首页范文生物质燃料能源十篇生物质燃料能源十篇

生物质燃料能源十篇

发布时间:2024-04-25 17:46:12

生物质燃料能源篇1

【关键词】生物质煤油气锅炉经济对比

随着社会现代化建设的加快,人们对环保的要求日趋增高,节能减排已列入我国目前各级政府的工作重点。许多大中城市已禁止燃煤锅炉的使用,取而代之的是燃油、燃气及电锅炉,这三种锅炉的运行成本高,设备投资性大,使很多用户不愿接受。另一方面,我国又是一个农业大国,每年有大量的农作物秸秆无法有效处理,随意丢弃,严重影响了村容村貌。秸秆直接在田间焚烧带来的大气污染和消防安全问题更是危害巨大。这样既浪费了资源又污染了环境。生物质锅炉的问世,使农作物秸秆等废放弃物得到更好的利用。其经济性与燃煤、燃油、燃气锅炉相比又会如何呢?

1生物质锅炉

生物质锅炉是锅炉的一个种类就是以生物质能源做为燃料的锅炉叫生物质锅炉,他运行环保,节省燃料,是现在社会比较提倡使用的锅炉。分为生物质蒸汽锅炉、生物质热水锅炉、生物质热风炉、生物质导热油炉等。

2生物质燃料

生物质燃料属于国家支持推广的新型燃料,生物质燃料是指以农村的玉米秸秆,小麦秸秆,棉花杆,稻草,稻壳,花生壳,玉米芯,树枝,树叶,锯末等农作物,固体废弃物为原料,经过粉碎后加压,增密成型,即为“生物质燃料”,是一种可再生资源。生物质成型燃料,也被称为生物质压缩燃料,其能源密度相当于中质烟煤,火力持久,燃烧性能好,是可以代替煤炭作为家庭生活燃料、工业或服务业锅炉及生物质电厂发电的燃料。生物质固体成型燃料储存、运输、使用方便,清洁环保,燃烧效率高,是一种重要的现代可再生能源。

3生物质燃料主要特点

3.1环保

部级部门检测,完全符合国家标准。

(1)单一气体含量分别为(如表1):

(2)热值:油质生物质(花生壳、棉花棵等)4000大卡/公斤左右

(3)粉尘含量为:38g/m3。

(4)林格曼黑度:

(5)噪音、低噪音风机≤55db(a)。

3.2节能

3.2.1烧生物质燃料与煤相比:(1kg标准煤用1.3kg生物质燃料即可替代)

(1)燃煤锅炉的热效率为68%,5000大卡/公斤标准煤实际热值用量为5000大卡/公斤×68%=3400大卡。

(2)改为燃生物质炭后,由于增加了燃烧器采用了先气化燃烧后燃烧碳的特殊工艺,使生物质燃料燃烧充分,因此热效率可达80.7%。

生物质燃料的热值4000大卡/公斤左右。

4000大卡/公斤×80.7%=3225大卡

煤价5000大卡社会价950元/吨,生物质燃料4000大卡社会价1150元/吨。

煤燃料锅炉1蒸吨满负荷用200公斤/小时×950元/吨=190元/小时。

生物质燃料锅炉1蒸吨满负荷用186公斤/小时×1150元/吨=214元/小时。

用煤燃料锅炉1天按8小时计算190元/小时×8小时=1520元。

用生物质燃料锅炉1天按8小时计算214元/小时×8小时=1712元。

实际用生物质燃料锅炉比用煤锅炉1天多消耗1712-1520=192元。

3.2.2与天燃气锅炉相比:(1m3天燃气可用生物质燃料2.3kg替代)

(1)天燃气的热效率为85%,8600大卡/m3的天然气实际热值用量为:

8600大卡/m3×85%=7310大卡/m3

4000大卡/kg×80.7%=3228×2.3kg=7424.4大卡

用天然气锅炉1蒸吨锅炉满负荷用量82立方/小时×4.3元/m3=353元

(2)生物质锅炉的热效率为80.7%,4000大卡/公斤的生物质燃料实际热值用量为4000大卡×80.7%=3228大卡。

生物质燃料锅炉1蒸吨锅炉满负荷用量186公斤×1.15元/公斤=214元

用天然气锅炉1天按8小时计算353元/小时×8小时=2824元

用生物质燃料锅炉1天按8小时计算214元/小时×8小时=1712元

实际用生物质燃料锅炉比用天然气锅炉1天8小时节能2824-1712=1112元

3.2.3与燃柴油锅炉相比:(1kg燃油用2.7公斤生物质燃料替代)

(1)燃柴油锅炉的热效率85%,10200大卡/kg的燃油实际热值用量为:10200大卡/kg×85%=8670大卡。

用柴油锅炉1蒸吨锅炉满负荷用量1小时69公斤×8.1元/公斤=559元

(2)生物质锅炉的热效率80.7%,4000大卡/公斤的生物质燃料实际热值用量为4000大卡×80.7%=3228大卡。

生物质燃料锅炉1蒸吨锅炉满负荷用量186公斤×1.15元/公斤=214元

用柴油锅炉1天按8小时计算559元/小时×8小时=4472元

用生物质燃料锅炉1天按8小时计算214元/小时×8小时=1712元

实际用生物质燃料锅炉比用柴油锅炉1天8小时节能4472-1712=2760元。

3.2.4与燃重油锅炉相比:(1kg燃油用2.3公斤生物质燃料替代)

(1)燃重油锅炉的热效率76%,9700大卡/kg的燃油实际热值用量为:9700大卡/kg×76%=7370大卡。

(2)用柴油锅炉1蒸吨锅炉满负荷用量1小时82公斤×4.8元/公斤=394元。

(3)生物质锅炉的热效率80.7%,4000大卡/公斤的生物质燃料实际热值用

量为4000大卡×80.7%=3228大卡。

生物质燃料锅炉1蒸吨锅炉满负荷用量186公斤×1.15元/公斤=214元

用重油锅炉1天按8小时计算394元/小时×8小时=3152元

用生物质燃料锅炉1天按8小时计算214元/小时×8小时=1712元

实际用生物质燃料锅炉比用重油锅炉1天8小时节能3152-1712=1440元。

3.2.5与电锅炉相比

(1)电锅炉的热效率96%,860大卡/度的电实际热值用量为:860大卡/度×96%=825.6大卡。

用电锅炉1蒸吨锅炉满负荷用量1小时727度×1.1元/度=800元。

(2)生物质锅炉的热效率80.7%,4000大卡/公斤的生物质燃料实际热值用量为4000大卡×80.7%=3228大卡。

生物质燃料锅炉1蒸吨锅炉满负荷用量186公斤×1.15元/公斤=214元

用电锅炉1天按8小时计算800元/小时×8小时=6400元

用生物质燃料锅炉1天按8小时计算214元/小时×8小时=1712元

实际用生物质燃料锅炉比用电锅炉1天8小时节能6400-1712=4688元。

4生物质燃料锅炉的经济效益及社会效益

推广生物质燃料锅炉,可以部分解决企业的能源供应,维护企业的正常生产,提升企业的赢利能力,促进经济发展。生物质燃料是一种理想的可再生能源,它来源广泛,不但可促进农民的每年增收,又可以防止水土流失。生物质燃料作为一种新兴的能源,它的使用,每年可节约天然气6.84亿立方米,可以有效地节约不可再生的石油类能源,促进节能减排。因此,推广生物质燃料锅炉,有良好的经济效益与社会效益。

生物质燃料能源篇2

生物质能的分类及其发展

生物质包括植物光合作用直接或间接转化产生的所有产物,从这个概念出发,生物质能就是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。生物质主要有4类:农作物秸秆及其他残余物、林产品和木材加工残余物、动物粪便、能源植物。但是,从作为可以产生能源的资源角度看,城市和工业有机废弃物和有机废水也是生物质能资源。

生物质能具有可再生性、低污染性、广泛分布性等特点。根据技术手段可分为直接燃烧技术、热化学转换技术、生物转换技术、液化技术和有机垃圾处理技术等。依据这些技术手段,生物质能可分为固体燃料、液体燃料和气体燃料。

直接燃烧和发电

直接燃烧发电的过程是:生物质与过量空气在锅炉中燃烧后,得到的热烟气和锅炉的热交换部件换热,产生出的高温高压蒸气在蒸汽轮机中膨胀做功发电。

直接燃烧是使用最广泛的生物质能源转化方式,技术成熟。在发达国家,生物质直接燃烧发电站可再生能源发电量的70%。与燃煤发电相比,生物质直接燃烧发电的规模较小,锅炉负荷大多在20兆瓦~50兆瓦,系统发电效率大多为20%~30%。目前,美国生物质发电装机容量已达10500兆瓦,70%为生物质一煤混合燃烧工艺,单机容量10兆瓦~30兆瓦,发电成本3~6美分/千瓦时,预计到2015年,装机容量将达16300兆瓦。

国外生物质直接燃烧发电技术已基本成熟,进入推广应用阶段。该技术规模效率较高,单位投资也较合理,但它要求生物质资源集中,数量巨大,如果考虑生物质大规模收集或运输的支出,则成本较高,比较适合现代化大农场或大型加工厂的废物处理等,不适合生物质较分散的发展中国家。我国目前农业现代化程度较低,生物质分布分散,采用大规模直接燃烧发电技术有一定困难。

生物质气化及发电

生物质气化的基本原理是在不完全燃烧条件下,将生物质原料加热,使较高分子量的有机化合物裂解为低分子量的Co、CH4等可燃气体。转化过程的气化剂有空气、氧气、水蒸气等,但以空气为主。气化原料是农作物秸秆或林产加工废弃物。生物质气化产出气的热值根据气化剂的不同存在很大差异,当以空气为气化剂时,产出气的热值在4200千焦/立方米~5300千焦/立方米之间,该气体可以作为农村居民的生活能源,也可以通过内燃机发电机组发电。

生物质气化发电技术在国际上已受到广泛重视。国外小型固定床生物质气化发电已商业化,容量为60千瓦~240千瓦,气化效率70%,发电效率为20%,以印度农村地区的应用比较成功。发达国家如奥地利、丹麦、芬兰、法国、挪威、瑞典和美国等,比较关注的是生物质气化联合循环发电技术(BiGCC)。该技术的系统效率可达40%,有可能成为生物质能转化的主导技术之一。这一技术存在的问题是单位投资额非常高,并且技术稳定性不够。

我国有着良好的生物质气化发电基础,在上世纪60年代就开发了60千瓦的谷壳气化发电系统。目前已开发出多种固定床和流化床小型气化炉,以秸秆、木屑、稻壳、树枝等为原料,生产燃料气,主要用于村镇级集中供气。

生物质致密(压缩)成型燃料技术

将生物质粉碎至一定的粒度,不添加粘接剂,在高压条件下,可以得到具有一定形状的固体燃料。成型燃料可再进一步炭化制成木炭。根据挤压过程是否加热,生物质致密(压缩)成型燃料有加热成型和常温成型两种;根据最后成型的燃料形状可以分为棒状燃料、颗粒燃料和块状燃料三种。生物质致密(压缩)成型技术解决了生物质能形状各异、堆积密度小且较松散、运输和贮存使用不方便的缺点,提高了使用效率。

成型燃料在国外很受重视,开始研究时的着眼点以代替化石能源为目标。上世纪90年代,欧洲、美洲、亚洲的一些国家在生活领域大量应用生物质致密成型燃料。后来,以丹麦为首开展了规模化利用的研究工作。丹麦著名的能源投资公司Bwe率先研制成功了第一座生物质致密成型燃料发电厂。随后,瑞典、德国、奥地利先后开展了利用生物质致密成型燃料发电和作为锅炉燃料等的研究。美国也已经在25个州兴建了树皮成型燃料加工厂,每天生产的燃料超过300吨。但生物质成型燃料仍以欧洲的一些国家如丹麦、瑞典、奥地利发展最快。

