机械密封原理与设计十篇

发布时间:2024-04-29 21:55:12

机械密封原理与设计篇1

论文摘要:目前机械密封在泵类产品中的应用非常广泛,其应用前景也将更加广阔。本文笔者结合工作实际,浅谈一下水泵的机械密封问题。

目前机械密封在泵类产品中的应用非常广泛,而随着产品技术水平的提高和节约能源的要求,机械密封的应用前景将更加广泛。机械密封亦称端面密封,其有一对垂直于旋转轴线的端面,该端面在流体压力及补偿机械外弹力的作用下,依赖辅助密封的配合与另一端保持贴合,并相对滑动,从而防止流体泄漏。大庆石油化工总厂万隆物业公司光明锅炉使用的循环泵,型号为200lgy75a,流量275m3/h,工作压力0.4mp,工作温度为95,介质为清水,密封为机械密封的水泵,本文笔者结合工作实际,浅谈一下水泵的密封问题。

1水泵机械密封的渗漏现象及原因

1.1由于压力产生的渗漏

1.1.1真空状态运行造成的机械密封渗漏

泵在起动、停机过程中,由于泵进口堵塞,抽送介质中含有气体等原因,有可能使密封腔出现负压,密封腔内若是负压,会引起密封端面干摩擦,内装式机械密封会产生漏气(水)现象,真空密封与正压密封的不同点在于密封对象的方向性差异,而且机械密封也有其某一方向的适应性。

对策:采用双端面机械密封,这样有助于改善润滑条件,提高密封性能。

1.1.2高压和压力波造成的机械密封渗漏

由于弹簧比压力及总比压设计过大和密封腔内压力超过3mpa时,会使密封端面比压过大,液膜难以形成,密封端面磨损严重,发热量增多,造成密封面热变形。

对策:在装配机封时,弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,高压条件下的机械密封应采取措施。为使端面受力合理,尽量减小变形,可采用硬质合金、陶瓷等耐压强度高的材料,并加强冷却的润滑措施,选用可靠的传动方式,如键、销等。

1.2周期性渗漏

1.2.1转子周期性振动。原因是定子与上、下端盖未对中或叶轮和主轴不平衡,汽蚀或轴承损坏(磨损),这种情况会缩短密封寿命和产生渗漏。

对策:可根据维修标准来纠正上述问题。

1.2.2泵转子轴向窜动量大,辅助密封与轴的过盈量大,动环不能在轴上灵活移动。在泵翻转,动、静环磨损后,得不到补偿位移。

对策:在装配机械密封时,轴的轴向窜动量应小于0.1mm,辅助密封与轴的过盈量应适中,在保证径向密封的同时,动环装配后保证能在轴上灵活移动(把动环压向弹簧能自由地弹回来)。

1.2.3密封面润滑油量不足引起干摩擦或拉毛密封端面。

对策:油室腔内润滑油面高度应加到高于动、静环密封面。

1.3.因其他问题引起的机械密封渗漏

1.3.1安装动环密封圈的轴(或轴套)端面及安装静环密封圈的密封压盖(或壳体)的端面应倒角并修光,以免装配时碰伤动静环密封圈。

1.3.2弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,误差±2mm,压缩量过大增加端面比压,摩擦热量过多,造成密封面热变形和加速端面磨损,压缩量过小动静环端面比压不足,则不能密封。

2影响机械密封效果的因素

2.1影响密封效果的外部因素分析

2.1.1机械加工精度不够

机械加工精度不够,原因有很多,有的是机械密封本身的加工精度不够,这方面的原因容易引起人们的注意,也容易找到。但有时是泵其它部件的加工精度不够,这方面的原因,不容易引起人们的注意。例如:泵轴、轴套、泵体、密封腔体的加大精度不够等原因。这些原因的存在对机械密封的密封效果是非常不利的。

2.1.2振动偏大

机械密封振动偏大,最终导致失去密封效果。但机械密封振动偏大的原因往往不是机械密封本身的原因,泵的其它零部件是产生振动的根源,如泵轴设计不合理、加工的原因、轴承精度不够、联轴器的平行度差、径向力大等原因。

2.1.3泵轴的轴向窜量大

机械密封的密封面要有一定的比压,这样才能起到密封作用,这就要求机械密封的弹簧要有一定的压缩量,给密封端面一个推力,旋转起来使密封面产生密封所要求的比压。为了保证这一个比压,机械密封要求泵轴不能有太大的窜量,一般要保证在0.5mm以内。

2.1.4轴向力偏大

机械密封在使用过程中是不能够承受轴向力的,若存在轴向力,对机械密封的影响是严重的。有时由于泵的轴向力平衡机构设计的不合理及制造、安装、使用等方面的原因,造成轴向力没有被平衡掉。机械密封承受一个轴向力,运转时密封压盖温度将偏高,对于聚丙烯类的介质,在高温下会被熔融,因此泵启动后很快就失去密封效果,泵静止时则密封端面出现间断的喷漏现象。

2.1.5没有辅助冲洗系统或辅助冲洗系统设置不合理

机械密封的辅助冲洗系统是非常重要的,它可以有效地保护密封面,起到冷却、润滑、冲走杂物等作用。有时设计员没有合理地配置辅助冲洗系统,达不到密封效果;有时虽然设计人员设计了辅助系统,但由于冲洗液中有杂质,冲洗液的流量、压力不够,冲洗口位置设计不合理等原因,也同样达不到密封效果。

2.2应采取的措施

2.2.1消除泵振动的措施

a.泵产品在设计过程中,要充分分析振动的来源,以消除振动源;b.泵产品的制造装配过程中,严格按标准和操作规程去执行,消除振动源;c.泵、电机、底座、现场管路等辅助设备在现场安装时,要严格把关,消除振动源;d.现场生产、操作、维修、调节时,严格把关,消除振动源。

2.2消除泵轴窜量大的措施

比较理想的设计方案有两个:一个是平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位;另一个是平衡鼓加轴向止推轴承,由平衡鼓平衡掉大部分轴向力,剩余的轴向力由止推轴承承担,同时轴向止推轴承对泵轴进行轴向限位。

2.3消除泵轴挠度偏大的措施:减少两端轴承之间的距离;增加泵轴的直径;提高泵轴材料的等级;泵轴设计完成后,对泵轴的挠度要进行校核检验计算。

3结束语

在设计泵用机械密封时,不仅要考虑机械密封本身的影响因素,而且要考虑机械密封外部的各种影响因素。在实际工作中要注意以下几个问题:

3.1、分析机械密封的质量事故的原因时,要充分考虑到泵的其它零部件对机械密封运行的影响,采取措施不断提高机械密封的效果。

3.2、对重要泵产品的机械密封,要增加保护措施,提高密封质量,减少密封质量事故。

3.3、在泵产品的设计过程中要充分考虑到泵其它零部件以及现场其它设备对机械密封的使用效果的影响,为机械密封创造一个良好的外部条件。

3.4、增加对机械密封辅助系统的重要作用的认识,尽可能配备完善的机械密封辅助系统,以提高密封效果。

参考文献

[1]牟介刚《水泵的设计与研究》1999(1):9~131

[2]戴明俊严统迅《水泵机械密封常见渗漏现象及对策》

机械密封原理与设计篇2

关键词:机械密封失效措施

0引言

泵是各领域使用最广泛的通用机械之一,其品种、规格繁多,绝大多数类型的泵存在一个基本的共性问题——“泄漏”,长期以来,人们主要致力于研究解决泵的密封泄漏问题。

在泵、风机、搅拌釜等旋转设备中,机械密封件是防止泄漏的关键,它最早出现于19世纪末期,当时的结构相当简单,仅由一个橡胶弹性体和金属(壳体)相摩擦,到二战期间,美国开始在化工流程泵上使用机械密封,二战后,随着石油化工行业的迅猛发展,机械密封在西方国家也发展迅速,至70年代,西方国家的炼油行业的流程泵80%采用机械密封,机械密封的应用范围也迅速扩大。其结构类型、端面材料的使用也迅速增加。我国在50年代末期,开始进行机械密封的研究,至70年代,形成了我国标准的JB1472标准的泵用和HG5-748-78;HG5-751~756-78釜用两大系列机械密封,奠定了我国机械密封行业的基础。

机械密封具有密封性好、性能稳定、侧漏量少、对轴的磨损量少等优点,其本身是一种要求较高的精密部件,在使用机械密封时,应尽可能地分析使用机械密封的各种因素,使机械密封适用于各种泵的技术要求和使用介质要求且有充分的条件,这样才能保证密封长期可靠地运行。作者通过在学习和实践中的不断积累,对泵用机械密封失效的原因进行了总结和分析。

1机械密封的结构和工作原理

机械密封是靠一对或数对垂直于轴作相对滑动的端面在流体压力和补偿机构的弹力(或磁力)作用下保持贴合并配以辅助密封而达到阻漏的轴封装置,该端面在流体压力及机械弹簧的作用下,依靠辅助密封的配合与另一端面相互贴合形成的微小轴向间隙起密封作用,从而防止流体泄漏。

