高分子材料的作用十篇

发布时间:2024-04-26 01:30:19

高分子材料的作用篇1

关键词:高分子材料新型材料市场应用农业领域

1.前言

随着社会的发展,我国的科技有了崭新的发展机会以及广阔的发展平台,高分子材料科学也处于飞速发展的状态。经过多年的发展,高分子材料已经在我国市场上的多个领域得到了十分广泛的应用。值得一提的是,合成高分子材料凭借着其独特的优良性质以及相对良好的使用性能,在市场上已经占据了比较重要的地位。伴随着时代的持续发展,人们对新型高分子材料也相应的提出了更高的要求,因此,为了适应人类的需要,对新型高分子材料的研究便十分重要。

2.高分子材料简述

高分子化合物是高分子材料的组成基础,构成高分子化合物的基本成分是聚合物。所以,高分子材料所具有的性质便是其构成基础聚合物所具有的性质了,其含有的主要材料所具有的特性,便是这种高分子材料的特征性能。目前,高分子材料和无机非金属材料以及金属材料是在当前的市场上应用的材料主体,是应用性材料科学的主要内容。在三者当中,属高分子材料最受欢迎,由于其优良的性能得以广泛的应用,在整体的新型材料的市场上都占据着重要的地位。在全球范围内的材料市场上,高分子材料的发展一直都没有停止,反而是以高速的发展形态展现在人类的面前。例如,合成树脂的数量在十年之内几乎增加了一百倍,高分子材料的飞速发展,给人类的生活带来了极大的便利以及翻天覆地的变化。塑料便是一种典型的高分子材料,塑料的用途广泛,传统的木材和水泥的年产量加起来也远远没有塑料的产量高。合成橡胶的产量也大于天然橡胶的产量,合成纤维一年的产量几乎达到了羊毛和棉花等人造纤维或者天然纤维总产量的二倍之多。还要合成树脂的发展等等。但是,即使高分子材料在我国取得了很大的研究进展以及生产应用,但是相比于世界上的发达国家,我国的科技仍然是较为落后,与各大发达国家存在着较大的距离。

高分子材料于一九三零年问世,至今已经发展了将近九十年的时间。但是一直到二十世纪末期,高分子材料才正式收到人类的重视和研究。科技处于不断的进步当中,人类对新型高分子材料的需求也在不断增加。例如大家都熟知的纳米材料,纳米高分子材料是一种聚合物基材以及纳米微粒的复合材料,这种材料具有独特的优良性质,在研究纳米材料的时候,要以其潜在的性质为依托,寻找最有效、迅速的开发方式。

2.新型高分子材料的应用概述

高分子材料作为材料市场的后起之秀,发展速度十分迅速。并且在整个材料市场上的应用十分广泛,在各行各业,在我们生活中的各个角落都能见到高分子材料的身影。例如在功能材料方面随处可见高分子材料,在结构材料方面高分子材料也表现出其难以比拟的优势。新型高分子材料的主要分类为:光功能材料和高分子分离膜,高分子复合材料以及该分子磁性材料。所谓光功能材料即是指这种材料能够对光进行吸收和转换,或者透射和储存。所谓高分子分离膜材料,其本身是一种薄膜性质的材料,即是利用高分子材料来制作成的一种具有半透性质的过滤膜,它的典型特征是选择透过性。这种材料对环保工作等做出了重要贡献,并且分离效率高,使用条件好。所谓高分子复合材料是指有多种具有不同的性质的物质所复合而成的多相材料。这种材料聚集了多种材料的特征,优势十分明显,例如复合材料能够同时具备耐高温和高强度等多种优点。所谓高分子磁性材料是指磁性材料于高分子材料的一种复合形式,也属于高分子复合材料的一种。这些新兴的高分子材料已经渗透进了人类生活的各个领域,在医疗行业以及工业行业都做出了重大的贡献

3.举例说明新型材料在农业领域的应用

科技的进步无疑大大促进了农业的发展,我国是一个农业大国,新兴材料在农业领域的应用,对促进农业的发展发挥了很大的作用。

在我国农业以及工业的生产领域,木塑复合材料的应用十分常见,木塑复合材料大多应用在农业领域,这种高分子材料具有以下优点:韧性好,较高的强度,可再生性好并且能够耐腐蚀。因此,木塑复合材料能够在一定程度上取代传统的钢铁材料,故在我国农业领域具有广泛的应用前景。在我国大片的庄稼地中,大量存在着秸秆这种新型材料,我国对秸秆加以利用的研究已经投入了很大的精力。秸秆用于沼气发电,秸秆用于提取纤维素制作高能燃料等,将秸秆作为一种重要的新型材料仍然需要研究。部分农作物的生长需要在温室中进行,因此温室大棚便是农业领域当中的必需品。新型温室大棚保温材料能够在白天充分吸收阳光,并自动进行恒温工作的处理,在夜晚能够使大棚内维持同样的温度和空气中的湿度。这种采用新型温室大棚保温材料的温室能够使植物自然生长,提高了农业产量和质量。对于温室材料的研究,最主要的研究性能便是其保温性能。新型温室保温材料的研究意义重大。

4.新型材料的发展前景

我们现在共同的目标是可持续发展,新型材料的开发能够满足人类对可持续发展目标的推进,新型材料能够凭借其优良的性能以及可重复利用的特点为人类社会的发展做出重要贡献。但是,我们要时刻铭记,新型高分子材料的发展要坚持以下原则:首先,新型高分子材料的使用不能对环境产生污染,其次,新型高分子材料要尽量追求成本低廉,能够满足大部分人的需求。目前我国所研究出的新型高分子材料大多价钱昂贵,因此,寻找廉价的基础材料作为高分子材料的生产成本至关重要,原材料的选取和加工工艺的选择都是未来新型高分子材料的研究重点问题之一,人类也从未停止过对新型高分子材料的探究工作。同时,要对新型高分子材料进行宣传,让大家都有所了解,才能提高高分子材料的利用率。最后再次强调,不能以牺牲环境为代价去发展新型高分子材料,才能让这种高分子材料对我们的社会发展发挥重要的作用。

参考文献: 

[1]谭志坚,王朝云,易永健,等.可生物降解材料及其在农业生产中的应用[J].塑料科技,2014,42(2):83-89. 

[2]祁春媛,方东辉,任小杰.木塑复合材料在农业机械上的应用 

[J].黑龙江水利科技,2014,42(5):149-151. 

