首页范文大全高分子材料的基本特性十篇高分子材料的基本特性十篇

高分子材料的基本特性十篇

发布时间:2024-04-26 02:48:41

高分子材料的基本特性篇1

1.1授课内容强调基础性高分子材料与机械类学生通常接触到的金属材料在结构、性能、制备工艺等方面有很大的区别。向机械类学生讲授高分子材料,主要目的是让他们对高分子材料有最基本的了解。在短短4学时内,不可能也没必要将高分子材料相关的全部内容压缩讲授。这就决定了机械工程材料课程中高分子材料部分必须侧重于基础性知识,对于理论性、专业性太强的知识点必须舍弃。基础性内容应当包括高分子材料的基本概念、分类、结构特点及常用工程高分子材料(工程塑料、工程橡胶及工程纤维)的基本力学性能。

1.2授课目标偏向工程性高分子材料不仅可作为结构材料使用,也可以作为功能材料使用。对于非材料类专业的学生,特别是机械类专业的学生,更关心材料的力学性能和应用范围。因此,在课程内容的安排上,应以与机械工程有关的机械性能为主,给出常用工程高分子材料的基本力学性能指标及适用领域。

1.3授课过程重视学生的先修知识大多数高校的机械工程材料课程以金属材料为主线,在学习高分子材料之前,学生对金属材料已经有基本了解。高分子材料与金属材料之间存在较大差异,例如:高分子材料的聚集态结构以非晶结构为主,而金属材料则以晶体结构为主;许多高分子材料,特别是橡胶类的高分子材料具有金属材料所不具备的优良弹性等。学生先修知识的习惯思维在他们学习高分子材料时可能会引起冲突,因此在授课时必须对金属材料与高分子材料的差异予以考虑。采用与金属材料对比的方法学习高分子材料,有利于帮助学生澄清概念,更好地掌握高分子材料的知识。

1.4教学方式应具有高效性高分子材料课程涉及的概念繁多,容易混淆,对于机械类学生而言比较抽象,难以理解。在短短的4学时内,要想让学生尽可能多的掌握高分子材料的相关基本概念,必须摒弃照本宣科或一味讲授的教学方式。通过高效的教学方式,充分调动学生的积极性、主动性,引导学生思考,方能达到理想的教学效果。

1.5提供扩展知识的参考书由于高分子材料的性能、结构、制备工艺以及表征与金属材料和陶瓷材料完全不同,而且目前在机械工程材料中高分子材料部分比例很少。为解决这一矛盾,在章节后面列出了比较系统的高分子材料性能、内容、结构、制备工艺以及表征方面的书籍,以供学生参考。

2高分子材料教学改革

根据以上原则,我们在2013年度的授课过程中对高分子材料的讲授进行了调整,具体如下:(1)授课内容及学时安排:高分子材料的基本概念(高分子、单体、链节,0.5学时),高分子材料的分类方法(按用途分类,按热行为分类,按反应类型分类,按主链结构分类,0.5学时),高分子材料基本结构(简单介绍近程结构、远程结构、聚集态结构的概念,0.5学时)及物理状态(玻璃态、高弹态和粘流态,0.5学时),典型工程塑料的力学性能和应用(1学时),典型合成橡胶的力学性能和应用(1学时)。(2)重点讲授常用工程高分子材料(工程塑料、工程橡胶及工程纤维)的基本力学性能及典型工程高分子材料的适用领域。(3)授课过程中通过列表等方式将高分子材料的相关内容与金属材料进行对比,一方面避免概念混淆,另一方面突出高分子材料与金属材料的不同之处。(4)采用启发式教学模式,通过设问、模拟实验、举例、探究等方法引导学生思考;在多媒体课件中,采用丰富的图片、动画激发学生学习的积极性和主动性。

