首页范文集成电路工程研究方向十篇集成电路工程研究方向十篇

集成电路工程研究方向十篇

发布时间:2024-04-25 19:09:14

集成电路工程研究方向篇1

关键词:微电子;课程设计;教学体系;改革研究

中图分类号:G642.0文献标志码:a文章编号:1674-9324(2016)51-0083-02

一、改革研究背景

微电子课程设计是微电子等专业本科学生必修的一门专业实验课,是理论性和实践性都非常强的一门课程[1-4]。微电子课程设计涉及了集成电路设计、半导体物理、半导体器件、工艺及材料等多个专业方面。笔者经过多年的教学与实践,总结分析后发现如下两点不足:

1.课程内容主要集中在电路方面,忽略了对微电子工艺及器件方面的教学与考核。对于微电子专业的本科生而言,该实验应该重点包括两部分内容――微电子工艺与器件、集成电路设计。其中,微电子工艺与器件主要包括微电子工艺模拟、微电子器件模拟和memS器件模拟三个模块,相关软件有Sentaurusprocess、taurusmeDiCi、anSYS等。学生掌握完成各种半导体器件的工艺方案设计、工艺参数优化、直流特性分析、交流特性分析、频率特性分析和简单门电路的器件级模拟,加深学生对专业知识的理解和把握,培养设计创新能力[5]。

2.在电路方面,现有的教学内容过多偏重于模拟部分。课程应该加强数字集成电路的讲解。传统的集成电路主要分为数字集成电路和模拟集成电路两部分,主要软件有Cadence、actelDesigner、aDS等设计软件。通过eDa软件,实现不同层次和复杂度的模拟、数字集成电路设计实验。完整的电路实验可以切实提高学生的实践能力,增强就业竞争力。

二、改革研究目标和思路

本文研究目标是针对微电子等专业的本科生,依托南京邮电大学电子科学与工程实验教学中心良好的软硬件环境,改革微电子课程设计课程内容和方法,形成一套完整的课程内容,涵盖从微电子工艺器件,到集成电路设计。要求学生掌握半导体材料特性测试技术、微电子技术工艺参数测试分析技术和微电子器件设计与参数提取技g,能够熟练使用集成电路eDa工具软件,独立完成基本电路设计。改革对加深学生对微电子专业知识的系统理解和掌握,培养设计创新能力,提高就业竞争力有着良好的推动作用[6]。

改革主要思路是将课程内容分成两部分,即微电子器件的设计及模型参数的提取、集成电路设计,根据团队中各个老师的研究方向,安排专人进行课程内容建设,设计出符合本科生知识背景的专业实验。特别针对器件级和电路级的衔接,制定出可行的实验内容。本课程要求学生先修完大学物理实验,半导体物理,半导体器件,微电子学概论,模拟电子技术,数字集成电路设计,微电子制造技术和计算机辅助设计等理论课程后,再进行本课程的学习。

三、改革研究内容

为了紧跟当今科学技术的飞速发展,进一步加强微电子专业学生的综合基础知识和专业素养,了解集成电路的整个设计流程,本改革全面系统地进行了涉及从微电子工艺、器件、模型、iC设计等整个流程。旨在培养学生运用Sentaurus,iCCap,Candece,Synopsys等eDa软件进行微电子工艺,器件模型以及iC集成电路设计,熟悉从工艺,器件至电路的整个设计流程,能进行工艺级,器件级和电路级的设计工作[7]。改革内容主要包括如下两部分:

1.微电子器件的设计及模型参数的提取。利用Sentaurus和iCCap等仿真软件,进行集成电路工艺和器件的设计与模拟,然后对于建立的器件结构进行相关模型参数的提取。具体包括:①器件结构的实现;②器件特性的表征;③器件模型参数的提取。

2.集成电路设计。①模拟集成电路模块包括了从最基本的单管放大器到具有较为完整功能的集成电路芯片的设计内容,借助于实验内容的推进,学生可以实现从电路设计、电路仿真、版图设计、版图验证、芯片测试的模拟集成电路设计流程。②数字集成电路模块可以完成包括数字集成电路前端和后端实验内容,学生可以完成从系统定义、RtL综合、时序分析、可测性设计到版图实现的完整数字集成电路设计流程[8]。并且配备了先进的集成电路测试系统,做到虚拟仿真与实际硬件仿真相结合,进行复杂系统功能的验证。

四、改革研究意义

1.加强学生对整个集成电路设计流程的掌握,充实南京邮电大学微电子专业面向“卓越工程师”培养的实践教学体系的建设,提高学生们的实践操作能力,加深对理论知识的理解和掌握。

2.重构优化现有的微电子专业设计课程安排,针对当今先进集成电路设计,形成涉及从微电子底端(工艺级和器件级)至顶端(电路级和系统级)的一整套课程设计。

3.培养学生对微电子相关的eDa软件的学习与使用,并形成一批具有理论基础、能提高学生eDa使用技能的创新项目,提升学生们的创新意识,培养他们探索新事物的勇气,使他们更加适应新世纪的挑战。

五、总结

改革内容涉及了微电子工艺、器件制作、参数提取以及iC电路设计,这些知识和技能的培养是作为微电子专业学生必备的,同时也是学生后续进入研究生阶段从事微电子相关科学研究的基础;改革中涉及到的各种eDa软件的学习与使用,均是当今先进集成电路设计中正在使用的,这些技能的学习与掌握有助于提高学生们的综合素质,提升他们将来毕业后的就业竞争力,也有助于加快我国的现代化建设,实现“中国梦”。

参考文献:

[1]方玉明,夏晓娟,吉新村,等.微电子专业课程体系结构优化研究[J].教育教学论坛,2014(4):33-35.

[2]姜岩峰,张晓波,杨兵,等.微电子实践教学内容的研究和改革[C].北京高教学会实验室工作研究会2007年学术研讨会论文集,2007:88-89.

[3]李l,方玉明,徐跃,等.微电子专业实验教学改革和探索[J].考试:教研版,2013,(3):19-19.

[4]王莉,梁齐,张广斌.微电子专业课程建设与教学改革的探索[J].中国现代教育装备,2008,(10):92-93.

[5]梁齐,杨明武,刘声雷,张彦,陈士荣,宣晓峰.微电子工艺实验教学模式探索[J].实验室科学,2008,(01):45-46.

[6]毛剑波,易茂祥,张天畅.微电子学专业实验室建设的探索与实践[J].实验室研究与探索,2005,(12):78-79.

[7]杨虹,冯世娟.面向21世纪的微电子技术人才培养――微电子技术专业本科生教学计划的制订[J].重庆邮电学院学报(社会科学版),2004,(S1):24-25.

[8]周金运,胡义华,吴福根.电子科学技术本科专业课程设置改革的依据与实践[J].广东工业大学学报(社会科学版),2003,(02):66-67.

ResearchontheReformoftheteachingSystemofmicroelectronicsCourseDesign

CaiZhi-kuang,wanGZi-xuan,HUShan-wen

(CollegeofelectronicScienceandengineering,nanjingUniversityofpostsandtelecommunications,nanjing,Jiangsu210023,China)

集成电路工程研究方向篇2

80年代无锡曾作为国家南方微电子工业基地的中心,承担了我国第一次对微电子产业制定国家规划并进行大量投资的“908”工程,组建了微电子科研中心,并建设了国内第一条6英寸CmoS生产线。“908”工程的实施,为国家培养锻炼了大批集成电路专业人才,探索了我国微电子工业发展的道路,同时也为无锡集成电路产业的发展积累了雄厚的产业基础。

进入21世纪以来,无锡抓住国际半导体产业转移的历史机遇,通过积极实施开放战略,在无锡高新区集聚了以海力士、英飞凌、东芝半导体等为代表的一大批具有国际当代水平的集成电路晶圆制造、封测企业。通过积极支持原有企业发展,使华润微电子、江苏长电等企业成长为民族半导体工业的代表。通过鼓励企业创新创业,诞生了美新半导体、力芯微电子、芯朋微电子等一大批新兴微电子企业。无锡依托原有的雄厚基础,通过10年的发展与探索,已成为产业链完整、企业集聚度高、自主创新与市场竞争能力强、充满发展活力的国家重要的微电子产业基地城市,集成电路产业已经成为无锡最具代表性和最具区域竞争优势的新兴产业。

目前无锡有各类集成电路企业160多家,涉及集成电路设计、晶圆制造、封装、测试、系统应用、配套材料与装备制造以及分立器件研发生产等领域,从业人员5万余人,形成了较为完整的产业链。2009年,无锡集成电路产业实现营业收入301亿元。根据中国半导体行业协会公布的2009年国内10大企业排名,无锡海力士半导体公司、华润微电子(控股)、江苏新潮科技集团公司、无锡华润矽科微电子公司、英飞凌科技分别进入全国10大集成电路制造、封装和设计企业行列。其中海力士半导体公司列10大集成电路制造企业第1名;华润微电子(控股)列10大集成电路制造企业第3名;江苏新潮科技集团公司列国内10大集成电路封装企业第3名,也是目前国内规模最大、水平最高的内资封装企业;无锡华润矽科微电子公司列国内十大集成电路设计企业第6名;英飞凌科技名列国内10大集成电路封测企业第10位。

