文章中,一般表述化学方程式的含义是从“质”和“量”两个方面表达了化学反应的意义:①“质”的含义表示什么物质参加了反应,生成了什么物质,以及反应是在什么条件下进行的。②“量”的含义从宏观看,表示了各反应物、生成物间的质量比。如果反应物都是气体,还能表示他们在反应时的体积比。从微观看,如果各反应物、生成物都是由分子构成的,那么化学方程式还表示各反应物、生成物间的分子个数比。

例如,化学方程式:

“质”的含义:过氧化氢(俗称双氧水)在mno2存在下,发生分解反应生成水和氧气。“量”的含义:从宏观看,每68份质量过氧化氢发生分解反应生成36份质量的水和32份质量的氧气,即该化学反应中,过氧化氢、水和氧气的质量比为68:36:32即17:9:8.从微观看,过氧化氢、水和氧气都是由分子构成的,因此,这个化学方程式还表示了每2个过氧化氢分子反应能够生成2个水分子、1个氧分子。

这种对化学方程式的含义表述是缺乏完整性的,比如生成氧气的气体符号的含义没有交代,对等号的含义,对化学式中各个符号的含义都没有交代。再如mno2的作用没有交代。在教学中,教师一般都会单独做出交代,但是这没有给出一般理论依据,学生感觉琐碎,不系统,缺乏逻辑性。运用比较研究,就能够将化学方程式的含义揭示的深刻、透彻、完整。

二、表示化学反应的三个式子

在现行中学化学教材中一般都出现了如下两种式子:

为了更好的通过比较来彰显、揭示化学方程式的含义,笔者在教育教学实践中提出了另外一种式子:

我把第①种式子叫做化学反应的文字表达式,把第③种式子叫做化学反应的符号表达式,第②种式子就是化学反应的化学方程式。通过这三个式子的比较,我们家能够更清晰的解释、揭示化学方程式的含义。

三、通过比较得出化学方程式最难过表示出化学反应的信息

第①种式子即文字表达式能够表示出化学反应的实质是生成了新物质,能够表示出化学反应的条件。但是不能表示出化学反应中各种物质的组成和相互之间的关系,不能表示出各物质是否含有同种元素,不能表示出每种物质是有哪些元素组成,不能表示出每种物质的构成粒子是分子、是原子、还是离子,不能表示出物质中的元素的化合价如何,也不能表示出化学反应的一些现象比如有气体生成……等等。

与第①种式子相比较,第③种式子即符号表达式就能够表示出更多的含义。如第③种式子能够表示出化学反应有新物质生成,能够表示出反应条件,能够表示出各种物质的组成,能够表示出各种物质是否含有同种元素,能够表示出各种物质是有哪些元素组成,能够表示出各种物质的构成粒子是分子、是原子、还是离子,能够表示出各种物质中的元素的化合价,……等等。但是第③种式子不能够表示出化学反应中各物质之间的质量关系,而各物质之间的质量关系是化学反应中最重要的信息或者说含义,不能表示出化学反应中各物质之间的质量关系,就不能够解决实践中的各种计算,因此第③种式子不宜用来表示化学反应,需要寻找更适合的式子,这个式子就是第②种式子就是化学反应的化学方程式。

与第③种式子相比较,第②种式子不仅能够表示出第③种式子可以表示出的信息或含义,更能够表示出化学反应中各物质之间的质量关系,元素之间的关系,分子、原子、离子的关系,能够表示出化学方程式遵守质量守恒定律,所以化学方程式中间用=符号,――其他两种式子中间只能用符号。所以能够解决实践中的各种有关化学计算问题。

通过上述比较可以看出,化学反应的含义很丰富,可以通过不同的式子逐层次表示出来。通过上述比较可以看出,只有化学方程式才能够最好的表示出化学反应的信息。

四、揭示化学方程式的含义

化学方程式的含义就是它所表示出来的化学反应的信息,总结上面的比较,可以得出化学方程式具有以下含义:

第一,能够表示出化学反应的本质即有新物质生成,化学反应是不同物质之间的转变。

第二,能够表示出各种物质的组成元素、构成粒子(分子、原子、离子等),能够表示出化学反应中各物质之间的元素关系、粒子关系。

第三,能够表示出反应条件。

第四,能够表示出一定的反应现象,如有气体生成的符号,有沉淀生成等。很多教材没有吧这一问题交代清楚,只是说有时候用符号和,但是为什么用?实际是能够观察出的现象。但是很多能够观察出的现象是无法表示出的,比如颜色的变化。所以,教材没有交代清楚,学生的疑惑就没有办法解决。如果能够指出化学方程式能够表示出一定的现象,而不是表示出全部的现象,学生就容易接受了。

化学反应的过程篇7

关键词:氧化还原反应高考热点氧化剂还原剂

中图分类号:G633.8文献标识码:a文章编号:1673-9795(2014)05(c)-0000-00

1明确氧化还原反应的本质是电子转移的科学事实

在刚接触高中化学的学习时,学生具有的微观认识较少,深入的微观原子结构认识甚微,更不具备对化学键,电子式,元素金属性非金属性等知识的认知。在此条件下,怎么能使学生形成氧化还原反应中存在电子转移的认识呢?充分利用学生初中原子结构示意图的知识储备结合教材实例让学生通过图示进而“看到”电子转移,以金属钠与氯气反应为例,引领学生分析钠原子和氯原子的原子结构写出原子结构示意图,然后引导学生结合教材氯化钠形成过程图示和播放flas,再以初中学习过的氧化反应和还原反应中元素化合价的改变分析元素化合价改变的原因,多角度让学生科学掌握电子转移的本质,实现认识的逐渐深入,

2正确分析物质中的变价元素准确判断氧化剂和还原剂

教学实际中发现学生了解通过分析物质中所含元素的化合价来判断物质可能做氧化剂或还原剂,教师想要让学生真正学会运用化合价知识分析物质做氧化剂或还原剂,需要为他们做好三方面的准备:(一)能够准确判断化学反应中各元素的化合价;(二)帮助学生了解分析以后要学习的重点的典型的变价元素,只要某种元素存在多种化合价,就可能存在物质之间的相互转化,该元素就有可能为此化学反应中的重点元素,即为典型变价元素,(三)将一些有多种变价的元素进行归类整理,让学生列举含有各元素不同价态的常见化学物质,分析该元素的价态,从元素化合价的变化趋势分析,哪些价态的元素为稳定元素,一般不能作氧化剂或还原剂,哪些价态的元素为不稳定元素,一般能作氧化剂或还原剂。为实践抓住物质中重要元素预测氧化性或还原性的思路判断氧化剂和还原剂,为以后的学习打下坚实基础。

3物质氧化性和还原性的研究

首先明确氧化剂和还原剂的概念;其次分析物质为什么能做氧化剂或还原剂引出氧化性和还原性的概念;第三,需要学生学会预测物质氧化性和还原性;第四,学生能判断哪些物质具有氧化性可以作氧化剂,哪些物质具有还原性可以作还原剂;第五,学生能够设计反应过程,选择合适的氧化剂和还原剂验证假设,从而获得物质具有氧化性或还原性的认识;第六,学生建立的认知通过具体的应用加强巩固和升华。

4有效选择教学内容

由于课程结构改革教材出现很大变动,依据普通高中课程标准实验教材(人教版)与旧教材的比较分析可以发现,新课程对于氧化还原反应概念的要求降低了。新教材与旧教材中氧化还原反应教学内容减少了以下知识:氧化产物和还原产物概念、氧化性和还原性强弱的判断、氧化还原反应方程式的配平,单双线桥的表示方法存在但没有单双线桥这个名词术语,只是在写出的反应方程式中用单双线桥进行了电子转移的表示。所以在教学中不宜进行扩展和相应技能训练,如单双线桥的教学功能在教学过程中仅限于帮助学生分析氧化还原反应前后元素化合价的变化和得失电子数目,帮助学生认识和理解电子转移及电子转移过程中的得电子总数与失电子总数相等。高中化学课程标准没有将氧化还原反应方程式的配平作为基本要求,但在氧化还原新授课的教学中应该讲解配平方法,并做简单的技能训练,化学必修1模块有很多的化学方程式需要学生掌握,让学生具有配平技能更有利于化学方程式的掌握和准确书写,但是,教师应该意识到学生的认知过程是螺旋式发展的过程,不能要求学生对知识掌握做到一步到位,所以学生在新接触氧化还原较多概念时,新概念体系的建立和新技能培养是一个递进的过程在短时间内不能要求学,生掌握这么多的知识技能,教师需要分析整个高中化学课程和教学内容,很多课程内容都与氧化还原反应密切相关的,如元素化合物、元素周期律、电解、原电池等,在这些内容的学习中,可以逐步加深促进学生关于氧化还原知识技能的认识和提高。因此,教师应该认识到,在学生关于氧化还原知识技能的认识和掌握是递进式发展的,所以在教学过程中应该采取以下过程:

第一阶段,高一刚进行氧化还原反应的教学时,只要求学生建立氧化还原反应、氧化反应、还原反应、氧化剂和还原剂、氧化性和还原性等基本概念的认知和简单的方程式配平,如能够分析一些化学反应是否属于氧化还原反应,能够分析出哪个物质具有氧化性、还原性,从而指出方程式中的氧化剂和还原剂,进而判断电子转移情况和物质变化中量的关系;初步了解物质中哪些常做氧化剂和还原剂;能够根据元素常见化合价判断物质具有氧化性还是还原性,并且能设计简单氧化还原反应并配平。

第二阶段,在必修i第三章,第四章金属、非金属元素及其化合物知识的教学和学生学习过程中,培养学生加深对氧化还原反应有关概念理解和应用;培养学生应用电子转移将新学到的氧化还原反应的配平的能力,如稀硝酸与不同量铁的反应配平等;培养学生构建常见物质及给出或预测的物质的氧化还原反应方程式能力。

(三)在化学必修2第一章《物质结构元素周期律》和第二章《原电池》加深学生对物质氧化性和还原性的认识,经分析讨论总结规律性,如同周期或同主族元素得失电子能力的比较;同周期或同主族元素单质氧化性和还原性强弱比较;同周期或同主族元素最高价氧化物的水化物酸性或碱性强弱等。

教师关于氧化还原内容的教学组织和处理在新课程的背景下,面对新的高考要求做相应调整,以适应新形势的要求。

参考文献

化学反应的过程篇8

1核心课程体系的构建

1.1核心课程体系构建的原则

钦州学院开设化学工程与工艺专业有良好的机遇,同时也有多方面的挑战。要办好钦州学院化学工程与工艺专业,贯彻学院打造五大品牌专业的精神,需要从紧密联系北部湾区域经济建设方面着眼,努力办出具有石化特色的化学工程与工艺专业,重点建立一套紧密结合石化下游产业链、注重过程开发和工程实践能力培养的核心课程体系。在核心课程设置方面,确立夯实专业基础、强化工程意识、注重实验技能、拓宽专业口径,注重石化特色的原则。所谓化工过程,主要包含分离过程和反应过程两种过程。与这两种过程紧密相关的一系列化工类课程共同构成了化工类课程的核心。按照“门数适宜,重点突出,相互支撑,形成一体”的要求,选择化工热力学、分离工程、传递原理、反应工程和化工工艺学等五门理论课以及与这五门理论课相关的化工专业实验课作为核心课程,建设具有石化特色化学工程与工艺专业的核心课程体系,全力打造化学工程与工艺这一品牌专业。在这五门理论课程中,分离工程和反应工程分别研究各类分离过程和反应过程,它们构成了化工过程课程最核心的部分。化工热力学是化工过程研究、开发和设计的理论基础,是化学工程的重要分支之一,与化学反应工程、分离工程关系密切。化工热力学的核心价值在于研究过程进行的方向和限度,为分离过程和反应过程提供相平衡、反应平衡数据,并对化工过程进行热力学分析[1]。反应工程是与工程实际紧密联系的课程之一,它广泛地将化工热力学、化学动力学、流体力学、传热、传质以及生产工艺、环境保护、经济学等反面的理论知识和经验综合于工业反应器的结构和操作参数的设计和优化中[2]。