3结束语

高分子材料的基本特性篇2

小麦贮藏蛋白决定小麦的品质特性,决定面团的弹性和延伸性。高分子量麦谷蛋白亚基(Hmw-GS)仅占小麦贮藏蛋白的10%,但对加工品质起着决定性作用。Hmw-GS由染色体1a、1B、1D长臂上的位点控制,这些位点总称为GLu-1位点。不同Hmw-GS亚基对面团特性和烘烤品质有着不同的影响。Glu-a1编码的1和2*亚基,Glu-B1编码的7+8、17+18、13+16和14+15亚基以及Glu-D1编码的5+10亚基均对面包加工品质有正向作用[1-2]。近年研究发现,1Bx基因的复制导致7亚基的超量表达,这可以显著提高面团强度[6-7]。国内对7oe亚基也进行了初步研究。张平平等[4]选用13份含7oe亚基姊妹系材料,利用反相高效液相色谱分析法(Rp-HpLC)和凝胶色谱(Se-HpLC)方法研究了含Glu-B1al(7oe+8)材料的Hmw-GS总量和面团强度。任妍等[5]利用两对StS引物验证了检测7oe引物的特异性,为其快速检测提供了方法。

矮败小麦是用“矮变1号”给太谷核不育小麦授粉,F1不育株再用高秆品种测交所得,中国自主创新的重大科技成果。矮败小麦的后代群体中一半是异交结实的矮秆雄性不育株和一半自交结实的非矮秆可育株,是理想的轮回选择工具[3]。津强5号品质达国家一级强筋小麦标准,且各项品质指标与加麦和硬红春相仿,经张平平等[4]检测含7oe亚基。

Ragupathy等[8]根据LtR逆转座子边界与重复片段的结合区域设计了两个StS标记并检测了400多份小麦品种,经任妍研究能有效鉴定7oe基因,这为快速准确检测7oe基因在本群体中的分布提供了可能。本研究对195份矮败小麦与津强5号杂交得到的高代品系7oe亚基进行分子检测,明确此位点等位基因的分布规律,并检测这批材料的揉混特性,为我国小麦育种提供有用的材料以及分子标记辅助选择方法。

1材料和方法

1.1供试材料

195份以津强5号作为轮回亲本与矮败小麦回交2次的高世代品系,2009年种植于天津市武清区周庄村,每区2行,行长2m,行距30cm,5cm点播。对其中9份农艺性状优良的非7oe亚基和6份含7oe亚基材料于2010年进行进一步扩繁,分析其揉混特性。

1.2基因组提取

采用SDS法提取小麦基因组Dna[9]。每份材料分别提取二粒种子的Dna,利用紫外分光光度计检测Dna浓度,终浓度调整至20ng·μL-1。

1.3StS标记检测

利用Ragupathy等[8]开发的显性StS标记检测Bx7oe基因。引物由天津润泰科技发展有限公司合成。

标记(重复片段与逆转座子左边结合引物):taBaC1215C06-F517:5'-aCGtGtCCaaGCtttGGttC-3',

taBaC1215C06-R964:5'-GattGGtGGGtGGataCaGG-3';

pCR反应体系为20μL,含10×pCRBuffer2μL,dntp(a、t、C、G)各200μmol·L-1,每条引物1μL(10mmol·L-1),taqDna聚合酶(takara)1U,模板Dna50ng。标记1的pCR反应程序为:94℃变性5min;94℃变性30s,63℃退火30s,72℃延伸1min,35个循环;72℃延伸5min。

pCR扩增产物以1.5%的琼脂糖凝胶电泳分离检测,缓冲液体系为1×tae溶液,180V电压电泳30min,溴化乙锭染色后,用GelDocXRSystem扫描成像并存入计算机。

1.4制粉方法

采用德国Brabendersenior试验磨按aaCC26-21a方法制粉。

1.5揉混特性检测

由美国national公司生产的揉混仪采用10g揉面钵按aaC

C-a方法测试,重复次,取平均值。

.统计方法

采用DpS统计分析软件进行显著性比较。

结果与分析

.Bxoe的StS标记检测

标记taBaCC-F/R在含Bxoe基因的材料中可扩增出一条bp的片段,在不含Bxoe基因的材料中无pCR扩增产物。份材料扩增出bp条带,占所检测品系的.%。

.揉混特性检测

对份田间农艺性状表现好的未带有Bxoe品系和份带有Bxoe品系进行揉混图测定,图为份材料中个材料的揉混特性检测,其中图(a)为带有Bxoe基因的材料的揉混图,图(b)为未带有Bxoe基因的材料的揉混图。

