数学建模的具体应用十篇

发布时间:2024-04-26 02:16:48

数学建模的具体应用篇1

【关键词】建模思想小学数学应用

【中图分类号】G424.21【文献标识码】a【文章编号】2095-3089(2014)2-0083-02

《数学课程标准》指出:"数学教学应该从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并理解运用。"在小学数学教学活动中,加强数学建模思想的渗透,现结合自己的教学实践谈谈对小学生形成数学建模思想的思考。

一、数学模型的概念

数学建模就是建立数学模型,是一种数学的思考方法,是利用数学语言、符号、式子或图像模拟现实的模型,是把现实世界中有待解决或未解决的问题,从数学的角度发现问题、提出问题、理解问题,通过转化过程,归结为一类已经解决或较易解决的问题,并综合运用所学的数学知识与技能求得解决的一种数学思想方法。

二、小学数学教学渗透数学建模思想的可行性

数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。加强数学建模思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力。

三、小学"数学模型"的构建

(一)建模的策略

1.精选问题,创设情境,激发建模的兴趣

数学模型都具有现实的生活背景,这是构建模型的基础和解决实际问题的需要。如构建"平均数"模型时,可以创设这样的情境:4名男生一组,5名女生一组,进行套圈游戏比赛,哪个组的套圈水平高一些?

2.充分感知,积累表象,培育建模的基础

教师首先要给学生提供丰富的感性材料,多侧面、多维度、全方位感知某类事物的特征或数量间的相依关系,为数学模型的准确构建提供可能。

3.组织跃进,抽象本质,完成模型的构建

具体生动的情境或问题只是为学生数学模型的建构提供了可能,如果忽视从具体到抽象的有效组织,那就无法建模。如"平行与相交"一课,如果只是让学生感知火车铁轨、跑道线、双杠、五线谱等具体的素材,就没有了透过现象看本质的过程,因此,教师应将学生关注的目标上升为两条直线间的距离。完成从物理模型到直观的数学模型再到抽象的数学模型的建构过程。

4.重视思想,提炼方法,优化建模的过程

不管是数学概念的建立、数学规律的发现、数学问题的解决,核心问题都在于数学思想方法的运用,它是数学模型的灵魂。如"圆柱的体积"一课教学,在建构体积公式这一模型的过程中要突出与之相伴的数学思想方法:一是转化,;二是极限思想。

5.回归生活,变换情境,拓展模型的外延

从具体的问题经历抽象提炼的过程,初步构建起相应的数学模型,还要组织学生将数学模型还原为具体的数学直观或可感的数学现实,使已经构建的数学模型不断得以扩充和提升,使模型的外延不断得以丰富和拓展。

(二)建模的途径

开展数学建模活动,关注的是建模的过程,而不仅仅是结果,因此,要以"建模"的视角来处理教学内容。

1.根据教学内容,开展建模活动。教师要多从建模的角度解读教材,充分挖掘教材中蕴含的建模思想,将实际问题数学化,建立模型,从而解决问题。

2.上好实践活动课,为学生模仿建模甚至独立建模提供有效指导。

3.改编教材习题,加强建模教学。

教材中有些问题需要改编,使其成为建模的有效素材。如:"图中正方形面积是8平方厘米,求圆的面积。"可以利用它开展以下的建模活动:设圆的半径是r,探讨出圆的面积与正方形面积之间的关系后,建立起关系模型,进而解决问题。

四、小学"数学模型"的应用

数学是一门应用性很强的基础科学,只有在实践应用中才能摄取数学知识的精髓。

1.用模型解释。如果建模的过程是"归纳"的话,那么用模更多的是"演绎"。用模型去解释,是对模型的提取、解读和应用。

2.用模型解题。要学会把复杂问题纳入已有模型之中,使原有模型成为构建和解决新问题的思考工具。

3.用"旧模型"构建"新模型"数学的概念、法则、关系等都是数学模型的应用,并且能够总是建立其他数学模型的材料。模型的应用还应体现在对新知的建构上。如"一个数乘一位数"法则是一个模型,在教学"一个数乘两位数"时可以放手让学生自主探究,在其过程中,旧模型被调用,为构建更高一级的法则模型发挥重要作用。

数学建模的具体应用篇2

关键词:数学建模;创新能力;大学数学主干课程

中图分类号:G642.4文献标志码:a文章编号:1674-9324(2012)07-0158-03

大学生数学建模竞赛不仅能培养出具有创新能力的学生,也能一定程度上提高教师的教学和科研水平,而且最重要的是它能直接推动大学数学的教学改革。教育部高教司对我国大学生数学建模竞赛活动的主要指导思想之一就是“扩大受益面、推动教育改革”。开展数学建模教育,可以推动大学数学教育改革。开展“在大学数学教学融入数学建模、数学实验的思想和方法,培养学生的创新能力”课题的研究和实践,就是扩大数学建模受益面的一个重要探索。本文研究对在大学数学教学融入数学建模、数学实验的思想和方法的必要性,相应的融入手段,以及在融入过程中可能遇到的困难和解决办法等进行了论述。

一、数学建模思想融入大学数学的教学中的必要性

1.数学建模几乎是一切应用科学的基础。数学在科学中的一个重要作用就是能够使人们对事实上是相当混乱的东西进行适当的理想化,抽象出概念与模型,从而解决实际问题。在解决复杂科学技术问题时,数学建模的方法能使人们设计出最佳和可行的新技术方法、手段,以及预测新的现象等。数学建模及相应的计算也正在成为工厂里常用的主要工具。CharliesR.mischke指出:学生一般都并不确信大学所开设的所有课程是否真能培养他们的创新能力。他们对学习渐渐失去兴趣,原因之一就是缺乏让学生了解大学教育进程安排的合理性。工程专业课程强调的基本都是专业方面的问题。而实际用来进行教学、组织和应用的工具却是数学模型。但不幸的是,专业教师很少花时间来讲授不涉及专业方面的建模过程本身。所以将数学建模的思想和方法融入大学主干数学课程教学中是具有现实的必要性。