机械密封通常由动环、静环、压紧元件和密封元件组成。其中动环和静环的端面组成一对摩擦副,动环靠密封室中液体的压力使其端面压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。压紧元件产生压力,可使泵在运转状态下,也保持端面贴合,保证密封介质不外漏,并防止介质进入密封端面。密封元件的作用是密封动环与轴的间隙、静环与压盖的间隙,同时缓冲对泵的振动、冲击。机械密封在实际运行中不是一个孤立的部件,它是与泵的其它零部件一起组合起来运行的,同时通过其基本原理可以看出,机械密封的正常运行是有条件的,例如:泵轴的窜动量不能太大,否则摩擦副端面不能形成正常要求的比压;机械密封处的泵轴不能有太大的挠度,否则端面比压会不均匀等等。只有满足类似这样的外部条件,再加上良好的机械密封自身性能,才能达到理想的密封效果。

2机械密封失效时的常见现象及分析

(1)工作时发生尖叫或嗡鸣

机械密封环所用材料,如不锈钢、铝、铬合金等,其表面金属环接触腐蚀性介质,而金属自身又不耐腐蚀,就会表面腐蚀。在生产运行过程中,缺氧条件下新氧化膜很难形成,使电偶腐蚀加剧,造成表面均匀腐蚀,并破坏了静动密封面。就会导致逐渐泄漏,并发出摩擦声响。应安装旁路冲洗管路,加大管径和相应的节流装置的尺寸,加强密封端面的冷却,检查密封平衡设计,精确测量密封腔内的压力,温度及介质压力。

(2)波纹管发生径向裂纹或断裂

泵用机械密封选用堆焊硬质合金、铸铁、碳化钨、碳化钛等密封环材料时,容易出现机械应力破裂,因为材料在加工过程中,有本体应力的存在,如焊加工时,有残余应力,在工作环境中,若存在旋转离心力、摩擦热应力或运行过程中突然停电,系统配合不好,应力破坏就很难避免。温度越高,应力机械破裂就越快。裂纹出现的原因是机械密封的冷却水是循环水,在波纹管和轴之间有一个水夹套,波纹管与水夹套间隙直径为2mm,冷却循环水遇见高温介质后在波纹管内结成水垢,使波纹管失去弹性,产生径向裂纹。应将原来的压盖冷却水的进水和回水孔扩大,提高冷却水流速,降低滞留时间,减少机械密封波纹管结垢。

(3)石墨环表面出现深且粗的环状沟纹

在使用中,如果工作介质温度很高,再加上密封摩擦副端面的摩擦热,一旦冲刷系统发生故障,使得端面温度急剧升高,超过允许使用温度(一般在-105~250℃)时,其表面会析出树脂,摩擦面四周树脂会发生炭化,石墨炭化是使用碳―石墨环时密封失效的主要原因之一。高温还可使密封端面间的液膜汽化或闪蒸,产生残留物质,造成石墨环磨损,石墨环表面产生环状沟纹,碳化钨(动环)也易脱落。应改善状态,防汽化。

3机械密封泄漏点及泄漏形式

机械密封在泵类产品中应用广泛,而随着节约能源的要求和产品技术水平的提高,机械密封地应用前景将会变得更加广泛,机械密封的密封效果将直接影响整机的运行,密封失效后随即发生泄漏,将会严重影响生产正常运行。总体而言机械密封的泄漏点主要有五处:第一个点在动环与静环的接触面上。机械密封主要靠泵内液体压力及弹簧力将动环压贴在静环上,以达到密封防止泄漏。而两环的接触面上总会有少量液体泄漏,它可以形成液膜,一方面起到防止泄漏的作用,另一方面又起到的作用。第二个点在静环与压盖之间,属于静密封点。用有弹性的o形或V形密封圈压于静环和压盖之间,靠弹簧力使弹性密封圈变形而密封。第三个点在动环与轴套之间,此处也属静密封点。考虑到动环可以沿轴向窜动,可采用具有弹性和自紧性的V形密封圈来密封。第四个点在轴套与轴之间,属于静密封点,一般采用o形密封圈密封。第五个点在压盖和泵体之间,也是静密封点,可采用密封圈或垫片作为密封元件。

3.1机械密封泄露的检测步骤

现场检测密封泄漏的一般步骤是:首先判断泄漏源、断面密封问题产生的原因,由于密封介质汽化或闪蒸密封端面,先确定问题是否出现在端面不平、裂纹、破碎或爆破,发生热变形或机械变形、o型圈老化等。其次判断发生变形可能的原因,其中包括密封零件结构是否合理、强度不够或因材料及加工原因产生的残余变形等。然后检查安装,包括安装尺寸是否正确,安装时零件受力是否均匀,密封和材质是否适于使用工况,密封垫是否压紧,是否因螺栓力矩太大造成密封座变形,是否有安装损伤,必要时应予以更换。最后是启动前的调整,检查填料腔装配面和其他有关元件对轴线的垂直度、管道以及设备安装误差,起动设备前应将密封端面重新研磨以保证密封面的光滑平整。

3.2机械密封泄漏形式

3.2.1在安装静试时出现的泄漏

机械密封安装调试完成后,通常要进行静态测试来观察泄漏量,如果泄漏量较小,问题多出在动环或静环密封圈上;如果泄漏量较大,则表明动、静环的摩擦副之间存在问题。在初步观察泄漏量、判断泄漏部位的基础上,再进行手动盘车观察,若泄漏量没有明显变化则说明动、静环密封圈有问题;如盘车时泄漏量有明显变化则可以断定是动、静环摩擦副之间存在问题;如泄漏介质沿轴向喷射,则说明动环密封圈存在问题的可能性极大,泄漏介质向四周喷射或从水冷却孔中漏出,则多为静环密封圈失效。

3.2.2机械密封试运转时出现的泄漏

安装静试完成后,由于运转时高速旋转产生的离心力会抑制介质的泄漏。因此,试运转时机械密封泄漏在排除轴间及端盖密封失效后,基本上都是由于动、静环摩擦副受破坏所致。引起摩擦副密封失效的因素主要有:

(1)操作中因抽空、汽蚀、憋压等异常现象,引起较大的轴向力,使动、静环接触面分离。

(2)对安装机械密封时压缩量过大,导致摩擦副端面严重磨损、擦伤。

(3)动环密封圈过紧,弹簧无法调整动环的轴向浮动量。

(4)静环密封圈过松,当动环轴向浮动时,静环脱离静环座。

(5)工作介质中有颗粒状物质,运转中颗粒物质进入摩擦副,损伤动、静环密封端面。

(6)设计选型有误,密封端面比压偏低或密封副材质冷缩性较大等。

上述现象在试运转中经常出现,有时条件允许,可以通过适当调整静环座的方式予以消除,但多数需要重新拆装,更换密封。

3.2.3设备在运转时出现的泄漏

(1)泵叶轮轴向窜动量超过标准,转轴发生周期性振动及工艺操作不稳定,密封腔内压力经常变化等导致的机械泄漏。

(2)设备运转时振动太大,动、静环与轴套间形成水垢使弹簧失去弹性而不能补偿密封面的磨损。

(3)对泵实际输出量测量偏小,大量介质泵内循环,热量积聚,引起介质气化,导致密封失效。

(4)摩擦副损伤或变形而不能跑合。

(5)密封圈材料选择不当,溶胀失弹性。

(6)抽空、气蚀或较长时间憋压,导致密封破坏,密封环发生龟裂。

还有一种机械密封发生泄漏的情况是泵在停运一断时间后再启动时,这种情况主要是由于摩擦副附近介质的凝固、结晶,摩擦副上有水垢、弹簧腐蚀、阻塞而失去弹性造成的。

4机械密封失效原因分析及措施

4.1失效原因分析

1、泵轴的轴向窜量大

机械密封的密封面要有一定的比压,这样才能起到密封作用,这就要求机械密封的弹簧要有一定的压缩量,给密封端面一个推力,旋转起来使密封面产生密封所要求的比压。端面比压的计算公式:

pC:端面比压;pS:弹簧比压;FS:弹簧力;Δp:摩擦副内、外两侧的差压;λ:液膜反压系数;d0:轴向滑移面直径;d1:密封端面内直径;d2:密封端面外直径

为了保证这一个比压,机械密封要求泵轴不能有太大的窜量,一般要保证在0.5mm以内。泵转子轴向窜动量大,辅助密封与轴的过盈量大,动环不能在轴上灵活移动。动、静环磨损后,得不到补偿位移。但在实际设计当中,由于设计的不合理,往往泵轴产生很大的窜量,对机械密封的使用是非常不利的。这种现象往往出现在多级离心泵中,尤其是在泵启动过程中,窜量比较大。

在多级离心泵中,采用平衡盘方法平衡轴向推力的工作原理:平衡盘工作时自动改变平衡盘与平衡环之间的轴向间隙,从而改变平衡盘前后两侧的压差,产生一个与轴向力方向相反的作用力来平衡轴向力。由于转子窜动的惯性作用和瞬态泵工况的波动,运转的转子不会静止在某一轴向平衡位置。平衡盘始终处在左右窜动的状态。平衡盘在正常工作中的轴向窜量只有0.105~0.11mm,满足机械密封的允许轴向窜量0.15mm的要求,但平衡盘在泵启动、停机、工况剧变时的轴向窜量可能大大超过机械密封允许的轴向窜量。

泵经过长时间运行后,平衡盘与平衡环摩擦磨损,间隙随着增大,机械密封轴向窜量不断增加。由于轴向力的作用,吸入侧的密封面的压紧力增加,密封面磨损加剧,直至密封面损坏,失去密封作用。吐出侧的机械密封,随着平衡盘的磨损,转子部件的轴向窜量大于密封要求的轴向窜量,密封面的压紧力减小,达不到密封要求,最终使泵两侧的机械密封全部失去密封作用。