高分子材料的作用篇2

关键字:功能高分子材料研究

一.引言

功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%。

所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。

二.功能高分子材料

功能高分子材料按照功能特性通常可分成:分离材料和化学功能材料;电磁功能高分子材料;光功能高分子材料;生物医用高分子材料。功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。

随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。

一般归纳起来医用高分子材料应符合下列要求:化学稳定性好,在人体接触部分不能发生影响而变化;组织相容性好,在人体内不发生炎症和排异反应;不会致癌变;耐生物老化,在人体内材料长期性能无变化;耐煮沸,灭菌、药液消毒等处理方法;材料来源广、易于加工成型。

经多年研究,能较好符合上述要求的高分子化合物主要有两大类,一类是有机硅化合物,第二类是有机氟化物,最主要的两种产品是硅橡胶和聚四氟乙烯,例如美国Ge公司开发了一批主要是有机硅方面的用于医学领域的功能高分子化合物。

三.生物医用高分子材料

目前,除人脑外的大部分人体器官都可用高分子材料来制作。对生物医用高分子材料,除了要求具有医疗功能外,还要强调安全性,即要对人体健康无害。目前在血液相容性高分子、组织相容性高分子、生物降解吸收高分子、硬组织材料用高分子和生物复合高分子材料、医用高分子现场固化材料、医用粘合剂、固定化酶、高分子药物释放和送达体系等都有相应的研究。随着环保概念的提出,生态可降解高分子材料的开发和应用也随之日益受到重视。如聚乳酸塑料pLa,在废弃后自然条件下,通过微生物的分解作用,只需六个月至两年时间即可完全降解,降解反应的产物为水、二氧化碳、乳酸等是植物生长良好的促进剂,对环境无任何污染。

离子交换与吸附树脂是一类带有可离子化基团或其他功能性基团如亲油基团的二维网状交联聚合物。常用的离子交换与吸附树脂多为球状珠粒,其粒径为0.3-1.2mm。此外,还要具有高的机械性能、较好的化学稳定性、热稳定性、亲水或亲油性、渗透稳定性和高的交换/吸附容量。在水/油中具有足够大的凝胶孔或大孔结构,由于它具有高效快速分析和分离功能,目前已广泛用于硬水软化、废水净化、高纯水制备、海水淡化特别是在食品工业、制药行业、治理污染和催化剂中应用的更为广泛,而且发展迅速。除一般用的离子交换树脂外,近来还发展了具有特殊吸附功能的离子吸附树脂:如高吸油树脂等,这些高分子吸附剂可以从有机溶剂或有机无机混合相体系中吸附有机溶剂如各种油类。

随着医用科技的蓬勃发展和环境污染的日益严重,当今材料技术的发展趋势一是从均质材料向复合材料发展,二是由结构材料往功能材料、多功能材料并重的方向发展。这种发展趋势使得医用复合材料和环境处理材料得到了快速发展。

四.医用高分子材料的发展方向

可生物降解医用高分子材料因其具有良好的生物降解性和生物相容性而受到高度重视,无论是作为缓释药物还是作为促进组织生长的骨架材料,都将得到巨大的发展。其中高分子纳米粒子以其特有的优点是近年来国内外一个极为重要的研究热点。

任何一种材料都是通过其表面与环境介质相接触的,因此材料的开发与应用必然涉及其表面问题的研究。一般高分子材料的表面对外界响应性较弱,但有些高分子表面的结构形态会因外界条件(如pH、温度、应力、光及电场等)的改变在极短时间内发生相应的变化,从而造成表面性质的改变,此乃智能高分子表面。因此设计这类智能表面将是生物医用高分子材料发展的一个重要方面。通常,在组织工程的应用中,高分子材料支架要负载上生长因子,以促进组织在生物体内的再生,另一方面,把特殊的粘附因子,如粘连蛋白结合到支架上,可使聚合物表面能够促进对某种细胞的粘附,而排斥其它种类的细胞,即支架对细胞进行有选择的粘附。为了使生长因子和粘附因子能够结合到可降解高分子材料上,就需要对材料进行表面改性,而有时表面改性很困难,因此,可利用与天然聚合物杂化的方法来达到上述目的,同时由于这些材料有良好的机械性能,又可以弥补天然聚合物强度不高、稳定性差的缺点。可见,生物杂化材料在这方面的表现是相当突出的,必将成为医用生物高分子材料发展的一个主要趋势。

参考文献:

1、焦剑.功能高分子材料.化学工业出版社,2007.7

高分子材料的作用篇3

关键词:新型高分子材料

1、新型高分子材料的分类

1.1高分子分离膜

高分子分离膜是用高分子材料制成的具有选择透过的半透性薄膜。与以温度梯度、压力差、电位差或浓度梯度为动力,使液体混合物、气体混合物或有机物、无机物的溶液等分离技术相比,具有高效、省能和洁净的特点,因而被认为是支撑新技术革命的重大技术。膜的形式有多种,一般用的是空中纤维和平膜。应用高分子分离膜的推广可以获得巨大的经济效益和社会效益。

1.2高分子磁性材料

高分磁性材料是人类在开拓磁与高分子聚合物新应用领域的同时,赋予磁与高分子传统应用以新的涵义和内容的材料之一。早期的磁性材料源于天然磁石,后来才利用磁铁矿烧结或铸造成为磁性体。现在工业常用的磁性材料有稀土类磁铁、铁氧体磁铁和铝镍钻合金磁铁等三种。它们的缺点是硬且脆加工性差。为了克服这些缺陷,将磁粉混炼于橡胶或塑料中制成的高分子磁性材料。这样制成的复合型高分子磁性材料,不仅比重轻,容易加工成复杂形状、尺寸精度高的制品,还能与其它的元件一体成型。因而这样的材料越来越受到人们的关注。高分子磁性材料主要可分为结构型和复合型两大类。目前具有实用价值的主要是复合型。

1.3光功能高分子材料

所谓光功能高分子材料指的是能够对光进行吸收、透射、转换、储存的一类高分子材料。这类材料主要包括光记录材料、光导材料、光加工材料、光转换系统材料、光学用塑料、光导电用材料、光合作用材料、光显示用材料等。光功能高分子材料可以制成品种繁多的线性光学材料,像普通的安全玻璃、各种棱镜、透镜等。利用高分子材料曲线传播的特性,又以开发出非线性的光学元件,如塑料光导纤维等。先进的信息储存元件光盘的基本材料就是高性能的聚碳酸脂和有机玻璃。

2、开发新型高分子材料的重要意义

从高分子材料的出现到现代,世界工业科学不再只是对基础高分子材料的开发研究。从90代开始,科学家们就将注意力转到了高智能的高分子材料的开发上。现代工业对于新型高分子材料的需求日益增加。新型高分子材料的开发主要集中在制造工艺的改进上,以提高产品的性能,节约资源,减少环境的污染。就目前而言,以茂金属催化剂为代表的新一代聚烯烃催化剂的开发仍是高分子材料技术开发的热点之一。开发应用领域在不断扩大。在开发新聚合方法方面,着重于基团转移聚合、阴离子活性聚合和微乳液聚合的工业化。与此同时,我们要重视在降低和防止高分子材料在生产和使用过程中造成的环境污染。我们应该大力进行有利于保护环境的可降解高分子材料的研究开发。新型高分子材料的开发,不但能够满足现代工业发展对于材料工业的高要求,更重要的是能够促进能源与资源的节约,减少环境的污染,提高生产的能力,体现现代科技的高速发展。

高分子材料的作用篇4

论文摘要:高分子化学是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等方面的一门新兴的综合性学科。那么,高分子化学具体内容及高分子与生活、高科技的发展关系如何呢?以下作简单介绍。

人类从一开始即与高分子有密切关系,自然界的动植物包括人体本身,就是以高分子为主要成分而构成的,这些高分子早已被用作原料来制造生产工具和生活资料。人类的主要食物如淀粉、蛋白质等,也都是高分子。只是到了工业上大量合成高分子并得到重要应用以后,这些人工合成的化合物,才取得高分子化合物这个名称。但提到合成高分子材料(聚合物)的应用与发展,人们在想到它们极大地方便我们的生活的同时,很多人会想到“白色污染”,甚至将水污染、大气污染等各种环境问题的产生怪罪于高分子,这说明他们对高分子并不十分了解。当今社会高分子的功用无处不在,而人们认识高分子时,往往忽略了它带给人类生活的巨大变化和种种利益,不了解它为人类文明做出的贡献是巨大的。