我国生物质成型燃料技术基础好,设备水平与世界先进水平差别不很大,不足的是我国成型燃料的应用水平还不高。

沼气技术

有机物在厌氧及其他适宜条件下,经过微生物分解代谢,产生以甲烷为主要气体的混合气体,即沼气。一般沼气中甲烷含量为50%~70%,每立方米沼气的热值为17900千焦~25100千焦。生产沼气的原料可以是高浓度的有机废水,也可以是畜禽粪便、有机垃圾和农作物秸秆等。

在发达国家,主要发展厌氧技术处理畜禽粪便和高浓度有机废水。目前,日本、丹麦、荷兰、德国、法国等发达国家均普遍采取厌氧法处理畜禽粪便。美国、英国、意大利等发达国家的沼气技术主要用于处理垃圾。美国纽约斯塔藤垃圾处理站投资2000万美元,采用湿法处理垃圾,日产26万立方米沼气,用于发电、回收肥料,效益可观,预计10年可收回全部投资。英国以垃圾为原料实现沼气发电18兆瓦,今后10年内还将投资1.5亿英镑,建造更多的垃圾沼气发电厂。

在发展中国家,沼气池技术主要使用农作物秸秆和畜禽粪便生产沼气作为生活炊事燃料,如印度和中国的家用沼气池。同时,印度、菲律宾、泰国等发展中国家也建设了大中型沼气工程和处理禽畜粪便的应用示范工程。我国是利用生物质生产沼气最多的国家。

燃料乙醇

生物质可以通过生物转化的方法生产乙醇。目前在生物能源产品产业规模方面,发展最快的就是燃料乙醇。生产燃料的乙醇主要有甘蔗乙醇、玉米乙醇和木薯乙醇三种,燃料乙醇的消耗量已超过世界乙醇产量的60%以上。

巴西是世界上最早利用甘蔗生产燃料乙醇的国家。以甘蔗为原料,工艺相对简单,既节能又节省投资,生产成本较低。目前,巴西有520多家燃料乙醇生产厂,年产燃料乙醇1200万吨,有1550万辆汽车以乙醇汽油作为燃料。

美国从上世纪70年代末开始用玉米生产燃料乙醇,到2005

年产量已经超过1200万吨。尽管目前乙醇的生产成本较高,但在美国,玉米燃料乙醇已成为一种成熟的石油替代品。

我国从2002年开始用陈化粮生产燃料乙醇,生产规模达102万吨,主要以玉米和小麦为原料。其背景是在1996年~1999年连续4年粮食总产量稳定5亿吨左右,粮食供过于求,粮食阶段性过剩并出现大量积压的情况下提出的。实践证明,粮食燃料乙醇生产技术成熟、工艺完善,是目前比较现实的石油替代燃料。

但面对我国人多地少的实际,大规模推广应用粮食燃料乙醇显然存在着原料供应的瓶颈问题,长远来说必须开发非粮食为原料的乙醇燃料。“十五”期间,国家开展了非粮食能源作物――甜高粱培育等关键技术的研究与开发,包括利用甜高粱茎秆汁液和纤维素废弃物等生物质制取乙醇的技术工艺。对第一种技术工艺,我国初步具备了规模化开发的基础,但纤维素废弃物制取乙醇燃料技术还存在技术不成熟、诸多关键技术尚未解决等问题。

生物柴油

生物柴油是利用动植物油脂生产的一种脂肪酸甲(乙)酯。制造柴油的原料很多,既可以是各种废弃的动植物,也可以是含油量比较高的油料植物。实践证明,生物柴油不仅具有良好的燃烧性能,还有良好的理化特性和动力特性。

国外通常采用大豆和油菜籽生产生物柴油,但成本稍高。为降低成本,一些国家开始用废弃食用油和专门的木本油料植物生产生物柴油。目前,生物柴油在欧盟已经大量使用,进入商业化发展阶段。2004年欧盟生物柴油产量为224万吨,并计划到2010年达到800万吨~1000万吨。

我国人多地少,发展生物柴油只能靠非食用油料资源。因此,我国目前生产生物柴油的原料主要是餐饮废油、工业废油、某些植物油和菜籽油、棉籽油的下脚料等。利用这些原料既回收利用了资源,又解决了环境污染问题。我国生物柴油的生产起步晚,但发展较快。目前已有30多家生物柴油生产厂。

除了上述生物质能利用技术外,还有生物制氢技术、热裂解技术等,基本处于研究阶段。

我国发展生物质能的必要性

开发生物质能具有能源与环境双重效益,有可能成为未来可持续发展能源系统的主要能源之一。因此,许多国家都高度重视生物质能源开发,并制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的乙醇能源发展计划等。联合国开发计划署(UnDp)、欧盟和美国(Doe)的可再生能源开发计划中也都把生物质能列为重点发展方向。

目前,生物质能是仅次于煤炭、石油和天然气的世界第四大能源。据估算,地球陆地每年生产1000亿吨~1250亿吨干生物质;海洋年生产500亿吨干生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。

我国的生物质资源也相当丰富。目前我国生物质能年获得量达到3.14亿吨标准煤,到2050年资源潜力可达到9.04亿吨标煤且潜力巨大。

根据发达国家的经验可知,现今正是我国实现工业化的关键时期。大部分发达国家在此期间(此时人均GDp在3000美元左右)都经历了人均能源、资源消费量快速增长和能源、资源结构快速变化的过程。这对能源安全等问题提出了更高的要求。据预测,2020年中国一次能源的需求为25亿吨~33亿吨标准煤,最少将是2000年的2倍;2050年的一次能源需求估计将在50亿吨标准煤左右。根据我国现在的能源需求增长趋势推算,到2020年,我国仅石油的缺口就将达1.3亿吨~1.5亿吨。能源供应不足问题已成为我国经济社会发展的主要矛盾之一。因此,要从根本上解决我国能源供应不足的问题,必须实施多元化能源发展战略,积极开发生物质能源是出路之一。

从保护环境角度看,我国So2,排放量已居世界第一位,Co2排放量仅次于美国居第二位。2006年,So2排放量达2550万吨,其中约85%是燃煤排放的。酸雨面积已超过国土面积的1/3。So2和酸雨造成的经济损失约占GDp的2%。生物质能属于清洁能源,生物质中有害物质(硫和灰分等)的含量仅为中质烟煤的1/10左右。同时,生物质二氧化碳的排放和吸收构成自然界碳循环,其能源利用可实现二氧化碳零排放,扩大生物质能利用是减排Co2,最重要的途径。

另外,生物质一直是我国农村的主要能源之一。因地制宜开展生物质能利用技术及产品的研究、推广和使用,可以把农民从烟熏火燎中彻底解放出来,既节约资源,又可以改善农民的居住环境,减少水土流失,提高其生活水平。

我国发展生物质能存在的问题

生物质燃料能源篇3

关键词:生物质燃料;循环流化床锅炉;适应

煤、石油、天然气等化石燃料从20世纪70年代就开始大规模的开采,其存储量急剧减少。据预测,地球上蕴藏的可开发利用的煤和石油等化石能源将分别在200年和30~40年以内耗竭,而天然气按储采比也只能用60年。目前,尋找替代能源已经引起全社会的广泛关注。生物质能是一种可再生的清洁能源,来源十分丰富。它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源。当前,生物质燃料的消耗已占世界总能源消耗的14%,在发展中国家这一比例达到38%。据世界粮农组织(Fao)预测,到2050年,以生物质能源为主的可再生能源将提供全世界60%的电力和40%的燃料,其价格低于化石燃料。生物质燃料的开发利用已经成为全世界的共识。在众多的生物质能源转换技术中,直接燃烧是高效利用生物质资源最为切实可行的方式之一。

循环流化床CFB(CirculatingFluidizedBed)燃烧技术由于在替代燃料、处理各种废弃物和保护环境三方面具有其它燃烧技术无可比拟的独特优势而逐渐受到各国的关注。在我国能源与环境的双重压力下,近几年,循环流化床锅炉在我国得到了快速发展。了解生物质燃料对CFB锅炉的影响,采取有针对性的设计方案和相应的运行调整,对延长锅炉的使用寿命、提高锅炉的效率具有良好的促进作用。

1生物质燃料种类

生物质能是植物通过光合作用将太阳能以化学能的形式存储在生物质中。我国拥有丰富的生物质资源,但目前可供开发利用的生物质资源主要为农业废弃物、林业废弃物、经济作物废弃物、牲畜粪便、城市和工业有机废弃物等。生物质燃料是一种清洁燃料,含硫量低,含碳量不高,燃烧后nox和So2的含量很低;生物质中灰分一般也很小,所以充分燃烧后烟尘含量很低。生物质燃料在燃烧过程中具有二氧化碳零排放的特点,这对于缓解日益严重的“温室效应”有着特殊的意义。随着能源危机的加剧,生物质能越来越受到人们的重视。目前国内已开发了单一生物质燃料和多种生物质燃料混合燃烧的系列化生物质锅炉,目前已经运行过的生物质燃料多达30多种,农业废弃物主要包括稻草、麦草、玉米秸秆、棉花杆、油菜杆、稻壳、花生壳、红薯藤等;林业废弃物主要包括树皮、树枝、树根、木材加工废料等;经济作物废弃物主要包括甘蔗渣、菌类作物的培养基等;牲畜粪便主要来源于养殖场。

2燃料对锅炉的影响与适应措施

2.1生物质成型技术

实践已经证明,由于各种生物质燃料自身特性的原因,即使经过简单破碎的秸秆、废木材、稻壳等生物质废弃物仍然具有热值较低、形状很不规则的特点。因此,它的炉前热值经常发生很大的变化,若将其直接送入CFB锅炉里进行燃烧,会出现燃烧不稳定的现象。另外,由于空隙率很高,这些体积庞大的生物质废弃物也不利于长距离的运输。为了解决上述矛盾,生物质压缩成型技术应运而生。生物质压缩成型技术是把生物质与经过除氯的添加剂混合后被铸造模型制成具有统一尺寸、所含热值均匀并易于输送的衍生燃料。将生物质加工成成型燃料是利用CFB锅炉燃烧生物质的重要方式。成型燃料代替原生物质燃料进行燃烧,可以减少大量的化学不完全燃烧热损失与排烟热损失。而且燃烧速度均匀适中,燃烧相对稳定。在生物质压缩成型的过程中,一般都会加入一些添加剂(石灰石等)和其他辅助燃料(煤、污泥等)。这种方式充分发挥了生物质燃料易着火和其他辅助燃料燃烧稳定的优点,是当前生物质燃料进行燃烧利用的重点,各国学者的研究也大都集中于此。

2.2生物质含水量

目前国内在运行的生物质流化床锅炉其入炉生物质燃料普遍含水量高,特别是秸秆类和树皮类目前入炉水分在30%~50%之间,高水分燃料入炉后,着火相应延迟,炉内流化速度大,燃料在炉内的有效停留时间短,造成燃烧效率下降,燃料热值偏低,燃料消耗量更大;着火滞后引起的炉膛上部温度偏高使过热蒸汽超温,过热器管壁温度偏高,带来安全上的隐患;锅炉密相区床温控制变得困难,锅炉低负荷稳燃水平下降;另由于燃烧产生的烟气量增加,排烟温度升高,增加锅炉的排烟损失,降低锅炉效率。因此,要达到良好的效益必须尽量控制入炉燃料的水分在合理范围内,首先应控制收购的燃料含水率,杜绝人为加水,其次生物质流化床锅炉应建足够的防雨料库,从源头上控制燃料入炉含水率。