1.1集成电路设计产业

无锡目前有集成电路设计企业100余家,2009年销售收入37亿元。无锡集成电路设计企业以民营资本自主创业为主,产品开发以消费类电子产品芯片为主,采用短平快的发展模式,在市场化经营中迅速发展,并形成了无锡设计业的特色。近年来,以智能存储芯片、卫星导航、memS传感芯片、RF芯片、多媒体SoC芯片等为代表的一批高端产品相继研发成功,海外留学归国人员创办的设计公司已达到40余家,有力的带动了无锡集成电路设计领域的研发创新能力。目前无锡的集成电路设计企业中,主要代表企业有无锡华润矽科、中科芯、美新半导体、海威半导体、硅动力微电子、力芯微电子、中微爱芯等。其中美新半导体公司实现了在美国naSDaQ上市,融资1亿美元,是无锡第二家实现上市的集成电路企业。

1.2集成电路晶圆制造业

目前,无锡市有各类晶圆生产线21条,其中12英寸线2条、8英寸线2条、6英寸线5条、4-5英寸线11条、3英寸线生产1条,合计月产能合计达到47.5万片,工艺类型包括CmomS、BiCmoS和双极,技术水平CmoS工艺达到了66-90nm、BiCmoS工艺0.6μm和双极电路工艺0.8μm,2009年晶圆制造业销售收入180亿元。无锡是国内最大的12英寸存储器芯片制造和6英寸晶圆代工基地。代表性企业有:海力士半导体、华润上华、华润晶芯、开益禧、中微晶圆等。分立器件制造企业包括东光微电子、新潮科技、华润华晶、固电半导体、红光微电子、海天微电子公司等。

1.3集成电路封装测试配套及支撑业

2009年无锡市集成电路封装测试产业营业收入90亿元。代表性企业包括长电科技、华润安盛、海力士、英飞凌科技、东芝半导体、矽格微电子、中微腾芯、泰思特等。其中江苏长电科技公司是我国最大的内资封测企业,拥有自主知识产权的FBp、QFn等中高级芯片封装技术,具有较强的竞争优势。海力士投资3.5亿美金、月封装7500万只集成电路芯片的封装项目也已投产。英飞凌、海力士、东芝半导体、强茂科技等外资封测企业落户无锡增强了封测环节的整体实力。近年来封测企业通过强化技术创新,在芯片级封装、层叠封装和微型化封装等方面取得了突破,缩短了与国际先进水平的差距。

无锡集成电路支撑配套产业主要集中在小尺寸单晶硅棒、引线框架、塑封材料、工夹具、特种气体、电子化学品和测试、晶圆减薄、清洗设备等,主要的代表企业有华友微电子、润玛电子材料、启华电子、高新气体、高顶科技、华晶利达、乐东微电子等。

2集成电路产业公共环境

2.1专业化园区建设

经过多年的发展,无锡集成电路产业形成“一基地二分区”为主的空间布局。在新区、滨湖、江阴等集成电路企业集聚区建立了多个的集成电路专业园,通过园区的骨干企业作龙头,带动和盘活区域产业,增强园区产业链上下游企业间的互动配合,不断补充、丰富、完善和加强产业链建设,形成具有竞争实力的产业集群。

新区超大规模集成电路产业园总体规划3平方公里,总投资60亿元。通过建设集iC制造业区、设计孵化区、设计产业总部经济区、设计产业化配套区组成的主体功能区以及以生活、商务服务区为辅助于一体的高标准、国际化的集成电路专业科技园区,作为承接以iC设计业为主体、制造、封测、系统方案及支撑业为配套的企业创新创业的主要载体。支持跨国企业全球研发中心、技术支持中心、产品系统方案及应用、上下游企业交流互动、规模企业独立研发配套设施、物流、仓储、产品营销网点、国际企业代表处等的建设,组建“类iDm”式解决方案平台,提供完善一站式服务。

中电科技集成电路设计园位于太湖湖畔,面积为300亩,总投资20亿元,该项目的建设将分为研发办公区、公共服务区、景观绿化带和商业休闲带,并充分考虑研发工作条件及人员生活要求等因素,为高端人才提供优质的工作、生活环境。

2.2专业人才支撑体系

无锡历来是中国集成电路产业发展重镇,为国家微电子产业的发展输送了大量的专业人才,有华晶为背景的集成电路人才遍布海内外。中国工程院院士、“核高基”重大专项专家、教授、博导、海归博士、本土企业家等高级专业技术人才正在为无锡的集成电路产业发展作出积极贡献。目前,无锡集成电路产业从业人员5万余人,其中中国工程院院士1人、集成电路工程师8000余人、集成电路设计工程师2000余人、留学归国博士硕士200余人。建有东南大学无锡分校、北京大学无锡软件与微电子学院、江南大学、江苏省职业技术学院、无锡电子信息技术学院等与集成电路专业人才培养相关的院校,形成了多层次、全方位的专业人才支撑体系。

随着无锡市“530”人才引进计划和无锡市“”的实施,已经吸引200余位海外高端iC人才到无锡创业和就业,而且未来还将有更多的海内外高端人才在无锡入户创业。随着产业环境的不断优化、产业规模的扩大、技术水平的提升,无锡集成电路人才资源也更加集聚,人才输出型的状态正在向以输入型为主的人才流通体系转变。

2.3政策环境体系

无锡市委、市政府高度重视集成电路产业的发展,把建设“太湖硅谷”列为全市打造“三谷三基地”的首位。根据规划,“十二五”末无锡市集成电路产业产值力争达到1000亿,成为支撑全市实现可持续发展的关键性产业。无锡将继续以重大项目实施和提升创新能力为着力点,加强规划引导、优化资源配置、实施鼓励政策,努力形成超常规发展态势。通过制定“530”人才引进计划、无锡市“123”计划和后“530”计划、无锡市软件与集成电路专项、无锡新区关于推动科技创新创业发展的实施意见等鼓励无锡集成电路产业加快发展的各项政策措施,切实推进重大项目建设,支持骨干企业做大作强,不断增强行业创新与持续发展能力,形成区域竞争优势。特别是加强芯片设计领域的创新能力建设,力求在芯片架构、开发模式等方面实现创新,取得一批代表性研究和应用成果,培育形成高端芯片的开发能力。以国家集成电路设计产业化基地为重点,发挥载体建设的作用,不断推进无锡集成电路产业的发展。

2.4投融资环境

建设国际化的iC投融资体系,进一步引进和集聚专业的iC投资基金及管理公司,成立新区创投集团iC投资专业子公司,主要投资和支持共性及基础平台建设、重点产学研项目的引进和核心产品研究开发,支持目前的以消费类为主的产品向中高端产品、SoC产品方向发展。鼓励企业有效利用国内外资本市场的融资工具,使企业从依赖国家优惠政策和银行贷款的间接融资为主转向主要依靠国内外金融市场的间接融资为主,推动产业持续发展。以无锡优质企业资源,通过全球产业资本引进世界一流的研发团队,提升设计水准,推动本地企业兼并重组、强强联合进入资本市场做大做强,培育一批规模企业群。重点推进设计企业和民营制造类企业上市融资。优化科技经费投入方向,区科技发展基金向提供开放服务的科技基础设施条件与共性技术研发平台、重大科技成果转化及产业化和非赢利性骨干科技中介服务机构等重点倾斜;提高高新技术风险投资公司和担保公司的资金使用效率,择优支持技术含量高、市场前景广的孵化项目的创业投资;积极扶持风险投资机构的设立,积极引进国际资本在我区设立分支机构,开展风险投资业务和融资担保业务。目前,关注无锡集成电路产业的创投基金包括高德创投、亚太基金、专业iC股权投资基金、中宇创投、友利投资、miRaeaSSet、韩华证券、乾龙创投等。

2.5公共服务平台建设和科技支撑机构

无锡在建设国家集成电路设计产业基地的过程中,形成了一系列的公共服务平台和科研支撑机构。国家集成电路设计无锡产业化基地公共平台,包括eDa设计、公共iC测试、快速封装、可靠性试验、ip资源中心和FpGa创新验证中心等系列化专业平台,形成了对集成电路研发设计各主要环节的有效支撑。无锡集成电路产业拥有众多研究所、工程中心和研发中心,包括部级专用集成电路研究机构―中国电子科技集团第58研究所、国家集成电路(无锡)设计中心(依托中科芯集成电路)、江苏省专用集成电路(aSiC)工程技术研发中心、江苏省集成电路测试公共技术平台(省级)、无锡新区集成电路设计企业孵化器(省级)等公共技术支持机构和江苏长电集成电路封装研发中心、射频芯片工程研发设计中心(无锡硅动力微电子公司与东南大学合作建立)、memS研发中心(美新半导体公司与北京大学合作创办)和芯通短距离高速红外线数据传输研究中心(无锡硅动力微电子股份有限公司和日本日深株式会社联合成立)、江苏省模拟集成电路ip核工程技术研究中心(无锡晶源微)、江苏省数字功率放大集成电路工程技术研究中心(无锡力芯微电子)、江苏省数字音视频芯片开发工程技术研究中心(无锡硅动力股份)。

3发展方向与趋势

3.1无序竞争向有组织规模化发展

无锡作为国家重要的微电子产业基地,尽管起步早、产业体系较为完整,但处于核心和主导地位的设计业产业相对薄弱,对产业的牵引作用不明显。无锡集成电路设计企业大都从华晶集团发展而来,借鉴了华晶产品类型和市场营销渠道,通常通过个人投资,企业规模小,产品跨度小,市场渠道较为单一,形成多家企业产品互相雷同、价格无序。随着技术、产品、市场的发展以及时间的历练,企业家的经营意识开始发生变化,由一家骨干企业牵头,若干家企业联合起来,采用共同开发、渠道共享的模式,实现产品开发的系列化,既有效避免内部竞争,又能形成具有竞争力的品牌产品,促进企业的规模化发展。如力芯微电子采用投资若干家中小规模企业,开发电源管理系列产品,既借用了国内外开发团队的技术力量,增强了企业产品开发能力,又扩充了产品系列,使企业产品打进国际知名企业,探索了一条高效的企业发展模式。目前,无锡超亿元的集成电路设计企业已经达到8家,设计企业正走向规模化发展之路。