分离工程是化工专业基础课程,讲述的是如何将混合物进行分离与提纯的学科。作为专门研究分离方法的分离工程课程对学生工程素养的培养有很重要的作用。该课程阐明了化工分离过程的本质规律,重点研究分离方法的工业化途径,设备设计放大效应,最优分离路线的工业化,及最优操作条件。在选择具体分离方法时,不仅要考虑技术上的可行性、经济上的合理性,而且要考虑能耗、环保、设备放大和开发成本等诸多问题[3]。传递原理旨在研究化工动量、热量及质量(俗称三传)的传递现象,用一种统一的观点来处理三种传递现象,并研究动量、热量和质量传递之间的类似性,是研究分离机理、分离效率和宏观反应动力学的基础理论,同时也是反应器放大研究的基础理论之一。与化工热力学不同,传递原理是一门探讨传递速率的课程,它对过程开发、过程设计、生产操作、优化控制及过程机理研究都有重要的使用意义[4]。化工工艺学重在工艺过程的分析,即在特定条件下,进行分离过程、反应过程的比较选择、整合优化。化工工艺学是大学基础化学、化工热力学、化工动力学、反应工程、分离工程等专业基础可和专业课的综合运用。化工热力学和传递原理旨在加强专业基础,化工专业实验、反应工程和分离工程重在强化工程意识,化工工艺学拓展了专业适应面,可以突出石化特色。

2核心课程体系的优化

为了保障以上核心课程体系的顺利实施,建议结合钦州学院化学工程与工艺现有的教学计划,从下面几个方面作出适当的调整。

2.1加强数理基础教学力度,适度拓展

新世纪的工程人才必须有熟练应用数学、科学与工程等知识的能力,有进行设计、实验分析与数据处理的能力。在两年的教学实践中,学生普遍反映数理基础不够扎实,一些数学问题不知所云,比如热力学计算中要应用迭代法求解状态方程、精馏过程计算、反映工程中的偏微分方程求解等等,问题大都源于数学基础较薄弱。因此建议加开线性代数、运筹学、概率论与数理统计、数值计算、C程序语言、数学物理方法,流体力学等数理和计算机基础课程。多所兄弟院校也早就开设了这些基础课程。线性代数和运筹学的开设可以解决反应器设计过程的优化问题;概率论与数理统计是实验数据处理和理解反应工程中一些基本概念的基础;数值计算和C程序语言两门课程是工科学生重要的基础课程,加开这两门课程也是落实我校化学工程与工艺专业培养计划中对学生计算机水平的要求,对学生的就业能力的提高有好处;数学物理方法和流体力学是传递工程等课程的基础,加开这两门课程可以大大的提高学生工程数学能力,为就业和进一步深造打下更坚实的数理基础。考虑到matlab在科学和工程计算领域的突出作用,建议开设matlab在化工中的应用的相关课程[5]。化工热力学和化工原理是反应工程的基础,故将化工热力学和从第四、五学期调整至第三、四学期;化工原理和反应工程两门课程共同构成了化学工程最核心的部分课程,将化工原理从第四、五学期调整至第二、三学期,反应工程从第三学期调整至第五学期,也是考虑到化工原理是反应工程的基础。同时,将计算机模拟与仿真删去,将其中的知识分散到加开的matLaB在化工中的应用和数值计算这两门课程中。从上表2中还可以看出,加开的课程中,突出了数理课程的基础,同时,适度的拓展经济和计算机相关的课程,也增加化工制图和电工学等实践性较强的课程,这对培养学生的工程实践能力是必不可少的。

2.2整合化工专业实验

为了整合学院教学资源,最大限度地利用现有的一切教学设备,建议从各门化学工程与工艺核心课程的专业实验中选出一些经典的、与石化行业紧密相关的进行重新编排,单独设置一门大学化工基础实验课程,分成三个学期展开教学。另外,考虑到传统的化工专业实验教材以单一验证实验为主,无法满足新世纪综合素质人才培养的要求,可将化工实验按由浅入深的原则划分成验证型实验、设计型实验和综合型实验三个层次。尽量精简验证型实验,增加设计型实验和综合型实验。可以从教师的一些科研项目中选出一部分让学生参与,将这些项目设计成设计型或综合型实验,这样,通过学生的亲身体验科研过程,培养了正确的科研习惯,为学生的就业和进一步的深造打下好的基础。