2、泵轴的挠度和轴向力偏大

机械密封是一种旋转轴向的接触式动密封,它是在流体介质和弹性元件的作用下,两个垂直于轴心线的密封端面紧密贴合、相对旋转,从而达到密封效果,因此要求两个密封之间要受力均匀。但由于泵产品设计的不合理,泵轴运转时,在机械密封安装处产生的挠度较大,使密封面之间的受力不均匀,导致密封效果不好。

机械密封在使用过程中是不能够承受轴向力的,若存在轴向力,对机械密封的影响是严重的。有时由于泵的轴向力平衡机构设计的不合理及制造、安装、使用等方面的原因,造成轴向力没有被平衡掉。机械密封承受一个轴向力,运转时密封压盖温度将偏高,对于聚丙烯类的介质,在高温下会被熔融,因此泵启动后很快就失去密封效果,泵静止时则密封端面出现间断的喷漏现象。

3、缺少辅助冲洗系统或辅助冲洗系统设置不合理

机械密封的辅助冲洗系统是非常重要的,它可以有效地保护密封面,起到冷却、、冲走杂物等作用。有时设计人员没有合理地配置辅助冲洗系统,达不到密封效果;有时虽然设计人员设计了辅助系统,但由于冲洗液中有固体颗粒杂质,如果固体颗粒杂质进入摩擦副端面起研磨剂作用,将会划伤或加快密封端面的磨损而失效,水垢在轴套表面的堆积速度超过摩擦副的磨损速度,致使动环不能补偿磨损位移,造成机械密封失效。冲洗液的流量、压力不够,冲洗口位置设计不合理等原因,也同样达不到密封效果。

4、振动偏大

机械密封振动偏大,最终会导致失去密封效果。但机械密封振动偏大的原因往往不是机械密封本身的原因,而是泵的其它零部件产生振动连带机械密封振动,例如泵轴设计不合理、加工的原因、轴承精度不够、联轴器的平行度差、径向力大等原因都会产生振动。

5、泵汽蚀的原因

由于装置系统操作不合理以及泵进口汽蚀性能不好、泵的转速偏高,在泵的入口处发生局部汽蚀,汽蚀发生后,水中会有气泡,它一方面会冲击机械密封面的外表面,使其表面出现破损;另一方面会使动静环的吻合面的流动膜中也含有气泡,不能形成稳定的流动膜,另外泵在启动、停止过程中,由于泵进口堵塞,抽送介质中含有气体等原因,有可能使密封腔出现负压,造成密封端面的干摩擦,使机械密封装置损坏。

6、安装、检修工艺不良

动、静环接触表面不平,安装时碰伤、损坏;动、静环密封圈尺寸有误差、损坏或未被压紧;动、静环表面有异物;动、静环V型密封圈方向装反,或安装时反边;州套处泄漏,密封圈未装或压紧力不够(弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,误差±2mm,压缩量过大增加端面比压,摩擦热量过多,造成密封面热变形和加速端面磨损,压缩量过小动、静环密封端面比压不足,发生漏泄)。弹簧力不均匀,单弹簧不垂直,多弹簧长短不一;密封腔端面与轴垂直度不够;轴套上密封圈活动处有腐蚀点。

4.2针对机械密封失效采取的措施

1、消除泵轴窜量大的措施

合理地设计轴向力的平衡装置能有效的消除轴向窜量。为了满足这一要求,对于多级离心泵,比较理想的设计方案有两个:一个是平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位;另一个是平衡鼓加轴向止推轴承,由平衡鼓平衡掉大部分轴向力,剩余的轴向力由止推轴承承担,同时轴向止推轴承对泵轴进行轴向限位。第二种方案的关键是合理地设计平衡鼓,使之能够真正平衡掉大部分轴向力。两种方案通过试验观测都能很好的削弱泵轴向窜量,见下图趋势:

对于其它单级泵、中开泵等产品,在设计时采取一些措施保证泵轴的窜量在机械密封所要求的范围之内。同时正确安装轴向止推轴承。在装配机械密封时,轴的轴向窜动量应小于0.1mm,辅助密封与轴的过盈量应适当,在保证径向密封的同时,动环装配后保证能在轴上灵活移动(把动环压向弹簧能自由地弹回来)。

2、消除轴向力偏大的措施

合理地设计轴向力平衡机构,使之能够真正充分地平衡掉轴向力,给机械密封创造一个良好的条件。有些重要的泵可以在转子上设计一个轴向测力环,对轴向力的大小进行监测,发现问题及时解决。

3、消除泵轴挠度偏大的措施

这种现象大多存在卧式多级离心泵中,在设计时采取的措施有:减少两端轴承之间的距离;泵叶轮的级数不要太多,在总扬程要求较高的情况下,尽量提高每级叶轮的扬程,减少级数;增加泵轴的直径;在设计泵轴直径的时候,不要简单地考虑传递功率的大小,而要考虑机械密封、轴挠度、启动方法和有关惯性负荷、径向力等因素;提高泵轴材料的等级。

4、增加辅助冲洗系统

在条件允许的情况下,尽量设计辅助冲洗系统。冲洗压力一般要求高于密封腔压力0.107~0.11mpa,如果输送介质属于易汽化的,则应高于汽化压力0.117~0.12mpa。密封腔压力要根据每种泵的结构形式、系统压力等因素来计算。轴封腔压力很高时或者压力几乎接近该密封使用最高极限时,也可由密封腔引液体至低压区,使轴封液体流动以带走摩擦热。密封的可靠性和寿命,在很大程度上取决于密封辅助系统的配置。对泵输送含有固体颗粒的介质时,应选用碳化钨对碳化钨摩擦副的机械密封。另外,机械密封的平衡程度?也影响着密封的磨损。在选择机械密封时,平衡程度β=75%左右最适宜。β〈75%,磨损量虽然降低,但泄漏增加,密封面打开的可能性增大。对于高负荷(高pV值)的机械密封,由于端面摩擦热较大,β一般取65%~75%为宜,对低沸点的烃类介质等,由于温度对介质汽化较敏感,为减少摩擦热的影响,β取80%~85%为好。

根据长期的实践和经验,冲洗量在3~30L/min,可根据密封规格(直径)和介质的种类选取(见下表)

泵用机械密封的冲洗量(转速3000r/min)

5、消除泵汽蚀措施

①提高泵抗汽蚀性能;②确保泵入口不进气;③启动泵前将泵及管路中空气排净;④工况调节要适当。

6、消除泵振动措施

①泵检修时严格检修工艺标准;②加强维护检查,发现缺陷及时处理,避免缺陷扩大;③现场生产、操作、维修、调节时,严格把关,消除振动源。

5结束语

设计泵用机械密封时,不仅要考虑机械密封本身影响因素,而且要考虑机械密封外部各种影响因素。在实际工作中要注意以下几个问题:

第一、在泵产品设计过程中要充分考虑到泵其它零部件以及现场其它设备对机械密封使用效果的影响,为机械密封创造一个良好的外部条件。第二、增加对机械密封辅助系统的重要作用的认识,尽可能配备完善的机械密封辅助系统,以提高密封效果。第三、分析机械密封的质量事故的原因时,要充分考虑到泵的其它零部件对机械密封运行的影响,采取措施不断提高机械密封的效果。

实践证明,机械密封的使用寿命长短是确保泵实现安全、环保、稳定运行的重要因素。只要泵本身运转正常,同时机封冲洗良好,所使用的机封符合质量要求,在检修或更换机封时能正确进行安装,就可保证机封长周期稳定运行。

参考文献:

[1]牟介刚.丙烷泵的设计与研究水泵技术:1999

[2]沈阳水泵研究所叶片泵设计手册.机械工业出版社

[3]如何提高泵用机械密封的性能及寿命.水泵技术

机械密封原理与设计篇3

关键词:机械密封;故障处理;原因分析

        机械密封在旋转设备上的应用非常广泛,机械密封的密封效果将直接影响整机的运行,严重的还将出现重大安全事故。

        从机械密封的内外部条件的角度分析了影响密封效果的几种因素和应采取的合理措施。

        1  机械密封的原理及要求

        机械密封又叫端面密封,它是一种旋转机械的轴封装置,指由至少一对垂直于旋转轴线的的端面在液体压力和补偿机构弹力(或磁力)的作用以及辅助密封的配合下保持贴合并相对滑动而构成的防止流体泄漏的装置。它的主要功用将易泄漏的轴向密封改变为较难泄漏的端面密封。它广泛应用于泵、釜、压缩机及其他类似设备的旋转轴的密封。

        机械密封通常由动环、静环、压紧元件和密封元件组成。其中动环随泵轴一起旋转,动环和静环紧密贴合组成密封面,以防止介质泄漏。动环靠密封室中液体的压力使其端面压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。压紧元件产生压力,可使泵在不运转状态下,也保持端面贴合,保证密封介质不外漏,并防止杂质进入密封端面。密封元件起密封动环与轴的间隙、静环与压盖的间隙的作用,同时弹性元件对泵的振动、冲击起缓冲作用。机械密封在实际运行中是与泵的其它零部件一起组合起来运行的,机械密封的正常运行与它的自身性能、外部条件都有很大的关系。但是我们要首先保证自身的零件性能、辅助密封装置和安装的技术要求,使机械密封发挥它应有的作用。