3.2产品低端雷同向自主创新发展

之前,无锡集成电路设计企业的大都采用反向设计方法,开发面向消费类电子iC产品,产品工艺集中在CmoS电路(0.35μm)以上,双极电路(0.8μm)以上,产品技术水平低,知识产权保护困难,遏制了企业的快速发展。随着国际集成电路产品市场变化、知识产权保护力度的加大以及海内外高端集成电路人才在无锡的集聚,给无锡企业带来了新产品、新技术,企业开始开发具有自主知识产权的产品,提升技术档次,形成企业核心竞争力。无锡集成电路企业的产品技术水平开始明显升级,0.18um成为主流工艺,先进工艺达到65nm。产品类型涵盖CpU、DSp、汽车电子、卫星电子、memS传感芯片、射频芯片等高端产品,进入了产品技术水平快速提升阶段。

集成电路工程研究方向篇3

【关键词】集成电路超低功耗技术研究

集成电路在不断的发展过程中,其所具备的信息处理能力越来越高,然而集成电路板的功耗也在不断增大,这就使得电子设备设计者在性能和功耗的选择过程中往往只能进行折中选择,这些都制约了电子元件的纳米化发展,制约了集成电路的超大规模发展。这种愤怒格式的超低功耗技术只是通过对技术的制约来实现低功耗,因此超低功耗技术成为了一种制约集成电路发展的技术难题。

一、现有的集成电路的超低功耗可测性技术

在集成电路的发展进程中,超低功耗集成电路的实现是一项综合工程,需要在材料、电路构造及系统的功耗之间进行选择。可测性技术所测试出的数据影响制约着集成电路的发展。但随着集成电路在不断发展过程中趋于形成超大规模集成电路结构,这就导致在现有的测试技术中,超大规模的集成电路板容易过热而导致电路板损坏。现有的超低功耗可测性技术并不能满足对现有芯片的测试,并不能有效地通过对日益复杂的集成电路进行测试,因此在对超低功耗集成电路技术进行研究的同时,还要把握现有的集成电路的超低功耗的可测性技术不断革新,以摆脱现有测试技术对集成电路板发展的制约。

二、超低功耗集成电路研究发展方向

2.1现有的超低功耗集成电路技术

在实际的操作过程,超低功耗集成电路是一项难以实现的综合性较强的工程,需要考虑到集成电路的材料耗能与散热,还要考虑到系统之间的耗能,却是往往在性能和功耗之间进行折中的选择。现有的超低功耗集成电路大多是基于CmoS硅基芯片技术,为了实现集成电路的耗能减少,CmoS技术是通过在在整体系统的实现设计,对结构分布进行优化设计、通过对程序管理减少不必要的功耗,通过简化合理地电路结构对CmoS器材、结构空间、工艺技术间进行立体的综合优化折中。在实际的应用工程中,通过多核技术等结构的应用,达到降低电路集成的耗能,但是睡着电子原件的不断更新换代,使得现有的技术并不能达到性价比最优的创收。

2.2高新技术在超低功耗集成电路中的应用

随着电子元件的不断向纳米尺度发展,集成电路板的性能得到了质的飞跃,但是集成电路芯片的耗能也变得日益夸张,因此在集成电路板的底层的逻辑存储器件及相关专利技术、芯片内部的局域之间的相互联通和芯片间整体联汇。通过有效的超低功耗的设计方法学理论,进行合理的热分布模型模拟预测,计算所收集的数据信息,这种操作流程成为超低耗解决方案中的不可或缺的部分。

现在的主要的超低功耗技术有,在集成电路的工作期间采用尽可能低的工作电压,其中芯片的核电压为0.85V,缓存电压0.9V。通过电压的有效控制能够减少电路集成技术所运行期间所造成的热量散发,从而导致芯片过热。对非工作核的实行休眠的栅控功耗技术,减少芯片的运作所需要承受的功。通过动态供电及频率技术对集成电路芯片进行有效的控制节能。为了实现超低功耗集成电路,需要从器材的合理结构、对电路元件材料的选择、空间上的合理分配等多个层次进行努力。通过有效地手段减少芯片在运作过程中所存在的电力损耗,从而降电能功耗在电路总功耗中所占的比例,这样能够将集成电路板的耗能有效地控制。利用高新材料形成有效的多阀值CmoS/功率门控制技术,对动态阀值进行数据监控,可以有效地减少无用的做功,有效地减少器件泄漏电流。通过对多门学科知识的应用实践及高新材料的实际应用,能够有效地进行减少集成电路的功耗。

集成电路工程研究方向篇4

关键词:电子科学与技术;集成电路;课程体系

中图分类号:G642.0文献标志码:a文章编号:1674-9324(2016)01-0063-02

一、引言

集成电路产业是信息技术产业的核心,是支撑经济社会发展和保障国家安全的战略性、基础性和先导性产业。2014年6月,国务院印发《国家集成电路产业发展推进纲要》,凝练了推进集成电路产业发展的四项主要任务,包括着力发展集成电路设计业,加速发展集成电路制造业,提升先进封装测试业发展水平和突破集成电路关键装备和材料[1]。为实现集成电路产业跨越式发展,建立健全集成电路人才培养体系,大力支持微电子学科发展,就显得尤为重要[2,3]。

沈阳工业大学电子科学与技术专业始建于1958年,有着五十多年历史,是我校较早成立的专业之一,也是辽宁省乃至国内较早建立的电子科学与技术专业之一。专业具有先进的教学体系、丰富的教学管理经验以及完善的实验室条件。结合学校特点和专业师资优势,建立了“教学与实践相结合”的专业人才培养模式。在多年的教学和科研工作过程中,立足集成电路应用型人才培养,逐步形成了特色鲜明的专业人才培养体系。

二、培养目标

从2004年末起,学校结合制定《沈阳工业大学“十一五”教育事业发展规划和2020年教育事业发展目标》,学校在全校范围内组织开展了关于治校方略问题的广泛讨论。经过两年时间深入细致的工作,回顾历史,总结经验,确定了沈阳工业大学人才培养定位:以培养具有一定创新精神和竞争意识及较强实践能力的高素质应用型人才。

基于学校人才培养定位,专业的培养目标确定为培养德、智、体、美全面发展,通过学校基础理论教学和实践培养,使学生掌握微电子学、微电子器件与集成电路的基本原理、设计方法和生产工艺,具备电子科学与技术领域工程实践能力和一定的科学研究能力,能在相关企业、科研院所和高等院校从事微电子器件和集成电路研究、设计与开发工作的高素质应用型人才。专业素质毕业基本要求包括6个方面:(1)扎实地掌握电子科学与技术专业相关的自然科学基础知识;(2)系统地掌握电子科学与技术专业的基础理论知识;(3)受到微电子器件制造工艺、封装技术和电子设计自动化工具等方面的专业训练;(4)具有较强的电子科学与技术领域的实验能力、计算机辅助设计和工程实践技能,具备从事微电子器件和集成电路研究、设计和开发的能力;(5)具有良好的文献检索与阅读能力,了解电子科学与技术学科前沿知识与发展趋势;(6)具有一定的自学能力与创新意识。

三、课程建设

从人才培养角度来看,一个专业培养的人才不可能同时满足推进纲要中提到的四方面要求[4,5]。我校电子科学与技术专业以突出学生能力培养为核心,侧重于集成电路设计与制造工艺相关课程教学,依据高等学校电子科学与技术专业课程体系要求,深入研究和探讨集成电路应用型人才的培养规格、知识构成以及能力和素质要求,以适应集成电路技术快速发展的需要,对课程体系和教学内容进行了精心设计和整体优化。对课程内容和特点进行了认真对比分析,研究了各课程之间的联系、分工和衔接,合理安排了课程实验,较好地处理了理论课之间、理论课与实验课之间的关系,突出了学生综合能力的培养。专业十分注重课程建设,通过多年不懈努力和建设积累,微电子器件原理课程获批为辽宁省精品资源共享课,充分表明专业课程教学具有较高的质量。

通过校内评价机制和社会评价机制相结合的方法来实现课程体系合理性评价,校内评价机制主要通过评估学生所掌握的理论知识和实践能力,社会评价机制是定期通过就业分析、毕业生座谈、用人单位调研等情况变化,对课程体系的合理性进行评价。通过以上途径,定期对课程体系进行了精心设计和整体优化,以适应电子科学与技术快速发展的需要。借助于企业工程技术人员参与,增设专业实际工程案例分析与设计,加大课程设计学时比例,与合作企业合理协调生产实习内容,加强学生毕业设计内容与工程实践相结合,突出了学生综合能力的培养。

四、实践教学体系建设

为了加强学生工程实践能力的培养,结合日元贷款项目,组建了一条相对完整的微电子平面工艺线,能够很好地满足教学实验、认识实习、课程设计及毕业设计等实践性教学环节的需要。实验内容安排和实验环境的搭建与社会需求相结合,使学生可以学以致用,激发学生的学习积极性。