化学反应的过程篇9

   1.1核心课程体系构建的原则

   钦州学院开设化学工程与工艺专业有良好的机遇,同时也有多方面的挑战。要办好钦州学院化学工程与工艺专业,贯彻学院打造五大品牌专业的精神,需要从紧密联系北部湾区域经济建设方面着眼,努力办出具有石化特色的化学工程与工艺专业,重点建立一套紧密结合石化下游产业链、注重过程开发和工程实践能力培养的核心课程体系。在核心课程设置方面,确立夯实专业基础、强化工程意识、注重实验技能、拓宽专业口径,注重石化特色的原则。

   1.2核心课程体系的内容与相互关系

   所谓化工过程,主要包含分离过程和反应过程两种过程。与这两种过程紧密相关的一系列化工类课程共同构成了化工类课程的核心。按照“门数适宜,重点突出,相互支撑,形成一体”的要求,选择化工热力学、分离工程、传递原理、反应工程和化工工艺学等五门理论课以及与这五门理论课相关的化工专业实验课作为核心课程,建设具有石化特色化学工程与工艺专业的核心课程体系,全力打造化学工程与工艺这一品牌专业。在这五门理论课程中,分离工程和反应工程分别研究各类分离过程和反应过程,它们构成了化工过程课程最核心的部分。化工热力学是化工过程研究、开发和设计的理论基础,是化学工程的重要分支之一,与化学反应工程、分离工程关系密切。化工热力学的核心价值在于研究过程进行的方向和限度,为分离过程和反应过程提供相平衡、反应平衡数据,并对化工过程进行热力学分析[1]。反应工程是与工程实际紧密联系的课程之一,它广泛地将化工热力学、化学动力学、流体力学、传热、传质以及生产工艺、环境保护、经济学等反面的理论知识和经验综合于工业反应器的结构和操作参数的设计和优化中[2]。

   分离工程是化工专业基础课程,讲述的是如何将混合物进行分离与提纯的学科。作为专门研究分离方法的分离工程课程对学生工程素养的培养有很重要的作用。该课程阐明了化工分离过程的本质规律,重点研究分离方法的工业化途径,设备设计放大效应,最优分离路线的工业化,及最优操作条件。在选择具体分离方法时,不仅要考虑技术上的可行性、经济上的合理性,而且要考虑能耗、环保、设备放大和开发成本等诸多问题[3]。传递原理旨在研究化工动量、热量及质量(俗称三传)的传递现象,用一种统一的观点来处理三种传递现象,并研究动量、热量和质量传递之间的类似性,是研究分离机理、分离效率和宏观反应动力学的基础理论,同时也是反应器放大研究的基础理论之一。与化工热力学不同,传递原理是一门探讨传递速率的课程,它对过程开发、过程设计、生产操作、优化控制及过程机理研究都有重要的使用意义[4]。化工工艺学重在工艺过程的分析,即在特定条件下,进行分离过程、反应过程的比较选择、整合优化。化工工艺学是大学基础化学、化工热力学、化工动力学、反应工程、分离工程等专业基础可和专业课的综合运用。化工热力学和传递原理旨在加强专业基础,化工专业实验、反应工程和分离工程重在强化工程意识,化工工艺学拓展了专业适应面,可以突出石化特色。