        2  机械密封的故障表现及原因

        2.1 机械密封的零件的故障旋转设备在运行当中,密封端面经常会出现磨损、热裂、变形、破损等情况,弹簧用久了也会松弛、断裂和腐蚀。辅助密封圈也会出现裂口、扭曲和变形、破裂等情况。

        2.2 机械密封振动、发热故障原因

        设备旋转过程中,会使动静环贴合端面粗糙,动静环与密封腔的间隙太小,由于振摆引起碰撞从而引起振动。有时由于密封端面耐腐蚀和耐温性能不良,或是冷却不足或端面在安装时夹有颗粒杂质,也会引起机械密封的振动和发热。

        2.3 机械密封介质泄漏的故障原因

        (1)静压试验时泄漏。机械密封在安装时由于不细心,往往会使密封端面被碰伤、变形、损坏,清理不净、夹有颗粒状杂质,或是由于定位螺钉松动、压盖没有压紧,机器、设备精度不够,使密封面没有完全贴合,都会造成介质泄漏。如果是轴套漏,则是轴套密封圈装配时未被压紧或压缩量不够或损坏。(2)周期性或阵发性泄漏。机械密封的转子组件周期性振动、轴向窜动量太大,都会造成泄漏。机械密封的密封面要有一定的比压,这样才能起到密封作用,这就要求机械密封的弹簧要有一定的压缩量,给密封端面一个推力,旋转起来使密封面产生密封所要求的比压。为了保证这一个比压,机械密封要求泵轴不能有太大的窜量,一般要保证在0.25mm以内。但在实际设计当中,由于设计的不合理,往往泵轴产生很大的窜量,对机械密封的使用是非常不利的。(3)机械密封的经常性泄漏。机械密封经常性泄漏的原因有很多方面。第一方面,由于密封端面缺陷引起的经常性泄漏。第二方面,是辅助密封圈引起的经常性泄漏。第三方面,是弹簧缺陷引起的泄漏。其他方面,还包括转子振动引起的泄漏,传动、紧定和止推零件质量不好或松动引起泄漏,机械密封辅助机构引起的泄漏,由于介质的问题引起的经常性泄漏等。(4)机械密封振动偏大。机械密封振动偏大,最终导致失去密封效果。但机械密封振动偏大的原因往往不仅仅是机械密封本身的原因,泵的其它零部件也是产生振动的根源,如泵轴设计不合理、加工的原因、轴承精度不够、联轴器的平行度差、径向力大等原因。

        3  处理故障采取的措施

        如果机械密封的零件出现故障,就需要更换零件或是提高零件的机械加工精度,提高机械密封本身的加工精度和泵体其他部件的加工精度对机械密封的效果非常有利。为了提高密封效果,对动静环的摩擦面的光洁度和不平度要求较高。动静环的摩擦面的宽度不大,一般在2~7毫米之间。

        3.1 机械密封振动、发热的处理

        如果是动静环与密封腔的间隙太小,就要增大密封腔内径或减小转动外径,至少保证0.75mm的间隙。如果是摩擦副配对不当,就要更改动静环材料,使其耐温,耐腐蚀。这样就会减少机械密封的振动和发热。

        3.2机械密封泄漏的处理

        机械密封的泄漏是由于多种原因引起,我们要具体问题具体处理。为了最大限度的减少泄漏量,安装机械密封时一定要严格按照技术要求进行装配,同时还要注意以下事项。

        (1)装配要干净光洁。机械密封的零部件、工器具、润滑油、揩拭材料要十分干净。动静环的密封端面要用柔软的纱布揩拭。(2)修整倒角倒圆。轴、密封端盖等倒角要修整光滑,轴和端盖的有关圆角要砂光擦亮。(3)装配辅助密封圈时,橡胶辅助密封圈不能用汽油、煤油浸泡洗涤,以免胀大变形,过早老化。动静环组装完后,用手按动补偿环,检查是否到位,是否灵活;弹性开口环是否定位可靠。动环安装后,必须保证它在轴上轴向移动灵活。

        3.3 泵轴窜量大的处理

        合理地设计轴向力的平衡装置,消除轴向窜量。为了满足这一要求,对于多级离心泵,设计方案是:平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位。

        3.4 增加辅助冲洗系统

        密封腔中密封介质含有颗粒、杂质,必须进行冲洗,否则会因结晶的析出,颗粒、杂质的沉积,使机械密封的弹簧失灵,如果颗粒进入摩擦副,会导致机械密封的迅速破坏。因此机械密封的辅助冲洗系统是非常重要的,它可以有效地保护密封面,起到冷却、润滑、冲走杂物等作用。

        3.5 泵振动的处理措施

机械密封原理与设计篇4

关键词:机泵;机械密封;泄露

实际生产中,不同的操作条件和生产条件会对机泵机械密封产生重要的影响,甚至可能导致机泵机械失去基本性能,因此对机泵机械密封泄漏原因的分析具有重要的实际生产意义和安全意义,全面的原因分析能提高安全性、机械的稼动率。机械的寿命等,因此机械密封的选择为维护历来是众多企业的重中之重。

1.机泵机械密封失效的原因

1.1腐蚀引起机械密封的失效

机泵机械密封的腐蚀包括金属环腐蚀、非金属环腐蚀以及辅助密封圈及接触部位的腐蚀[1]。

1.1.1金属环腐蚀

金属环本身不具备抗腐蚀能力,直接接触到腐蚀性介质表面会被腐蚀,初期阶段会出现怪声、泄露、磨损等现象。腐蚀会以一定的速度往内部蔓延。在外力的作用下金属环会发生应力变形,变形后外露的部分是腐蚀的重灾区,并通过薄弱环节逐渐影响到其他区域,进而产生机械密封泄漏。

1.1.2非金属环腐蚀

石墨环被腐蚀也是机械密封是小的重要原因之一,断面温度过高、浸渍树脂选择不当、浸渍树脂深度不够等都是导致石墨环被腐蚀的原因。当石墨环处于氧化性介质中时,全面出冷却不良或产生摩擦时,环境产生三四百度会促使石墨与氧化性介质发生氧化反应,使端面变得失去性能。

1.1.3辅助密封圈及接触部位的腐蚀

不同的材料有不同的抗腐蚀性,辅助密封圈的材料一般选取具有弹性的橡胶,而橡胶被腐蚀后会使表面变得异常粗糙,失去原有的弹性。并且橡胶的耐高温性能比较差,一般不超过两百度。

与辅助密封圈相接触的部位处于相对静止的状态,二者之间的缝隙以及摩擦等都会是腐蚀产生的原因,并且腐蚀面一般较宽、较深。

2.机泵机械密封的故障表现

生产过程中,机泵机械密封泄露的原因有其本身的原因及外部原因,材料的选择以及安装方式和使用方式都会引起机械密封的失效,失效时的故障表现也各有差异,学会通过不同故障表现并做出正确及时的判断能够对实际生产提供强有力的支持。

2.1静压实验时泄露

机械密封装置在安装时由于员工不细心,经常会使密封端面被碰伤以至于变形和损坏,清理不够彻底,使得机械密封夹有颗粒状杂质,或者是由于定位螺钉的松动、压盖没有压紧以及机器设备精度不够高,使密封面之间没有完全贴合,都会造成机械密封失效,介质泄漏。如果是轴套发生泄漏,原因可能是轴套密封圈装配时压缩量不够或未被压紧,也有可能是装置已经损坏。

2.2周期性泄漏

机械密封组成部件中转子组件的周期性转动以及轴向移动量过大都会在成机械密封的泄露,机械密封的密封面要受到一定的应力作用才能起到良好的密封作用。要做到以上要求,机械密封的弹簧装置必须有一定的压缩量才能给端面一定的应力作用,使机械密封达到预期的密封效果。同时为了保证应力处于适当范围,泵轴不能有较大的移动量,但是实际设计中往往出现不合理的因素,使得泵轴的移动量高于预期,这对机械密封的性能具有很大程度的不利影响。

2.3机械密封经常性泄露

由密封端面的损伤引起的经常性泄漏故障表现有机械密封石墨端面出现均匀环状沟纹、石墨断面处产生的环状深沟、石墨内部边缘的磨损、石墨环台阶被磨损、石墨外边援缺口、石墨环断裂、石墨环上出现腐蚀坑、硬质合金面裂痕以及灼伤等。

辅助密封圈引起的经常性泄漏故障表现有端面磨损、镶嵌环松脱等。

弹簧引起的泄漏包括转子振动、零件松动、介质问题以及机械密封辅助设置的损坏等。

2.4其他机械密封性泄露

除了以上几种常见的泄露表现,还有机械密封振动偏大、泵抽空引起的密封泄漏、密封腔中汽蚀引起的密封泄漏、密封端面汽化造成密封泄漏、泵振动过大造成的密封泄漏、没有冲洗的密封泄露故障等[2]。

3.机械密封性泄露的应对措施

3.1安装防故障设备

故障的出现与实际操作和机械内部结构有一定的关系,一些诱因会在一定情条件下引发故障的发生,只要找到相关诱因就能通过一些防故障设备消除故障诱因。比如在泵出口处安装电接点压力表,将泵机泵与泵出口处压力建立连锁,如果出现泵掉压的情况就会自动断电。为防止自动泵停泵时发生倒转的现象,可以在自动泵出口处加上单流阀。