我校电子科学与技术专业工程人才培养旨在通过校企双方合作,以市场需求为导向,以完善知识结构、强化实践创新能力和提高综合素质为培养核心,通过不断提升学生的实践能力、优化学生知识结构、强化学生素质,进一步加强我校应用型人才的培养能力。学校与企业之间,形成人才共享、设备共享、技术共享、成果共享。在“四共享”校企合作机制下,实现人才培养过程的“五融合”,即教学场所与工艺场所间的融合、学习过程与工作过程的融合、教师与工程人员的融合、学生与徒弟的融合、学生作业与实际产品的融合。建立一整套的制度体系,从制度层面规范和推进校企合作。如《校企合作教育协议》、《校企共建实训基地协议》、《兼职教师聘任考核办法》、《顶岗实习管理办法》等,从不同角度对校企合作行为进行规范,保证合作双方各自目标的实现。实现学生理论学习在学校,专业知识技能培训在学校,生产实践在企业,安排就业在企业,为企业和社会培养高素质的应用型工程技术人才。

专业先后建立了锦州市圣合科技电子有限责任公司、锦州锦利电器有限公司、徐州奥尼可电气有限公司、昆山晨伊半导体器件厂和扬州扬杰电子科技有限公司这5个稳定的实习、培训基地。实习基地的建立能够培养学生融入企业和社会的能力,让学生通过感受企业气氛,将理论知识和实际相结合。从实践中验证、加深和巩固课堂所学的理论知识并吸收新知识与新技能。学生在企业的实习期间,可以充分了解企业文化特点、集成电路制备工艺流程和岗位素质要求信息等,不仅提高了学生的专业技能,也提高了学生的就业竞争力。

从2010年开始,我们在集成电路专业课程设计中,增加了多项目晶圆(mpw)流片内容,使本科生能够体会集成电路设计流程的全部环节。全部设计工作由本科生完成,包括软件的仿真和芯片的测试工作。芯片流片让学生在设计过程中深刻的理解了所学的理论知识,同时提高了学生对实际项目的操作能力。

积极加强与国际企业合作,共同建立联合实验室。我们已经与mentorGraphics公司建立了辽宁省集成电路及电子系统设计联合实验室。建立的实验室对学生完全开放,学生不仅可以在实验室进行必修课的实验项目学习,还可以在课程设计、毕业设计等实践环节中进行集成电路相关项目的设计。专业教师以自己所承担的横向课题为背景,指导学生积极参与课题研究,以工程设计为主线,培养学生的工程意识、工程素质和工程实践能力。

五、师资培养与建设

专业将高素质、专业化的师资队伍建设始终放在专业办学的首位,树立“专业办学,师资为先”的理念。根据专业建设的需要,以巩固提高现有教师队伍为主,选派青年教师师去国外高校攻读集成电路相关方向的博士学位,了解和掌握集成电路方向或者课程的国际动态和前沿。

为了保证集成电路高级应用型人才的培养质量,我们也一直非常重视教师工程能力的培养,鼓励青年教师积极参加科研项目,并由具有丰富实践经验和工程背景的中老年教师负责青年教师工程能力的培养。据专业教学安排,有计划、分期、分批地向企业选派青年教师,同时学校实行鼓励教师参加生产实践新政策,确保教师队伍稳定。还聘请了集成电路方向具有高级职称的技术人员作兼职教师,以加强学生工程意识和工程能力的培养。

以强化“三个能力”培养为宗旨建设优质实践教学团队。建设一支教师理论教学与实践教学互通,专业实践教师资源共享,校企教学培训资源共享,高水平、高素质、高能力的实践教学团队,保证实践教学质量的稳步提高。

六、结论

专业以国家微电子科学与技术的人才需求为指引,遵循微电子科学的发展规律,通过实践教学来促进理论联系实际,培养学生的科学思维和创新意识,系统掌握半导体集成电路的设计、工艺技术等技能。多年的扎实办学,形成了我校电子科学与技术专业立足集成电路应用型人才培养体系。在学生培养质量提高、学生学习状态提升、社会对毕业生评价等方面取得了显著效果。本专业近四年的就业率超过90%,培养出的很多学生从事集成电路设计、生产和销售工作。通过毕业生质量跟踪调查显示,各用人单位对本专业毕业生的文化素养、创新与实践能力、外语能力、沟通表达能力、团队合作能力等表示非常满意并给予了良好的评价。

参考文献:

[1]国务院.国家集成电路产业发展推进纲要[Z].2014-06-24.

[2]殷树娟,齐臣杰.集成电路设计的本科教学现状及探索[J].中国电力教育,2012,(4):64-65.

[3]刘春娟,王永顺.电子科学与技术专业实验实践教学的探索[J].实验科学与技术,2010,8(4):96-98.

集成电路工程研究方向篇5

[关键词]输电线路杆塔倾斜监测系统 zigbee和GSm技术

一、选题背景及其意义

随着科技进步及工农业的现代化发展,用电量大幅上升,对电网供电安全性、可靠性提出了越来越高的要求。架空高压输电线路是电力系统的动脉,其运行状态直接决定电力系统的安全和效益。目前我国对线路等的检测经验还较少,还没有相应的国家标准。另外随着近年来煤矿的大量开采造成形态各异的地下采空区,引起地面沉降、断裂等一系列工程地质灾害,这些采空塌陷区,大多分布广,延伸远,可造成地表输电线路基础倾斜、开裂、杆塔变形、倾倒,引起绝缘子串和地线线夹迈步,电气安全距离不够等问题,当问题扩大时容易造成倒杆断线,电气距离不够引起跳闸等事故。严重威胁输电线路的安全运行。

本论文设计的输电线路杆塔倾斜监测系统,在杆塔发生异常时,能够及时向管理中心汇报相关数据。该系统对于处在采空区的线路杆塔可以进行全天候的监测,能够及时准确的测量由于地面沉降等原因造成的杆塔倾斜角度,当杆塔顺线路或横线路倾斜角度超过预定报警值时,系统可发出报警信息,使工作人员能够及时处理危情,并且大大的减少了人工的巡视次数,提高了杆塔的安全系数。

二、国内外研究动态

近年来,随着经济的发展和社会的进步,越来越多基于网络化、模块化、智能化的系统应用在电网中。但目前我国电网智能化仅处于刚刚起步的阶段,尤其在运行状态检测环节上,和世界上先进发达国家的技术还有较大的差距。同时铁搭运行状态的稳定,是输电环节中的重中之重,因此应研究一套较为合理的杆塔运行状态监控系统,来保证输电环节的稳定。

目前国内已涉及线路监测系统的研究,例如高压输电线路绝缘子带电检测、杆塔故障在线监测、杆塔倾斜测量等。国外在这方面也有较多的研究。该系统采用移动通信网络作为数据传送媒介,为系统的数据传输提供更加简捷、便利的手段。

三、主要研究内容

本论文主要研究杆塔倾斜测量技术,传输线路周围的温度、湿度、气候检测,无线网络数据远程通讯方面的研究。

本文研究的主要内容如下:1、分析研究了倾角传感器的工作原理、GSm技术的工作原理,制定了监测仪设计的硬件和软件总体流程。2、根据监测仪设计方案,选择了该设计中的主要器件。包括倾角传感器的选择、GSm通信模块的选择、太阳能蓄电池的选择等。充分体现了监测仪设计中低成本和低功耗的要求。3、设计了硬件电路,包括微控制器atmega64a的最小系统、电源电路、通信电路、电压电流转换电路等。4、实现了软件设计,包括系统初始化、a/D信号采集部分程序、按键中断程序等。5、在整体设计中,采取软件和硬件的方式,增强监测仪的抗干扰性和稳定性。6、通过emC电磁兼容实验等验证了监测仪的稳定性和可行性。

四、研究方案及难点

整个系统的工作过程为:数据采集主模块根据监控中心设置好的采样间隔,定期产生数据采集命令发送到ZigBee主节点,然后由ZigBee主节点将数据采集命令广播给其他ZigBee子节点,ZigBee子节点再将数据采集命令发送给自己的数据采集模块,数据采集模块接到命令后,开始进行倾角、绝缘子拉力以及风向、风速、电源电压等数据的采集。

采集完成之后再发送给ZigBee模块,然后通过各ZigBee子节点将采集到的数据以接力的方式传送给ZigBee主节点,ZigBee主节点将各数据采集模块采集到的数据发送给数据采集主模块。最后由数据采集主模块将所有数据通过串口发送给GSm模块,由GSm模块将数据通过移动通信网络发送到监控中心的GSm模块,再通过串口发给pc机后台。最后由pc机完成数据的处理、存储和显示。

该系统的主要模块功能如下:

1.中央处理器。核心微处理器选用atmega64a,它是由atmeL公司推出的一款高性能,低功耗的8位aVR微处理器。最高处理速度可达16mHz,其芯片内部集成了大容量的Flash程序存储区和功能丰富强大的硬件接口电路。先进的RiSC结构,拥有130条指令,大部分指令执行时间为单个时钟周期。

2.定时时钟模块。实时时钟芯片选用philips公司生产的串行日历时钟芯片pCF8583.该芯片供电电压范围宽、功耗小、计时准确。

3.数据采集模块。在输电线路杆塔的运行时,数据采集模块主要进行杆塔倾角数据、绝缘子拉力数据以及风向、风速、气温、湿度,电源电压数据的采集。数据采集模块为分层次设计,有主辅之分,主模块除了在完成上述功能以外,还负责将产生的数据采集命令,以及各个节点数据的打包、处理、发送。