2.当前数学教学的问题。传统的数学教学和考试可以很好地检查学生对所学数学知识的概念、定理和方法等的掌握情况,但缺乏对学生的应用数学的能力和创新能力进行考察。因此,在大学数学教学和考试中融入数学建模思想和方法非常必要。传统的大学数学教育已不能有效地激发广大学生的求知欲和激情,不能有效地培养学生的创新意识和创新能力。在现实的大学数学教学活动中,学生常常陷入前所未有的困惑之中,投入大量的精力,做了大量的习题,却丝毫感受不到“数学”有何作用,老师也拿不出鲜活的例子来使学生信服数学的用处。一大半学生认为大学数学的教学内容是没意义的,并且认为无意义的最大原因是和实际没有联系,学生最常问老师的问题就是“高等数学有什么用?”“线性代数有什么用?”等问题。

二、数学建模思想融入大学数学的教学中的具体措施

在大学数学的教学中融入数学建模思想主要是要让学生明白大学教育进程安排的合理性,以及数学的重要性和广泛应用性。但还是必须明确要以数学主干课程为主,建模思想培养为辅的指导思想,最主要的目的还是促进学生更好地学习和掌握大学数学主要内容、思想和方法。要建立一套恰当的数学建模思想融入大学数学教学的具体措施。首先必须弄清楚数学建模的具体过程以及我们大学数学教学的内容和思想。数学建模过程一般分为下面几步:①对实际问题进行观察、分析,进行必要的抽象、简化(抓住要点),确定模型建立中的变量和参数;②根据已知的各学科中的定律,甚至是经验等建立变量和参数之间的数学关系,这实际上就得到了明确的数学问题;③求解该数学问题。大部分情况是没有办法得到解析解,而只能得到近似解。这往往涉及复杂的数学思想、理论和方法,以及近似方法和算法;④得到的数学结果是否能解释或预测实际问题中出现的现象,或用历史数据、实验数据或现场测试数据等来验证模型是否恰当;如果模型是恰当的,那么就可以试用;如果是否定的,那就要进行仔细分析,重复上述建模过程,不断调整、最终得到恰当的数学模型。大学数学的特点是的抽象的思想、严谨的逻辑推理和广泛的应用,也正是由于它的抽象和严谨,使得其成为我们将其他学科量化的一个有效的工具。它与许多其他学科的本质区别在于它抽象地反映了现实世界里各种对象及其变化在数量方面的一般规律,它能够把一个学科的思想经过抽象、推理和提炼得到的结果用到别的学科,从而具有广泛的应用性。将数学建模思想融入大学数学的教学的具体方法。

1.具体的切入点。①经验建模——在所收集数据中提炼事物发展的趋势;②讲授一些实际问题及相关数学模型:人口模型、管理模型、抵押贷款模型、传染病模型、减肥模型等等。在现有教材中已经讲解了所涉及的数学内容,但如果从分析具体问题到建立数学建模的过程来学习的话,不仅能激发学生的学习兴趣和积极性,而且还能使其能在学、做而后知不足,从而诱导学生进一步学习数学。

数学建模的具体应用篇3

关键词:数学建模;高等数学;教学

任高校数学教师以来,一直发现学生在学习高等数学时,感觉高等数学的教学过于抽象,定义、定理、性质、计算,一切教学的目的皆围绕着令学生掌握数学原理与公式,其结果就是学生在学习高等数学的过程中长期要应付各种各样的公式与定理,对于本来对数理方面要求较高的专业而言,这是一个打牢基础的必要过程,然而对于一些工科,经济等对理论要求不高,而更倾向于数学的实际应用的学科而言,一味讲授抽象的理论知识,会令学生感觉所学理论与所用相去甚远,进而对数学产生厌学的心理,而为了改变数学教学的这种特性,引入数学建模的思想是很有意义的。

一、数学建模与高等数学教学的联系

近年来经过一系列建模竞赛容易发现,数学建模的思想是对我们所掌握的数学原理在解决现实问题中的直接应用,而这种应用可以很好的将抽象的数学理论直接与具体实际联系起来,通过学生对问题观察分析,并且寻找适当数学工具的过程,培养学生的自主解决问题的能力与创新思维。而通过对几组学生对同一个建模问题采用不同方式解决的过程,教师往往可以看到很多在日常教学中学生难以表现出来的各种奇思妙想,而这种思维能力如果加以培养很可能会成为学生在日后的学习与研究中提出新观点、新思路以及独创见解的基础。

基于此种考虑,我们容易看出,在日常的高数教学中引入建模案例,必然会使原本枯燥的单纯讲授理论,向学生介绍数学的原理,转向引导学生思考高数原理在具体实际中是如何被应用的,达到激发学习兴趣,帮助学生更好掌握数学工具,并培养学生的创新能力的目的。

二、微分方程的建模案例

在高等数学中,被广泛应用于数学建模中的就是微分方程这部分的知识,而在此我们将常见的几种微分方程以及相应的建模案例列举如下

1.可分离变量的微分方程――马尔萨斯人口模型

英国人口统计学家马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率基本上是一个常数,因此可将人口总数表示为

[dndt=rn](1.1)

显然,这是一个可分离变量的微分方程,根据可分离变量微分方程的计算公式有

[dnn=rdt?n=n0er(t-t0)]

其中[n0=n(t0)]即初始时刻的人口数量。

2.一阶线性微分方程――RLC电路

包含电阻[R]电感电容[C]以及电源[e]的电路称为RLC电路,由基尔霍夫第二定律可以得到如下方程:

[didt+RLi=eL]