2.3生物质含灰量

循环硫化床需要大量的床料颗粒在循环回路中循环,使炉膛的热量分布更均匀,传热更快,燃烧更充分,因此,生物质燃料的含灰量对循环流化床锅炉设计和运行非常重要。一般生物质燃料中本身含灰量在3%~10%之间,但由于生物质燃料的外带杂质较多,特别是农、林废弃物,在锅炉实际运行中尾部灰浓度实测值是理论值的3~5倍。应控制收购的燃料灰分,杜绝人为加沙加土。

炉膛的灰浓度对循环流化床锅炉的负荷和炉膛床温的均匀性影响较大。在燃烧木材加工废弃物等生物质燃料含灰量低时,靠自身的灰量无法满足床料的要求,则在运行中一般采取添加床料,所以床料成为循环物料的主体。在设计上采用可调试返料系统的循环灰量,保证物料循环系统的畅通,稳定炉膛温度。在运行上当燃料含灰量较高时,则需放灰,一般采取放底渣的方式。

生物质锅炉床层的高度受燃料的含灰量影响非常大,床层的过高、过低都会影响流化质量,引起结焦。燃料灰分和杂质影响尾部飞灰的浓度,尾部的吹灰装置应设置到位。

2.4炉内结渣、积灰、腐蚀

生物质因钾、氯含量较高,所以燃烧后灰中含有大量碱金属盐,作为肥料是很好的,但是在燃烧过程中因为这些碱金属盐熔点低,容易在炉排、水冷壁以及尾部受热面上结渣、积灰,应引起设计者和运行人员的高度重视。采用循环流化床燃烧方式时,这些钾盐会与砂床料或秸秆夹带的泥土(含砂子)反应生成硅酸钾一玻璃,容易造成床料结焦或颗粒长大,因此运行过程中应及时排除燃烧过程中形成的大颗粒物,补充合适的床料,维持炉内物料粒度的相对均匀。

由于灰中碱金属含量高,导致对流受热面的积灰严重,一方面需要采用合适的管子节距,同时需要选择合适的吹灰方式。从目前的运行效果来看,脉冲吹灰、蒸汽吹灰、机械振打方式是有效的清灰方式,效果较好,而超声波除灰效果不佳。

此外,生物质灰中富含钾和钠等碱金属,熔点低,在炉膛内为汽相,在500℃左右以灰污形式凝结于高温过热器受热面上,对过热器造成高温腐蚀。解决方法为可以将高温过热器放置在外置换热器中,也可像其他燃烧方式一样采用抗腐蚀材料如奥氏体不锈钢材料(0Cr17ni12mo2)或将过热器放置于650℃以内的烟气中,采用12CrlmoVG或表面喷涂耐腐蚀材料;解决省煤器腐蚀的方法是使省煤器人口水温高于HC1露点温度20~30℃。避免或减轻空气预热器腐蚀的方法是采用考登钢或热空气再循环,保证空预器人口温度在80~100℃;也可以采用暖风器将空气加热到80~100℃以上再送入空气预热器。

2.5辅机的选择

由于生物质燃料的灰量和水分的变化随季节性和地域的变化非常大以及生物质燃料实际外带灰量较多,在实际运行中许多生物质循环流化床锅炉因引风机和除尘器选小导致锅炉出力不足,炉膛冒正压等问题。因此,选择一次风机、引风机、布袋除尘器等设备时应充分考虑裕量。

3结语

3.1生物质燃料对CFB锅炉的设计与运行有很大影响。生物质燃料不仅有效提高了CFB锅炉燃料供应的安全度,提高了CFB锅炉对燃料的定价权,也使当地的生物质资源得到充分利用。但由于不同生物质燃料有所差别,这对CFB锅炉设备和运行人员提出了更高要求。只有对生物质燃料的特殊性进行充分了解,在设计和运行中采取必要的措施,提高锅炉及其系统设备的适应性和可靠性,以使生物质流化床锅炉产生更高的社会和经济效益。

生物质燃料能源篇4

文章中提到了生物燃料企业“吃不饱”的问题,与以往政策支持向生产领域倾斜不同,本文提出生物燃料产业链重心向种植和原料生产倾斜,并加大政策支持力度。对生物燃料生产企业来说,这未尝不是个好消息。

生物燃料通常指生物液体燃料,是重要的交通替代燃料。相对于其他替代燃料,生物燃料具有与现有基础设施兼容性好、能量密度高、清洁低碳、资源可再生且资源基础广阔等优点,而且已具有规模化生产应用的实际经验,可望成为重型卡车、航运和航空等长途交通工具的最经济可行的清洁替代燃料。

20世纪90年代以来,为保障能源安全、应对气候变化、保护环境、促进农业发展,许多国家制定实施积极战略和政策,推动生物燃料的规模化开发利用。我国在上述各领域也面临着巨大挑战,也亟待制定符合我国国情的战略和政策,促进生物燃料的规模化发展。

为此,国家发展改革委能源研究所开展了“中国可再生能源规模化发展研究”,通过考察分析国际上生物燃料产业发展趋势和政策实践,评估我国生物燃料的发展潜力和重大挑战,进而探讨我国生物燃料规模化发展的战略任务、总体思路和发展路径,并提出促进我国生物燃料产业发展的政策措施建议。

国际政策趋向——扶持与监管并重

20世纪90年代以来,为促进农业经济、改善大气质量、减排温室气体,以美国、欧盟国家和巴西为代表的许多发达国家和发展中国家制定实施了规模空前的生物燃料项目和积极的扶持政策,全面推动了生物燃料产业的蓬勃发展。虽然2008年金融危机以来受到油价低位运行和市场需求疲软的影响,但各国扶持政策保持延续并继续深化,大型石油企业开始大力介入,技术研发取得积极进展,应用领域扩展到航空领域,推动了生物燃料产业加快升级转型和继续扩大规模。

目前,以粮糖油为原料的燃料乙醇和生物柴油(通常被称为传统生物燃料,或第一代生物燃料)已进入商业化发展阶段,以农林业有机废弃物、专用非粮能源植物/藻类微生物等生物质为原料的先进生物燃料(或第二代、第三代生物燃料)正在建设一批示范项目,预计在今后10年内逐步实现商业化。2009年全球燃料乙醇和生物柴油产量分别达到5760万t和1590万t,绝大部分集中在美国、巴西和欧盟地区。据国际能源机构(iea)的生物燃料路线图分析,2010年全球生物燃料产量约1000亿升,满足全球3%道路交通燃料需求;2050年生物燃料可满足全球交通能源需求的27%,可年减排21亿t二氧化碳。

虽然生物燃料在近年来发展迅速并初步展示了广阔的发展潜力,但也开始引发了众多争议和批评,主要是生物燃料的节能减排效益和发展潜力、以及对粮食安全和生态环境的威胁,反映了生物燃料产业自身及其社会经济含义的复杂性。

近年来,一些领先国家和国际组织积极推动建立扶持与监管并重的政策体系,促进生物燃料产业健康持续发展。在扶持政策方面,早期主要采取了投资补贴、减免消费税和燃油税等措施,近年来美国和欧盟许多国家陆续引入了再生燃料标准(RFS)等强制性市场份额政策,并特别规定先进生物燃料的具体发展目标和更高贡献度。在监管政策方面,近年来欧美国家开始规定生物燃料的最低温室气体减排率,调整农业及土地政策,推动建立可持续生产准则和产品认证体系;包括我国在内的部分发展中国家则禁止使用或严禁扩大使用粮食原料,以确保可持续发展。

我国生物燃料生产潜力大

由于我国人口保持增长、饮食水平的持续提高,而优良耕地减少、水资源相对短缺,利用传统粮糖油原料发展生物燃料的潜力在我国非常有限。利用非粮原料将是我国发展生物燃料的根本方向。

我国早在上世纪90年代即开展以甜高粱、小桐子为原料的生物燃料生产技术研究,“十一五”以来,大批企业,包括大型企业,积极投身非粮生物燃料产业研发。目前,我国利用薯类、甜高粱、小桐子等非粮作物/植物生产燃料乙醇和生物柴油的技术已进入示范阶段。木薯和甘薯乙醇技术也可实现商业化应用,广西于2007年建成年产20万t木薯乙醇项目。甜高粱乙醇技术开发取得实质性进展,已开发出高品质杂交种籽,自主开发的发酵工艺和技术达到实用水平,并在黑龙江省建成年产5000t乙醇的示范装置。木质纤维素乙醇在原料预处理、纤维素转化以及酶制剂生产成本等方面均取得实质性进展,在黑龙江、河南等地建成了年产数百吨和数千吨乙醇的示范生产装置。生物柴油产业化示范工作的时机也已基本成熟,但受废油资源收集利用量、油料植物种植基地建设进度的限制,目前只有少数生物柴油企业实现规模化持续生产,也没有正式进入车用成品油的主要流通使用体系。其他第二代生物燃料(如合成燃料技术)目前仍处于实验室研究和小规模中试阶段。

目前我国还没有全面深入开展生物质能资源潜力评价。初步估算,利用废糖蜜、食品加工业和饮食业废油、棉籽油等废弃糖油类资源,估计可满足年产80万t燃料乙醇和200万t以上生物柴油的原料需求。可能源化利用的农作物秸秆和林业剩余物年产量目前约2.5亿t,且可望继续增加,在中长期可满足年产3000~5000万t第二代生物燃料的原料需求。另外,还可通过推广良种良法、品种替换、开发劣质边际土地等途径发展能源植物,例如甜高粱、木薯、麻疯树等。相关土地评估显示,我国现有约3200万~7600万hm2边际性土地,但适合能源植物生长的土地资源有待查清。

生物质燃料能源篇5

关键词:中国生物质能源;发展现状;问题;对策

伴随着国家相关生物质能源生产行业标准规范的逐步完善,目前我国生物质能源生产开发已初具规模,在一系列法律法规的保障和财税政策的推动下获得了良好的发展。然而,中国生物质能源产业在实际发展过程当中,仍然存在着工业体系不完善、原料资源不足、产业化基础不够牢固、市场竞争力较低和研究能力滞后等诸多问题。因此,如何准确把握生物质能源产业的影响因素,制定合理有效的应对策略,是当下的生物质能源发展中迫切关注的重要课题。

1世界能源结构的现状与问题

1.1节能减排举措影响世界能源结构

燃料的使用效率与能源结构直接决定了二氧化碳的排放量,因而能源开发利用同自然环境之间的联系紧密。近年来,煤、石油和天然气这三大化石燃料的使用使得全球二氧化碳排放量急剧增加,引起了气候的异常及失衡。有研究指出,生物质燃料所排放的二氧化碳量要比化石原料少95%左右,若每年生产一亿吨生物质燃料,则能达成5.5%二氧化碳的减排,故生物质能源产业的推进对世界能源结构的优化具有重要意义。

1.2世界化石燃料危机严重

据统计,在全球能源的总用量中,化石能源所占比例高达85%,每年石油、煤炭和天然气的储量都在不断下降。作为不可再生资源,人们赖以生存的石化能源正在日趋枯竭,使得人类面临愈发严峻的能源危机。

1.3可持续发展理念促进生物质能源产业发展

如今,可持续发展思想已深入人心。作为一种可再生能源,生物质能源在给人们提供生产原料与能量的同时实现了环境友好的目标,能够在很大程度上缓解人们对石化资源的依赖。

2生物质能源技术开发的进展

2.1生物液体燃料

包括生物柴油、燃料乙醇和其他液体燃料。当前采用液体催化剂的化学酯交换法是生产生物柴油的关键技术,利用对原料油当中水分、游离酸的严格脱除来防止催化剂失活。液体酸催化方法虽然能够避免水分、游离酸对产率的影响,但设备易被酸腐蚀、甲醇与丙三醇难以分离,且环境友好性较差。燃料乙醇的生产目前还在探索过程中,我国的燃料乙醇发展快,以吉林燃料乙醇公司、河南天冠集团等为代表的企业都在燃料乙醇的研究上取得了较大的进展。此外,生物质快速热裂解液化等技术也是国际上的研究热点。