4.ZigBee模块。Zigbee是基于ieee802.15.4标准的低功耗个域网协议。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。

5.GSm模块。GSm模块,是将GSm射频芯片、基带处理芯片、存储器、功放器件等集成在一块线路板上,具有独立的操作系统、GSm射频处理、基带处理并提供标准接口的功能模块。

使用aRm或者单片机通过RS232串口与GSm模块通信,使用标准的at命令来控制GSm模块实现各种无线通信功能,它是基于aRm平台,使用嵌入式系统进行开发。有些GSm模块具有“开放内置平台”功能,可以让客户将自己的程序嵌入到模块内的软件平台中。

6.监控中心。包括GSm接收模块和后台管理软件,主要完成杆塔运行状态的实时显示、数据存储以及对于数据采集模块参数的控制。

7.电源模块。本系统包括太阳能电池板和蓄电池,主要为数据采集模块、ZigBee模块和GSm模块提供电能。

8.设计环境。硬件电路以protel99Se(sp6)为环境进行设计,机械相关的设计以autoCaD2006为环境进行;软件用c语言编写。

本设计中的杆塔倾角监测系统实现了低成本、低功耗,并采取zigbee及GSm无线通信的技术,实现倾角监测仪与杆塔监控中心的通信。

难点预计出现在倾角计算及程序的设计,再有系统的通信链路的安全,可靠;数据库的安全,主要是权限管理和数据备份。

五、预期成果和可能的创新点

文章论述的铁塔倾斜实时监测系统测量精度高、实时性好、运行成本低。该系统在实际运行过程中拥有较强的可靠性、稳定性具备在恶劣的环境下持续正常工作的能力,保证较长的使用寿命;系统进行操作时,无需记忆复杂的工作指令,应具有美观有好的人机界面;工作人员可以远程对系统进行控制、管理、维护,无需人员到现场。系统通过对塔身状态信息的综合在线监测,实现了倾角状态的全记录并起到预警,告警的功能便于提前采取有效措施,确保电网及通信网络的安全运行。从实际运行结果看系统是一种有效的监测铁塔倾斜的系统,有广阔的应用前景。创新点:为了以后对本系统的功能进行扩展,系统预留一些模拟量输入接口;通讯方式的扩展,支持短信息。

参考文献:

[1]刘君华.现代检测技术与测试监测仪设计[m]西安:西安交通大学出版社,2001

集成电路工程研究方向篇6

【关键词】线损;信息采集;四分统计;降损措施

1.引言

“十二五”规划期间,我国电力建设进入蓬勃发展时期,分布式能源接入电网,电网管理实现智能化。线损是电能从发电厂配送到用户过程中各个环节造成的损失,包括不可避免的技术损耗和计量误差、透漏电等造成的管理损耗。线损率是衡量一个区域电网技术经济性的重要指标,能指导电网的设计、规划、生产和管理,如何才能有效的降低线损成为电力工作者的重点研究内容[1-4]。线损四分管理即对配电网进行分压、分台区、分区、分线管理,如图1所示。用电信息采集系统是利用先进的数字通信网络对电能进信息采集分析。

图1线损四分管理示意图

基于国内外研究现状,胡江溢等人基于用电信息采集系统的结构,分析了其建设现状并研究了通信技术、智能费控、安全保护等技术要点,对智能电网中采集系统的发展指明了方向[1];朱彬若等基于时间属性和物理属性对采集系统主站数据进行研究,并对系统结构进行了优化,提高了系统的处理能力[2];孙毅等提出了一种wSn非均匀分簇算法,对线路节点位置的能量进行分析,延长了网络生存时间,负载平衡度良好[3]。本文建立了用电信息采集系统,并以此为基础实现线损的四分管理。首先对线损电量的组成分类、线损率、线损管理流程进行了阐述;随后建立了用电信息采集系统模型,以某供电公司为研究对象,对比其理论线损量和统计线损量;最后给出了区域电网管理降损的措施。为今后电网线损四分统计工作提供了参考。

2.电网线损计量管理

线损是电能从发电厂配送到用户过程中各个环节造成的损失,包括不可避免的可变损耗、固定损耗和管理损耗[4]。线损等于供电量减去售电量,固定损耗主要有变压器铁损、计量表线圈损耗、电晕损耗、介质损耗等;可变损耗有导线损耗和变压器铜损;管理损耗包括用户窃电损失、计量表误差、抄表误差、漏电损耗等[4-5]。可变损耗和固定损耗成为理论线损,管理损耗为管理线损,理论线损和管理线损构成统计线损[6]。

随着计算机技术的发展,用电信息采集系统在线计算线损得到了广泛应用,本文计算线损主要基于均方根电流法,理论线损由式(1)获得[7]:

(1)

式中,L为电路支路个数;m为公变总数;ii为第i个电路电流;ip,i为第i个配变分得的均方根电流;ie,i为第i个配变分得的空载电流;pk,i为第i个配变的短路损耗;pe,i为第i个配变的空载损耗。用电信息采集系统四分线损管理流程图如图2所示。

图2用电信息采集系统四分线损管理流程图

图3采集系统主站系统框架图

3.用电信息采集系统应用

3.1系统架构

信息采集系统由主站、网络、终端三部分组成,实现对用电信息的采集、分析、处理、应用等工作,其系统主站框架图见图3[6]。由图3可知,采集系统主站采用J2ee架构,具有认证、数据库、采集、应用、web、接口等服务器。数据库服务器最为重要,其采用双机控制,数据时刻进行备份,保证系统的安全可靠性。

3.2理论线损计算

利用用电信息采集系统中的网损理论计算软件,对某电力公司的代表日线损进行研究,在该日系统潮流分布正常,无检修进行。计算10kV配电网的线损和变压器损耗,400V低压台区的线损和计量表损耗。该配电网有10kV线路67条,变压器容量583.7mVa,线路全长378.04km,公用变压器容量128.4mVa,专用变压器容量455.3mVa。400V低压网络共有232个,有功用电630.3mwh,三相电表5140块,单相电表24650块,电表损耗估计值1.164mwh。经采集系统计算,10kV配电网的损耗为0.779%,400V低压网的损耗为2.911%,总损耗电量48.8mwh,综合网损率1.248%。该配电网线损计算结果见表1所示。基于信息采集系统将理论计算值与实际统计值进行分析对比,对比情况见表2所示。

表2理论线损与统计线损对比

指标理论线损率(%)统计线损率(%)

10kV配电网0.7790.36

400V低压网0.4690.541

其它元件00

配电网损1.2480.901

理论计算值与实际统计值相差0.349个百分点,但是由于空载和备用设备并未参加理论计算,且理论值是代表日工况下的,与实际值有一定偏差,计算值属于正常范围。

3.3降损分析

由前文可知,网损主要有线路损耗、变压器损耗、电力元件损耗等,其中线路损耗在低压配电网中占很大比例。因此提出以下几点降损措施:

(1)在保证可靠性的前提下,将配电网低压台区的平衡能力提高,根据供电范围优化布局,合理配置变压器等电力元件,尽可能的缩短输电距离降低线路损失。

(2)单相感应式电表的功耗在1.25w左右,而电子式的功耗仅为0.45w左右。输电网中有数以万计的单相电表,因此在设备改造时应将感应式电表换成电子式电表。

(3)将线路末端的电压及功率因数尽可能提高,尽可能使得变压器三相负荷处于平衡。合理布置变压器数量,降低空载损耗,做好客户端的无功补偿工作。

(4)针对线损率制定线损四分管理办法,对每月、每周、每天的线损率进行统计分析,排除故障,保证计量的准确性。

4.结语

线损率是衡量一个区域电网技术经济性的重要指标,可以指导电网的设计、规划、生产和管理。本文建立了用电信息采集系统模型,并以此为基础实现线损的四分管理。首先对线损电量的组成分类、线损率、线损管理流程进行了阐述;随后建立了用电信息采集系统模型,以某供电公司为研究对象,对其进行理论线损量计算,基于采集系统的同进线损量,进行对比分析;最后给出了区域电网管理降损的措施。为今后电网线损四分统计工作提供了参考。

参考文献

[1]胡江溢,祝恩国,杜新纲等.用电信息采集系统应用现状及发展趋势[J].电力系统自动化,2014,02:131-135.

[2]朱彬若,杜卫华,李蕊.电力用户用电信息采集系统数据分析与处理技术[J].华东电力,2011,10:1682-1686.

[3]孙毅,卢可,唐良瑞.面向用电信息采集的wSn非均匀分簇多跳路由算法[J].电力系统保护与控制,2013,10:52-61.

[4]李超英.基于电网智能化的中低压线损管理研究[D].天津:天津大学,2012:3-6.

[5]张敏.基于用电信息采集系统的台区线损管理研究[D].保定:华北电力大学,2012:12-15.

[6]徐凌燕.电网线损模型研究及线损管理系统的开发[D].北京:华北电力大学(北京),2011:23-24.

集成电路工程研究方向篇7

>>“大数据时代”下集团财务数据集中管控的思考大数据与互联网的舆情管控大数据时代集团企业基于云会计的财务共享中心费用管控大数据时代网络谣言参与心理分析与管控策略供电公司大数据集中管控系统的研究与设计大数据时代研究会计信息化风险因素与管控路径基于大数据的员工流失分群管控研究大数据驱动智能实时风险管控基于大数据的电费风险管控平台集团管控应用与探索基于互联网+大数据分析供电服务管控系统的设计与应用大数据风控是企业管控一剂良药大数据时代电信运营商数据管控研究一种分布式大数据的数据安全管控策略研究战略与财务管控型集团全面预算管控重点探讨经济效益与风险管控视角下集团企业资金管控模式建设集团企业组织管控模式的演变与启示集团财务报表分析与财务管控集团管控的模式分析与选择央企集团管控的困境与出路常见问题解答当前所在位置:l.