3.2改进设备结构

机械密封在结构设计上存在一定不合理性,这些不合理的结构增加了机械密封的泄露风险。在条件允许的情况下可以对机械密封的结构重新设计,将泄漏风险降到最低。如机械密封的端面大都采用双端面设计,双端面增加了装置与介质的接触面积,从而增加了腐蚀风险。从安全角度考虑可以将双端面设计改成单端面封闭波纹管机械设计[3]。

3.3选取合适的组成材料

不同材料的抗腐蚀性不同,介质的腐蚀性要求机械密封组成材料具有良好的抗腐蚀性能,如果选择材料不当会降低设备的使用寿命。陶瓷由化学性质不活泼的物质组成,难以与介质发生氧化反应,因此在购买机械密封时可以重点考虑使用陶瓷密封环。

3.4提高操作员的专业技能

机械密封的失效除了机械自身原因外还有人为因素的影响,例如操作员专业知识不足操作不当导致不良后果的产生。为杜绝类似可避免失误的产生,必须对操作员进行专业知识培训,并制定作业指导书与注意事项说明书,提倡标准作业,引进防呆措施,定期对设备进行维护,将人为因素的影响降到最低。

3.5提高检修效果

定期检修是发现问题和预防问题的重要手段,然而许多员工却将其当做一般例行事项看待,认为是走走过场,在检修时只是做做样子。员工的工作态度使一些问题没有在早期被发现,等到问题彻底爆发为时已晚。员工在检修时应注重每一个细节,不忽视任何点滴,公司可以采取一些奖励措施,以此鼓励员工检修的积极性,从而提高检修效果。

4.结束语

机泵机械密封在生产中频发泄漏故障使得公司和员工的生命财产安全受到严峻的考验,必须针对性解决故障,在分析故障发生原因的基础上对设备进行改进,提高员工的综合素质,安装防故障设备,做好定期维护管理,努力将故障发生概率降到最低。

参考文献:

[1]王清强.高速泵机械密封泄漏原因分析及改造[J].科技向导.2014,7:180

机械密封原理与设计篇5

从机械密封的内外部条件的角度分析了影响密封效果的几种因素和应采取的合理措施。

1机械密封的原理及要求

机械密封又叫端面密封,它是一种旋转机械的轴封装置,指由至少一对垂直于旋转轴线的的端面在液体压力和补偿机构弹力(或磁力)的作用以及辅助密封的配合下保持贴合并相对滑动而构成的防止流体泄漏的装置。它的主要功用将易泄漏的轴向密封改变为较难泄漏的端面密封。它广泛应用于泵、釜、压缩机及其他类似设备的旋转轴的密封。

机械密封通常由动环、静环、压紧元件和密封元件组成。其中动环随泵轴一起旋转,动环和静环紧密贴合组成密封面,以防止介质泄漏。动环靠密封室中液体的压力使其端面压紧在静环端面上,并在两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。压紧元件产生压力,可使泵在不运转状态下,也保持端面贴合,保证密封介质不外漏,并防止杂质进入密封端面。密封元件起密封动环与轴的间隙、静环与压盖的间隙的作用,同时弹性元件对泵的振动、冲击起缓冲作用。机械密封在实际运行中是与泵的其它零部件一起组合起来运行的,机械密封的正常运行与它的自身性能、外部条件都有很大的关系。但是我们要首先保证自身的零件性能、辅助密封装置和安装的技术要求,使机械密封发挥它应有的作用。

2机械密封的故障表现及原因

2.1机械密封的零件的故障旋转设备在运行当中,密封端面经常会出现磨损、热裂、变形、破损等情况,弹簧用久了也会松弛、断裂和腐蚀。辅助密封圈也会出现裂口、扭曲和变形、破裂等情况。

2.2机械密封振动、发热故障原因

设备旋转过程当中,会使动静环贴合端面粗糙,动静环与密封腔的间隙太小,由于振摆引起碰撞从而引起振动。有时由于密封端面耐腐蚀和耐温性能不良,或是冷却不足或端面在安装时夹有颗粒杂质,也会引起机械密封的振动和发热。

2.3机械密封介质泄漏的故障原因

(1)静压试验时泄漏。机械密封在安装时由于不细心,往往会使密封端面被碰伤、变形、损坏,清理不净、夹有颗粒状杂质,或是由于定位螺钉松动、压盖没有压紧,机器、设备精度不够,使密封面没有完全贴合,都会造成介质泄漏。如果是轴套漏,则是轴套密封圈装配时未被压紧或压缩量不够或损坏。(2)周期性或阵发性泄漏。机械密封的转子组件周期性振动、轴向窜动量太大,都会造成泄漏。机械密封的密封面要有一定的比压,这样才能起到密封作用,这就要求机械密封的弹簧要有一定的压缩量,给密封端面一个推力,旋转起来使密封面产生密封所要求的比压。为了保证这一个比压,机械密封要求泵轴不能有太大的窜量,一般要保证在0.25mm以内。但在实际设计当中,由于设计的不合理,往往泵轴产生很大的窜量,对机械密封的使用是非常不利的。(3)机械密封的经常性泄漏。机械密封经常性泄漏的原因有很多方面。第一方面,由于密封端面缺陷引起的经常性泄漏。第二方面,是辅助密封圈引起的经常性泄漏。第三方面,是弹簧缺陷引起的泄漏。其他方面,还包括转子振动引起的泄漏,传动、紧定和止推零件质量不好或松动引起泄漏,机械密封辅助机构引起的泄漏,由于介质的问题引起的经常性泄漏等。(4)机械密封振动偏大。机械密封振动偏大,最终导致失去密封效果。但机械密封振动偏大的原因往往不仅仅是机械密封本身的原因,泵的其它零部件也是产生振动的根源,如泵轴设计不合理、加工的原因、轴承精度不够、联轴器的平行度差、径向力大等原因。

3处理故障采取的措施

如果机械密封的零件出现故障,就需要更换零件或是提高零件的机械加工精度,提高机械密封本身的加工精度和泵体其他部件的加工精度对机械密封的效果非常有利。为了提高密封效果,对动静环的摩擦面的光洁度和不平度要求较高。动静环的摩擦面的宽度不大,一般在2~7毫米之间。

3.1机械密封振动、发热的处理

如果是动静环与密封腔的间隙太小,就要增大密封腔内径或减小转动外径,至少保证0.75mm的间隙。如果是摩擦副配对不当,就要更改动静环材料,使其耐温,耐腐蚀。这样就会减少机械密封的振动和发热。

3.2机械密封泄漏的处理

机械密封的泄漏是由于多种原因引起,我们要具体问题具体处理。为了最大限度的减少泄漏量,安装机械密封时一定要严格按照技术要求进行装配,同时还要注意以下事项。

(1)装配要干净光洁。机械密封的零部件、工器具、油、揩拭材料要十分干净。动静环的密封端面要用柔软的纱布揩拭。(2)修整倒角倒圆。轴、密封端盖等倒角要修整光滑,轴和端盖的有关圆角要砂光擦亮。(3)装配辅助密封圈时,橡胶辅助密封圈不能用汽油、煤油浸泡洗涤,以免胀大变形,过早老化。动静环组装完后,用手按动补偿环,检查是否到位,是否灵活;弹性开口环是否定位可靠。动环安装后,必须保证它在轴上轴向移动灵活。

3.3泵轴窜量大的处理

nbsp;合理地设计轴向力的平衡装置,消除轴向窜量。为了满足这一要求,对于多级离心泵,设计方案是:平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位。

3.4增加辅助冲洗系统

密封腔中密封介质含有颗粒、杂质,必须进行冲洗,否则会因结晶的析出,颗粒、杂质的沉积,使机械密封的弹簧失灵,如果颗粒进入摩擦副,会导致机械密封的迅速破坏。因此机械密封的辅助冲洗系统是非常重要的,它可以有效地保护密封面,起到冷却、、冲走杂物等作用。

3.5泵振动的处理措施

机械密封原理与设计篇6

关键词:水泵机械密封;渗漏现象及原因;对策

中图分类号:F407.4文献标识码:a文章编号:

在日常检维修中较常见的动设备维修就是机械密封的泄漏,泄漏带来了一系列安全、生产、环保、人身伤害的风险,占用了较多的维修费用和人力资源。对机械密封常见的损坏原因仔细分析,在生产工艺和技术改造、设备管理等方面综合加强机械密封的管理,延长密封使用寿命,对于保持安稳生产、减少运行风险、降低维修费用和劳动强度、节约劳动力成本有重要意义。

一、机械密封原理

机械密封是靠一对相对运动的环状端面(一个固定,另一个与轴一起旋转)相互贴合形成的微小轴向间隙起密封作用,这种装置称为机械密封。机械密封通常由动环、静环、补偿元件和密封元件组成。其中动环和静环的端面组成一对摩擦副,动静环靠密封室中液体的压力,使其端面压紧,在机械密封两环端面上产生适当的比压和保持一层极薄的液体膜而达到密封的目的。补偿元件产生压力,可使泵在不运转状态下,也保持端面贴合,保证密封介质不外漏,并防止杂质进入密封端面。密封元件起密封动环与轴的间隙泄漏、静环与压盖的间隙泄漏的作用,同时对机泵的振动、冲击起缓冲作用。

二、水泵机械密封的渗漏现象及原因

机械密封出现故障的比例较大,常见的损坏形式可分为腐蚀损坏、热损坏和机械损坏三种。

2.1压力产生的渗漏

(1)真空状态运行造成的机械密封渗漏。

对策:采用双端面机械密封,有助于改善条件,提高密封性能。

(2)高压和压力波造成的机械密封渗漏。

对策:在装配机封时,弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,为使端面受力合理,尽量减小变形,可采用硬质合金、陶瓷等耐压强度高的材料,并加强冷却的措施,选用可靠的传动方式,如键、销等。