2.2生物燃气

瑞典、丹麦和德国的生物燃气技术发达,已经实现了规模化、自动化与专业化,多使用高浓度粪草原料进行中温发酵,其应用逐渐延伸到车用燃气与天然气管网领域。至2008年,我国的沼气工程初步实现全面发展,厌氧挡板反应器、上流式厌氧污泥床等发酵工艺都有了示范应用。但受未热电联产和环境、温度条件影响,大多沼气工程稳定性不足且高浓度发酵等工艺应用少。

2.3固体成型燃料

欧美地区的生物质固体成型燃料已走向规模化和产业化,瑞典、泰国等地区对固体成型燃料也给予了很高的重视。20世纪80年代,我国开始研究固体成型燃料并逐步建立了以苏州恒辉生物能源开发有限公司等企业为代表的燃料工厂。

2.4微藻能源

微藻生物柴油技术的研发主要集中在含油量高且环境适应性强的微藻的选育、规模化产油光生物系统的研发以及收集微藻、提取油脂这几个方面,所面临的最大难题是油脂含量、细胞密度高的微藻细胞的培养。使用微藻对石油形成进行模拟是我国研究微藻的开端,此后微藻异养发酵技术、微藻光合发酵模型等的创新都推动了我国微藻能源的研究开发。

3影响生物质能源产业发展的因素

3.1产业模式局限

我国的生物质能源开发利用管理模式还有待健全,原料评价体系、技术规范等还不完善。项目模式也存在缺陷,例如,小型项目配套政策的缺失使得立项复杂且操作成本较高。

3.2生产技术滞后

我国的沼气工程大多应用的是湿发酵工艺,装备与技术水平都比较滞后,不利于沼气的高值化利用。非粮乙醇技术还存在障碍,受工艺复杂、酸浓度需求高、副产物多、设备要求高和成本高等因素制约,乙醇浓度不高、原料综合利用率低和发酵效率低、时间长等问题还有待解决。此外,五碳糖菌种的缺乏、生物酶法制备技术的落后和生物柴油使用性能低、经济性低等也是目前需要解决的难点。

3.3资源供应不足

原料供应不足是我国生物质能源产业发展的一大瓶颈,单一的原料来源制约了沼气工程规模化发展,非粮原料供应的间断不利于其全年均衡生产,陈化粮等原料的缺乏影响了乙醇燃料工业发展进程,生物柴油技术也面临着原料不足的状况。

4对策与建议

4.1创新生物能源技术

生物质能源是实现我国可持续发展是重要能源保障,必须借助自主知识产权核心技术的创新来保证生物质能源产业化的持久。各级政府需积极推广国产化计数,通过补助力度的加大来调动各单位研发应用自主技术的积极性,可通过专项资金的设立来支持生物质能技术创新,逐步形成分散式的产业体系。

4.2合理利用边际土地

针对原料不足这一瓶颈,应当充分利用边际土地来发展非粮生物质能,逐步建设以能源草、甘薯、木薯等作为原料的生物质液体与气体燃料生产基地。

4.3加强国家政策支持

生物质能源的开发利用对于我国资源、能源供应都具有重要意义,必须将其纳入安全战略的考虑范畴并给予相应的政策支持。国家可结合生物质能源发展需求完善相关激励体系,推行纳入能源生产社会成本、环境成本的全成本定价方案,科学制定产品价格补贴、液体燃料消费鼓励和液体燃料强制收购等方面的政策,给生物质能源发展提供强有力的体系支撑。

参考文献

生物质燃料能源篇6

【关键词】生物质;调整试验;环保;秸杆发电

生物质能源是以生物质为载体将太阳能以化学能形式贮存的一种能量,它直接或间接地来源于植物的光合作用。生物能的蕴藏量极大,仅地球上的植物,每年生产量就像当于目前人类消耗矿物能的20倍。在各种可再生能源中,生物质是贮存的太阳能,更是一种唯一可再生的碳源,可转化成常规的固态、液态和气态燃料。农作物秸秆、废弃木料等生物质直接燃烧供热发电的利用方式,是一条将秸秆转化为生物质能源的工艺技术路线,它存在节能、环保、碳排放平衡等特点。

仅山东省在每年的各类农作物秸秆产量即达7700万吨,占全国农作物秸秆总量的十分之一,相当于4100万吨标准煤。全国薪柴和林业废弃物资源量中,可开发量每年达到6亿吨以上。目前生物质能源秸秆直接燃烧发电技术的开发和应用,已引起世界各国政府和科学家的关注,将生物质能秸秆发电技术作为21世纪发展可再生能源战略的重点工程。

根据国际能源机构高级可再生能源市场分析的预测,同2005年至2011年相比,全球2011年至2017年可再生能源产生的电能将增长60%以上。此外,包括美国在内的12个经济合作和开发组织国家以及中国、印度和巴西的可再生能源发电量将占全球总量的80%左右。

根据国家“十一五”规划纲要提出的发展目标,未来将建设生物质发电550万千瓦装机容量,已公布的《可再生能源中长期发展规划》也确定了到2020年生物质发电装机3000万千瓦的发展目标。此外,国家已经决定,将安排资金支持可再生能源的技术研发、设备制造及检测认证等产业服务体系建设。

生物质发电的主要燃料秸秆的单位质量热值在3500大卡左右,与单位质量燃煤的热值相差不大,但其单位质量燃料的堆积体积比较燃煤有较大差异,是燃煤体积的5倍左右。秸秆燃料中的灰分通常较低,用布袋除尘器即可实现有效清洁排放,硫份也非常低,对大气造成污染的程度较低。与燃料的特性相适应,生物能电站的建设在机组容量、厂用电系统、燃料存放及输送、锅炉燃烧系统等方面也有其相应的特点。

1.燃料管理

与常规煤化石类燃料不同,单位质量的生物质燃料的存放空间较大,因而需要一个较宽阔的料场来存放,同时与燃煤的自燃相比较秸秆燃料更容易点燃,这一特点对于锅炉的稳定燃烧非常有利,但对于燃料料场的防火安全则是一个风险,烟头、烟火等火源即可引发火情,一旦着火燃烧形成火势后又不易扑灭,在燃料进场以后,与燃料相关的消防、安全教育、安全巡检等工作要予以重点落实。

秸秆燃料供应系统有活底料仓、皮带栈桥输送、炉前料仓及缓冲料仓、螺旋输送机、水冷套输送给料机、料包输送轨道、料包抓取机等形式。棉花秸秆、玉米秸秆等长杆类燃料在由料场向锅炉输送的过程之中,易出现蓬料、搭桥等情况并最终导致向锅炉的燃料供应减少或中断。一旦出现1/4以上的燃料供应中断,就将明显影响炉炉膛燃烧、并主蒸汽温度迅速降低。对此在一定范围内可以采取降负荷、开对空排汽的方法,以减缓汽温下降的速度与幅度,确保不致于到达解列停机的临界值。而在出现1/2以上的燃料供应中断时,以开对空排汽降负荷保汽温的措施通常已经难于奏效,主汽温度将很容易到达10分钟内降幅超过50℃的限值,只能打闸停机以保设备安全。花生壳、木屑等颗粒类燃料易出现燃料沿给料线以流沙形式进入炉膛而供应量剧增的情况也不利于锅炉的稳定燃烧。

生物质能源电站当前越来越趁向于紧凑的锅炉车间、汽机车间和宽阔的料场的搭配模式,当前有较多的生物质能源电站的料场取料采用了铲车取料的模式,在料场场地采用土质硬化时,在取料时容易使燃料内拌入大量的土,这不仅使得后续输料环节中对周围产生扬尘污染,而且在进入锅炉燃烧时容易在炉排上出现烧结成块的情况,导致锅炉燃烧恶化。对于以方砖对料场进行硬化的场地则可有效减少料中拌土的情况,但易出现被铲车到料时误取的情况,从而导致在后续输料环节中增加卡塞料机的机率,故此,对燃料料场进行水泥硬化应是避免以上两种情况的有效方式,只是此种方式的初期投资较大。

秸秆通常含有3%~5%的灰分。这种灰以锅炉飞灰和灰渣/炉底灰的形式被收集,这种灰分含有丰富的营养成分如钾、镁、磷和钙,可用作高效农业肥料,安装一个布袋除尘器,以便收集烟气中的飞灰,布袋除尘器的排放低于25mg/nm3,大大低于中国烧煤发电厂的烟灰排放水平。

2.厂用电系统

当前我国已经投产的生物能电站均是单台机组电站,其发电容量多数在12mw到40mw之间,机组容量的设计主要考虑周围区域内的可取用燃料数量。在此种电站中,其厂用电系统均未设计独立的启动变压器,而采用双向变压器方案,即主变压器既作为发电机出口常规主变压器,又作为全厂的启动变压器,这种设计方式投资少,系统相对简单,已经成为一种比较经济实用的模式。

在国内已经完成试运投产的多个生物电站项目上,厂用电受电是试运前期阶段一切工作之中的主线。在正式电源投用之前,施工用电在满足现场施工用电、办公生活用电外,仅能满足部分小功率电机的试转等工作,分系统的试运工作受制约因素太多因而多数情况难以展开。

厂用电系统的受电是个综合工作,不仅需要厂内部各项施工、试验等工作要完成就位,同时也要受到厂外因素的制约,比如输电线路施工、铁塔施工、与当地电网的协调、与周围居民的协调等情况等。相比较之下,厂区内部的主变压器施工及调试、线路保护柜的调试等工作则可以比较从容,只要设备能及时就、施工队伍、调试队伍能及时开展工作,则厂区内部的厂用电反送电工作则处在一个相对可以控制的状态下进行。我国内蒙古自治某生物电站在试运之初仅因为外部输电线路用电及上网协议谈判、线路施工、奥运保电等因素的影响而延期多达六个月,在此期间厂内厂用电系统的一切施工、试验工作陆续完成,而在外部线路就位之后,厂用电很短时间之内即完成受电,并在十天之内完成了所有高压电机试转、锅炉冷态启动、锅炉吹管等工作。

通常在国内各生物能电站在招商引资的大形势下,由当地政府主导在各类开发区投资办厂的情况较多,除了配合协调燃料的收购工作以外,在用电、用水等协调方面,当地政府及其相关部门在此也有较大的作为空间。

在厂用电系统一时无法正式受电的情况下,以施工用电作为单体调试的临时电源可以在一定程度开展现场的试运工作,比如小功率电机试转、汽机油系统过滤、DCS系统上电复原、静态联锁调试、启动炉试运等,化学制水系统的用电量也相对较小一般可以利用施工用电进行系统调试。通常施工用电的容量较小,其保护措施、设备可靠性方面也较薄弱,有时会引发低电压、电源缺相等情况,对此需要加强监控,否则一旦出现可能会联锁导致电机等设备损毁等情况。

3.烟风系统的试运

生物质能燃料有较好的易燃性,在启动引风机后,锅炉点火时只要用较小的点火热量即可实现有效点燃,当前多数锅炉仍设计有油燃烧器,而实际运行中人工点火较用油燃烧器点火的可操作性更强,同时由于减少了燃油储存、供应系统,油系统运行方面的安全风险大为减少,运行费用开支也因此节省。

生物燃料在经过初级破碎后物料仍非粉末状态,在物料燃烧充分程度上受到较大制约。在锅炉启动初期一次风温度较低时,易发生尾部烟道余料燃烧,对此应及早投入空器预热器,充分提高一次风的温度,避免炉膛燃烧中心后移,使燃料得以充分的燃烧,提高燃烧效率。同时应充分利用烟冷器的可调节性控制锅炉排烟温度,当前生物质能源电站的布袋除尘器工作温度在120℃左右,过高的温度易造成布袋及烟道各膨胀节损伤并浪费能源,过低的温度会导致尾部烟道腐蚀并不利于布袋除尘的效果。

采用水冷式振动炉排是生物质能源电站锅炉中最常见的形式,为保证燃烧时间充分又不致于积料结焦,炉排的振动需要有一个合适的振动频率,通常每一到两分钟之内就要振动一次,每次动作时间10到15秒,针对每台锅炉具体数值需要根据系统实际工况进行调整而有所不同。在每次炉排振动时,炉膛负压有较大的扰动,扰动值在+300pa到+400pa之间,在出现正压扰动时若不及时调整,炉膛内的正压烟火极易顺着给料线回火至缓冲料仓而引发火情。在人工调整的情况下,锅炉炉膛负压控制要稍大一些(比如-300pa),以防至在炉排排动等时出现负压窜升。在具备条件时,炉膛负压控制要及早投入自动运行,并适当增大引风机对负压调节的微分作用,以将炉膛负压控制在一个较安全的范围之内。这同时对引风机的调节装置的设备可靠性提出了较高要求,不论是叶耦调节装置,还是引风机的进口挡板调节装置,都需要较高的可靠性。

在生物质电站机组的试运中,把握好燃烧、燃烧等环节的差异,并结合常规火力发电机组的试运规律,通过科学合理的组织,可及时将生物能电站的静态投资转为生产力,发挥出其环保、低碳及可持续等优势。

【参考文献】

[1]李永华.生物质电厂锅炉燃烧调整试验研究.锅炉技术,2008,39(4).