[3]大数据应用之路.[eB/oL].[2012-08-11].http://www./art/201111/305250.htm.

[4]Bigdata:thenextfrontierforinnovation,competitionandproductivity[eB/oL].[2012-12-09].http:///insights/business_technology/big_data_the_next_frontier_for_innovation.

[5]奉继承.集团管控的it战略与规划[m].北京:中国经济出版社.2010.

作者简介:

集成电路工程研究方向篇8

关键词:集成电路设计;应用型人才;课程改革

中图分类号:G642.0文献标志码:a文章编号:1674-9324(2016)14-0059-02

一、引言

在过去的20多年来,中国教育实现两大历史性跨越。第一是实现了基本普及义务教育,基本扫除青壮年文盲的目标;第二是中国高等教育开始迈入大众化阶段,高教毛入学率达到17%。据《2012年中国大学生就业报告》显示[1],在2011年毕业的大学生中,有近57万人处于失业状态,10多万人选择“啃老”;即使工作一年的人,对工作的满意率也只有47%。2012年,全国普通高校毕业生规模达到680万人,毕业人数再创新高,大学生将面临越来越沉重的就业压力。面对这样的困境,国家相关部分提出了一系列的举措,其中对本科毕业生的培养目标逐渐向应用型人才转变[2-4]。集成电路作为信息产业的基础和核心,是国民经济和社会发展的战略性产业,已成为当前国际竞争的焦点和衡量一个国家或地区现代化程度以及综合国力的重要标志。本文将在对集成电路设计专业特点分析的基础上,以北京信息科技大学集成电路设计专业课程设置为例,介绍面向应用型人才培养目标地集成电路设计本科课程现阶段存在的问题并给出相关可行的改革方案。

二、集成电路设计专业特点

进入本世纪后,我国的集成电路发展迅速,集成电路设计需求剧增。为了适应社会发展的需要,国家开始加大推广集成电路设计相关课程的本科教学工作[5]。经过十年多的发展,集成电路设计专业特色也越来越明显。

首先,集成电路设计专业对学生的专业基础知识要求高。随着工艺的不断进步,集成电路芯片的尺寸不断下降,芯片功能不断增强,功耗越来越低,速度越来越快。但随着器件尺寸的不断下降,组成芯片的最基本单元――“器件”的高阶特性对电路性能的影响越来越大。除了器件基础,电路设计人员同时还需要了解后端电路设计相关的版图、工艺、封装、测试等相关基础知识,而这些流程环环相扣,任何一个环节出现问题,很难想象芯片能正常工作[6]。因此,对于一个合格的电路设计人员,深厚的专业基础知识是必不可少的。

其次,集成电路设计专业需要学生对各种电子设计自动化工具熟悉,实践能力强。随着电子设计自动化工具的不断发展,在电路设计的每一个阶段,电路设计人员可以通过计算机完成电路设计的部分或全部的相关内容。另一方面,电子设计自动化工具的相关比较多,即使是同一家公司的同一种软件的更新速度相当快,集成电路设计工具种类繁多,而且没有统一的标准这对集成电路设计教学增加了很大的难度。

再次,集成电路设计专业的相关教学工作量大。正如前面所介绍,要完成一个电路芯片的设计,需要电路设计人员需要了解从器件基础到电路搭建、电路仿真调试、版图、工艺、封装、测试等相关知识,同时还要通过实验熟悉各种电子设计自动化工具的使用。所有相关内容对集成电路设计专业的教学内容提出了更多的要求,但从现有的情况看,相关专业的课时数目难以改变,所以在有限的课时内如何合理分配教学内容是集成电路设计专业教师重要的工作。

最后,集成电路设计专业对配套的软、硬件平台要求高,投入资金成本高。从现有的情况看,国际上有4大集成电路设计eDa公司,还有很多中、小型eDa公司。每个公司的产品各不相同,即使针对相同的电路芯片,设计自动化工具也各不相同。在硬件方面,软件的安装通常在高性能的服务器上,因此,硬件方面的成本也很高。软硬件方面的成本严重地阻碍了国内很多高等院校的集成电路设计专业发展。

三、集成电路设计专业课程设置及存在的问题

在集成电路设计专业课程设置方面,不同的学校的课程设置各不相同。但总的来说可以分为三类:基础课、专业课和选修课。在三类课程的设置方面,每个学校的定义各不相同,主要是根据本校集成电路设计专业的侧重点不同而有所区别。从国内几大相关院校的课程设置看,基础课主要包括:《固体物理》、《半导体物理》、《晶体管原理》、《模拟电子技术》、《数字电子技术》等;专业课主要包括:《模拟集成电路设计》、《数字集成电路设计》、《信号处理》、《高频电路》等;选修课主要包括:《集成电路eDa》、《集成电路芯片测试》、《集成电路版图设计》、《集成电路封装》等。

从现有的课程设置可以看到,针对国家应用型人才培养目标,现有的课程设置还存在很多问题,具体地说:

首先,课程设置偏于理论课程,实践内容缺乏,不符合应用型人才的培养目标要求。从上面的课程设置情况可以看到,各大高校在课程安排方面都侧重于理论教学,缺乏实践内容。比如:《模拟集成电路设计》课程总学时为48,实验学时为8,远远低于实际需求,难以在短短8学时内完成模拟集成电路设计相关实践活动。虽然集成电路设计专业对于专业基础知识要求宽广,但并不深厚,因此,浪费太多时间在每个设计流程相关的理论知识的阐述是不合适的,也不符合我国大学生的现状。

其次,实践活动不能与集成电路设计业界实际需要相结合,实践内容没有可行性。从目前各大高等院校的课程内容方面调研结果表明,对于本科教学情况,90%以上的实践内容都是教师根据理论教学内容设置一些简单可行的小电路,学生按照实验指导书的内容按相关步骤操作即可完成整个实验过程。实验内容简单、重复,与集成电路设计业界实际需要完全不相关,这对学生以后的就业、择业意义不大。

最后,没有突现学校的专业特色,不适于当今社会集成电路设计业界对本科毕业生的要求。但在竞争激烈的电子信息产业界,如果想要毕业生择业或者就业时有更强的竞争力,各大高校需要有自己的专业特色,但现在各个高校的现状仍然是“全面发展,没有特色”。这对于地方高校的集成电路设计专业毕业生是一个劣势。

四、面向应用型人才培养目标的课程改革

针对上面阐述的相关问题,本文给出了面向应用型人才培养目标的集成电路设计专业课程改革的几点方案,具体地说:

首先,削减理论课的课时,加大实验内容比例。理论课时远远高于实践课时是当今大学生教育的一个重要弊端,这也直接导致了大学生动手能力差、实践活动参与度低、分工合作意识薄弱。而在不增加授课学时的前提下要改变这一现象,唯一的方法就是改变授课内容,适当削减理论课的课时,加大实验内容的比例。这样既能满足国家对于本科毕业生应用型人才的培养目标,也符合创新型本科生的特点。

其次,积极推进“校企联合办学”,让学生更早接触业界发展,指导择业、就业。正如前面介绍,现在各大高等院校的教学内容理论性太强,学生在大学四年学习到的相关知识与实际应用相脱离。这也造成很大一部分本科毕业生在入职后的第一年难以进入工作状态,工作效率差,影响后面学生的就业、择业。如果能在学生在校期间,比如大学三年级或更早,推进“校企联合办学”,使学生更早了解到业界真正工作模式以及业界关注的重点,这对于学生后续进入工作非常有利,同时也能推进学校科研工作。

最后,实现优质教学资源的共享。这里的教学资源,除了包括授课笔记、教案、教学讲义外还包括高水平教师。虽然现在高等教育研究相关机构也开设了一些青年教师课程培训相关内容,但真正取得的成效还相对比较小。另外,针对集成电路设计专业来说,跟随业界发展的相关知识更新较快,配套的软硬件代价较高,如果能实现高校软硬件教学资源的共享,尤其是高水平高校扶持低水平高校,这将更有利于提高毕业生的整体水平。

五、结论

本文详细分析面对应用型人才培养目标的集成电路设计专业的特点,并在对国内相关院校集成电路设计专业调研基础上给出集成电路设计专业的基础课、专业课、选修课课程的内容以及教学方式情况,指出面向应用型人才培养目标现在课程设置方面存在的问题。同时,文章给出了在当今大学生招生人数剧增情况下,如何合理安排集成电路设计专业课程的方案从而实现应用型培养目标。

参考文献:

[1]王兴芬.面向应用型人才培养的实践教学内涵建设及其管理机制改革[J].实验技术与管理,2012,(29):117-119.

[2]殷树娟,齐臣杰.集成电路设计的本科教学现状及探索[J].中国电力教育,2012,(4):64-66.

[3]侯燕芝,王军,等.实验教学过程规范化管理的研究与实践[J].实验室研究与探索,2012,(10):124-126.

[4]张宏勋,和荫林,等.高校实验室教学文化变革的阻力及其化解[J].实验室研究与探索,2012,(10):162-165.