2.2周期性渗漏

转子周期性振动或是泵转子轴向窜动量大,辅助密封与轴的过盈量大,动环不能在轴上灵活移动。动、静环磨损后,得不到补偿位移。

对策:在装配机械密封时,轴的轴向窜动量应小于0.1mm,辅助密封与轴的过盈量应适中,在保证径向密封的同时,动环装配后保证能在轴上灵活移动。

2.3其他原因引起的渗漏

安装动环密封圈的轴(或轴套)端面及安装静环密封圈的密封压盖(或壳体)的端面倒角并修光,以免装配时碰伤动静环密封圈。弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,误差在±2mm,压缩量过大或过小,都会致使其不能密封。

(1)密封动环和轴套之间结水垢造成动环不能浮动引起密封泄漏。一般热油离心泵的机械密封采用强制内冷,冷却水含较多的钙镁离子和悬浮物。一般水垢的生成温度在80℃左右,杂质含量多的水形成水垢的温度还要更低。冷却高温泵机械密封的冷却水的度高,钙镁盐类的结晶就会在波纹管与折流套间析出,生成水垢造成波纹管失弹引起泄漏。

建议:对密封冷却介质进行升级改造;采用温度较低的除盐水(软水)做密封的冷却介质;高温介质泵的采用蒸汽做冷却介质,即防止轴套结垢,提高密封追随性;在工艺质量允许情况下采用封油做冷却介质防止轴套结垢。

(2)摩擦副内外缘有缺口。焊接波纹管机械密封摩擦副采用的硬性材料是SiC,柔性材料为浸锑石墨,拆检密封经常发现静环摩擦副内外缘有缺口。由于SiC是一种脆性材料,强度和抗冲击性较差。塔底泵内含有大量杂质,杂质侵入密封面间,很容易使得窄的密封面发生破坏。

建议:根据秘方那个实际工作环境选择适当的密封配合形式。

(3)动密封环脱落。拆检经常发现高温泵的密封动环脱落或密封平面变形。

建议:针对高温环境下密封环镶嵌结构容易脱落的情况,采用整体结构密封环。

(4)密封表面有细小的裂纹。高温热油泵由于介质温度高,加之短时间的机械负荷或热负荷的作用,使得密封面间稳定液膜转变为蒸汽状态,转变过程中的温差产生了辐射状径向小裂纹。

建议:为防止高温密封的硬环产生热裂,将密封压缩量定为4.0-4.5mm,从而减小了因压缩量过大造成的摩擦热。

三、影响机械密封效果的因素

3.1影响密封效果的外部因素分析

(1)机械加工精度不够。机械密封本身的加工精度不够,以及泵其它部件的加工精度不够。这些原因的存在对机械密封的密封效果是非常不利的。

(2)振动偏大。机械密封振动偏大,最终导致失去密封效果。但机械密封振动偏大的原因往往不是机械密封本身的原因,泵的其它零部件是产生振动的根源,如泵轴设计不合理、加工的原因、轴承精度不够、联轴器的平行度差、径向力大、出现气蚀现象等原因。

(3)泵轴的轴向窜量大。机械密封的密封面要有一定的比压,这样才能起到密封作用,为了保证这一个比压,机械密封要求泵轴不能有太大的窜量,一般要保证在0.1mm以内。

(4)轴向力偏大。机械密封在使用过程中是不能够承受轴向力的,若存在轴向力,对机械密封的影响是严重的。机械密封承受一个轴向力,运转时密封压盖温度将偏高,对于聚丙烯类的介质,在高温下会被熔融,因此泵启动后很快就失去密封效果,泵静止时则密封端面出现间断的喷漏现象。

(5)没有辅助冲洗系统或辅助冲洗系统设置不合理。机械密封的辅助冲洗系统是非常重要的,它可以有效地保护密封面,起到冷却、、冲走杂物等作用。有时设计员没有合理地配置辅助冲洗系统,达不到密封效果;有时虽然设计人员设计了辅助系统,但由于冲洗液中有杂质,冲洗液的流量、压力不够,冲洗口位置设计不合理等原因,也同样达不到密封效果。当机械密封出现异常时,对辅助冲洗系统进行检查是必要的。

3.2解决方法

(1)泵产品在设计过程中要充分分析振动的来源,的在制造装配过程中严格按标准和操作规程去执行,泵、电机、底座、现场管路等辅助设备在现场安装,以及生产、操作、维修、调节时,严格把关,即可消除振动源。

(2)消除泵轴窜量大。设计方案有两个:一是平衡盘加轴向止推轴承,由平衡盘平衡轴向力,由轴向止推轴承对泵轴进行轴向限位;二是平衡鼓加轴向止推轴承,由平衡鼓平衡掉大部分轴向力,剩余的轴向力由止推轴承承担,同时轴向止推轴承对泵轴进行轴向限位。

(3)消除泵轴挠度偏大。减少两端轴承之间的距离;增加泵轴的直径;提高泵轴材料的等级;泵轴设计完成后,对泵轴的挠度要进行校核检验计算。

四、持续改进建议

在设计泵用机械密封时,要考虑机械密封外部的各种影响因素。在实际工作中要注意以下几个问题:

(1)分析机械密封的质量事故的原因时,要充分考虑到泵的其它零部件对机械密封运行的影响,采取措施不断提高机械密封的效果。

(2)对重要泵产品的机械密封,要增加保护措施,提高密封质量,减少密封质量事故。

(3)在泵产品的设计过程中要充分考虑到泵其它零部件,以及现场其它设备对机械密封的使用效果的影响,为机械密封创造一个良好的外部条件。

(4)增加对机械密封辅助系统的重要作用的认识,尽可能配备完善的机械密封辅助系统,以提高密封效果。

五、结束语

做好机械密封的设计、使用、维护,机械密封将在生产生活中发挥更重要的作用。通过分析机械密封失效故障的原因,并采取相对应的改进措施,能够提高机械密封的使用寿命,降低维修费用,有利于生产装置的稳定、连续运行。

机械密封原理与设计篇7

关键词:机械密封失效数值模拟分析

大庆炼化丙烯腈脱腈酸塔侧线泵介质为90%丙烯腈,丙烯腈属有毒有害液体,其蒸气可与空气形成爆炸行混合物。由于该泵体密封腔标准不符合api682标准,空间狭小,同时设备的轴向传动及径向跳动大,改造为双端面机封密封难度大,初次改造的双端面密封上线后运转不良,泄漏量超标。

1失效分析

机械密封在运转时受压力、温度、介质、材料等诸多因素的影响,而单一因素就足以导致密封的失效,这使机械密封失效分析尤为复杂。

1.1拆解分析

1.1.1介质侧补偿环

介质侧动环材料为石墨,环面有多处极其明显的泡疤现象。石墨环的泡疤现象是较为普遍的问题,主要原因是:密封端面温度变化异常,局部过热;密封端面的载荷过大;密封材料的不致密性;介质粘度大。其最根本的机理是密封端面的局部区域剪切应力载荷超过密封环端面材料能承受应力载荷的极限,引起密封端面起泡并在旋转滑动中将其带走,引起泡疤的产生。

1.1.2介质侧非补偿环

介质静环材料为碳化硅,可见清晰的磨损痕迹,没有与其配对石墨环的泡疤现像本质机理也是由于其材料的机械性能要高于石墨环一个数量级别,所以碳化硅没有异常现象出现,仅仅是使用时的磨损痕迹。

1.1.3大气侧密封环

大气侧补偿环有外圆处切(磕)边痕迹,磨损痕迹较重,非补偿环,密封端面严重磨损,并且靠外径侧清晰可见,磨损的深度可以达到mm级别。补偿环于说明该机封存在过量压缩。原密封轴套定位于轴,如果现场轴发生了轴向窜动,便会引起密封环过压缩,使其弹簧比压增大,导致其载荷加重,引起急剧磨损及过热,产生切(磕)边及严重磨损。

1.1.4轴套

密封轴套上处泵效环存在于腔体摩擦的痕迹,说明泵轴的跳动较大,使摩擦副追随性下降。

1.1.5密封腔体

腔体内部存积颗粒物和硬质杂质,从微小颗粒物的颜色判断,可能为水垢与杂质的混合物。系统的循环封液不够清洁,含有大量的矿物质和不洁物,导致密封面的磨损加剧,失效加快。

1.2设计分析

1.2.1工况参数

设备名称:脱氢腈酸塔侧线泵;主机厂:美国高质泵有限公司;介质:90%丙烯腈;温度:78℃;转速:2850Rpm;泵入口压力:0.4mpa;泵出口压力:0.8mpa;冲洗方案:pLan11+53a。

1.2.2结构分析

原机封为非集式机械密封,勾轴套结构,由泵轴及泵盖的相对距离来定位机械密封的工作高度。这种结构下,只要发生轴向窜动,就会引起机械密封工作高度的变化,对机封端面比压造成较大的影响。密封非补偿环为固定式设计,设备轴窜时适应性较差。