易见,这是一个一阶奇次线性微分方程,则代入初始条件,根据一阶奇次线性微分方程的通解表达式,容易求得该方程的解。

3.高阶微分方程――悬链线方程

设一理想的柔软不能伸缩的细线,两端分别挂在以[a,B]支点上,由于重力作用自然弯曲,求悬链线形状[y=y(x)],为解决此问题,我们可以得到如下方程:

[d2ydx2=a1+(dydx)2]

则按高阶微分方程求解法求解,可求出悬链线的形状表达式。

通过以上几个问题,我们发现,在微分方程的教学过程中引入具体的建模案例,会将微分方程的实用性直接展示在学生面前,扩展学生的思路。

三、高等数学其他的一些建模案例

除了微分方程之外,还有一些理论都可以在教学中引入数学建模的思路,比如学习函数的极值与最值问题时,我们可以引入可口可乐罐的形状设计模型:为了使可口可乐的饮料罐设计最为合理以达到大批量生产时节约原料缩减成本的目的,厂家在设计饮料瓶的时候往往会在形状上进行最优化设计,在同样的容积的前提下,寻找表面积最小且方便携带的形状是设计饮料瓶形状的基本目的,而为了实现这种目的,则可以将容积设为定值,从而利用求函数最小值的方法,寻找表面积最小的直径与高度,从而实现设计目标。

除此之外数学建模还可以应用到很多其他的数学理论之中,而在不同的内容中引入数学建模的不同案例,可以将高等数学的各知识点与具体问题紧密的结合在一起,使高等数学的教学不再是单纯的知识传授,还可以培养学生独立思考和利用数学知识解决实际问题的能力。

而具体如何将建模思想更好的和高等数学的教学相融合,还需要在教学实践中进一步思考。

参考文献:

[1]微分方程与数学建模吴丹桂《景德镇高专学报》200015卷12期。

[2]数学建模在经济学与社会学中的应用。陈《企业经济》2010年第4期

[3]《应用微分方程》李瑞遐华东理工大学出版社2005年版

数学建模的具体应用篇4

【关键词】数学建模;定位;实施

“中学数学建模”绝不是在“数学建模”前面加上“中学”二字,它与中学数学知识、中学生、中学数学教师、教学等有着密切的关系.但是在中学阶段数学建模教学有着它的特殊性,从数学应用角度分析,数学应用大致可分为以下四个层次:(1)直接套用公式计算;(2)利用现成的数学模型对问题进行定量分析;(3)对已经经过加工提炼的,忽略次要因素,对保留下来的诸因素关系比较清楚的实际问题建立模型;(4)对原始的实际问题进行加工,提炼出数学模型,再分析数学模型求解.其中第四个层次属于典型的数学建模问题.作为数学建模教学的实施者,笔者认为,可以把中学数学建模定位在数学应用的第三层次.在中学阶段,学生建模能力的形成是基础知识、基本技能、基本教学方法训练的一种综合效果,建模能力的培养主要是打基础,但是,过分强调基础会导致基础与实际应用的分裂.因此,在新课程标准中明确提出:在中学阶段至少要让学生进行一次完整的数学建模过程.从这个意义上讲我们可以适当进入第四层次,而这个分寸的把握是一个很值得探讨的问题,同时也是我们教学的一个难点.

准确地给中学数学建模教学定位,有利于指导数学教学以及更好地开展中学数学建模话动,而不至于陷入盲目及极端地处理数学应用.

具体地说,中学数学建模有如下特点:

1.问题具有一定的创新性

中学数学建模好与劣的一个重要标准是问题选取的好与劣,或者说问题的选取是否具有创新之处.中学数学建模所解决的问题必须是个好问题,必须有所创新.当然,这个创新标准是相对的.由于中学生的知识能力等方面具有一定的局限性,要他们作出真正具有创新性的东西可能要求过高,这也与开设中学数学建模的初衷不相符,因此,学生在做数学建模的过程中,只要在某个方面有所突破就应该说具有一定的创新性.比如,问题的选取有较好的生产、生活背景,所得出的结论具有一定的应用参考价值或者具有一定的延拓性等.

学生的生活环境不同,家庭背景不同,与社会的接触面不同,知识水平和对问题的洞察力也存在着很大的差异.只要学生特别感兴趣,即使是别人做过的题目,也可以让学生在了解别人工作的基础上继续做下去.比如,北京市第五中学的一些同学研究了“音乐对人的影响”,具有一定的创新性,荣获北京市第六届高中数学知识应用竞赛的二等奖.而北京市十一学校的一些同学,开始研究不同类型的音乐对人的记忆力的影响等问题,虽然与前面所做的问题有些类同,但是仍然具有一定的创新性,可以说也是一个好问题.

中学数学建模解决的问题应该是学生身边的实际问题,所涉及的背景应该是学生所了解的,贴近学生的生活和学习.问题的选择应该避免涉及学生比较陌生的领域,或者学生平时无法接触的领域.

2.问题解决用的主要是中学阶段的数学知识

中学数学建模是学生用所学过的数学知识来解决身边发生的各种事情,增强应用数学解决问题的意识和能力,但是,由于中学阶段所学习的知识的局限性与中学学生的认知水平等原因,决定了中学数学建模所涉及的实际背景不能太复杂,所用到的主要是中学阶段的数学知识.这些知识包括函数与数列、方程与不等式、线性规划、立体几何和解析几何、三角函数、线性方程组等比较初等的数学知识.

但是,中学数学建模所用到的数学知识也不会呆板地局限在中学阶段.比如,北京市第五届数学知识应用竞赛一等奖论文《邮票面值的实际问题》就使用了层次分析法.

应该注意的是,中学数学建模所涉及的知识必须以中学阶段所学习的数学知识为主,不鼓励学生大量学习所谓的高等数学知识.这正是许多人对数学建模所运用数学知识存在误解的一个原因,即认为数学建模解决实际问题时所用的数学知识越深越好,事实并非如此.实践证明,有一些实际问题运用初等的数学知识照样能解决,而且在结果和精度上并不比运用高等数学知识差.比如,1996年,北大附中的三位中学生参加全国大学生数学建模竞赛,就用初等的方法做了一个“洗衣机节水的优化模型”,获得了北京市“新苗特等奖”.