   2核心课程体系的优化

   为了保障以上核心课程体系的顺利实施,建议结合钦州学院化学工程与工艺现有的教学计划,从下面几个方面作出适当的调整。

   2.1加强数理基础教学力度,适度拓展

   新世纪的工程人才必须有熟练应用数学、科学与工程等知识的能力,有进行设计、实验分析与数据处理的能力。在两年的教学实践中,学生普遍反映数理基础不够扎实,一些数学问题不知所云,比如热力学计算中要应用迭代法求解状态方程、精馏过程计算、反映工程中的偏微分方程求解等等,问题大都源于数学基础较薄弱。因此建议加开线性代数、运筹学、概率论与数理统计、数值计算、C程序语言、数学物理方法,流体力学等数理和计算机基础课程。多所兄弟院校也早就开设了这些基础课程。线性代数和运筹学的开设可以解决反应器设计过程的优化问题;概率论与数理统计是实验数据处理和理解反应工程中一些基本概念的基础;数值计算和C程序语言两门课程是工科学生重要的基础课程,加开这两门课程也是落实我校化学工程与工艺专业培养计划中对学生计算机水平的要求,对学生的就业能力的提高有好处;数学物理方法和流体力学是传递工程等课程的基础,加开这两门课程可以大大的提高学生工程数学能力,为就业和进一步深造打下更坚实的数理基础。考虑到matlab在科学和工程计算领域的突出作用,建议开设matlab在化工中的应用的相关课程[5]。化工热力学和化工原理是反应工程的基础,故将化工热力学和从第四、五学期调整至第三、四学期;化工原理和反应工程两门课程共同构成了化学工程最核心的部分课程,将化工原理从第四、五学期调整至第二、三学期,反应工程从第三学期调整至第五学期,也是考虑到化工原理是反应工程的基础。同时,将计算机模拟与仿真删去,将其中的知识分散到加开的matLaB在化工中的应用和数值计算这两门课程中。从上表2中还可以看出,加开的课程中,突出了数理课程的基础,同时,适度的拓展经济和计算机相关的课程,也增加化工制图和电工学等实践性较强的课程,这对培养学生的工程实践能力是必不可少的。

   2.2整合化工专业实验

   为了整合学院教学资源,最大限度地利用现有的一切教学设备,建议从各门化学工程与工艺核心课程的专业实验中选出一些经典的、与石化行业紧密相关的进行重新编排,单独设置一门大学化工基础实验课程,分成三个学期展开教学。另外,考虑到传统的化工专业实验教材以单一验证实验为主,无法满足新世纪综合素质人才培养的要求,可将化工实验按由浅入深的原则划分成验证型实验、设计型实验和综合型实验三个层次。尽量精简验证型实验,增加设计型实验和综合型实验。可以从教师的一些科研项目中选出一部分让学生参与,将这些项目设计成设计型或综合型实验,这样,通过学生的亲身体验科研过程,培养了正确的科研习惯,为学生的就业和进一步的深造打下好的基础。

化学反应的过程篇10

关键词:化学反应工程;实践教学;改革

中图分类号:G642.423 文献标识码:a 文章编号:1671-0568(2012)41-0136-02

化学反应过程是化工生产过程的核心,流程中反应器的投资不一定最大,但反应器的设计精度、操作控制精度均要高于其它设备,是决定最终产品产量和质量的关键部位。化学反应工程是一门研究工业反应过程的开发和反应器设计、优化、放大的工程学科。目标是通过学习培养学生分析、解决工业反应器设计、操作和控制中遇到的实际工程问题的能力。化学反应工程是人类从科学实验和生产实践中总结发展起来的,它离不开科学实验和生产实践。学生在学习时普遍感到理论抽象、数学推导繁琐、工程问题多,不少学生认为化学反应工程课程是大学中最难学习的课程之一。本科生的工程背景知识不足,仅靠理论教学难易将反应工程基本原理与工业反应过程有效结合,难易将知识内化为学生的能力。开好这样一门课程,改革实践教学是深化书本理论知识、强化工程应用能力的有效途径之一。为此,青海大学化工学院(以下简称“我院”)在加强实践性教学方面进行了一系列的探索,采取加大课程实验、开设课程设计、开展反应器操作仿真实训、鼓励学生参加科研活动等一系列改革措施,取得良好的教学效果,显著加深了学生对化学反应工程基本原理的理解,有效提高了学生在反应器设计、科学实验研究、反应器操作等方面的实践动手能力。