集成电路工程研究方向篇9

abstract:iCtechnologyisthemaincoursesofelectronicScienceandtechnologymajorinShenyangUniversityofChemicaltechnology,coursecontents,whichcontentisextensive,rangeofknowledgeiswide,applicationiswide,andcontentupdatesfast.thispaper,combiningwiththecurrentrequirementsofundergraduateteaching,exploredtheteachingmethodandcoursecontentandsoonandachievedgoodresults.

关键词:电子科学与技术专业;集成电路工艺学课程;教学改革

Keywords:electronicscienceandtechnologymajor;iCtechnologycourses;teachingreform

中图分类号:G42文献标识码:a文章编号:1006-4311(2011)13-0223-01

1信息时代需要优秀的电子科学与技术专业的人才

电子科学与技术专业具有多学科渗透、应用性强、主要服务于iC行业等鲜明特点。能够从事电子科学与技术领域的研究、设计、开发、应用和管理的高级人才。目前国内开设电子科学与技术专业的学校有:天津大学、电子科技大学、西安电子科技大学、北京理工大学、北京航空航天大学等几十所学校。通过本课程的学习应使学生对集成电路工艺学中的基本概念、基本技术和基本器件有比较全面、系统的认识,培养学生分析和解决工程技术问题的能力,为进一步学习相关专业课打下基础。主要研究氧化、扩散和离子注入等相关技术。使学生掌握光刻、刻蚀和蒸发溅射等的基本概念及基本技术,对集成电路工艺学有比较全面、系统的认识和了解。

2我校电子科学与技术专业本科人才的培养目标

该专业毕业生应获得以下几方面的知识和能力:①掌握信息科学、电子学和计算机科学学科的基本理论、基本知识;②微电子技术系统及其决策支持与安全防护系统的分析与设计方法和研制技术;③具有使用计算机和仪器设备解决工程问题的能力;④具有创新意识和独立获取新知识的能力。

3电子科学与技术专业集成电路工艺学课程教学改革探讨

3.1集成电路工艺学的内涵集成电路工艺学是利用研磨、抛光、氧化、扩散、光刻、外延生长、蒸发等一整套平面工艺技术,在一小块硅单晶片上同时制造晶体管、二极管、电阻和电容等元件,并且采用一定的隔离技术使各元件在电性能上互相隔离。然后在硅片表面蒸发铝层并用光刻技术刻蚀成互连图形,使元件按需要互连成完整电路,制成半导体单片集成电路。随着单片集成电路从小、中规模发展到大规模、超大规模集成电路,平面工艺技术也随之得到发展。例如,扩散掺杂改用离子注入掺杂工艺;紫外光常规光刻发展到一整套微细加工技术,如采用电子束曝光制版、等离子刻蚀、反应离子铣等;外延生长又采用超高真空分子束外延技术;采用化学汽相淀积工艺制造多晶硅、二氧化硅和表面钝化薄膜;互连细线除采用铝或金以外,还采用了化学汽相淀积重掺杂多晶硅薄膜和贵金属硅化物薄膜,以及多层互连结构等工艺。

3.2电子科学与技术专业集成电路工艺学课程教学改革措施

3.2.1教学内容①授课体系和重点;课程根据电子科学与技术专业方向的学生培养要求,着重从硅工艺的角度出发,理论方面力求清楚易懂,阐述微电子学基础、半导体物理基础、光电现象和光电效应,重点介绍常用工艺原理、特性和参数。为了更好的运用硅基器件,对各类器件的电路也作了详细的分析,同时给出实际应用系统举例。②所讲授的知识要紧跟科学发展前沿;集成电路工艺学教科书对于迅猛发展的集成电路工艺学来说,既是基本的,又是滞后的,教师授课时如果按教材讲解,往往会带来知识陈旧、讲课形式单一、内容枯燥乏味的后果,造成学生学习积极性下降。因此在教学过程中删掉一些陈旧过时的内容,及时补充和更新教学内容,增添一些现代集成电路工艺学的前沿知识,特别是体现本学科专业特色的一些前沿知识,从而紧跟集成电路工艺学的前沿,给学生提供充分的科学探索和求真的空间。③注重课程与专业应用领域间的联系;专业课可理解为某一学科的基础课程,是通向学科广阔领域的桥梁。它的基本功能是引导学生明确学科专业发展方向,使其在日后的学习工作中能自如的在该学科专业的深度和广度上钻研、拓展。因此在讲授课程各部分内容时,电子科学专业的应用领域紧密相连。例如针对硅片生产应用领域,在课程讲授过程中可适当加入集成电路制造技术的应用热点以及在iC行业中的应用等方面的内容,使该专业的学生了解所学课程内容在该领域的应用、研究热点及发展前景。

3.2.2教学方法①利用现代教育技术的各种多媒体技术和网络技术进行教学,例如投影、幻灯、录像等多媒体资料,充分发挥其信息容量大、方便快捷、形象直观、教学效率高的优势。这样使用这些教学工具,既使教师能方便清楚地讲授专业课中的各种图片资料内容,又省去了教师课堂现场作图的时间,在有限的时间内能讲授更多的内容,提高了讲课的信息量。因此教师要积极制作教学课件、开发利用网络上丰富的信息资源,下载适合学生阅读的科研论文,并推荐给学生参考。这是开拓学生视野,培养学生自学意识和科研意识的有效方法。②采用讲座与讲授相结合的教学方法。在进行基础理论教学的适当时机,安排集成电路方面科技知识的专题讲座,穿插现代集成电路科技知识,使学生既强化基础理论训练,又熟悉了解较多的现代集成电路科技知识,激发学习兴趣,培养学生的科研意识。

3.2.3教学目标在集成电路课程改革中,把教学目标从以科学知识教育为主转变为实现科学教育和人文教育的融合,培养敢于创新、善于思索、具有团队协作精神的21世纪新型人才。长期以来,我国大学文、理、工分校,存在着科学教育与人文教育的脱离,造成理工科生的人文文化知识和文科生的科学常识知之甚少。针对电子科学与技术的工科学生,应在进行科学知识教育的同时注重培养其人文精神,例如在讲解集成电路课程中的科学概念、原理、方法时可提到发现科学规律的动机,提到科学家如何通过艰苦的努力甚至牺牲生命取得创新,以及这些成果的应用对社会可能造成的影响等,从而使之潜移默化地对学生进行自然的而不是勉强的人文教育。

参考文献:

集成电路工程研究方向篇10

关键词:超大规模集成电路;系统级;寄存器传输级;逻辑级;晶体管级;可靠性评估

中图分类号:tp311文献标识码:a文章编号:1009-3044(2012)01-0204-03

anoverviewoftheReliabilityevaluationofVeryLargeScaleintegratedCircuits

ZHUXu-guang

(DepartmentofComputerScienceandtechnology,tongjiUniversity,Shanghai201804,China)

abstract:tomeetthehighperformancerequirementsofSoC(SystemonChips),thedensityandcomplexityofVLSiisincreasingcontin?ually,andthesehavenegativeimpactsoncircuitreliability.Hence,accuratereliabilityestimationofVLSihasbecomeanimportantissue.thispaperhasintroducedtheproblemsandtheexistingreliabilitytechniquesofreliabilityestimationbasedontheearlyachievements.Fi?nally,thispaperdescribedthefurtherwork,thedeficiencyanddifficultiesofthecurrentworkcombinedwiththeauthor’sworking.

Keywords:VLSi;systemlevel;registertransferlevel;logiclevel;transistorlevel;reliabilityevaluation

超大规模集成(verylarge-scaleintegrated,VLSi)电路及其相关技术是现代电子信息技术迅速发展的关键因素和核心技术,对国防建设、国民经济和科学技术的发展起着巨大的推动作用。人们对信息技术产品(主要指数字计算系统)的依赖程度越来越大,这直接牵涉到人们的生活质量,甚至关系到人类生命、财产的安全问题。因此,当前人们在应用这些产品的同时,必然会提出更高的要求,即除了传统意义上的要求和标准以外,还提出了更重要的评价体系---系统所提供服务的“可靠性”标准问题[1]。

目前,军事电子、航空航天、工业、交通、通讯,乃至普通人的个人生活都对VLSi电路和系统提出了越来越高的可靠性要求,而同时随着集成电路技术的发展,尤其是深亚微米、纳米工艺的应用、电路规模不断扩大,特征尺寸不断缩小,电路密度不断提高,给芯片的可靠性带来了严峻的挑战。因此,对VLSi电路的高可靠性研究变得越来越重要。可靠性技术研究一般包括可靠性设计与模拟、可靠性试验与评估、工艺过程质量控制、失效机理与模型研究,以及失效分析技术等五个主要的技术方向。

传统上对VLSi电路可靠性的研究主要是针对制造过程的,内容包括成品率计算模型、缺陷分布模型、软(硬)故障影响的可靠性模型、电路的串扰与延迟、电路可靠性与成品率的关系等。在集成电路制造过程中,由于各种工艺扰动会不可避免地在硅片上引入缺陷,从而引起集成电路结构的局部畸变。这些局部畸变可能改变电路的拓扑结构,导致集成电路成品率下降。因此,缺陷的几何模型、粒径分布是影响成品率的重要因素之一。另外,在深亚微米和纳米工艺下,软故障的干扰越来越严重,相关的研究包括软故障影响下导线可靠性模型、故障关键面积计算等。已有的研究表明可靠性和成品率存在正相关关系,其正相关性需要考虑线宽、线间距等版图的几何信息和与工艺相关的缺陷粒径分布等参数。面向制造过程的可靠性研究准确性好但存在较大的计算开销。