一、高分子化学的内涵

1.何为高分子化学

顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。

2.高相对分子质量与高强度

相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。

3.高分子科学的主要内容

既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连

接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。

二、高分子材料化学的应用

材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。

第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。

第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。

第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。

第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。

三、高分子化学与高科技的结合

当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。

随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。

第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹材料,如热塑性弹性体等。

第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。

第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。

可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。

四、高分子化学的可持续发展

研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。

高分子材料的作用篇5

关键词:高分子材料;废旧塑料;建筑材料;回收应用;

中图分类号:tU5文献标识码:a文章编号:

一、前言

处理废旧高分子材料是一把双刃剑,处理的好了不但降低了高分子的危害,而且还能降低产品成本;处理不好我们的生活就要受到废旧高分子的影响,甚至毒害。将废旧高分子材料作为一种建筑材料,开辟了废旧高分子回收的新途径,不但可以降低废旧高分子材料的危害,而且扩大建筑材料的来源。随着科学技术的进一步发展,会有越来越多的这种新型材料问世,最终达到经济效益、环境效益和社会效益的统一。

二、废旧高分子材料在建筑材料中的回收应用问题分析研究

1、废旧高分子材料制作墙体材料。随着国家有关禁止使用粘土砖禁令的公布,开发使用新型墙体材料已经成为一种必然趋势,同时回收利用废旧高分子材料技术的发展,为废旧高分子材料复合成新型墙体材料提供了强有力的支持。目前已有许多这类技术发展相当成熟,并用于实际的生产当中。

一是玻璃与塑料复合而成的样品砖。由塑料,玻璃复合而成的样品砖已经研制出来,在国外已经得到了较广泛的应用。其中塑料组分包括聚乙烯,聚丙烯,聚苯乙烯,聚氯乙烯以及aBS,相同的粒径形态,较窄的尺寸范围和尺寸分布与近似尺寸的棕色玻璃混合成玻璃塑料复合材料,其中玻璃的质量百分比根据不同的性能要求可为15%,30%,45%。这种材料能在235℃模压成标准的粘土砖形状。当温度在20~50℃范围变化时,经过抗压实验,发现其断裂应力是普通粘土砖的两倍多。制备这种试样时所要求的塑料不需要区分热塑性和热固性,因此它的原料来源相当广泛。

二是金属橡胶混凝土。这种材料具有良好的性能,它可以有效解决目前各类混凝土结构及现有墙体砌块工程中常出现的各种裂缝,隔音差、抗震性能不够,重量重,抗冲击性不足等问题,可广泛应用于桥梁、路面、飞机跑道、大坝及其他建筑。

三是用聚苯乙烯泡沫塑料生产混凝土保温砌块。运用此技术生产的混凝土保温砌块具有表观密度小,保温、隔声性能好,抗压强度高,属于轻质高强的新型墙体材料。生产的砌块完全满足墙体材料的表观密度、抗压强度以及保温性能要求。在工程实际中,砌块的聚苯乙烯泡沫塑料部分基本不受外力作用,只有外裹的水泥砂浆层起骨架作用。这种新型混凝土保温砌块是一种前景看好的新型墙体材料。

四是利用废旧塑料和粉煤灰制建筑用瓦。这种建筑用瓦的研制成功,不仅可以降低成本,还是消除“白色污染”的一种积极方法。

五是利用废泡沫生产新型保温砖。研究成功了造价低廉、防火性好、保温性能优良的新型保温砖。经测试,这种新型保温砖导热系数小于0.06w/m.K,优于0.09w/m.K的国家标准,含水率小于8%,密度小于225kg/m3,抗压强度大于0.21mpa,且耐候性强,适合国内不同气候的各地区使用,取代传统珍珠岩或煤渣等保温材料。

2、废旧高分子材料制作建筑装饰材料

一是利用废旧塑料生产的建筑用装饰板材。利用废旧塑料生产建筑用装饰板材的研制已经取得了很大的进展,其中一种技术已经在实际生产中广泛应用。它是用废旧塑料、色素添加剂、增强剂、增塑剂为原料,以重量为单位,每100份废旧塑料匹配5~10公斤色素添加剂,20~50份增强剂,1~5份增塑剂,先将废旧塑料洗净、晒干后熔化,再将熔化后成块状的废旧塑料粉碎为0.5cm左右的细颗粒,再次熔化同时加入色素添加剂和增强剂,搅匀后注入模具成型,冷却后出模,然后漆上耐温清漆即生产出成品。

二是利用废旧塑料生产阻燃建筑装饰材料。目前有报道研制出一种利用废旧热塑性塑料和锯木粉通过加入添加剂改性生产防火阻燃型窗套、门套、墙裙等建筑装饰材料的方法。运用该工艺生产的产品,根据国家标准塑料燃烧性能实验方法进行测定,其结果达到GB2408—80/1级、GB4609—84/FV-0级;按照国家标准GB5465—85建筑材料不燃性试验方法测定,结果建筑材料不燃性试验方法测定,结果完全符合不燃性材料的要求。实验证明这种材料阻燃性能良好,完全可以用作建筑装饰材料,同时通过造型还可以生产美观耐用的环保型城市垃圾桶。

3、废旧高分子材料制作其他建筑材料

一是粉煤灰、废旧聚苯乙烯泡沫塑料颗粒生产防水材料。以粉煤灰、废旧聚苯乙烯泡沫塑料颗粒为主要原料,普通硅酸盐水泥、生石灰为胶凝材料,添加少量防水荆、憎水剂、激发剂,可生产屋面保温防水材料.该材料集保温隔热与防水为一体,表观密度为588kg/m3,导热系数为0.12w/(m·K),28d的抗压强度为1.6mpa,在0.2mpa的水压下可保持30min不透水。该保温防水材料具有密度低、强度高、保温隔热性能好、粉煤灰掺量大等优点,是一种较为理想的屋面保温防水材料,该材料可达到《屋面工程质量验收规范》(GB50207-2002)标准。

二是利用废聚烃类树脂生产塑料地板。在世界塑料家族中,pVC的产量居第二位,制品多,消费量较大。如管材、蔬菜大棚膜、建筑材料、日用品等多种用品废弃较多。由于pVC是一中含卤物质,所以它的回收利用受到了限制。这项技术研制的成功,可以大量回收pVC,运用这项技术可以生产出多种产品。常见的如:废农膜100份、碳酸钙120~150份、剂1.5份、稳定剂4份、色浆适量,经混合、密炼等一系列加工可制成塑料地板。安徽大学高分子材料研究所通过改性发泡等工序,用废弃聚烯烃塑料生产泡沫片和硬质板材,泡沫片用作旅游鞋、皮鞋和布鞋的原料,硬质板材则用作弹性地板的原料。

三是利用回收农膜与木屑复合制成塑质木材。该材料除了具有与天然木材一样可锯、刨、钉、粘等性能外,还具有耐潮、防蛀等优点,而且制造的灵活性强,既可挤压成板材、型材,也可一次模压成产品。