3.使学生经历较为完整的数学建模过程

由于中学数学建模的目的是“为学生提供自主学习的空间,使学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;激发学生学习数学的兴趣,发展学生的创新意识和实践能力”,因此,中学数学建模重在“建”,强调学生的参与和经历,强调使学生经历较为完整的数学建模.可以说,如果学生没有经历一个较为完整的数学建模过程,就不能算参加了数学建模活动.

数学建模的具体应用篇5

【关键词】建模思想中学数学教学方法

【中图分类号】G633.6【文献标识码】a【文章编号】2095-3089(2015)08-0110-01

中学阶段的学生对于数学的学习存在的一个普遍的现象就是,对于数学的实际应用以及深层化理解能力不足,这就需要充分的应用到建模教学方法,学生的这种建模能力形成可以显著的提高学习效率,是其他各项知识理论学习的参考。要把建模思想贯彻到学生的学习意识中,就要做好基础性工作,正确把握应用分寸,使其应用的条件和空间十分充足,这样就可以有效的改善中学数学的教学模式,提高教学的效率。

1.中学数学建模思想的综述

在当前的中学数学教学中,数学建模是一种特定的思考方法,它是针对于一个特定的对象基于一个特定的目标,并依据于特有的内在规律,作出一些必须的简化假设,再适当的运用一些基本的数学工具,结合常见的数学公式、表格等,使其更加的实际化。从理论上来讲,它属于在数学语言和方法基础上,利用抽象和简化建立可以近似刻划并解决实际问题的一种有力的数学手段。

2.中学数学教学中采用建模思想的作用

2.1可以提高学生处理问题的整体性和创造性

中学数学中的建模思想就是从实际问题出发,充分的利用数学工具,在解决问题时还需要采用综合性的数学知识点,把所涉及到的数学知识理论进行融合,这一融合过程就需要学生具备很强的综合素质以及整体性的解决问题的能力。中学数学问题实质就属于一种创新解决的过程,如果继续按照固定的思维模式进行解决,最后所起到的作用很小的,而数学建模是一种创造性活动,可以对数学的创新发展起到推动作用。

2.2帮助学生正确的评价自己

从实质上来说,中学数学建模看重的是一个体验数学知识的过程,一般不会过多的关注学生的成绩,数学知识是一个系统的理论体系,对于成绩效果如何没有太大的关系,学习成绩好或者不好都是可以进行创新运用的,就像很多的应用性和创新性较高的数学问题,成绩不突出的学生可能比学习优秀的同学更具有适应性,这也就说明了数学建模的教学方法应用,可以正确的评价出学生的真实学习水平。

3.如何提高数学建模在中学数学教学中的应用效果

随着我国教育体制改革的不断深入,数学建模教学思想逐渐在中学数学教学中形成了一种应用趋势,并且已经在部分区域取得了显著的应用效果。运用建模思想,积极开展建模活动,以此来促进学生分析和解决实际数学问题能力提高的重要手段,这是其融入到中学数学教学中的最终目的,如何有效的提高应用效果,可以从以下几个方面分析:

3.1在数学教材中的重要部分引入数学建模

中学阶段,对于学生的教育是理论和实际相结合的方式,对于很多的实际问题解决都需要应用到数学建模思想,如果只是单单的考虑理论解决,势必会有很大的难度。中学数学教材中的很多内容大都是从实际问题入手,再引出数学知识点,而后建立数学模型,这对于重要章节的教学更具有实效性和针对性。例如对于一些较为抽象且贴近实际的数学案例解决,就可以充分的采用这种教学思想,将其转化为相关的模型进行解决,典型的数学问题就是通过指数函数来解决具有对应关系的数学问题。

3.2改编数学问题,转枯燥为生活化、趣味化

数学知识的学习是有一定枯燥性的,这在中学数学教学中有充分体现。很多的中学数学问题的取材是直接的来源于现实生活的,生活中的很多问题都是可以利用建模来解决的,经过数字化后的应用问题对于学生来说是有着学习的枯燥性的,解决起来较为抽象化,那么如果把这些枯燥性的问题进行适当的改编,使之更贴近于学生实际,更具有生活气息,这样可以提高学生的学习积极性,可以更好的为建模学习做铺垫。例如对于两点间的距离比以及存在的动点相关问题的解决,就可以将其套入到实际的生活现象中,这样可以对问题的解决起到很好的推动作用。

3.3合理性的把教材内容进行延伸,为数学建模作基础

中学数学教学中,基本上一个显著的特点就是它的应用性较强,虽然难易程度不一,但是它为建模提供了一个良好的素材和条件,通过建模可以切实的让学生体会到数学理论知识,更好的理解学习,形成深刻的印象,进而可以积累很多固定的解决套路,像函数模式、几何模式等,这可以培养学生的建模能力。

4.总结

我国教育体制改革的不断深入,在中学教学体系中,更多的具有时代性特点的教学学习方法得到了广泛的普及和应用,建模思想作为一种解决数学实际问题的一种有效手段,它在中学数学的教学学习中具有重要的实际意义和效果,可以帮助学生更好的学习数学知识,有深刻的理解,最终促进学习效果的提高。

参考文献:

数学建模的具体应用篇6

一、数学建模与数学建模意识

所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。如二次函数就是一个数学模型,很多数学问题甚至实际问题都可以转化为二次函数来解决。而通过对问题数学化、模型构建、求解检验使问题获得解决的方法称之为数学模型方法。因此,数学教学就是要教给学生一个个数学模型和怎样构建模型的思想方法,使学生能够运用数学模型解决数学问题和实际问题。

数学模型方法的操作程序大致为:

培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题:首先通过观察分析、提炼出实际问题的数学模型,然后把数学模型纳入某知识系统去处理。这要求学生有一定的抽象能力和观察、分析、综合、类比的能力。而这种能力的获得,需要把数学建模意识贯穿在教学的始终,引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出熟悉的数学模型,从而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。

二、构建数学建模意识的基本途径

1.为了培养学生的建模意识,教师首先要提高自己的建模意识。

这意味着在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。教师需要了解学科的发展历史和发展动态,还需要不断地学习一些新的数学建模理论,努力钻研如何把中学数学知识应用于现实生活。

2.数学建模教学应与现行教材结合起来研究。

教师应研究在各个章节中可引入哪些模型问题,如立体几何可引入正方体模型或长方体模型,把相关问题放入到这些模型中来解决;在解析几何中可引入两点间的距离模型解决一些具体问题;而储蓄问题、信用贷款问题则可结合在数列教学中引入。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高运用数学知识进行建模的能力。

3.注意与其它相关学科的关系。

数学是学习其它自然科学及社会科学的工具,因此在教学中应注意与其它学科的呼应,帮助学生加深对其它学科的理解,培养学生建模意识。如学了正弦型函数后,可引导学生用模型函数y=asin(wx+Φ)写出物理中振动图像或交流图像的数学表达式。这样的模型意识不仅是抽象的数学知识,而且会对学习其它学科的知识以及用数学建模知识探讨各种边缘学科产生深远的影响。

4.在教学中要结合专题讨论与建模研究。

可以选择适当的建模专题,如“代数法建模”、“图解法建模”、“直(曲)线拟合法建模”,通过讨论、分析和研究,熟悉并理解数学建模的一些重要思想,掌握建模的基本方法。引导学生通过对日常生活的观察,主动选择实际问题进行建模练习,使其在尝试数学建模成功的“甜”与难于解决的“苦”之中拓宽视野、增长知识、积累经验。

三、把构建数学建模意识与培养创新思维统一起来

在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力,是培养学生灵活运用基本理论解决实际问题的能力。培养学生创造性思维的过程有三点基本要求:一是对周围的事物要有积极的态度;二是要敢于提出问题;三是善于联想,善于理论联系实际。因此构建建模意识实质上是培养创新思维能力,具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立、自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力,直觉思维、猜测、转换、构造等能力。这些数学能力正是创新思维所具有的基本特征。

1.发挥学生的想象能力,培养学生的直觉思维。

数学史上,笛卡尔坐标系、费马大定理、哥德巴赫猜想、欧拉定理等,都是数学家通过观察、比较、领悟发现的。通过数学建模教学,可使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。

2.构建建模意识,培养学生的转换能力。

恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,如果在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。

3.以“构造”为载体,培养学生的创新能力。

“建模”就是构造模型,但模型的构造并不是一件容易的事,它需要有足够强的构造能力。学生构造能力的提高是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。

在教学中教师只要仔细观察,精心设计,就可以把一些较为抽象的问题,通过现象除去非本质的因素,从中构建出最基本的数学模型,使问题回到已知的数学知识领域,并且能培养学生的创新能力。

数学建模的具体应用篇7

关键词:数学建模培养创新思维能力

传统的注入式大学数学教学已无法适应现代社会的发展,培养学生创造性思维的能力,建立全新的大学数学教学模式已成为大学数学教学的首要任务。知识经济时代的到来不仅对现行教育提出了更加严峻的挑战,同时也预示着未来教育将发生深刻的变革。如何摆脱传统的教学模式的束缚,提倡开放的创造性思维模式教学,激发学生的发散性思维、培养创造能力已经成为现行教育的必然趋势。数学建模课程不仅要使学生获得新的知识,而且要提高学生的思维能力,培养学生自觉地运用数学知识去考虑和处理日常生活中遇到的问题,从而形成良好的数学思维品质[1]。

1、数学建模与创新思维

数学建模,就是对现象和过程进行合理的抽象以及量化,然后利用数学公式进行模拟和验证的一种数学方法。在建模的过程中也包括应用计算机进行数值模拟。这也是人类探索自然和社会的运行机理中所运用的有效方法,同时是数学应用于科学和社会最基本的途径之一。

创造性,即具有不断追求新知识以及研究新问题的精神。同时创造性思维是人类文明的催化剂,是开创新局面的推动机,也是未来人才应必备的重要品质。大学生的数学素质主要通过数学知识和数学学习能力来体现。数学的三项基本能力主要包括运算能力、思维能力以及空间学习想象能力。这三种能力的培养是数学科学所特有的功能。这三种能力的培养和训练不仅可以使学生严谨地进行数学逻辑思维,而且也能够更深刻地激发学生直觉思维,使学生对实际问题的领悟更加细致和敏锐,从而进一步增强学生的创新能力。创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力!数学建模的创新能力就是运用数学知识、数学思想、数学方法及计算机等当代高科技手段去解决各种实际问题的能力。培养学生应用数学的意识,增强学生的创新能力是一项长期的任务。在数学建模的教学过程中,需要把数学建模的意识贯穿在教学的始终,要不断的引导学生应用数学的思维去观察、分析建模的对象的各种信息,从复杂的具体问题中抽象出我们熟悉的数学模型,使大学生的建模意识和数学创新思维意识成为学生的好习惯[2]。

2、构建数学建模意识的基本途径

2.1为了培养学生的建模意识,数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把数学知识应用于现实生活。

2.2数学建模教学还应与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题,如讲立体几何时可引入正方体模型或长方体模型把相关问题放入到这些模型中来解决;又如在解几中讲了两点间的距离公式后,可引入两点间的距离模型解决一些具体问题,而储蓄问题、信用贷款问题则可结合在数列教学中。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

2.3注意与其它相关学科的关系。由于数学是学生学习其它自然科学以至社会科学的工具而且其它学科与数学的联系是相当密切的。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。