一、开设课程设计、培养学生应用知识和反应器优化设计的能力

我院开设了为期2周的化学反应工程课程设计,要求每个学生独立完成硫酸转化器设计,采用二转二吸中的“3+1”或“2+2”式工艺、四段间接换热绝热式固定床催化反应器。每个学生的设计规模、进一段的原料气组成、净化率、转化率、吸收率不相同,学生自己查阅文献资料、查找设计方法、搜集计算公式、选择工艺参数进行设计。完成后撰写设计说明书,内容包括设计任务书、目录、设计方案简介、工艺计算、设计结果汇总、设计评述与讨论、参考文献,等等。设计过程中学生之间广泛讨论,商讨设计方法,学习氛围浓厚。虽然过程相似,但设计条件不同,每个学生都要单独完成自己的设计任务。通过该课程设计,学生对固定床催化反应器的形式和特点,固体催化剂的性能、内扩散有效因子的概念和计算方法,平衡温度、平衡温度曲线的概念和绘图方法,最佳温度、最佳温度曲线的概念和绘图方法,各段进出口温度、进出口转化率的最佳分配方法,利用本征动力学方程,通过数值积分计算反应时间的方法,催化剂用量的计算及校正方法,反应器直径、高度及其它附件尺寸的计算方法等知识点,有了深刻的理解和较好的掌握。

二、逐步加大实验、巩固所学知识、培养实验动手能力

对于化学反应工程这种实践性很强的工程学科来说,实验是学生参加实践获取知识所必需的学习途径。而化学反应工程的主要研究方法也是应用理论推演和实验研究工业反应过程的规律而建立的数学模型方法。所以教会学生如何建立各类实验反应器,如何进行实验设计、反应条件选择和数据处理非常有用。为此在课程建设中,我院通过专业实验课、综合设计型实验课,逐步加大与化学反应工程有关的实验。目前开设多釜串联流动特性的测定、管式反应器流动特性测定两个验证型实验;开设乙酸乙脂水解反应动力学的测定、乙醇催化裂解制乙烯反应动力学测定、乙苯脱氢制苯乙烯、反应精馏制乙酸乙酯等四个综合设计型实验。通过实验,学生对返混、脉冲法、阶跃法的概念以及停留时间分布的测定方法,多釜串联模型、轴向混合模型的流动特性,理想流动反应器与实际反应器停留时间分布的区别,连续均相流动反应器的非理想流动情况及产生返混原因,全混釜中连续操作条件下反应器内测定均相反应动力学的原理和方法,反应精馏与常规精馏的区别,连续流动反应体系中气――固相催化反应动力学的实验研究方法,温度、浓度、进料流量对不同反应结果的影响,转化率、选择性及收率的概念及计算方法等知识点,有了透彻的理解。课堂上学习的理论知识,不但在实验中得到验证和巩固,而且得到了应用,掌握了反应动力学的实验测定和相关设备的使用方法。

三、开展仿真实训、培养实践操作能力

我院以前有四周生产实习,实习中遇到企业为了安全和效益等因素不允许学生亲自动手操作时,学生得不到实际操作设备的锻炼机会;一般实习一个化工产品的生产过程,学生掌握了工艺流程、生产原理之后,实习后期学习兴趣、主动性降低,影响实习效果等问题。而且目前大部分化工企业采用DCS控制,技术员主要在控制室通过电脑操作控制生产过程。随着信息时代的到来,计算机仿真技术的应用越来越广泛,采用仿真技术将复杂的工业反应过程虚拟化,从而在计算机上以“慢速”再现反应过程及变化特征,将“抽象”化为“形象”,动态演示工业生产过程。并且,仿真实训具有无消耗、无污染、可重复操作等优点。为此我院购买了北京东方仿真软件技术有限公司的化工培训软件,在校内建立仿真实验室,开展仿真实训教学。将以前四周全在企业的生产实习改为前两周在企业生产现场实习,后两周在校仿真实验室开展仿真实训。目前我院开设的与化学反应工程有关的仿真实习项目有固定床反应器单元、流化床反应器单元、间歇反应釜单元,以及30万吨合成氨生产工艺中的反应部分、甲醇生产工艺中的反应部分,等等。学生要进行冷态开车操作、正常生产操作、停车操作、故障处理操作,以及单人单工段、多人单工段、多人多工段等操作环节的实训。通过仿真操作训练对于学生了解化工反应过程、以及工艺和控制系统的动态特性、提高对化工生产过程的运行和控制能力具有特殊效果。这种运行、调整和控制能力,集中反映了学生运用理论知识解决实际问题的水平。所以,仿真训练是运用高科技手段强化学生掌握知识和理论联系实际的新型教学方法。

四、参与科研活动、培养创新能力