于是在制造出集成电路产品后,通过筛选和可靠性试验估计其可靠性,并采用加速寿命试验确定产品的平均寿命。如果发现可靠性不满足要求,就要从设计和工艺角度进行分析,并加以改进。长期以来,评价器件质量和可靠性的方法分为三类[2]:(1)批接收抽样检验,检验该批产品是否满足产品规范要求;(2)可靠性寿命试验,评价产品的可靠性水平;(3)从现场收集并积累使用寿命数据,评价相应产品的使用质量和可靠性。

近年来,VLSi电路集成度不断提高,同时可靠性水平也迅速提高,传统的评价方法暴露出了各种各样的问题,如批接收抽样检验方法因分辩能力有限而不能有效区分高水平产品质量之间的区别;可靠性寿命试验方法因要求的样本数太多而导致成本上升;基于现场数据收集的方法因存在“滞后性”而不能及时对产品质量进行评价等,这就促使人们开始研究新的评估技术。

当前对可靠性研究主要的数学模型有[3]:可靠性框图模型、故障树模型、马尔科夫模型、petri网模型、状态空间分解模型及概率模型等。

虽然这些模型较好的解决了一系列的问题,但是在对VLSi电路进行分析时,由于没有涉及到电路的具体逻辑结构,也就是说只是粗略的分析了一下电路的可靠性,这是不够准确的,当然也是具有现实参考价值的。

在下一步工作中,作者将深入到电路的具体逻辑层和现实的环境当中,对其进行更加深入和具体的研究,以便给出更加准确和更有价值的计算值。

1不同层面可靠性评估

对数字VLSi电路进行模型化或设计描述,按照抽象级别由高到低大致可以分为行为级、寄存器传输级、逻辑级、电路级、晶体管级。目前,可靠性评估方法的研究主要集中在电路逻辑级以上,通过故障注入或模拟的方法分析信号可靠性。

一般而言,电路可靠性分析基于抽象级别越高,时间开销越少,能用于大规模电路或者处理器系统的评估,但是由于远离物理实现,准确性低。反之,分析的抽象级别越低,必然考虑低层实现中的缺陷分布,环境因素等参数,越接近芯片制造的真实过程,所以更加准确,但是存在一个普遍问题是耗时大,无法用于复杂电路。

1.1行为级可靠性评估

在高层测试可以及早地发现设计错误,便于及时修改,减少设计成本,缩短研发时间。当前集成电路高层测试所面临的最大困难是:缺少能准确描述高层故障实际类型的故障模型,并且模型的评估方式也较单一。

目前,国内外学者对高层故障模型的研究已做了许多有益的工作,如:模仿软件测试的覆盖方法(包括状态覆盖、语句覆盖、分枝覆盖等)、基于电路结构提出的故障模型等。这些故障模型在处理某类电路时都表现出了一定的优势,但是并非对所有类型电路都有效。这也表明,当前高层故障模型依然不够成熟;高层故障模型与门级网表中的Sa(固定型故障模型)故障之间的关系依然不清晰;模型的评估也有待于改进。现存的故障模型中,比较成功的有:传输故障模型[4],变量固定型模型[5]。对模型的评估,常用的方法是覆盖率评估,一般分为两步,如图1所示:(1)依提出的故障模型作测试生成,得到测试向量;(2)将测试向量在门级网表作模拟,计算其对Sa故障的覆盖率。另外还有一些是考虑电路的可观测性的测试生成与评估方法[6]。总之,这些评估方法,都是基于对Sa故障覆盖率的计算。

图1两个高层故障模型评估

1.2逻辑级可靠性评估

正如上文所述,评估方法所对应的电路抽象级别越高,其准确性则越低。而同一抽象层次上不同类型的方法相比,解析方法最为省时。逻辑级的解析模型方法相对准确,且易于理解和操作。

由于逻辑电路对差错具有一定的屏蔽作用,作为瞬时故障的软差错并非一定会导致电路锁存错误内容或者输出错误结果,因此,建立概率模型来评估逻辑级电路可靠性是合理的。

逻辑级概率模型通过计算发生在电路逻辑门或线节点差错传播到原始输出的概率来衡量其失效率,考虑了电路的拓扑结构和传播路径信息,并与组成电路的各个门类型和连接方式有关,如图2所示,目前典型的方法包括:计算单个输出节点软差错率的tp方法[7],通过计算差错传播率表征电路软差错率的epp方法[8],以及通过概率转移矩阵模型评测整个电路可靠度的ptm方法[9]。其中,tp方法和epp方法只计算部分电路的失效率,而ptm可以度量整个电路的可靠性。但是,未经优化的tp、ptm算法的计算时空开销较大,只能适用于小规模电路。基于ptm方法具有良好的完备性,并且模型简单而准确,为解决其因时空复杂度大而不能直接用于大规模电路的问题,文献[2]对ptm方法进行了深入的研究,并提出了合理的改进方法。

1.3晶体管级可靠性评估

超深亚微米下的CmoS电路可靠性是由moSFet的微观失效机制来决定的,对CmoS电路可靠性的评估和改善应该在失效模式分析和对基本物理失效机制正确理解的基础上进行。因此在对电路可靠性进行评估时,需要进行下面四方面的工作:

1)对moSFet栅氧层退化机制进行建模。moSFet中热载流子注入效应、负偏置温度不稳定性、栅氧可靠性的经时击穿效应这三种失效机制是影响到超大规模CmoS电路长期工作可靠性的最主要因素。它们都是由氧化层陷阱电荷作用或界面态积累作用而导致了栅氧层作用的退化而造成器件特性的退化。

2)对产生局部氧化层损伤的moSFet器件行为进行建模。moSFet中的HCi和nBti效应都会对器件的主要i-V特性参数产和程度不同的影响。

3)在电路长时工作条件下,对器件栅氧层退化进行仿真。正常的电路中器件一般都是处在aC应力条件下,要对电路的可靠性进行准确的评价,必须先要能够对aC应力下moSFet长时间工作后的器件性能进行评价。

4)评价处于失效应力作用下的整体电路的性能。

电路可靠性研究的一个重要部分集中在器件级设计[10],其包括:对失效机制更好的理解和建模;圆片级测试结构的革新以改善可靠性控制;阻止器件退化的结构的研究。其中,器件退化对电路性能的影响受到了更多的关注。在设计阶段预测电路可靠性的方法有着非常大的价值。随着可靠性仿真技术的逐渐成熟,芯片的可靠性设计概念被提上了日程。对最终的电路可靠性评价在iC设计阶段完成,大大降低了芯片设计风险。图3为晶体管级电路的结构。

图3晶体管级电路结构图

从以上可知,可以从不同层面来对VLSi电路进行可靠性评估,不同层面的可靠性评估有其不同的优势与不足。较低层次的可靠性分析通常比较准确,但是其功耗和时间开销大,只能对中小型电路进行分析。高层次的可靠性分析由于远离物理实现,准确性低,但是可处理性好。根据作者的研究认为,兼顾准确性和可处理性是对可靠性研究的突破点,这就要将电路的不同层次间相互映射,以尽可能贴近电路的真实行为。从而在电路的设计阶段就能够比较准确地估计其可靠性,尽早调整改进,避免出现因结构设计上的不足而导致的芯片缺陷,从而提高芯片的可靠性和成品率,缩短芯片的设计和生产周期。

2结论

由iBm、Sony、motorola等多家知名半导体公司最新研究进展表明,可靠性问题始终伴随着半导体器件与大规模集成电路的发展和应用,随着集成电路技术的发展,VLSi电路的可靠性问题变得越来越突出。加强对半导体器件与集成电路的可靠性分析、模拟、评估和改进已经成为超大规模集成电路发展中的重要课题。目前VLSi电路的可靠性研究得到广泛的关注,对越来越多的失效模式和机理进行了研究,并且从理论和实践上不断提出了改进方法,这些研究成果为可靠性增长提供了评价标准与依据。

参考文献:

[1]徐拾义.可信计算系统设计和分析[m].北京:清华大学出版社,2006.

[2]王真,江建慧.基于概率转移矩阵的串行电路可靠度计算方法[J].电子学报.2009,37(2):241-247.

[3]肖杰,梁家荣.具有失效结点和链路的e-2Dmesh网络可靠性研究[J].计算机应用研究,2009,23(3):201-204.

[4]YiZhigang,minYinghua,LiXiaowei,etal.anovelRt-LevelBehavioralDescriptionBasedatpGmethod[J].JournalofComputerSci?enceandtechnology,2003,18(3):308-317.

[5]CornoF,prinettpp,ReordamS.testabilityanalysisandatpGonBehavioralRt-levelVHDL[C].proceedingofinternationaltestCon?ference,washington,1997:753-759.

[6]FallahF,DevadasS,KeutzerK.oCCom-efficientComputationofobservability-basedCodeCoveragemetricsforFunctionalVerifica?tion[J].Computer-aidedDesignofintegratedCircuitsandSystems,2001,20(8):1003-1015.

[7]KimJS,nicopoulosC,Vijakrishnann,etal.aprobabilisticmodelforsoft-errorrateestimationincombinationallogic[a].in:proc.ofthe1stint`lworkshoponprobabilisticanalysistechniquesforRealtimeandembeddedSystems[C].italy,elsevierScience,June2004,pp.25-31.

[8]asadiG,tahoorimB.ananalyticalapproachforsofterrorrateestimationindigitalcircuits[a].in:proc.oftheieeeintSymponCir?cuitsandSystems[C].Kobe,Johnwiley&Sons,may2005,pp.2991-2994.