2改进措施

2.1设备改进

调整泵的跳动,保证安装密封前,泵轴静态的跳动值满足技术要求,并且泵在运转时的振动值也符合标准。

2.2机械密封辅助冲洗系统改进

针对封液存在杂质的问题,清洗辅助系统管线后更换封液为更清洁的脱离子水,避免密封运转时封液杂质结垢而导致换热不良,从而引起密封面温升过高气化失效。

2.3机械密封改进

2.3.1材料优化

温度引起的密封面泡疤问题,是导致机械密封失效的常见形式之一。由于泵送介质丙烯腈易挥发,性差,密封补偿环原采用性较好的树脂石墨材料,现更替为性能更优的进口浸锑石墨。

2.3.2结构优化

(1)通过采用轴套搭接结构来提高密封整体的耐轴窜能力,同时降低密封拆装的难度,保证密封的主体集装性;

(2)非补偿环改为浮装式结构,提高密封环的耐轴窜能力,使其具有更好的适应性[1]。

(3)优化摩擦副结构,配对密封环重新设计。

3优化设计分析

3.1参数计算

3.2数值模拟分析

分别建立原密封及改进后密封摩擦副有限元模型,加载压力温度等边界条件,预测运转时密封面变形及温度分布。由分析结果发现,改进后的密封补偿环较原密封环发热量显著减少。密封端面运转时由原扩散式变形,变更为收敛式。收敛式密封面的接触状态更有利于密封流体进入密封端面,提高密封端面的性,其流体膜刚度为正刚度,密封效果好,可靠性高。

3.3计算分析结果

4结束语

改进后的机械密封针对窄腔泵工况的特点,通过调整密封环的设计参数及结构等一系列措施,使其具有更好的密封性能,同时对泵轴的轴向窜动也有着更好的容差性。密封替换安装后,至今已经一年多,运转稳定,得到用户的认可。

参考文献

机械密封原理与设计篇8

关键词:巴西坎迪奥塔1×350mw火电机组、60HZ、凝结水泵机械密封、泄漏

abstract:BrazilCandyHorta1×350mwunitsincondensatesystemdesignwith2setsofcondensatepump,duringthenormaloperationofapreparation;accordingtotheShanghaiKSBmanufacturersdesign,condensatepumpcylinderbodyisavacuumsealingwatersystemdesign,useofmechanicalseal.

Keywords:BrazilCandyHortais1×350mw,60HZthermalpowerunit,condensatepump,mechanicalsealleakage

中图分类号:tm3文献标识码:a文章编号:

机械密封各个接口功能说明如下表:

凝结水泵机械密封密封水系统主要流程特点及密封原理介绍:

1、为保证可靠性,进水管路有两路水源,一路是凝泵出口母管,另一路是电厂的除盐水母管。

2、除盐水母管供水管路有两个作用,一是机组启动前,由于凝结水母管没有压力,用除盐水母管水源作为启动用水;二是当机组运行中,运行凝泵如果突然跳闸,凝结水母管压力下跌,此时作为事故用水3、根据厂家设计,进水压力控制在0.2-0.6mpa左右,压力过高,超过机械密封的密封压力,将使轴封向外漏水。

凝结水泵机械密封现状:1、机组运行1年后,密封水进、出水压力表现异常,具体运行情况如下:1.1、机组真空建立前,通过调节机械密封入口密封水手动阀门,可以保证运行凝泵和备用凝泵的密封水入口压力在0.2-0.6mpa、出口压力在0.1-0.15mpa,符合设计要求;1.2、机组真空建立后,运行、备用凝泵机械密封的密封水进出口压力降至0,经多次调节密封水进出口阀门,运行凝泵机械密封进口密封式压力最高达到0.1mpa,而其余压力均为0,不符合设计要求的压力范围。

1.3、运行凝泵机械密封漏水、备用凝泵机械密封漏气,严重影响凝结水泵的出口流量和压力参数,造成泵出力不足,尤其是当负荷在280mw以上时,不得不投运2台凝泵。

密封水压力表现异常原因分析因Q、D接口仅作为冲洗水,与密封水压力没有直接关系,在此撇开不予讨论。密封水进出水压力低甚至降至0,必然是因为在机组真空建立后、密封水需求流量增大造成的。为此需要分析,厂家设计的密封水系统还有哪些可改进之处,可以降低密封水的需求量,以达到机械密封处密封水进出口压力平衡。

通过查看凝泵图纸,并对照现场情况,发现机械密封上除了Q、D、F、F'的四个接口,还有两个不明接口与水泵本体有连接,

结构多出的两个接口,根据凝结水泵总图和工作原理分析,a接口使密封水腔室与次级叶轮出口相连,作用是使运行泵的轴封水由自身供给;B接口使环形回水腔室与泵入口侧(即负压区)相连。

改进方案1、接口B口径为Dn32,虽然在轴封盒内部有回水节流孔(如上图所示),但经计算,节流孔总通流面积已大于Dn25的通流面积,无法起到节流作用。如在接口B处进一步节流,将明显降低密封水用量。节流方式通常有加装节流孔板,或加装阀门调节,为方便起见,此处加装一只Dn32球阀进行节流。2、根据实际运行密封水压力低甚至降为零的情况,密封水从接口B流入泵内,通流量已经偏大,因此,再设置接口F'作为第二个密封水回水通道显得多余,因此取消F'出水管路,将此接口仅作为测量轴封盒腔室内部压力检测用。此出水管路取消,进一步简化了密封出水回收问题。3、接口a是泵利用自身次级叶轮出口供密封水,由于密封水从接口B处流入泵内的流量已考虑用阀门进行有效控制,因此密封水供水量不足已不再成为问题,为便于密封水压力调节,此管路也加装Dn32球阀以方便平衡。

为方便监视机械密封进出口密封水管道压力,需在密封水进、出口管道阀门后分别安装量程为1mpa和0.6mpa的压力表。

运行情况及调整要点密封水系统管道改进后,密封压力能满足厂家技术要求,消除了运行隐患。根据运行调整过程中的压力变化特征,提出如下运行调整原则和重点注意事项:1、运行凝泵应以监视控制密封水出口压力为主,控制在0.1-0.15mpa范围内。接口F'是距离密封水进水接口F最远的部位,因此也是轴封盒腔室内部压力最低的部位。此处压力控制在0.1mpa以上,则表明轴封盒腔室各处均已处于正压,这样,就杜绝了凝泵轴封处向内漏空气的可能。2、运行凝泵机械密封入口密封压力仅作为观察参考,注意不宜过高即可,控制在0.2-0.6mpa。密封水进口压力越高,机械密封向外漏水的可能性就越大。此外,压力过高还会使泵组向下的轴向推力增大,导致泵组推力瓦温升高。3、运行凝泵停止转备用后,如局部结构示意图所示,节流套处由正压变为负压,注入轴封盒的密封水将有一部分从节流套与节流衬套间隙处进入泵内,使密封水供水量减少、泄水量增大,因此密封水出口压力会从0.1-0.2mpa变为负压。为了使轴封盒腔室压力恢复到正压,势必要开大密封水进口阀门,或关小B接口至泵入口管道阀门,由于阀门开度发生变化,这样到下一次泵启动时,密封水进口管道压力会超出设计值0.2-0.6mpa较多,有可能会超过压力表量程导致压力表损坏。因此运行泵转备用后,不必使密封水出口压力恢复到设计值0.1-0.15mpa,根据经验,恢复到0-0.1mpa即可(具体视机械密封的严密程度而定,以保证凝水溶氧不明显上升为原则)。4、运行人员对机械密封冲洗水路(接口Q、D)的结构原理要有正确认识,不要将其视为“第二道水封”,其水封作用是很有限的,应对冲洗水量加以控制,有少量滴出即可,开大了会造成无谓的浪费。

结论

对于抽送负压介质的泵,只要相关密封水辅助系统配置得当,采用机械密封完全可以保证密封可靠,避免影响溶氧指标和泵出力不足的隐患。

凝结水泵轴封结构优化设计、采用机械密封的做法是成功的,解决了凝结水泵轴封泄漏问题,提高了设备可靠性和技术装备水平。

与填料密封结构的凝泵相比,机械密封结构的凝泵几乎没有除盐水损耗,按每台泵减小轴封泄漏量1.25t/h、年运行8000小时计算,每台机组年节约除盐水量20000吨,十分可观。另外机械密封的磨擦阻力损失比填料密封小得多,使得泵浦效率得到一定的提高,因此也有一定的节电效应。

参考文献

(1)巴西项目凝结水泵设备供货合同CCe-013

机械密封原理与设计篇9

【关键词】离心泵;机械密封;渗漏现象

【中图分类号】tK228【文献标识码】a【文章编号】1672—5158(2012)08—0157-01

目前,离心泵传统的盘根密封被机械密封代替应用非常广泛,离心泵的运行性能很大程度上取决于密封效果,尤其在冶金行业中水泵渗漏现象有多种,机械密封渗漏的现象就占全部维修泵量的45%以上,因此机械密封的好坏直接影响到水泵能否安全、稳定运行。

机械密封是指由至少一对垂直于旋转轴线的端面在流体压力和补偿机构弹力(或磁力)的作用下以及辅助密封的配合下保持贴合并相对滑动而构成的防止流体泄漏的装置。由于两个密封端面的紧密贴合,使密封端面之间的交界(密封界面)形成一微小间隙,当有压介质通过此间隙时,形成极薄的液膜,造成阻力,阻止介质泄漏,又使端面得以,由此获得长期的密封效果。