3、数学建模教学中如何构建数学建模意识

3.1为了培养学生的建模意识,教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新鲜的数学建模理论,并且努力钻研,首先弄清楚如何把中学数学知识应用于现实生活。北京大学附中张思明老师对此提供了非常典型的事例:他在大街上看到一则广告:“本店承接a1型号影印。”什么是a1型号?在弄清了各种型号的比例关系后,他便把这一材料引入到初中“相似形”部分的教学中。这是一般人所忽略的事,却是数学教师运用数学建模进行教学的良好机会。

3.2数学建模教学还应该与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题,如讲立体几何时可引入正方体模型或长方体模型把相关问题放入到这些模型中来解决;又如在解析几何中在讲了两点间的距离公式后,可引入两点间的距离模型解决一些具体问题;而储蓄问题、信用贷款问题则可结合在数列、函数在教学中的学习。在日常的教学中要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力,进而对学习数学产生浓厚的兴趣,认为数学不是枯燥无用的一门学科,而是在我们的日常生活中无处不在的一门相当有用的学科。

3.3要注意与其它相关学科的关系。由于数学是学生学习其它自然科学以至社会科学的工具而且其它学科与数学的联系是相当密切的。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其他学科的理解,也是培养学生建模意识的一个不可忽视的途径。

4、结论

总之,要真正培养学生的创新能力,光凭传授知识是远远不够的,重要的是在教学中必须坚持以学生为主体,不能脱离学生搞一些不切实际的建模教学,我们的一切教学活动必须以调动学生的主观能动性、培养学生的创新思维为出发点,引导学生自主活动,自觉地在学习过程中构建数学建模意识,只有这样才能使学生分析和解决问题的能力得到长足的进步,也只有这样才能真正提高学生的创新能力,使学生学到有用的数学。

参考文献:

数学建模的具体应用篇8

关键词:初中数学;“数学建模”;教学

G633.6

一、初中笛А笆学建模”的意义

初中建模是指学生在教师预设的与学习课本知识有关的生活情境中,通过一定的数学活动建立数学模型、解释数学模型和应用数学模型,并以此为载体学习初中数学相关知识。数学建模大多是在大学生数学学习过程中被提及,而其目的是将所学的数学知识合理的应用到实际的生活中,具有较强的应用性及实践性,与此不同的是,初中数学教学中强调数学建模则是为了让学生学习并掌握新的知识,提高学生能力,形成新思想并体验教学活动等。初中数学建模其包含的知识结构较为基础、相对简单,作为一种教学策略,通常由教师事先设计好再开展教学活动,需要由教师进行直接参与。可见,初中数学建模已成为一种数学教学的教学模式。初中数学模型教学过程的本质是让学生参与到数学探索和实践的活动中,让学生主动参与到数学学习的整个过程中,积极探索、获取新知识,这一教学模式转变了以往枯燥乏味的数学学习模式,从单纯记忆、模仿以及训练的数学学习方式转变为学生进行自主探索、实践创新的过程。对于学生来说,不仅让学生学习到数学知识,还能体会到数学的乐趣,激发学习兴趣,树立学习信心,强化了学生主动参与到数学学习中的热情及主动性。可见,开展初中数学建模教学模式不仅是教育方式上的改革,更能提高学生的自主意识、探究能力,发展学生的综合实践能力及创新能力,推动初中数学教育的发展及改革。

二、“数学建模”教学方法在初中数学教学中的运用流程

在初中数学教学过程中对数学建模教学方法的运用主要包括:模型准备,模型假设、模型建构以及模型应用与检验四个方面的内容。

1.模型准备

数学建模的实现有赖于对一定现实情境的分析。初中数学教学中数学建模所面对的现实情境问题,往往是教师根据教学需要精心设计出来的预设问题。教师通过将学生的生活和数学教学的实际需要进行有机的结合,创设出符合学生实际的生活情境,为初中数学教学中数学模型的建构提供丰富的生活体验,让学生更容易借助固有的经验体会到其中隐含的数学问题。数学建模是一个由具体现象到抽象概括的建构过程。

2.模型假设

数学建模的过程主要是根据实际问题的特征和建模的目的,对现实问题进行必要的简化过程,通过精确的数学语言把实际问题描述出来,从而实现从实际问题到为数学问题的转化过程。用精确的语言提出合理假设,是数学模型成立的前提条件,也是数学建模最关键的一步。由于初中生的身心发展特点导致其本身认知能力存在一定的缺陷,加上初中数学建模自身的特殊性,在初中数学教学过程中,教师要注意学生对问题情境的解读是循序渐进的,教师更多的参与、引导和整合能够帮助学生更好地学习和掌握对数学建模的运用。

3.模型建构

对数学模型的建构要充分考虑初中生的接受和认知能力,要立足学生的角度,让学生亲身经历建构数学模型的过程,这样才能让学生更好地掌握和运用数学建模。教师在教学过程中应该鼓励学生采用多样化的探究策略,根据自身的知识水平和实践能力选择不同问题解决的方式,帮助学生自主构建数学模型。

数学模型是用数学解决实际问题时使用的一种方法,它往往是一组具体的数学关系式或一套具体的算法流程,它是一种数学的思考方法,同时也是逻辑思维的思考方式,构建数学模型是数学建模的关键。对数学模型的建构和运用的核心目标是实现对学生数学逻辑思维方式的培养,提升学生的数学思维和实际解决问题的能力,因此对数学模型的建构一定要立足实践,让理论与实践相融合,既适应学生的认知能力发展水平又充分满足教学目标的需要。