高分子材料的作用篇6

高分子材料是指由相对分子质量较大的化合物分子构成的材料。按其来源,高分子材料可分为天然,合成,半合成材料,包括了塑料,合成纤维,合成橡胶,涂料,粘合剂和高分子基复合材料。从1907年高分子酚醛树脂的出现以来,高分子材料因其普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展。然而,现在大规模生产的还只是在寻常条件下能够使用的高分子物质,即通用高分子。它们存在着机械强度和刚性差、耐热性低等缺点,而现代工程技术的发展对高分子材料提出了更高的要求。于是新型高分子材料的开发与应用尤为重要。耐高温、高强度、高模量、高冲击性、耐极端条件等高性能的新型高分子材料的开发与应用不但能解决现阶段的高分子材料所面临的问题,而且也将积极地推动高分子材料向功能化、智能化、精细化方向的发展。与此同时,我国十二五计划也将高分子材料的开发研究纳入了其中,作为其重要研究方向之一的新型高分子材料的开发研究必将会极大地推动我国材料技术的发展。

1.国内外高分子材料开发现状

21世纪是一个科学技术飞速发展进步,生产力大幅度提高的新纪元。材料工业与信息工业,生物工程,能源工业一起成为世界经济的四大支柱产业。高分子材料与金属材料和无机非金属材料共同构成了应用性材料科学的最重要的三个领域。高分子材料凭借其独特的优势占领了巨大的市场。

世界高分子材料工业正在高速地发展着。世界合成树脂量从1950年的1.5m工增长到2005年的212m工,每年大概以5%的增长率在迅速地增长。现在塑料的产量早已超过了木材和水泥等结构材料的总产量。合成橡胶的产量也已超过了天然橡胶,而合成纤维的年产量在上个世纪80年代就已经达到了棉花、羊毛等天然和人造纤维的2倍。对于我国而言,目前我国是世界上最大的树脂进口国,每年进口的树脂数量大约是世界树脂总贸易的25%到30%。我国的树脂合成工业正高速地发展当中,树脂合成能力也在飞速地提高中。然而与西方发达国家仍然存在着差距。

2.开发新型高分子材料的重要意义和途径

从上世纪30年代高分子材料的出现开始到现代,世界工业科学不再只是满足与对基础高分子材料的开发研究,从90代开始,科学家们就将注意力集中到了高功能,高智能的高分子材料开发上。现代工业对于新型高分子材料的需求日益强烈。

新型高分子材料的开发主要是集中在制造工艺的改进上,以提高产品的性能,减少环境的污染,节约资源。就目前而言,合成树脂新品种、新牌号和专用树脂仍然层出不穷,以茂金属催化剂为代表的新一代聚烯烃催化剂开发仍然是高分子材料技术开发的热点之一。然而开发应用领域也在不断扩大。在开发新聚合方法方面,着重于阴离子活性聚合、基团转移聚合和微乳液聚合的丁业化。在第二次世界大战中发展起来的高分子复合技术,以及出现于50年代的高分子合金化技术后。新的复合技术和合金化技术层出不穷。同时,也更加重视在降低和防止高分子材料生产和使用过程中造成的环境污染。加快高分子材料回收、再生技术的开发和推广应用,大力开展有利于保护环境的可降解高分子材料的研究开发。

新型高分子材料的开发,不但能够满足现代工业发展对于材料工业的高要求,更能够促进能源与资源的节约,减少环境的污染,提高生产能力,更能体现出现代科技的高速发展。

3.新型高分子材料的应用

现代高分子材料是相对于传统材料如玻璃而言是后起的材料,但其发展的速度应用的广泛性却大大超越了传统材料。高分子材料既可以用于结构材料,也可以用于功能材料。现阶段新型高分子材料大致包括高分子分离膜,高分子磁性材料,光功能高分子材料,高分子复合材料这几大类。

高分子分离膜是用高分子材料制成的具有选择透过性功能的半透性薄膜。采用这样的薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,与以往传统的分离技术相比,更加的省能、高效和洁净等,被认为是支撑新技术革命的重大技术。

高分子磁性材料是磁与高分子材料相结合的新的应用。早期磁性材料具有硬且脆,加工性差等缺点。将磁粉混炼于塑料或橡胶中制成的高分子磁性材料,这样制成的复合型高分子磁性材料,比重轻、容易加工成尺寸精度高和复杂形状的制品,还能与其它元件一体成型等。

光功能高分子材料,是指能够对光进行透射、吸收、储存、转换的一类高分子材料。目前,这一类材料已有很多,应用也很广泛。

高分子复合材料是指高分子材料和不同性质组成的物质复合粘结而成的多相材料。高分子复合材料最大优点具有各种材料的长处,如高强度、质轻、耐温、耐腐蚀、绝热、绝缘等性质。

这些新型的高分子材料在人类社会生活,工业生产,医药卫生和尖端技术等方方面面都有着广泛的应用。例如,在生物医用材料界上,研制出的一系列的改性聚碳酸亚丙酯(pm-ppC)新型高分子材料是腹壁缺损修复的高效材料:在工业污水的处理上,在不添加任何药剂的情况下,利用新型高分子材料物理法除去油田中的污水:开发的聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂复合材料,这些材料比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料;同样,在药物传递系统中应用新型高分子材料,在药剂学中应用,在包转材料中的应用等等。新型高分子材料已经渗透于人类生活的各个方面。

材料是人类用来制造各种产品的物质,是人类生活和生产的物质基础,是一个国家工业发展的重要基础和标志。作为材料重要组成部分的高分子材料随着时代的发展,技术的进步,越来越能影响人类的生活,工业的进步。区别于我们已经开发研究成熟的一些传统材料,高分子材料的研究开发存在着无穷的潜力。正如一些科学家预言的那样,新型高分子材料的开发将有可能会带来现代材料界的一次重大革命。

[参考文献

[1]程晓敏,高分子材料导论[m],安徽大学出版社2006,

[2]顾正超,高分子材料开发现状与展望[J],科技与经济,2000.(02).

[3]郝敬辉,新型高分子材料物理法处理油田污水[J],油气田地面工程,2010.(07)

[4]黄凯,高分子材料在药物传递系统研究中的应用[J],中国现代应用学2010.(Si)

[5]于金海,应用新型可降解材料修复腹壁缺损的实验研究[J].中国知网论文总库2010.

[6]黄丽,高分子材料[m].化学工业出版社2005.

[7]高分子材料,百度百科.

高分子材料的作用篇7

关键字:高分子材料;化学

我们先介绍下高分子材料,高分子材料,以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。

天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代社会中,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。常用的高分子材料按使用特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和功能高分子基复合材料等。

高分子材料在我们的生活中使用越来越广泛,我们可以试着用一些高分子材料的基本知识来解释生活中碰到的一些高分子材料的特有现象。

一为什么用塑料绳绑东西会越绑越松

日常生活中,我们经常用塑料绳绑东西,可你会发现,用塑料绳绑东西,我们越想绑紧,可不久会发现,塑料绳很快好像变长了似的,变得很松垮,于是再使劲绑起,可依然会发现,过了一会又变松了,这是为什么呢?