[2]江学荣.我国大型机组启动调试管理若干问题研究.电力建设,2008,29(6).

[3]吴伟.单县生物发电示范项目燃料系统设计研究.电力建设,2006,27(12).

生物质燃料能源篇7

早在1839年,英国人w.Grove就提出了氢和氧反应可以发电的原理,这就是最早的氢-氧燃料电池(FC)。但直到20世纪60年代初,由于航天和国防的需要,才开发了液氢和液氧的小型燃料电池,应用于空间飞行和潜水艇。近二三十年来,由于一次能源的匮乏和环境保护的突出,要求开发利用新的清洁再生能源。燃料电池由于具有能量转换效率高、对环境污染小等优点而受到世界各国的普遍重视。美国矿物能源部长助理克.西格尔说:“燃料电池技术在21世纪上半叶在技术上的冲击影响,会类似于20世纪上半叶内燃机所起的作用。”福特汽车公司主管pnGV经理鲍伯.默尔称,燃料电池必会给汽车动力带来一场革命,燃料电池是唯一同时兼备无污染、高效率、适用广、无噪声和具有连续工作和积木化的动力装置。预期燃料电池会在国防和民用的电力、汽车、通信等多领域发挥重要作用。美国arthurD.Little公司最新估计,2000年燃料电池在能源系统市场将提供1500~2000mw动力,价值超过30亿美元,车辆市场将超过20亿美元;2007年燃料电池在运输方面的商业价值将达到90亿美元。燃料电池的工作原理和分类、特点和优势

燃料电池发生电化学反应的实质是氢气的燃烧反应。它与一般电不同之处在于燃料电池的正、负极本身不包含活性物质,只是起催化转换作用。所需燃料(氢或通过甲烷、天然气、煤气、甲醇、乙醇、汽油等石化燃料或生物能源重整制取)和氧(或空气)不断由外界输入,因此燃料电池是名符其实的把化学能转化为电能的装置。以熔融碳酸盐型燃料电池为例,图1为燃料电池的结构示意图。图1 熔融碳酸盐燃料电池单电池结构示意图

在燃料电池电极上反应如下:

阳极反应:H2+Co32-=H2o+Co2+2e-

阴极反应:1/2o2+Co2+2e-=Co32-

总反应:1/2o2+H2=H2o

燃料电池多种分类。按燃料类型可分为直接型、间接型和再生型。按电解质种类又可分为磷酸盐型燃料电池(paFC)--第一代FC;熔融碳酸盐型燃料电池(mCFC)--第二代FC;固体氧化物型燃料电池(SoFC)--第三代FC。表1列出了几种主要类型燃料电池的燃料、电解质、电极和工作温度等基本特点。表1 燃料电池的分类类型磷酸盐型燃料电池(paFC)融碳酸盐型燃料电池(mCFC)固体氧化物型燃料电池(SoFC)聚合物离子膜燃料电池(pemFC)燃料煤气,天然气,甲醇等煤气,天然气,甲醇等煤气,天然气,甲醇等纯H2电解质磷酸水溶液KLiCo3溶盐Zro2-Y2o3(8YSZ)离子(na离子)阳极

电极

阴极多孔质石墨

(pt催化剂)

含pt催化剂+多孔

质石墨+tefion多孔质镍

(不要pt催化剂)

多孔nio(掺锂)ni-Zro2金属陶瓷(不要pt催化剂)

LaxSr1-xmn(Co)o3多孔质石墨或ni

(pt催化剂)

多孔质石墨或ni

(pt催化剂)工作温度-200℃-650℃800-1000℃-100℃

近20多年来,燃料电池经历了碱式、磷酸、熔融碳酸盐和固体电解质等几种类型的发展阶段。美、日等国已相继建立了一些碳酸燃料电池电厂、熔融碳酸盐燃料电池电厂、质子交换膜燃料电池电厂作为示范(表2)。表2 一些国家的燃料电池电厂磷酸盐燃料电池电厂onSi公司建设的200KwpaFC电厂质子交换膜燃料电池电厂BallardGenerationSystem建设的250Kwpem燃料电池厂

avista实验室建造的7.5w民用pem燃料电池电厂,它具有60w热交换调制.

northwestpowerSystem建设的5Kw民用pem燃料电池电厂

plugpower建造的7Kw民用pem燃料电池电厂熔融碳酸盐烯料电池电厂m-CRowerCorporation建造的熔融碳酸盐碳燃电孙电厂

energyResearchCorporation建造的250Kw熔融碳酸盐燃料电池厂

energyResearchCorporation在加州SantaClara建造的2m熔融碳酸盐燃料电池示范电厂固体氧体物燃料电池电厂Siemenswestinghouse建设的管状固体氧化物燃料电池电厂

燃料电池电厂所以具有如此大的吸引力,是因为它与传统的火力发电、水力发电或核能发电相比,具有无可比拟的特点和优势。

1.能量转换效率高 燃料电池能量转换效率比热机和发电机能量转换效率高得多。目前汽轮机或柴油机的效率最大值为40~50%,当用热机带动发电机时,其效率仅为35~40%,而燃料电池的有效能效可达60~70%,其理论能量转换效率可达90%。其他物理电池,如温差电池效率为10%,太阳能电池效率为20%,均无法与燃料电池相比。

2.污染小、噪声低 燃料电池作为大、中型发电装置使用时其突出的优点是减少污染排放(表3)。对于氢燃料电池而言,发电后的产物只有水,可实现零污染。另外,由于燃料电池无热机活塞引擎等机械传动部分,故操作环境无噪声污染。

表3 燃料电池与火力发电的大气污染比较

(单位:kg.10-6(Kwh)-1)污染成分天然气火力发电重油炎力发电煤火力发电燃料电池So22.5-230455082000-0.12nox18003200320063-107烃类20-1270135-500030-10414-102尘末0-9045-320365-6800-0.14

3.高度可靠性 燃料电池发电装置由单个电池堆叠至所需规模的电池组构成。由于这种电池组是模块结构,因而维修十分方便。另外,当燃料电池的负载有变动时,它会很快响应,故无论处于额定功率以上过载运行或低于额定功率运行,它都能承受且效率变化不大。这种优良性能使燃料电池在用电高峰时可作为调节的储能电池使用。

4.比能量或比功率高

5.适用能力强

燃料电池可以使用多种多样的初级燃料,如天然气、煤气、甲醇、乙醇、汽油;也可使用发电厂不宜使用的低质燃料,如褐煤、废木、废纸,甚至城市垃圾,但需经专门装置对它们重整制取。虽然燃料电池有上述种种优点,然而由于技术问题,至今一切已有的燃料电池均还没有达到大规模民用商业化程度。为此,美、日等国相继拨出巨资来发展燃料电池。

燃料电池开发现状与发展趋势

在燃料电池研究开发方面,美国、日本和德国处于世界领先地位。美国早在1967年就制定了taRGet和FCG-1燃料电池研究发展计划。近年美国能源部对燃料电池研究资助每年均在2000万美元以上。日本在1981年制定了“月光计划”,进行燃料电池研究。1989年欧洲燃料电池集团成立。

在所有燃料电池中,磷酸盐型燃料电池(paFC)由于磷酸易得,反应温和,成为发展最快、研究最成熟的一种燃料电池。1977年美国通用公司首先建成兆瓦级paFC发电站。1991年日本电力公司在东京湾兴建的1mwpaFC发电站也已投入运行。目前美国已有少量销售,其商品化阶段已经开始。

熔融碳酸盐型燃料电池(mCFC)正处于10-20Kw向兆瓦级发展阶段。1994年12月美国已建成迄今最大功率为250Kw的mCFC电站。日本1989年已完成25Kw的mCFC试验,按其“新阳光计划”-1mw的mCFC中间试验电厂现正在实施中。

聚合物电介质燃料电池(pemFC)不仅是人造卫星上可靠、低成本的动力源,还可作为陆地上市区交通车辆和水下潜艇的动力源。1996年美国能源合作公司推出实验型的由三块薄膜组成的以1.5KwpemFC为动力的“绿色轿车”。德国奔驰公司在前两年开发出neCaRⅡ存储式燃料电池驱动电车(燃料电池生产电能为250Kw,一次行程为250公里),并在慕尼黑、斯图加特市作为试行公共电车之后,在1998年8月又作为世界首创,开发出neCaRⅢ燃料电池驱动电车。它用质子交换膜(pem)燃料电池为动力,以甲醇为原料,通过车辆后部的反应器产生氢气,再以氢和空气中氧反应产生电能来驱动,当压下踏脚板后,在不到2秒的时间内动力系统的能量将达到90%,其最大行程为400公里,预期2004年投放市场。最近,DaimlerChrysler设计的燃料电池和电池混合引擎轿车neCaR4由于具有零污染、宽阔的操作范围和良好的驾驶特性等最佳的设计而获得北美“1999国际引擎年奖”。新近美国BallardpowerSystem开发的第二代燃料电池公共客车已在芝加哥运行。美国至今已开发的具有代表性的运输用的燃料电池公共客车、轿车已达30多种。

第三代燃料电池SoFC正在积极研制开发中,1991年6月美国能源部和威斯汀豪斯公司投资1.4亿美元加速固体燃料电池的商业化。目前美国西屋公司处于SoFC领先地位,它们所制造的一个由576个管式SoFC组成的25Kw发电系统已创13000多小时运行的世纪记录。其下一步计划是建立100Kw的SoFC热电联产系统交付荷兰/丹麦电力公司使用。目前美国已有5Kw的SoFC产品出售。一些公司还打算把SoFC和储氢合金结合起来,用于开发汽车用燃料电池。

近年因环境保护要求而新兴起的生物电池,用生物原料(包括林场杂木、稻草、麦杆、玉米杆、青草、草垃圾、含能源的植物、动物粪便等)生产电能。即将生物原料通过反应器转换成燃烧气体(主要是H2、Co、CH4),经加工处理后作为燃料电池的原料用于建立分散电站,供家庭或城市用电;也可转换成H2,用于电动汽车。据〈moderpowerSystem〉报道,一个以垃圾场生产的燃料气体为燃料的燃料电池厂正在美国康涅狄州格罗顿镇运行,它生产国际燃料电池公司的200Kw磷酸燃料电池。该电池厂装有燃料洁净系统,使垃圾场的燃气在进入燃料电池堆之前已被去除掉其中的氯化合物、硫化合物和共它污染物。目前德国巴伐利亚州的BadBruckenan正在建造一个生物能源-氢气工程。