4.模型运用与检验

在数学教学中对数学建模的运用,其目的是更好的解决现实问题。因此,数学模型最终还是要回归对实际问题的运用与解决。只有在对实际问题解决的过程中,才能使数学模型具有生命力,实现自身的价值,对初中数学的发展发挥应有的作用。对数学建模的结果检验包括检验和应用两部分,对数学模型的每一次应用都是对模型的一次检验。在初中数学建模中,受初中生知识水平和认知能力的限制,对数学建模检验的重点只能放在模型的应用方面。数学是一门应用性非常强的基础科学,只有在不断的实践应用中才能获取数学知识的精髓,数学模型可以在很大程度上帮助学生深刻领会所学知识,顺利构建数学体系,从而大大提高学生解决实际问题的能力,全面提升学生的综合素质。同时,初中数学建模流程并不是一成不变的,它要根据教学内容、教学对象、教学进度等实际状况,进行灵活选择。

三、如何将“数学建模”教学方法应用到教学实践中

1.全面有针对性地选取适宜的教学内容

初中数学建模教学方法经过教学实践的检验对有效开展数学教学有重要的教学意义,但是初中阶段数学教学内容中不是所有内容都适宜运用“数学建模”教学方法开展教学。所以,初中数学教师要注意对教学内容进行筛选,选取针对性较强且适宜运用该教学方法的数学内容开展教学,使教学可以达到事半功倍的效果。例如轴对称图形的移动教学则较适宜运用“数学建模”教学方法开展教学,教师可以将不同的二维图形呈现给学生,以一条直线为对称中线将其进行旋转、翻折使其产生“轴对称”的效果,同时教师运用字母或数字的形式标记翻折前与翻折后图形的对应点,使学生通过教师的演示在头脑中建立与之相关的图形翻折过程,形成数学思维建模,提升数学课堂教学质量水平。

2.教学环节设计要注意科学性、合理化

教学环节的设计科学性和合理化是运用“数学建模”教学方法开展数学教学成功与否的重要影响因素之一。比如动画片中的皇宫建筑蕴含着不同“角”的构成,并带领学生将“直角、钝角、锐角”概念与不同形状的图形相结合并运用到实际数学设计中,设计出自己的城堡,调动学生学习复杂数学内容的主动性,培养学生应用数学的能力,进而提升数学教学效果和水平。

在我国当下的初中数学教学中,“数学建模”这一教学模式可以很好地实现教学目标,并有效的提高数学教学效果,在培养学生的数学思维能力方面,也有一定的促进作用。如果该模式能够在初中数学部分教学内容中得到拓展和应用,将有利于初中数学教师教学水平的提高。

参考文献:

数学建模的具体应用篇9

关键词:数值计算方法;数学建模;必要性;途径

中图分类号:G642.41文献标志码:a文章编号:1674-9324(2013)24-0047-02

随着计算机的飞速发展,几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如《计算物理》、《计算化学》、《计算生物学》、《计算地质学》、《计算气象学》和《计算材料学》等,而《计算数学》中的数值计算方法则是解决“计算”问题的桥梁和工具。因此掌握数值计算方法的基本理论及其应用对理工科大学生从事专业研究具有重要意义。那么如何加强学生对计算方法思想的领悟?如何增强学生运用计算方法思想解决实际问题的能力?在计算方法教学中融入数学建模思想是值得我们认真思考的问题,也是解决学与用关系的一个非常有意义的尝试。笔者参加了山东省精品课程数值计算方法的建设,又结合近几年的教学体会,提出以下几点认识。

一、数学建模思想融入数值计算方法教学的必要性

1.传统数值计算方法教学的不足之处。值计算方法,也称数值分析或计算方法,是专门研究各种数学问题的数值解法(近似解法),包括方法的构造和求解过程的理论分析。课程中有大量的、冗长的计算公式,所涵盖的知识面宽,各部分内容自成体系,因而给人的感觉是条块分割严重,逻辑性、连贯性不强。在传统的数值计算方法教学中,主要是讲解定义、公式推导和大量的计算方法等。很多学生在学习的过程中甚至考试结束之后仍然不知道自己所学的算法能在什么地方应用,导致学生学习目的性模糊,学习兴趣减少,因此加强培养学生的数学建模能力具有十分重要的意义。

2.数学建模思想在数值计算方法教学中的作用。所谓数学建模[1],就是将某一领域或部门的某一实际问题,通过做一些必要的简化和假设,明确变量和参数,并依据某种“规律”,运用适当的数学理论,建立变量和参数间的一个明确的数学关系式,这个数学关系式即为数学模型,建立这个数学模型的过程即为数学建模。建立实际问题数学模型的过程如下[2]:实际问题建立数学模型求解模型检验模型结果修改模型再求解模型(可循环多次)实际问题的合理结果。在这个过程中,只有一小部分模型能解析求解,大部分数学模型只能数值求解。这就要用到数值计算方法课程中所涉及的算法,如插值方法、最小二乘法、曲线拟合法、方程迭代求解法、共轭梯度法等,这就启发我们将数学建模的思想融人计算方法的教学中,提供数值方法实际应用的源泉,体现数值方法的价值和意义,使数学教学不再是无源之水,无本之木,不再显得那么空洞,从而把以往教学中常见的“要我学”真正地变成“我要学”。

二、数学建模思想融人数值计算方法教学的途径

将数学建模的思想融人数值计算方法教学中是很有必要的,但具体如何融入呢?结合教育的实际,笔者提出以下几点建议。

1.原则。课堂教学的主要内容和地位而言,数值算法是课堂教学的主要内容,数学建模仅作为一种教学方法而存在,是学生认知的一种途径,它为数值计算方法教学服务,是教学工作的一种延伸和补充,处于从属地位。数值计算方法为主,数学建模为辅,二者不能平分秋色,更不能本末倒置。因此,数学建模思想渗透到数值计算方法教学中的量不能超过一个度,否则,数值计算方法课就会变成数学建模课。