这里就要提到一个基本概念---力学松弛,什么叫力学松弛呢?应力松弛,是指高分子材料在总应变不变的条件下,由于试样内部的粘性应变随时间不断增长,使回弹应变分量随时间逐渐降低,从而导致回弹应力随时间逐渐降低的现象。

我们生活中使用的塑料绳(有的地方叫化学绳)是由线性的聚乙烯或聚丙烯制成,这类高分子材料是典型的非交联线性高分子,在绑紧的过程中,线性的高分子链被拉长,表面看起来很紧,但随着时间的延长,线性高分子链发生了滑移,这种滑移是不可恢复的,链发生滑移后,塑料绳被拉伸的变长了,开始变得不能绑紧,假如此时再使劲绑紧,则线性链继续发生滑移。所以用塑料绳绑东西,绑的越紧最后就会变得越松,松弛发生的厉害。因此,有经验的人用塑料绳绑东西时,都不要绑的太紧,防止线性高分子链发生严重应力松弛。

那怎么样才能避免这种现象呢?要用交联的高分子材料,交联的高分子材料通过交联剂使线性高分子链变成了网状结构,高分子网络链被拉伸变形后,仍能有力的回复。如用橡胶绳绑的话会大大改善这种现象,如橡皮筋绑就会好很多,如用交联很完善的东西绑,譬如用自行车内胎的那种橡胶绑,则基本不会发生松弛现象,会绑的很紧,不信你试试?

二早上起床刷牙挤牙膏-挤出胀大

我们早上起来刷牙挤牙膏时,发现牙膏从牙膏管口寄出时,牙膏好像突然变大了好多?这是因为什么原因呢?

这里就涉及到高分子的一个重要特性---蠕变性。所谓高分子的蠕变,蠕变是指材料在恒定载荷作用下,变形随时间而增大的过程。蠕变是由材料的分子和原子结构的重新调整引起的,这一过程可用延滞时间来表征。当卸去外力时,材料的变形部分地回复或完全地回复到起始状态,这就是结构重新调整的另一现象。

牙膏中含有大量的高分子化合物,如湿润剂、香料、起泡剂等等,这些高分子链在牙膏管中是都是呈自然卷曲的,在被挤出牙膏管口那狭小位置时,高分子链在管口的作用下被迫发生链的舒展成线性状态,在挤出管口后,外力小时,高分子链在无外力作用下回自然呈卷曲状态,从而使体积变大。

三泡泡糖要咀嚼后才能吹泡泡

好多人都喜欢吹泡泡糖,刚入嘴的时候,比较硬,后来不断的咀嚼后泡泡糖就变得很软,居然能吹出泡泡来?这又是为什么呢?这里我们又要学到一个高分子材料特有的特性---玻璃化转变。

一般来说,高分子材料在不同温度下有三种力学状态,它们是玻璃态、高弹态和粘流态。在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态:当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。

我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是玻璃化温度。

泡泡糖的主要成分是聚醋酸乙烯酯,它的玻璃化温度在28度左右,一般情况下低于其玻璃化温度,其几乎没有流动性保持很好的形态,而在嘴里咀嚼后,高于其玻璃化温度,泡泡糖发生玻璃化转变,有玻璃态向高弹态转变,呈现出高弹态,所以嚼泡泡糖的时候刚开始嚼两下是吹不出泡泡的,等温度升高后,嚼软了以后才行。

四矿泉水瓶灌入热水后,变成白色

生活中经常用到矿泉水瓶,有时候,会在矿泉水瓶灌入热水,于是会发生一个奇特的现象,透明的矿泉水瓶很快变成白色,这又是为什么呢?

判断一种材料是否透明,要看当中是否含有对光产生衍射、反射和吸收是物质,晶区的结构规整性比较好,容易有反射和散射,这些结构使光线不能透过,结晶度越低越透明,无定形区譬如玻璃是典型的无定性物质,光线就能很好的透过,透明性就很好。

高分子材料的作用篇8

关键词:高分子材料可降解生物

我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主要的可生物可降解的高分子材料介绍如下。

1、生物可降解高分子材料概念及降解机理

生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。

生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。

因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、pH值、微生物等外部环境有关。

2、生物可降解高分子材料的类型

按来源,生物可降解高分子材料可分为天然高分子和人工合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型。

2.1微生物生产型

通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国iCi公司生产的“Biopol”产品。

2.2合成高分子型

脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(pet)和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺)制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。

2.3天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。

2.4掺合型

在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。

3、生物可降解高分子材料的开发

3.1生物可降解高分子材料开发的传统方法

传统开发生物可降解高分子材料的方法包括天然高分子的改造法、化学合成法和微生物发酵法等。

3.1.1天然高分子的改造法

通过化学修饰和共混等方法,对自然界中存在大量的多糖类高分子,如淀粉、纤维素、甲壳素等能被生物可降解的天然高分子进行改性,可以合成生物可降解高分子材料。此法虽然原料充足,但一般不易成型加工,而且产量小,限制了它们的应用。

3.1.2化学合成法

模拟天然高分子的化学结构,从简单的小分子出发制备分子链上含有酯基、酰胺基、肽基的聚合物,这些高分子化合物结构单元中含有易被生物可降解的化学结构或是在高分子链中嵌入易生物可降解的链段。化学合成法反应条件苛刻,副产品多,工艺复杂,成本较高。

3.1.3微生物发酵法

许多生物能以某些有机物为碳源,通过代谢分泌出聚酯或聚糖类高分子。但利用微生物发酵法合成产物的分离有一定困难,且仍有一些副产品。

;3.2生物可降解高分子材料开发的新方法——酶促合成

用酶促法合成生物可降解高分子材料,得益于非水酶学的发展,酶在有机介质中表现出了与其在水溶液中不同的性质,并拥有了催化一些特殊反应的能力,从而显示出了许多水相中所没有的特点。

3.3酶促合成法与化学合成法结合使用

酶促合成法具有高的位置及立体选择性,而化学聚合则能有效的提高聚合物的分子量,因此,为了提高聚合效率,许多研究者已开始用酶促法与化学法联合使用来合成生物可降解高分子材料新晨

4、生物可降解高分子材料的应用

目前生物可降解高分子材料主要有两方面的用途:(1)利用其生物可降解性,解决环境污染问题,以保证人类生存环境的可持续发展。通常,对高聚物材料的处理主要有填埋、焚烧和再回收利用等3种方法,但这几种方法都有其弊端。(2)利用其可降解性,用作生物医用材料。目前,我国一年约生产3000多亿片片剂与控释胶囊剂,其中70%以上是上了包衣的表皮,其中包衣片中有80%以上是传统的糖衣片,而国际上发达国家80%以上使用水溶性高分子材料作薄膜衣片,因此,我国的片剂制造水平与国际先进水平有很大的差距。国外片剂和薄膜衣片多采用羟丙基甲纤维素,羟丙纤维素、丙烯酸树脂、聚乙烯吡咯烷酮、醋酸纤维素、邻苯二甲酸醋酸纤维素、羟甲基纤维素钠、微晶纤维素、羟甲基淀粉钠等。

参考文献:

高分子材料的作用篇9

在《材料化学》绪论课的教学过程中,采用启发引导教学方式,以“材料、材料与化学、材料化学”为主线进行教学设计,通过讲解材料发展中的化学,引入材料科学与化学的区别与联系,重点从材料结构、制备、性能和应用四个方面讲授了材料研究中的化学问题,使学生对本课程的内容有了清晰的认识,激发了学生学习本课程的信心和兴趣,并取得了满意的教学效果。

关键词:

材料化学;绪论课;教学设计

材料化学是材料科学与化学的交叉学科,伴随着材料科学的发展而诞生和成长,即是材料科学的重要部分,又是化学学科的一个分支[1]。目前,很多高等学校的化学和材料类专业开设了《材料化学》这门课程。《材料化学》是南阳师范学院材料化学专业的核心基础课程,对于培养学生的材料科学基础知识,分析和解决材料制备和应用中的化学问题的能力起到了关键作用。但是该课程涉及的知识面广泛,内容庞杂、概念甚多、加上课程改革,理论课时数减小,学生在学习《材料化学》课程过程中,普遍存在概念混淆、重点难以掌握等问题。绪论是一门课程的开场白和宣言书,是师生之间学习和交流的起始点,能为学生建立起一门课程的知识轮廓。通过对绪论进行学习,学生可以了解课程在所学专业中所处的地位和作用,以及该课程的教学内容、学习方法和考核方式等问题[2]。如何激发学生学习该课程的兴趣,提高课程的教学质量,绪论课在整个课程教学中有着举足轻重的地位。结合近年来的教学实践,就如何讲好《材料化学》绪论课谈一些心得。

1首先明确课程性质、特点及地位

教学之初,首先明确该课程作为专业核心课程的重要地位,是学习后面材料专业课程的基础课程,同时明确考核方式,加强学生对本课程的重视程度。材料化学是材料科学和化学学科的交叉学科,课程内容既涉及工程材料应用中的实际问题,又包括材料结构及制备中的化学问题。作为一门交叉学科,很多知识点与材料学和化学课程中的相关内容重复,很多学生以为学过相关知识,就会从思想上松懈。然而,相关知识点虽然出现重复,但在不同学科中讲授的重点是不同的。在讲授材料化学课程的过程中,要着重培养学生利用化学的思维解决材料科学中的问题,使学生深刻领会化学与材料科学交叉的重要意义。通过一些实例,讲解本课程与化学和材料相关课程的区别和联系,使学生更加深入了本课程的性质和地位。材料科学是偏实际应用的工科课程,化学是偏理论的理科课程,材料化学则是利用化学的理论解决材料应用中的实际问题。

2材料

以材料的实际应用为引子,如材料在航天航空、交通运输、电子信息、生物医药等领域的应用,带领学生进入学习状态,引导学生回想什么是材料?材料的种类?提出材料是对人类有用的物质,是人类赖以生存和发展,征服自然和改造自然的物质基础;是人类进步的里程碑。然后介绍材料的发展历史,说明人们对材料的使用,是从最早的天然材料,依次经历了陶瓷、青铜、铁、钢、有色金属、高分子材料以及新型功能材料。根据材料的发展史,启发学生思考材料研究和发展过程中的规律和特点。人们对材料的使用经历了从天然材料到合成材料,从传统材料到新兴材料。传统的材料主要以经验,技艺为基础,材料靠配方筛选和性能测试,通过宏观现象建立的唯象理论对材料宏观性能定性解释,不能预示性能和指明新材料开发方向,而新型材料则以基础理论为指导。材料科学的历史表明,当一种全新的材料在原子或分子水平上合成后真正巨大的进展就常常随之而来。化学的发展往往导致材料技术的实质性进步。在新材料的研发和材料工艺的发展中,化学一直担当着关键的角色[3]。任何新材料的获得都离不开化学,以石墨烯为例,物理学家主要关注其电子结构及输运理论,材料学家主要测试材料的电磁、光电、传感和催化等性能,而化学家的任务则是利用化学气相沉积和插层剥离等方法制备该材料。只有通过化学气相沉积法制备出高质量大尺寸的石墨烯,才能推动石墨烯在电子信息领域走向实用化。

3材料与化学

材料化学是材料科学与化学学科的交叉,很多学生容易混淆材料科学和化学的研究范畴。在本课程的第一节课,一项重要的任务是使学生明确材料科学和化学的研究内容和范畴,这对于后续相关概念的讲解至关重要。材料科学的研究对象是材料,材料是对人类有用的物质,指的是人类用于制造物品、器件、构件、机器或其他产品的那些物质。而化学的研究对象是物质,物质是构成人类物质世界的基础。材料是物质,但不是所有物质都可以称为材料;材料科学是一门研究材料的成分、组织结构、制备工艺与材料性能及应用之间相互关系的科学;而化学则是从原子和分子角度研究物质的组成,结构、性质及相互转变规律的科学。因此,化学研究的尺度范围是原子、分子、分子纳米聚集体。材料科学最早研究的尺度范围在微米以上,如钢和陶瓷的组织结构。随着一些新兴材料的出现和发展,人们对材料的研究甚至小到电子结构。如近些年发现的拓扑绝缘体,其表面导电,体内不导电的性质由其拓扑的能带结构决定,而该拓扑结构则与电子的自旋运动有关,研究拓扑绝缘体必须从电子自旋角度认识其结构。因此,材料科学的研究范畴不断拓展,并于其它学科交叉。

4材料化学

通过学习材料的发展历程、材料科学与化学之间的区别和联系,学生已经对材料化学有了一定的认识,引导学生给材料化学下一个定义。材料化学是关于材料结构、制备、性能和应用的化学。本校材料化学专业选用曾兆华、杨建文编著第二版《材料化学》作为教材,教材的章节也是按照材料结构、制备、性能和应用进行安排的[4]。在这部分内容讲授过程中,可以让学生以教材目录为参照,讲到相关内容可以与教材相关章节进行对应。

4.1材料的结构

从三个层次讲解材料的结构,分别是电子原子结构、晶体学结构和组织结构。电子原子结构在很大程度上影响材料的电、磁、热和光的行为,并可能影响到原子键合的方式,因而决定材料的类型。在这个层次上研究的化学问题主要涉及原子序数、相对原子量、电离势、电子亲核势、电负性、原子及离子半径等。原子序数决定了材料的化学组成,电负性决定材料内部原子之间的键合方式,从而影响材料的导电性、强度和热膨胀系数等。晶体学结构主要指原子或分子在空间排列的方式,根据原子排列的有序性,将材料分为晶体和非晶体。晶体中出现局部无序,或对理想晶体的产生偏离,则出现缺陷。缺陷的存在影响材料的力学性能和电学性能等。如在本征硅内部掺杂磷元素,磷原子替代硅原子的位置,形成杂质原子缺陷,增加本征硅的导电性,形成n型半导体。组织结构主要指材料的物相组成及结构、晶粒的大小和取向等。在大多数金属、某些陶瓷以及个别聚合物材料内部,晶粒之间原子排列的变化,可以改变它们之间的取向,从而影响材料的性能。一般来说,减小金属的晶粒可以降低其熔点。在这一结构层次上,颗粒的大小和形状起着关键作用。大多数材料是多相组成的,控制材料内部物相的类型、大小、分布和数量可以调控材料的性能。