1.密封件损坏引起渗漏

大多数潜污泵机械密封拆解后,静环和动环的辅助密封件无弹性,有的已经腐烂,造成了机封的大量渗漏甚至有磨轴的现象。由于高温、污水中的弱酸、弱碱对静环和动环辅助橡胶密封件的腐蚀作用,造成了机械渗漏过大,动、静环橡胶密封圈材料不耐高温,不耐酸碱,当污水为酸性碱性时易腐蚀。解决方式:对腐蚀性介质,橡胶件应选用耐高温、耐弱酸、弱碱的氟橡胶。

2.小型潜污泵机封渗漏引起的磨轴现象

7.5kw以下泵机封失效常常产生磨轴,磨轴位置主要有以下几个:动环辅助密封圈处、静环位置、少数弹簧有磨轴现象。磨轴的主要原因:①双端面机械密封,反压状态是不良的工作状态,介质中的颗粒、杂质很容易进入密封面,使密封失效。②磨轴的主要件为橡胶波纹管,且是由于上端密封面处于不良状态,动静环之间的摩擦力矩大于橡胶波纹管与轴之间的传递转矩,发生相对转动。动静环辅助密封由于受到污水中的弱酸、弱碱的腐蚀,橡胶件已无弹性。有的已腐烂失去了应有的功能,产生了磨轴的现象。

为解决以上问题,现采取如下措施:①保证下端盖、油室的清洁度,对不清洁的油禁止装配。②机封油室腔内油面线应高于动静环密封面。③根据不同的使用介质选用不同结构的机封。对高扬程泵应莺新设计机封结构,对腐蚀性介质橡胶应选用耐弱酸、弱碱的氟橡胶,机封静环应加防转销。

3.由于压力产生的渗漏

高压和压力渡造成的机械密封渗漏由于弹簧比压力及总比压设计过大和密封腔内压力超过3mpa时,会使密封端面比压过大,液膜难以形成,密封端面磨损严重,发热量增多,造成密封面热变形。解决措施:在装配机封时。弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,高压条件下的机械密封应采取措施。为使端面受力合理,尽量减小变形,可采用硬质合金、陶瓷等耐压强度高的材料,并加强冷却的措施。

4.真空状态运行造成的机械密封泄漏

真空状态运行造成的机械密封渗漏泵在起动、停机过程中,由于泵进口堵塞,抽送介质中含有气体等原因,有可能使密封腔出现负压,密封腔内若是负压,会引起密封端面干摩擦,内装式机械密封会产生漏气(水)现象,真空密封与正压密封的不同点在于密封对象的方向性差异,而且机械密封也有其某一方向的适应性。解决措施:采用双端面机械密封,这样有助于改善条件,提高密封性能。

5.由于介质引起的渗漏

固体颗粒杂质引起的机械密封渗漏如果固体颗粒进入密封端面,将会划伤或加快密封端面的磨损。水垢和油污在轴(套)表面的堆积速度超过摩擦副的磨损速度,致使动环不能补偿磨耗位移,硬对硬庶攘副的运转寿命要比硬对石墨摩擦副的长,因为固体颗粒会嵌入石墨密封环的密封面内。解决措施:在固体颗粒容易进入的位置应选用碳化钨对碳化钨摩擦副的机械密封。

因其他问题引起的机械密封渗漏机械密封中还存在设计、选择安装等不够合理的地方。弹簧压缩量一定要按规定进行,不允许有过大或过小的现象,压缩量过大增加端面比压,摩擦热量过多,造成密封面热变形和加速端面磨损,压缩量过小动静环端面比压不足,则不能密封。设备的密封部位在安装时应保持清洁,密封零件应进行清洗,密封端面完好无损,防止杂质和灰尘带入密封部位;在安装过程中严禁碰击、敲打,以免使机械密封摩擦付破损而密封失效,安装时在与密封相接触的表面应涂一层清洁的机械油,以便能顺利安装,安装静环压盖时,拧紧螺丝必须受力均匀,保证静环端面与轴心线的垂直要求;安装动环密封圈的轴(或轴套)端面的密封压盖(或壳体)的端面应倒角并修光,以免装配时碰伤动静环密封圈。安装后用手推动动环,能使动环在轴上灵活移动,并有一定弹性;安装后用手盘动转轴、转轴应无轻重感觉,设备在运转前必须充满介质,以防止干摩擦而使密封失效,对易结晶、颗粒介质,对介质温度大于80℃时,应采取相应的冲洗、过滤、冷却措施,各种辅助装置请参照机械密封有关标准,安装时在与密封相接触的表面应涂一层清洁的机械油,要特别注意机械油的选择对于不同的辅助密封材质,避免造成o型圈侵油膨胀或加速老化,造成密封提前失效。

6.结语

械密封的应用越来越广泛,它是一种对设计、机械加工、装配质量都有很高要求的精密部件。机械密封渗漏在生产实际中有各种因素造成的,因此,正确分析渗漏的原因,找到密封渗漏点,然后采取具体的措施进行解决。在安装机械密封时,选用合理的机械密封以提高安装质量和减少运转设备的振动,加强工艺管理以确保工艺指标的稳定,使机械密封满足各种情况下泵的技术和工作环境下的使用要求,这样才能提高机械密封稳定性、长期性,保证机械密封长期有效的运转。

参考文献

[1]刘超.水泵及水泵站[m].北京:科学技术文献出版社,2003:35—38

[2]栾鸿儒.水泵及水泵站[m].北京:中国水利水电出版社,993:23—215

[3]陈峰,连鹏.水泵机械密封的泄漏原因和处理方法[J].科技信息,2010(25):16~17

机械密封原理与设计篇10

关键词:外输泵机械密封使用寿命流程改造

一、外输泵的运行现状及问题

塔里木油田哈六原油临时处理站三台外输泵(多级离心泵)2011年12月26日投产,外输泵投运至2012年5月初,出现下列问题:

1.三台外输泵运行过程中,高、低压密封端频繁出现高温(高、低密封温度110℃、102℃,而离心泵设计运行温度极限80℃),导致外输泵频繁高温保护而停机,导致原油外输告急。

2.自2012年5月后,外输泵机械密封经常刺漏、变形、错位而更换(机械密封使用寿命仅1个月,设计使用寿命1年),严重影响了正常安全生产。

二、外输泵机械密封温高、刺漏及变形的原因

1.进入哈六原油临时处理站原油来自哈拉哈塘探区的各类生产井,油品物性不一,超过60%油井原油含油泥、油砂、稠油,原油沉降后仍夹杂少量油泥、油砂进入外输泵。

2.该泵设计有缺陷,厂家本意是利用外输的原油作为泵高、低压密封端冷却、的介质,但原油介质因在高、低压密封端无法流动而导致死油、杂质(油泥、油砂)淤积,当杂质渗入机械密封动、静环结合处,造成泵失封刺漏。

3.由于死油和杂质在外输泵高、低压密封端长期淤积,机泵运行时,热能不能及时散发,导致泵高、低压机械密封端因局部高温而保护停机,而局部高温及油泥、油砂极易促使机械密封动环、静环和密封圈的变形、错位,导致整个机械密封失封而需要更换处理(如图1所示)。

三、改进措施

根据上述原因,只要解决了外输泵高、低压密封端局部高温,同时去除死油和杂质,就能确保该泵的正常运行。

在外输泵高、低压密封端的预留口加装压力表,启泵后发现密封高压端压力1.25mpa,低压端压力0.63mpa,而外输泵入口压力0.02mpa。根据这三点压力差,结合现场设备:用4"钢管,用Dn15、pn16闸阀和节流阀,制作一套简易循环冷却、冲砂流程(如图2所示)。

红线(4"钢管)、节流阀和闸阀组成部分即为新增的冷却、冲砂流程,红色箭头表示泵运行时,原油介质在新增流程中的流动方向。

外输泵在运转过程中,开启冷却、冲砂流程,泵高压密封端压力为1.25mpa的原油介质经过节流阀降压后至0.63mpa,与泵低压密封端压力同为0.63mpa的原油介质进入汇管,流向压力更低的外输泵进口(0.02mpa),经外输泵增压后输出。通过如此往复循环,使泵高、低压密封端温度从原来的110℃、102℃降至60℃左右,与泵内外输原油介质温度相近,同时循环的原油介质能冲刷、搬运淤积的死油和杂质(油泥、油砂),确保机械密封部的清洁、密封(如图3所示)。

由图三可知,自加装循环冷却、冲砂流程后,外输泵运行平稳,机械密封不刺不漏,外输泵机械密封端温度与原有介质温度相似在60℃左右,温度得到了控制,从而有效解决了外输泵频繁故障难题。

四、成效及结论

1.效益分析

外输泵未加装冷却、冲砂流程时,每月更换一次机械密封;而当机械密封端正常运行时,只需每年更换一次。如表1所示:

由上表可知:通过加装冷却、冲砂流程,每年节约成本55.35万元,经济效益显著。

2.结论

通过实验证明,本循环冷却、冲砂流程极其简单,操作极其简单,成本极其低廉,运行极其稳定,为同类型泵的冷却系统改造提供了重要参考,应用前景广阔,极具推广性!

在使用本方法改造中,要考虑多级离心泵的高压端、低压端和入口管线压力等级和流体介质的化学特性,以便选择闸阀、节流阀和管材时,匹配合理承压等级和抗腐蚀等级。

参考文献:

[1]农琪,高温介质离心泵机械密封失效主要原因与对策[J],广西工业职业技术学院

[2]赵维信,陈凤荣,离心泵机械密封失效的原因及解决方案[J],渤海船舶职业学院