2.在解决应用问题的讲解中渗透数学建模的思想与方法。值计算方法中的数值方法都有很强的实际应用背景,每一种方法都直接或间接与工程应用有关。教学中通过对实际应用背景的描述,可以激发学生的学习欲望和探究心理,从而对学习内容及过程产生强烈的兴趣和需要。这就要求授课教师了解其他相关学科课程,让学生知道所学的知识在不同领域的应用。例如:在信息技术中的图像重建、图像放大过程中为避免图像失真、扭曲而增加的插值补点,建筑工程的外观设计,天文观测数据、地理信息数据的处理,社会经济现象的统计分析等方面,插值技术的应用是不可或缺的;在实验数据处理问题中,曲线拟合得到广泛应用;在汽车、飞机等的外型设计过程中,样条技术的引入使其外型设计越来越光滑、美观。

3.数学实验中渗透数学建模的思想与方法。机环节是数值计算方法这门课程重要的组成部分,也是检验学生理解授课内容好坏的“试金石”。授课教师可以结合实际和所学数值算法设计一些综合性的问题,让学生去解答。学生通过查阅资料,认真研究,建立模型,设计算法,编程上机,调试运行,得出结果。这个过程既提高了学生编程上机能力,对所学算法有了更深刻的理解,而且对提高学生应用所学的计算方法知识解决实际问题的能力也有很大帮助。

4.在案例教学中渗透数学建模的思想与方法。案例教学[3],就是在课堂教学中,以具体案例作为教学内容,通过具体问题的建模范例,介绍数学建模的思想方法。所选教学案例要尽可能结合学生所学专业,并且涉及相应数值算法而又能体现数学建模思想。这样既使学生掌握了数学建模的方法,又使学生深刻体会到数学是解决实际问题的锐利武器。下面具体举一个例子给予说明。例:三次样条插值案例.在工程技术和数学应用中经常遇到这样一类数据处理问题:在平面上给定了一组有序的离散点列,要求用一条光滑曲线把这些点按次序连接起来。解:传统的设计方法是工程技术人员常常用一条富有弹性的均匀细木条,让它们依次经过离散数据点,然后用“压铁”在若干点处压住,在其他地方让它自由弯曲,然后沿细木条画出一条光滑曲线,形象的称为样条曲线

在力学上,通常均匀细木条可以看作弹性细梁,压铁看作是作用在梁上的集中载荷,“样条曲线”就模拟为弹性细梁在外加集中载荷作用下的弯曲变形曲线。设细梁刚度系数是a,弯矩为m,样条曲线的曲率为k(x)。由力学知识:ak(x)=m(x),m(x)是线性函数,k(x)=■当时(即小挠度的情况),上述微分方程简化为ay"(x)=m(x),y(4)(x)=0因此,“样条曲线”在每个子区间可近似认为是三次多项式。通过此数学建模案例可以让学生体会三次样条的基本特征:分段三次光滑,整体二次光滑。

总之,在数值计算方法教学中融入数学建模思想,不但搭建起数值计算方法知识与应用的桥梁,而且使得数值计算方法知识得以加强、应用领域得以拓广,在推进素质教育和培养创新能力上将会发挥重要的作用。

参考文献:

[1]丁素珍,王涛,佟绍成.高等数学课程教学中融入数学建模思想的研究与实践[J].辽宁工业大学学报,2008,10(1):133-135.

[2]曾国斌.试论数学建模与高等数学教学[J].湖南理工学院学报(自然科学版),2008,21(3):92-94.

[3]何莉.在高等数学教学中培养学生数学建模能力[J].科教文汇,2008,68.

数学建模的具体应用篇10

【关键词】数学建模数学模型方法数学建模意识创新思维

一、数学建模与数学建模意识

著名数学家怀特海曾说:“数学就是对于模式的研究”。

所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。

具体的讲数学模型方法的操作程序大致上为:

由此,我们可以看到,培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。

二、构建数学建模意识的基本途径

1.为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。

2.数学建模教学还应与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

3.注意与其它相关学科的关系。由于数学是学生学习其它自然科学以至社会科学的工具而且其它学科与数学的联系是相当密切的。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。这样的模型意识不仅仅是抽象的数学知识,而且将对他们学习其它学科的知识以及将来用数学建模知识探讨各种边缘学科产生深远的影响。

4.在教学中还要结合专题讨论与建模法研究。我们可以选择适当的建模专题,通过讨论、分析和研究,熟悉并理解数学建模的一些重要思想,掌握建模的基本方法。甚至可以引导学生通过对日常生活的观察,自己选择实际问题进行建模练习,从而让学生尝到数学建模成功的“甜”和难于解决的“苦”借亦拓宽视野、增长知识、积累经验。这亦符合玻利亚的“主动学习原则”,也正所谓“学问之道,问而得,不如求而得之深固也”。

三、把构建数学建模意识与培养学生创造性思维过程统一起来

我认为培养学生创造性思维的过程有三点基本要求。第一,对周围的事物要有积极的态度。第二,要敢于提出问题。第三,善于联想,善于理论联系实际。因此在数学教学中构建学生的建模意识实质上是培养学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动。它既具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立,自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力,直觉思维、猜测、转换、构造等能力。而这些数学能力正是创造性思维所具有的最基本的特征。

1.发挥学生的想象能力,培养学生的直觉思维

众所周知,数学史上不少的数学发现来源于直觉思维,如笛卡尔坐标系、费尔马大定理、歌德巴赫猜想、欧拉定理等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。

2.构建建模意识,培养学生的转换能力

恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。

3.以“构造”为载体,培养学生的创新能力

“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”

我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。只要我们在教学中教师仔细地观察,精心的设计,可以把一些较为抽象的问题,通过现象除去非本质的因素,从中构造出最基本的数学模型,使问题回到已知的数学知识领域,并且能培养学生的创新能力。

参考文献

[1]沈文选.数学建模.湖南师大出版社,1999.

[2]中国教育学会中学数学教学专业委员会.面向21世纪的数学教学.浙江教育出版社,1997.

[3]胡炯涛,张凡.中学数学教学纵横谈.山东教育出版社,1997.