4.2材料制备

材料合成与制备就是将原子、分子聚集在一起,并转变为有用产品的一系列过程。材料制备的方法和工艺影响材料的结构,从而影响材料的性能。根据制备原理的不同,材料制备方法可以分为物理法和化学法。物理法指在材料制备过程中,仅改变材料内部原子或分子的聚集状态,不涉及化学反应的方法。如真空镀膜、溅射镀膜、脉冲激光沉积法等。化学法则在材料制备过程中,涉及化学反应,并且有新物质的生成。如固相反应法、有机合成法、水热法、沉淀法、化学气相沉积法等。以石墨烯材料为例讲解材料的制备方法。石墨烯作为二维单原子层材料,既可以采用物理法制备,也可以采用化学法制备。2004年发现石墨烯的报道,便是采用简单的胶带对撕方法制备,该方法依靠外力使石墨片层克服层间范德华力,使层与层之间分离,从而获得单层石墨,该方法也称为物理机械剥离法。利用甲烷、乙烯等烃类气体作为碳源,镍、铜、金等金属作为基片,采用化学气相沉积法则可以制备高质量大尺寸的石墨烯。另外,以石墨为原料,利用化学插层剥离的方法也可以用来制备石墨烯[5]。但不同方法制备获得石墨烯的尺寸及性能差别较大,在不同的应用领域采用的石墨烯制备方法是不同的。

4.3材料性能

材料的性能由其结构决定,与材料制备的工艺和方法有关。性能是指材料固有的物理、化学特性,材料性能决定了其应用。广义地说,性能是材料在一定的条件下对外部作用的反应的定量表述,例如力学性能是材料对外力的响应、电学性能是对电场的响应、光学性能是对光的响应等。因此,材料的性能可分为力学性能和特殊的物理性能。常见的力学性能包括材料的强度、硬度、塑性、韧性等。力学性能决定着材料工作的好坏,同时也决定着是否易于将材料加工成使用的形状。锻造成型的部件必须能够经受快速加载而不破坏,并且还要有足够的延性才能加工变形成适用的形状。微小的结构变化往往对材料的力学性能产生很大的影响。材料特殊的物理性能包括电、磁、光、热等行为。物理性能由材料的结构和制造工艺决定。对于许多半导体金属和陶瓷材料来说,即使成分稍有变化,也会引起导电性很大变化。过高的加热温度有可能显著地降低耐火砖的绝热特性。少量的杂质会改变玻璃或聚合物的颜色。

4.4材料应用

材料化学已经渗透到现代科学技术的众多领域,如电子信息、环境能源、生物医药和航天航空等领域。例如,在电子信息领域,现代芯片制造离不开化学。光刻过程使用的光刻胶和显影液,镀膜过程中的化学气相沉积和原子层沉积,刻蚀过程中的反应离子刻蚀,这些工艺过程都离不开化学的作用。在环境能源领域,新型光催化材料和太阳能电池材料的研究和开发,离不开化学法制备材料和对材料进行化学掺杂改性。在生物医药领域,对传感材料进行化学改性提高其传感特性,对仿生材料进行表面改性可以提高其生物相容性。在航天航空领域,各种轻质、耐高温、耐摩擦等结构材料和功能化智能材料的研发都离不开化学。

5结语

通过对“材料化学”绪论课的精心设计,使学生明确了该课程的性质和重要地位,大量的实例激发了学生学习的兴趣和求知欲,树立了学生学好该课程的信心,为课程的深入学习起到了奠基石的作用。以“材料、材料与化学、材料化学”为主线进行讲授,使学生对本课程的内容有了更加清晰和深入的认识,取得了良好的教学效果。

参考文献

[1]禹筱元,罗颖,董先明.材料化学专业人才培养模式的改革与实践[J].高教论坛,2010,1(1):23-25.

[2]杨卓娟,杨晓东.关于高校课程绪论教学的思考[J].中国大学教学,2011(12):39-41.

[3]唐小真,杨宏秀,丁马太.材料化学导论[m].北京:高等教育出版社,1997.

[4]曾兆华,杨建文.材料化学.2版[m].北京:化学工业出版社,2013.

高分子材料的作用篇10

【关键词】高冲击;电子线路灌封材料;缓冲机理

现在国际竞争日趋激烈,国际武器装备朝着更加先进的方向发展,为了提高武器的先进性,现在大多数武器都追求较高的速度与大功率。在武器有较高的速度与功率的同时,也带来了一些问题,例如速度较高时具有较高的冲击性与振动性,武器在使用的过程中存在冲击与振动,将会使得电子器件受损严重,电子器件的受损严重就会进一步影响到武器的精度和使用效率,为了减少在高速度与大功率的条件下对武器的精度和使用效率所造成的影响,就必须选用缓冲吸能效果比较好的电子灌封材料,从而减少这种不利的影响。

1电子线路灌封材料的缓冲机理

电子线路灌封材料在进行缓冲的过程中,就是能量吸收的过程,利用能量稀松来减弱或隔离武器发射或撞击目标时,电子线路所受到的,冲击,就比如灌封材料具有较强的粘弹性,例如硅橡胶,在硅橡胶受到外界应力的冲击下,会发生分子链的变形,而分子链之间也会产生一定的位移,在外界的冲击力消失之后,受到变形的分子,还要恢复原形。根据能量守恒原理,此时就必须交所受的外力释放出来,但是材料的变形不能完全地还原为起初的样子,这时候就能够一定的冲击能量,此时的变形与所能能够吸收的外界力成正比例关系。如下图所示可以进一步进行分析得出:图1为典型的低密度多孔缓冲材料的应力应变曲线,它包括3个阶段:弹性变形aB;屈服平台BC;材料压实区CD。表明材料在进入C-D区之前经过了B-C区,即材料在压实之前经过了一个屈服平台,说明材料具有吸能缓冲作用。而且鉴于这个平台的比值较低,所以材料在被压实之前不可能传递高于平台的力。灌封材料在另一方面还能有效的将物体所受撞击力时的应力波进行衰减,在物体受到外力冲击的情况下,材料的弹性变形会将一部分作用力进行有效的隔离与衰减。此外电子线路灌封材料的粘弹性,也会使应力波在传播的过程中逐渐的衰减,直至消失。有实验曾经表明,常用灌封材料的波阻抗低,仅有钢材的0.001-0.0001倍,在冲击波,从弹性载体投射到灌封材料中时,应力幅值减少,约0.001-0.0001倍。图2为某种密度聚氨酯泡沫塑料在SHpB实验中经历了应变率为102~103/s的冲击时,输入杆输出与杆上典型的应力波形,从图中可以看出,透射波形的长度远远超过入射脉冲的长度,透射波的强度福祉叫入射波的小许多,因此泡沫材料在受到外界的冲击下,由于泡沫材料的缓冲效果使得应力波在穿过其后产生了较大的衰减。

2电子线路灌封材料的选择

在对电子线路灌封材料进行选择的时候,要根据电子产品所处的环境以及电子产品将来所使用到的性能进行选择,一定要将各种电子不同材料的性能,发挥到极点,从而满足产品所设计的要求。在进行灌封材料选取时,一定要选择灌封材料必须是缓冲吸能效果好、应力波传播衰减速度快、幅值大的材料,对于灌封材料选取,可以从下面几个方面进行选择。