燃料电池中另一亮点是细菌电池。其基本原理是通过细菌发酵,把酸或糖类转化为氢气,再将氢导入磷酸燃料电池后发电。美国1984年设计出一种供遨游太空用的细菌电池,原料是宇航员的尿液和活细菌。日本也研制过用特制糖浆作原料的细菌电池。

燃料电池今后的发展方向除了电动车辆(包括工交车辆、拖拉机、叉式装卸机、高尔夫车和军事车辆等)和热电站外,另一方向是使燃料电池小型化。燃料电池替代普通电池在膝上电脑、便携式电子器件等方面的应用列于表4。据《科学美国人》报道,美国洛斯阿拉芙斯国家实验室罗伯特.G.霍克最近研制成功微型燃料电池,其电池尺寸和价格可与传统的镍隔电池相比,重量仅为镍隔电池的一半,但供电能力为镍隔电池的50倍。预期这种微型燃料电池用于移动电话,可连续待机40天,而仅消耗不到2盎司的甲醇。霍克目前正把微电子技术引入微型燃料电池制作中,准备制作25μm厚的微型电池。另外,还有把燃料电池用于电子广告牌和电动自行车的报道。表4 燃料电池替代普通小电池在膝上电脑、便携式电子器件等方面应用便携式烯料电池warsitz制作的便携式燃料民池电源替代电池用的燃料电池Ballard的燃料电池膝上电脑

anHpower燃料电池电源公司提供的美国新泽西州高速公路广告牌

anHpower燃料电池电源公司提供的职业电神摄像机

FrauniseiSe发展的峰窝电话用微型燃料电池教学用烯料电池美国木醇研究所提供的教学用木醇燃料电池

ecosoul提供的再生燃料电池教学用具

生物质燃料能源篇8

生物质混燃发电技术是环境友好、高效经济的规模化利用技术,应用前景广阔.总结了现有生物质混燃技术和国内外应用现状,介绍了一种生物质能高效利用的新方式,即在煤粉炉中使用独立喷燃技术燃用生物质成型燃料的方案,该方案将成为未来发展方向.分析了生物质在大容量煤粉炉中混燃发电技术的可行性,讨论了该混燃技术的关键设备选型配置情况和系统要求,指出了该混燃技术要实现规模化推广存在的主要矛盾,并提出了相应的建议.

关键词:

生物质发电;混燃;技术;设备

中图分类号:tK6文献标志码:a

analysisofthebiomasscofiringtechnologyandkeyequipment

forpulverizedcoalpowerboilers

LUwanglin,LiUBingchi

(1.ShanghaipowerequipmentResearchinstitute,Shanghai200240,China;

2.ShanghaielectricpowerGenerationGroup,Shanghai201199,China)

abstract:

thebiomasscofiringpowergenerationisanenvironmentfriendlyandcosteffectivetechnologyforlargescalebiomassutilization.inthispaper,typesandapplicationsituationsofthebiomasscofiringtechnologyaresummarized.anew,promisingcofiringplanforhighefficiencyutilizationofbiomassisrecommended,bywhichpulverizedbiomassfueliscombustedwithseparateburnersonthesamepulverizedcoalfurnace.thefeasibilityofbiomasscofiringforpowergenerationonlargecapacitypulverizedcoalboilersisanalyzed.Keyequipmentselectionsandsystemrequirementsforthetechnologyarediscussed.inaddition,themajorproblemforlargescaleapplicationoftheplanisdiscussedandrelevantsuggestionsareprovided.

Keywords:

biomasspowergeneration;cofiring;technology;equipment

我国目前的生物质燃烧发电以直燃技术为主,装机容量在30mw以下,基本采用振动炉排炉或流化床技术[1].受燃料供应不稳定,供电效率低及基建投资高等因素影响,这些生物质发电厂虽然享受电价补贴,但经营状况仍然不佳.而生物质混燃技术是指将生物质与煤在传统的燃煤锅炉中混合燃烧技术.它能充分利用现有燃煤发电厂的投资和基础设施,是一种低成本、低风险且灵活的可再生能源利用方式.它既可减缓常规电站对传统化石燃料的依赖,又可减少传统污染物(So2,nox,pm等)和温室气体(Co2,CH4等)的排放,具有积极的社会效益和环境效益.

1生物质混燃技术分类和国内外应用现状

从混燃技术上可分为:(1)直接混合燃烧:经预处理的生物质直接输入锅炉系统燃烧;(2)间接混合燃烧:将生物质气化后的燃气输入锅炉系统燃烧;(3)并联燃烧:生物质在与传统锅炉并联的独立锅炉中燃烧,将所产蒸汽供给发电机组.根据混合点位置不同,直接混合燃烧又可分为共磨方案(在磨煤机前混合)、共管方案(在磨煤机后煤粉管道内混合)和独立喷燃方案(在锅炉燃烧室混合).独立喷燃方案将成为未来发展方向[2].从生物质形态上可分为直接破碎混燃和成型颗粒混燃.

欧洲及北美等发达国家从上世纪90年代开始进行了多种混燃技术的示范工程,取得了一系列重要的成果[2]:如丹麦的Studstrupvrket1#机组150mw煤粉炉混燃了热量比20%的秸秆类生物质,约合输出电力30mw;荷兰的Gelderland电厂635mw机组的epon计划中混燃了木材粉末(约占3%的锅炉输入热),合输出电力20mw;英国的Drax电厂6×660mw机组混燃了热量比2%左右的生物质燃料,合输出电力80mw;比利时的Ruien发电厂540mw机组及奥地利的Zeltweg137mw机组尝试了间接气化混燃技术;丹麦的avedore2#的430mw机组尝试了并联燃烧方式.目前在英国10余家燃煤电站(总装机超过20000mw),实现了生物质混燃技术的商业化运行.近年来,国际能源署iea的生物质能协定任务32(task32)对该技术进行了较为深入的总结及调查研究.2007年,世界范围内有152个生物质混燃项目成功投入商业运行,到2009年已增长至228个,机组容量覆盖50~700mw,其中100多个项目分布在欧洲,超过40家分布在北美,还有部分项目分布在澳洲[3].国内生物质混燃技术起步较晚,应用较少.最为典型的为山东十里泉电厂140mw机组混燃秸秆示范项目.它是我国成功商业运行的生物质在煤粉炉中混燃的唯一项目[4].截至目前,国内未见在煤粉炉中使用独立喷燃方案燃用生物质成型燃料的实际工程实例报道.

2生物质混燃技术的关键设备和系统分析

受散状生物质收集半径所限,常规秸秆类生物质无法远距离运输,在一定程度上限制了生物质混燃电站的生物质供应链,而蓬勃发展的生物质成型燃料产业将会使生物质混燃技术进入全新的发展阶段.先进的生物质颗粒成型燃料的加工能耗约为70kwh·t-1[5],约仅占其热值的2%左右.由于成型后燃料密度大(800~1400kg·m-3),且水分低(

2.1生物质成型燃料的储存运输处理系统配置要求

入厂原料采用生物质成型颗粒燃料的混燃技术,一般要求颗粒粒径在10mm左右.此模式能克服传统生物质易堵塞特性.欧洲实践经验表明,生物质颗粒可存放于封闭式料场,通过刮板机上料;也可在电厂内存放于大型筒仓之中,通过皮带输运.为了释放长期存储可能产生的热量,筒仓通常需要设置螺旋给料、斗提等自循环系统,并配有可燃气体浓度监测装置及爆破门,以进一步提高安全性.由于生物质成型燃料的加工过程已经完成了纤维破碎,因此可经仓储、输送过程后直接进入后续的制粉工艺.

2.2粉碎设备

生物质混燃共磨方案使用电站原有的磨煤机制粉系统磨制生物质燃料有一定的局限性,运行期间需要关注磨煤机电流、石子煤量、出口风温等特性指标,需严格控制较低的混燃比例,以免造成生物质燃料阻塞磨煤机,引起磨煤机故障.另外,需要严格关注送粉管道挥发分浓度,避免出现爆燃事故.该系统设备简单,但可靠性稍差.

共管及独立喷燃方案需要单独配置生物质粉碎设备.经国内外调研,粉碎终点粒度控制在3mm以下较佳[1],可在约1000℃的炉膛内充分燃烬.目前主要有两种类型设备可实现规模化应用.

(1)锤片粉碎机(Hammermill)

如图1所示,此类设备非常适合粉碎处理秸秆、木材等生物质类物料,技术成熟可靠[6].通常为卧式结构,锤片在机内高速飞转,将物料锤碎至需要的过筛尺寸.国内主要应用于饲料及食品行业,国产设备单机最大生产能力约5~10t·h-1.近期,随着生物质成型燃料加工行业的兴起,也有个别厂家能够设计生产能力20t·h-1以上的产品,但目前尚无实际运行业绩支撑.国外设备经验较丰富,如瑞典BRUKS公司的最大型号单机额定功率500kw,配有470块锤片,转子直径1600mm,锤片末端线速度达78m·s-1,滤网面积可达8m2,设备价格高达300万元.

图1锤片粉碎机

Fig.1

Hammermill

(2)雷蒙磨粉机(Raymondmill)

如图2所示,此类设备历史悠久,在国内外矿产品粉体加工领域应用广泛[7].该设备为立式结构,工作原理为:旋转磨辊在离心力作用下紧滚压在磨环上,将物料碾压破碎成粉;内置旋转铲刀防止物料堆积;磨内通风把成粉的物料吹起,达不到粒度要求的物料被分析机阻挡后重回到磨腔继续研磨;达到粒度要求的物料则可通过旋转分析机后进旋风分离器分离收集.国内一些制造厂对传统技术进行升级,成品粒度更小,比功耗更低,但在生物质领域的适应性尚不明确.国内设备供应商维科重工曾配合笔者单位进行了生物质成型颗粒燃料的试磨试验,可以预期185kw最大型号设备单机生产能力达20~40t·h-1,成品粒度在0.5mm以下.

图2雷蒙磨粉机

Fig.2

Raymondmill

2.3燃烧器要求及气力输送配置

生物质燃料收到基含有约70%的挥发分,极易点燃及燃烬.国外一些公司开发了先进复杂的生物质专用燃烧器,但在笔者调研时发现十里泉电厂混燃示范项目实践中丹麦进口燃烧器的故障率较高,电厂已将其改造为简单的钢管燃烧器,且运行效果佳.燃烧系统的关键是将一次风量与燃料量相匹配,经初步计算四角切圆煤粉炉中独立喷燃方案,配10t·h-1的生物质燃烧器推荐配一次风量为4000nm3·h-1.合理地选择一次风速,并将其作为输送介质将生物质粉末吹送入燃烧器时宜选择稀相压送式装置,这在气力输送行业有丰富的经验,在此不再赘述[8].