2.1电子灌封材料的选择

首先要对不同种类的材料缓冲吸效果有正确的判断,要对材料进行各种实验分析,在进行实验完成后要选择材料的吸能率较高的,因为材料的吸能率高,表示材料所缓冲吸能的效果好。有时要根据实验所得出的结果作出能量吸收图,来帮助设计者进行直观的观察,从而做出正确的选择。能量吸收图,能够直观地表示出电子线路缓冲材料,在不同密度与应变率的条件下它的性能状态。可以用吸能曲线和能量吸收图,表示低密度多孔材料的吸收特性,这两种特性由实验测得。首先测出材料应力应变曲线,曲线上屈服平台趋势下所围成的面积即为材料受力过程中所吸收的能量,用e表示材料的吸能率,i表示理想吸能率,其数学表达式为:从此公式中,我们能够明显的看出e、i值越大材料的吸能特性越好。所谓的吸能曲线,是指吸能效率图和吸能理想图,当需要综合了缓冲材料在不同密度,应变率条件下的最佳吸能状态点时,应借助于能量吸收图。能量吸收图,表示了某一密度范围内单位体积泡沫塑料吸收的能量与峰值应力的关系,如果选择了临界损伤应力,能量吸收图给出不超过应力峰值而吸收最大能量的泡沫材料的密度。图3是给出的聚氨酯泡沫塑料的能量吸收图,ey为基体材料的杨氏模量。

2.2应力波在粘弹性材料中传播系数和衰减指数的确定

泡沫材料在应力波加载条件下的缓冲效果,由传播系数和衰减指数表示。以一个端部受到的轴向撞击的一维线性粘弹性杆为例,粘弹性杆在轴向应力的作用下,其中,,为某一横截面处沿X轴正向和负向传播的波,引起的轴向应变的傅里叶变化,可由实验测得,在该点贴应变片,测出由于撞击产生的互不重叠的入射波和自由端的反射波,进行傅氏变换得出。γ(ω)是一个重要参数,反映了材料本身引起的应力波的衰减和弥散,我们将其称为传播系数,在传播系数进行确定时,使用两种方法。

2.3填料加入量的控制

图4是一种典型的环氧树脂固化物的内应力随玻璃化转变温度tg的变化示意图。通常要求有较高的tg以确保灌封体有良好的可靠性,特别是当灌封电路体在高温条件下工作或可能发生热循环的情况。试验表明,每种混合料都有一个适当的填料浓度,在此浓度下混合料的热膨胀系数和弹性模量都具有最佳值,既达到低应力状态,又具有较高的tg。通过控制填料的加入量,可以改变灌封电路体的热膨胀系数,达到调节应力的目的。

3电子线路灌封材料的缓冲措施

在武器弹丸发生作用的时候,如果引线电路没有正确的缓冲措施,这个时候一旦弹丸开始发生作用就会发生剧烈的振动,设备中的元器件在受到这个剧烈的振动后,因为受力的情况,这就会导致设备中的元器件受到很大程度的损坏,众所周知元器件在武器中的作用是不可忽视的,它关乎着整个武器能否正确的发挥作用的全部过程,一旦设备中的元器件受到一定程度的损坏,甚至是微弱的损坏这将会进一步影响到程序输出过程中的错误,所以为了防止元器件受到损失导致程序输出错误的发生。所以为了保护设备中的元器件不受到外界力的冲击时所损坏某些器件,影响设备的准确率,这就必须通过以下途径来进行电子线路缓冲。(1)电子元器件一定要选用具有抗高过载能力的,抗高过载能力的电子元器件在受到外界冲击时,能够有较强的自我抵抗能力,防止电子元器件因为受到外部的,撞击,导致自身的某些线路断开,甚至是焊点脱落,抗高过载能力能够保护电子元器件,保证电子元器件在高冲击下具有一定的使用寿命。(2)电子元器件在电路板上要有一定合理的布局,使得他们在电路板上的质量分布均匀。元器件的质量中心,尽量为电路板的中心位置,防止在运动过程中,会因为离心力而受到损害。电子元器件一旦受到离心力的作用,将会受到巨大的损害,电子元器件的质量中心如果偏离电路板的中心位置,这在离心力的作用下会严重的导致其某些器件,在旋转运行过程中受到质量偏移问题,导致因为离心力的作用将某些元器件而甩落。(3)有一些质量较大的电子元器件,他们在电路板上印刷时,要采用固定的结构,必须要将引线进行捆扎,并根据一定的距离进行捆绑固定,这是因为这些较重的元器件与离心力作用发生时会导致其脱落,由前面可知,离心力将会导致电子元器件的线路断裂或者是元器件的断脚、脱焊等都有可能发生,所以为了防止电子元器件在离心力的作用下发生这种问题,一定要将电路板在进行印刷时将其固定,用导线或者线束及电缆进行捆扎,这样就能够有效地保障电子元器件受到离心力作用,发生断线或者是脱焊的问题存在。(4)电子线路灌封材料还必须具有一定的工艺性,工艺性较好的灌封材料才能够根据罐封装形式,走线等来保证灌封的质量,避免产生固化应力。电子线路灌封材料中电子模块元器件,在封装时它的形式各不相同,而且电子模块元器件的大小也不同,因此它的封装形式是不同的。而且有一部分是相互重叠的,这部分重叠的地方,他们的线路走向是十分密集的,为了保证电子线路灌封的质量,这就要求灌封材料在,常温下具有较好的流动性,较强的固化收缩率,借此来避免产生固化应力,减小进电子模块元器件的损伤。(5)引信承受的过载超过50000g重力加速度时,比如在弹丸侵彻混凝土或钢板时,电路图需要用两级缓冲,其中第一级采用灌封材料,将电路模块固化与铝制壳体内,该壳体固定在由V型或w型钢性缓冲弹簧组成的二级缓冲体上,当过载超过某一极限时,刚性弹簧产生较大的塑性变形,达到减小过载峰值的作用。

4结论

高冲击下电子线路灌封材料是比较关键的制作材料。本文通过以上对电子线路灌封材料的缓冲机理进行了分析研究,得出了电子线路灌封材料,是由于灌封材料具有一定的能量吸收能力,其次还具有能力衰减与弥散的能力。后面又根据灌封材料的性能进行了灌封材料的选取,根据电器元件的不同,使用性能与工作环境进行材料的选择。文章的最后又对电子元器件的缓冲措施进行了一定的论述,为了保护电子线路在高冲击下受到破坏,需要选用具有较高的抗过载能力,,还要求电子元件有合理的质量分布,还要讲究电子元器件灌封材料的工艺性,对于质量较大的电子元件进行元件的捆绑等措施。因此电子元件进行得出了要想将武器的速度与功率进行提高,就必要要将武器中的电子元器件采取一定的保护措施,与选择措施。从而保证电子元器件在使用的过程中不会存在问题导致失败。

参考文献

[1]卢子兴,田常津,韩铭宝,等.聚氨酯泡沫塑料在应力波加载下的压缩力学性能研究[J].爆炸与冲击,1995,15(04):382-388.

[2]吴晓莉,张河.高冲击下电子线路灌封材料的缓冲机理及措施研究[J].包装工程,2004,25(01):44-46.

[3]卢子兴,赵明洁.泡沫塑料力学性能研究进展[J].力学与实践,1998,20(02):1-9.

[4]哈恩华,寇开昌,陈立新.环氧灌封材料的研究进展[J].化工进展,2003,22(10):1057-1060.

[5]高华,赵海霞.灌封技术在电子产品中的应用[J].电子工艺技术,2003,24(06):257-259.

[6]张丽珍,唐建生.环氧树脂复合材料制品内应力的形成和降低[J].广东科技,2004(05):45-47.

[7]赵怀东,刘文静.有机硅凝胶在灌封技术中应用[J].航天制造技术,2002.