2.4混燃对锅炉受热面的影响

碱金属氯化物(KCl等)的低温沉积腐蚀问题一直是困扰生物质直燃领域的一个技术难点,直接燃烧产生KCl等物质在含Cr合金钢受热面上发生沉积而导致严重的氯腐蚀问题.碱金属氯化物的高温腐蚀,直接限制了热力工质参数的进一步提高,导致目前生物质直燃电站的热电转换效率偏低.但在混燃技术领域,实验室及现场测试均表明,燃煤中含量较高的S元素及al,Si,Fe类灰成分,将会使K等碱金属形成高熔点化合物,Cl元素则以超低浓度气相HCl的形式随烟气排放,因此混燃时的腐蚀速率比直燃技术低很多数量级[9].控制混燃热量比在15%以下(质量比

2.5环境影响分析

生物质低灰低硫高挥发分的特性,宜与燃煤形成互补效应.大量研究表明,在传统电站中混燃少量的生物质后,单位供电量下的So2,nox,粉尘等污染物排放强度均可降低,且不会对原配置的环保设备造成负面影响,特别适宜在一些受污染物排放总量减排政策制约的电站中推广使用.值得关注的是,对于某些秸秆类生物质内的高碱金属,燃烧烟气可能有促使钒基SCR催化剂中毒的风险[10],尚需进一步研究其机理后,对不同生物质的混燃比进行限制.

由于生物质内C元素在自然界中是循环利用的,同直燃技术一样,混燃技术中由生物质燃烧产生的Co2可不视为温室气体排放.年消耗约15万t生物质(收到基碳含量按40%计)的混燃技术项目,可因少用煤炭而折算的Co2减排50万t以上.如果未来实施全球碳排放交易,由此产生的收益将达到1亿元人民币数量级(参考欧洲目前碳排放交易经验,每吨Co2的减排补贴为25欧元)[11].

2.6混燃比计量与检测设备

混燃比是衡量混燃电厂供电中的可再生能源份额的重要指标.混燃比计量可分为两种方式:

(1)燃料侧计量:实际应用中,绿色电力份额可转化成生物质混燃热量比考虑,可由入厂原料汽车衡装置,或者皮带及给料机上设置的重力式传感器计量混燃的生物质重量,之后再综合入炉煤重量及生物质与煤的热值实验室分析数据转换取得.但对多种生物质燃料的取样分析过程繁琐,数据精度不高,且过程中存在大量的人为因素,有以虚假信息换取巨额绿电补贴的可能性.

(2)烟气侧计量:其原理同考古领域常见的14C断代法基本相同,已经拓展至环境监测领域[12-13].C元素中放射性同位素14C的半衰期为5730a,其化学性质与常见的12C相同,且大气环境及生物质燃料中的14C/12C比例基本稳定在10-12数量级.由于化石燃料形成年代距今达上亿年之久,基本检测不到14C,因此可通过测量混燃锅炉排烟中的14C/12C比例精确计量电站的混燃比率(生物基的百分含量).目前的先进加速器质谱amS技术测量同位素比值的灵敏度可达10-15至10-16,可对混燃比作出非常准确的判断.欧美多国已经制定了针对燃料的生物基份额的检测标准,如aStmD6866、Cen15591/15747等,并在积极开发14C同位素同步在线监测技术.我国尚未开展此方面的研究工作.

3当前面临的主要矛盾及建议

生物质直燃发电的单位造价在万元·kw-1数量级,而混燃改造的投资低得多,采用国产设备的混燃系统投资仅在百元·kw-1数量级,且混燃技术的燃料热电转化效率明显优于直燃技术,是一种生物质能利用的有效方式.

生物质混燃在发电技术层面的问题已经明晰落实,但受国内监管体系制约,电网公司很难核实混燃电站实际运行中的生物质消耗量,可再生能源补贴量因此很难确定.混燃计量检测技术已经成为绿电价格补贴政策无法拓展到生物质混燃领域的主要瓶颈因素,严重制约了经济性较好的混燃技术的规模化应用.

按照2006年颁布的《可再生能源发电价格和费用分摊管理试行办法》中有关“发电消耗热量中常规能源超过20%的混燃发电项目,视同常规能源发电项目,执行当地燃煤电厂的标杆电价,不享受补贴电价”的规定,也就是说生物质在燃料比例中要大于80%才能享受补贴,而目前的混燃比例一般在20%以下,所以生物质混燃项目并不能享有与直燃电厂等效的电价补贴[14].从目前市场现状来看,单位热值的生物质燃料价格仍高于对应的煤价,如无电价补贴等刺激性政策,火力发电厂更加愿意燃用煤,这是目前我国生物质混燃技术无法规模推广应用的一个主要原因.

建议尽快开发监测生物质使用量的客观评价体系和烟气侧14C同步在线检测技术,政策上尽快完善燃料侧监管体系和制度,引领生物质产业健康发展.

参考文献:

[1]张明,袁益超,刘聿拯.生物质直接燃烧技术的发展研究[J].能源研究与信息,2005,21(1):15-20.

[2]雅克·范鲁,耶普·克佩耶.生物质燃烧与混合燃烧技术手册[m].田宜水,姚向君,译.北京:化学工业出版社,2008.

[3]almanSoURF,ZUwaLaJ.anevaluationofbiomasscofiringineurope[J].BiomassandBioenergy,2010,34(5):620-629.

[4]谢方磊.十里泉发电厂140mw机组秸秆发电技术应用研究[J].山东电力技术,2006(2):65-68.

[5]肖宏儒,宋卫东,钟成义,等.生物质成型燃料加工技术与装备的研究[J].农业工程技术·新能源产业,2009(10):16-23.

[6]祖宇,郝玲,董良杰,等.我国秸秆粉碎机的研究现状与展望[J].安徽农业科学,2012,40(3):1753-1756.

[7]刘佳欣.雷蒙磨粉机:历史与未来发展趋势展望[J].中国粉体工业,2011(1):4-6.

[8]李诗久,周晓君.气力输送理论与应用[m].北京:机械工业出版社,1992.

[9]LooSV,KoppeJanJ.thehandbookofbiomasscombustionandcofiring[m].London:earthscan,2010.

[10]BaXteRL,KoppeJanJ.Biomasscoalcocombustionopportunityforaffordablerenewableenergy[J].Fuel,2005,84(10):1295-1302.

[11]李定凯.对芬兰和英国生物质煤混燃发电情况的考察[J].电力技术,2010,19(2):2-7.

[12]刘卫,位楠楠,王广华,等.碳同位素比技术定量估算城市大气Co2的来源[J].环境科学,2012,33(4):1041-1048.

[13]奚娴婷,丁杏芳,付东坡,等.用一年生植物研究大气14C分布与化石源Co2排放[J].科学通报,2011,56(13):1026-1031.

[14]胡润青,秦世平,樊京春,等.生物质混燃发电政策研究[J].可再生能源,2008,30(5):22-25.

收稿日期:2012-10-14

生物质燃料能源篇9

[关键词]生物质发电新能源

中图分类号:tK6文献标识码:a文章编号:1009-914X(2014)17-0374-01

2013年以来,我国北方多个城市频繁出现雾霾天气,严重的空气污染给我国“高污染、高能耗、高排放”的工业发展模式敲响了警钟。同时,随着国家能源政策的调整,“煤改气”工程不断实施,导致天然气需求量激增,供需缺口随之扩大。要减少污染物,特别是污染气体的排放,就必须改变以煤为主的能源结构,尽量减少煤炭、石油等化石能源的使用,降低对外依存度,大力发展国内可再生清洁能源刻不容缓。

中国作为一个农业大国,生物质资源十分丰富,各种农作物每年产生秸秆6亿多吨,其中可以作为能源使用的约4亿吨,全国林木总生物量约190亿吨,可获得量为9亿吨,可作为能源利用的总量约为3亿吨。因此,发展生物质发电厂在我国是十分有必要的。

1,生物质发电厂的主要流程

生物质发电厂是利用生物质燃料的化学能产出电能的工厂。在锅炉中,燃料的化学能转变为蒸汽的热能,在汽轮机中,蒸汽的热能转变为轮子旋转的机械能,在发电机中机械能转变为电能。炉、机、电是生物质发电厂中的主要设备,亦称三大主机。辅助三大主机的设备称为辅助设备简称辅机。主机与辅机及其相连的管道、线路等称为系统。燃料燃烧所需要的热空气由送风机送入锅炉的空气预热器中加热,预热后的热空气,经过风道一部分送入料仓作干燥以及送料粉,另一部分直接引至燃烧器进入炉膛。燃烧生成的高温烟气,在引风机的作用下先沿着锅炉的烟道依次流过炉膛,水冷壁管,过热器,省煤器,空气预热器,同时逐步将烟气的热能传给工质以及空气,自身变成低温烟气,经除尘器净化后在排入大气。

经过以上流程,就完了燃料的输送和燃烧、蒸汽的生成燃物的处理及排出。由锅炉过热气出来的主蒸汽经过主蒸汽管道进入汽轮机膨胀做功,冲转汽轮机,从而带动发电机发电。从汽轮机排出的乏汽排入凝汽器,在此被凝结冷却成水,此凝结水称为主凝结水。主凝结水通过凝结水泵送入低压加热器,有汽轮机抽出部分蒸汽后再进入除氧器,在其中通过继续加热除去溶于水中的各种气体。经化学车间处理后的补给水与主凝结水汇于除氧器的水箱,成为锅炉的给水,再经过给水泵升压后送往高压加热器,汽轮机高压部分抽出一定的蒸汽加热,然后送入锅炉,从而完成一个热力循环。循环水泵将冷却水送往凝结器,这就形成循环冷却水系统。经过以上流程,就完成了蒸汽的热能转换为机械能,电能,以及锅炉给水供应的过程。因此生物质发电厂是由炉,机,电三大部分和各自相应的辅助设备及系统组成的复杂的能源转换的动力厂。

2.生物质发电厂主要的发电形式

2.1生物质直接燃烧发电

直接燃烧发电是将生物质在锅炉中直接燃烧,生产蒸汽带动蒸汽轮机及发电机发电。生物质直接燃烧发电的关键技术包括生物质原料预处理、锅炉防腐、锅炉的原料适用性及燃料效率、蒸汽轮机效率等技术。

生物质燃料和传统能源相比的主要差别为:

2.1.1含碳量较少。生物质燃料中含碳量最高的也仅50%左右,相当于生成年代较少的褐煤的含碳量。特别是固定碳的含量,明显地比煤炭少。因此,生物质燃料热值较低。

2.1.2含氢量稍多,挥发分明显较多。生物质燃料中的碳多数和氢结合成低分子的碳氢化合物,遇一定的温度后热分解而析出挥发分。所以,生物质燃料易被引燃,燃烧初期,析出量较大,在空气和温度不足的情况下易产生镶黑边的火焰。

2.1.3含氧量多。生物质燃料含氧量明显地多于煤炭,使得生物质燃料热值低,但易于引燃。在燃烧时,可相对地减少供给空气量。

2.1.4密度小。生物质燃料的密度明显地较煤炭低,质地比较疏松,特别是农作物秸秆和畜禽粪便。这样使得这类燃料易于燃烧和燃尽,灰烬中残留的碳量较燃用煤炭者少。

2.1.5含硫量低。大部分生物质燃料含硫量少于0.02%,燃烧时不必设置气体脱硫装置,降低了成本,有利于环境保护。

2.2生物质型煤发电技术

生物质还可以与煤混合成为生物质型煤,然后可以作为燃料进行发电,称为生物质混合燃烧发电技术。生物质型煤是指破碎成一定粒度和干燥到一定程度的煤及可燃生物质按一定比例掺混,加入少量固硫剂,利用生物质中的木质素、纤维素、半纤维素等与煤粘接性的差异压制而成。生物质在其中既起粘接作用又起助燃作用。生物质型煤虽然具有优良的燃烧性能和环保节能效果,但在国内尚处于实验室研究与工业试生产阶段,尚未形成规模产业,技术经济因素阻碍了它的工业化发展应用。

生物质型煤的有以下几个优点:生物质型煤的混合燃烧技术由于大部分生物质燃料的含水量较高,且组分复杂,因此很难使燃用生物质的锅炉以较低的成本达到与常规锅炉相比的效率。然而,实践表明,采用生物质型煤的混合燃烧技术,既可以达到经济上的合理性,又可以降低锅炉排放物的浓度。

这是因为生物质的含氮量比煤少,且生物质燃料中的水分使燃烧过程冷却,减少了氮氧化合物的热形成。混合燃烧会对燃烧稳定性、给料及制粉系统产生影响,可通过调整燃烧器和组料系统满足要求。

2.3气化发电

生物质气化发电技术是指生物质在气化炉中转化为气体燃料,经净化后直接进入燃气机中燃烧发电或者直接进入燃料电池发电。气化发电的关键技术之一是燃气净化,气化出来的燃气都含有一定的杂质,包括灰分、焦炭和焦油等,需经过净化系统把杂质除去,以保证发电设备的正常运行。

生物质气化发电可通过三种途径实现:生物质气化产生燃气作为燃料直接进入燃气锅炉生产蒸汽,再驱动蒸汽轮机发电;也可将净化后的燃气送给燃气轮机燃烧发电;还可以将净化后的燃气送入内燃机直接发电。在发电和投资规模上,它们分别对应于大规模、中等规模和小规模的发电。

在商业上最为成功的生物质气化内燃发电技术,由于具有装机容量小、布置灵活、投资少、结构紧凑、技术可靠、运行费用低廉、经济效益显著、操作维护简单和对燃气质量要求较低等特点,而得到广泛的推广与应用。

2.4沼气发电

沼气发电是随着沼气综合利用技术的不断发展而出现的一项沼气利用技术,其主要原理是利用工农业或城镇生活中的大量有机废弃物经厌氧发酵处理产生的沼气驱动发电机组发电。用于沼气发电的设备主要为内燃机,一般由柴油机组或者天然气机组改造而成。

3.生物质发电中存在的问题

3.1生物质原料收集问题

3.1.1规模收集体系尚未形成,收集率太低。由于收集时间短、收集手段落后、收集成本高,秸秆的收集率不足30%,大部分被农民在田里直接烧掉。这也造成了环境污染。

3.1.2物质资源的运输成本较高。发电厂的燃料收集半径对其经济性有较大影响。收集半径越大,运输费用越高,电厂的燃料成本也相应增大,利润也就越低。而秸秆及稻壳等比重、体积大,加上沿途的罚款导致运输成本居高不下。

3.1.3由于北方地区秸秆等原料有季节性特点,需要很好的存贮条件,这直接加大了企业成本。再加上近来人工成本不断上涨,政府补贴发放也不是很及时,这些都影响到生物质发电公司的运营。此外,基建投资大(是同容量燃煤电厂投资的3倍)、设备不成熟、改造费用多等,都直接造成了以山东京能为代表的生物质发电公司的长期亏损。

3.2生物质发电技术急需提高

在目前的技术条件下,发电成本过高是生物质发电项目的‘瓶颈’。完全依靠政府补贴无法让行业走出困境,只有相关技术的提高,才能让生物质发电迎来转机。由于生物质发电技术产业发展叫缓慢,规模较小,相对于国内的火电、燃气发电等大型机组来讲,生物质发电属于“小之又小”的小字辈。这种原因造成了对市场和技术都了解的技术人员较少的现状,与此同时,每年都有一部分人逃离这个行业。在专业技术人员往业外流出的同时,新兴力量的又无法及时的补充。新生力量的进入也是难题。

3.3政府扶持力度需要加大

生物质燃料能源篇10

关键词生物质固体燃料;烟叶;烘烤;现状;前景;云南景谷

中图分类号S572;S216文献标识码a文章编号1007-5739(2017)05-0243-02

abstractthebiomasssolidfuelisanewhighefficienceandcleanfuel.itsutilizationstatusintobaccoflue-curingofJingguCountywasintroduced.theapplicationprospectofbiomasssolidfuelwasanalyzed,andinviewoftheexistingproblems,countermeasureswereproposedforfurtherdevelopment.

Keywordsbiomasssolidfuel;tobaccoleaf;curing;status;prospect;JingguYunnan

生物质固化燃料是将作物秸秆、稻壳、木屑等农林废弃物粉碎后送入成型器械中,在外力作用下压缩成需要的形状,然后作为燃料直接燃烧,也可进一步加工形成生物炭[1]。生物质固体燃料的主要形状有块状、棒状或者颗粒状等[2]。生物质固体燃料具有体积小、容重大、贮运方便,易于实现产业化生产和大规模使用;热效率高;使用方便,对现有燃烧设备包括锅炉、炉灶等经简单改造即可使用;容易点火;燃烧时无有害气体,不污染环境;工艺和设备简单,易于加工和销售;属可再生能源,原料取之不尽,用之不竭等特点[1,3]。

1景谷县烟叶烘烤燃料使用情况

景谷县位于云南省普洱市中部偏西,地处东经100°02′~101°07′、北纬22°49′~23°52′,总面积7550km2,人均占有土地2.67hm2,人口密度38人/km2。有热区面积48.8万hm2,占总面积的64.6%,北回归线从县城附近通过,总地势由北向南倾斜,最高海拔2920m,最低海拔600m,典型的南亚热带地区。由于生态环境良好、土地资源丰富、光热水气条件优越,适合烤烟种植,烟叶清香型风格特征较明显,具有香气绵长、透发、明快,留香时间较长,饱满丰富感较好,烟气较为柔和等特点,具有较高的使用价值,深受省内外卷烟工业企业的喜爱。目前,烤烟已成为景谷县重要的农业经济作物之一,成为财政收入的重要来源和烟农脱贫致富的重要途径。2016年景谷县烟叶种植面积4546.67hm2,收购烟叶1.075万t,全县烟叶烘烤燃料以煤炭为主,按照1kg干烟叶耗煤量1.5~2.0kg[4]计算,景谷县2016年的烟叶烘烤用煤达到16125~21500t,在烟叶烘烤中大量使用燃烧煤炭释放出的烟尘、So2、noX、Hg、F等对大气环境造成污染[5]。

2生物质固体燃料应用现状

2.1生物质固化成型设备研发现状

生物质固化成型技术根据不同加工工艺可以分为热成型工艺、常温成型工艺、碳化成型工艺等几种类型;根据成型压缩机工作原理不同,可将固化成型技术分为螺旋挤压成型、活塞冲压成型和环模滚压技术[6]。我国在生物质固化成型设备上也进行了较多的研究,王青宇等[7]o计了斜盘柱塞式生物质燃料成型机,可以完成连续出料,为生物质颗粒成型提供了一种新思路。张喜瑞等[8]设计了星轮式内外锥辊固体燃料平模成型机,整机工作过程中噪音低,经济效益与生态效益明显,为热带地区固体燃料成型机的发展与推广提供了参考。目前,我国生物质固体成型设备的生产和应用已实现商业化,可以满足生物质燃料固化成型加工需求。

2.2生物质固体燃料在烟叶烘烤中的应用现状

20世纪90年代,叶经纬等[9]在烟叶烘烤上研制了生物质气化燃烧炉,使用这种生物质气化燃烧炉能源利用率提高了50%以上,同时优质烟叶的比例也有所提高。张聪辉等[10]研究表明,使用烟杆压块的生物质燃料部分代替煤炭,可以满足烟叶烘烤的需求,并且烘烤成本比使用煤炭更低。徐成龙等[11]通过对比不同能源类型密集烤房在烘烤成本、经济效益及烤房温度控制方面的烘烤效果,认为使用生物质燃料的燃烧机烤房改造方便、空气污染小、节能环保,是最具推广价值的烤房。

3应用前景分析

景谷县为云南省第二大林业县,全县林地总面积为595862.4hm2,活立木蓄积48324350.0m3,每年森林采伐量约1537300.0m3;全县农作物平均种植面积40385.9hm2,粮食平均产量为467425.2t,具备开发生物质燃料的潜力。路飞等[12]研究表明,景谷县生物质理论资源量高达1355647.3t,资源优势较为明显,可以加工成生物质固体燃料,满足全县烟叶烘烤需要。2014年,普洱市申报的国家绿色经济实验示范区获得国家发改委批复,为普洱市的发展提供了巨大的机遇,目前全市已开展多个生物质能源项目[13]。景谷县在烟叶烘烤中,创新烟叶烘烤模式,推广使用生物质固体燃料,降低烟叶烘烤能耗,减少主要污染物的排放,改善环境质量,符合普洱“生态立市,绿色发展”的发展需求。

4存在的问题

4.1认识不到位

目前,烟叶烘烤主要以燃煤作为原料,烘烤设备较为成熟且烘烤工艺较为完善;使用生物质固体燃料,可降低烟叶烘烤污染、维护农村生态环境、促进烟叶烘烤可持续发展等优势,但尚未引起广泛关注。

4.2配套不完善,投入成本高

开发生物质固体燃料前期投入高,不确定因素较多,风险较大,收益难以控制。目前,景谷县尚无生物质固体燃料加工企业,生物质固体燃料产业配套不完善,燃料使用成本高。将传统烤房改造成生物质燃料烤房需对原有设备进行改造更换,短期内难以大量推广。

4.3缺乏政策支持

生物质固体燃料在烟叶烘烤中具有良好的社会效益,但政府、烟草行业对生物质固体燃料的生产、传统烤房的改造等未制定明确的扶持措施和奖励办法,没有形成加工使用生物质固体燃料的长效机制。

5对策

5.1加强宣传力度,树立可持续发展理念

大力宣传使用生物质固体燃料在节能减排、农林废弃物循环利用、减工降本、提质增效方面的积极作用,让全社会都充分认识到使用生物质固体燃料所具有的良好的经济效益、社会效益和生态效益,为全面推进使用生物质固体燃料营造良好的舆论氛围。

5.2开发利用生物质固体燃料,提高绿色生态烘烤能力

景谷县林产工业较为发达,农林废弃物资源丰富,目前国内生物质固体成型燃料技术和设备已较为成熟,可就地规划建设生物质固体燃料生产基地,就地消化农林废弃物,保护环境卫生,实现绿色烘烤。

5.3加大政策和Y金扶持,调动参与积极性

在生物质固体燃料生产、废弃物回收、烤房设备改造利用等方面出台相应的扶持和补贴政策,提高社会和烟农参与使用生物质固体燃料的积极性和主动性。

6参考文献

[1]王庆和,孙勇.我国生物质燃料固化成型设备研究现状[J].农机化研究,2011(3):211-214.

[2]李泉临,秦大东.秸秆固化成型燃料开发利用初探[J].可再生能源,2008(5):116-118.

[3]邱凌,甘雪峰.生物质能利用现状与固化技术应用前景[J].实用能源,1990(3):21-23.

[4]王卫锋,陈江华,宋朝鹏,等.密集烤房研究进展[J].中国烟草科学,2005,26(3):12-14.

[5]严金英,郑重,于国峰,等.燃煤烟气多污染物一体化控制技术研究进展[J].热力发电,2011,29(8):9-13.

[6]周冯,罗向东,秦国辉,等.浅谈生物质燃料因化成型技术[J].应用能源技术,2016(8):54-55.

[7]王青宇,蓝保桢,俞洋,等.斜盘柱塞式生物质燃料成型机的设计[J].木材加工机械,2014(3):48-50.

[8]张喜瑞,甘声豹,李粤,等.星轮式内外锥辊固体燃料平模成型机研制与实验[J].农业工程学报,2014,30(22):11-19.

[9]叶经纬,江淑琴,高大勇.生物质能在烤烟生产中的应用技术[J].新能源,1991,13(6):35-39.

[10]张聪辉,赵宇,苏家恩,等.清洁能源部分代替煤炭在密集烤房中应用技术研究[J].安徽农业科学,2015,43(4):304-305.

[11]徐成龙,苏家恩,张聪辉,等.不同能源类型密集烤房烘烤效果对比研究[J].安徽农业学,2015,43(2):264-266.