将份非Bxoe品系和份带有Bxoe品系的主要品质性状平均值、变幅和变异系数列于表。由表可以看出,有与无oe品系的峰值时间分别为.和.,变幅分别为.~.和.~.,变异系数为.%和.%,说明基因间变异系数差异较小;有与无oe品系峰值高度的分别为.和.,变幅分别为.~.和.~.,变异系数分别为.%和.%,说明基因间变异系数差异较大;有与无oe品系的峰值宽度分别为.和.,变幅分别为.~.和.~.,变异系数分别为.%和.%,说明基因间变异系数差异较小;有与无oe品系的分钟带宽分别为.和.,变幅分别为.~.和.~.,变异系数分别为.%和.%,其中有oe品系间变异较大,无oe品系间变异较小,说明基因间变异系数差异较大,有与无oe品系的峰值能量分别为.和.,变幅分别为.~.和.~.,变异系数分别为为.%和.%,说明基因间变异系数差异较小。

从表中可以看出,有oe品系和无oe品系间分钟带宽呈极显著水平,含oe品系除津之外,其余各材料分钟带宽均高于.min,最高达到.min;不含oe品系材料最高值为.min,最低仅为.min,与含oe品系差异达到极显著差异。分钟带宽可作为小麦揉混特性中品质评价的重要指标。

讨论

分子标记辅助选择因其简便准确在育种中越来越受到重视,筛选并明晰基因型和表型之间的联系有重要意义。任妍等利用Rp-HpLC的结果对Ragupathy等开发的特异性StS标记进行了验证,证明此标记对Bxoe基因的特异性,且扩增出的带型清晰、简单、准确。本研究选用此引物对份材料进行分析,同时利用揉混仪参数对检验结果进行对应性试验。结果表明,此引物与品质相关性较高,在育种中有较大利用价值。

在本试验的检测中,含oe亚基材料基本上均表现较强的品质特性,尤其是津和津,在后续试验中,部分重要指标远超过国家一级强筋小麦标准;但同时我们也发现,津材料虽然经检测含有oe亚基,但品质数据等同甚至低于非oe亚基材料,具体原因将在今后进行研究。

矮败小麦在冬小麦育种中发挥着巨大作用。本试验采用强筋春小麦品种津强号,将矮败小麦田间选择着眼于春麦,获得将近份春麦材料,构建了一个强筋矮败小麦集群,同时获得部分强筋类型春麦材料。在大田普遍表现繁育性较强、秆高大幅降低和秆强加强等偏向矮败小麦的系列农艺特征,具有较大育种价值。利用矮败小麦选育春麦材料,为春麦品种选育提供了一条新的思路。

高分子材料的基本特性篇3

关键词:纳米材料特性应用

纳米科技是21世纪快速发展的主流科技之一,交叉性、综合性很强,在国民经济和科学技术等方面有着广阔的应用前景。纳米材料是纳米科技发展的基础,被称为“二十一世纪新材料”,在很多领域都有广泛的应用价值,成为人们目前研究的重点领域之一。纳米材料基本组成单元的尺寸在1~100纳米范围内,而且基本单元至少有一维处于纳米尺度范围,同时具有常规材料不具备的优异性能[1]。纳米材料特殊的力学、光学、电学、磁学、热学等特性,已经在当前高速发展的各个科技领域中得到了广泛应用,产生了巨大的经济效益和社会影响。本文阐述了纳米材料的基本特性,介绍了纳米材料在各个领域中的应用,并展望了其未来发展趋势。

一、纳米材料的特性

1.表面效应

表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的减小而急剧增大的现象[2][3]。由于表面原子数增多,表面能高,原子配位数不全,存在严重的缺位状态,很不稳定,活性极高,极易与其他原子结合,从而产生一些新颖的效应。如利用这一特性,金属超微颗粒可以作为新一代具有高催化活性和产物选择性的催化剂。

2.量子尺寸效应

当粒子的尺寸小到某一数值时,费米能级附近的电子能级由准连续变为离散能级的现象就是量子尺寸效应[4][5]。相邻电子能级eF为费米能级。对于大粒子或宏观物体包含无限个原子,即宏观物体的能级间距几乎为零,即能级是连续的;而对于纳米粒子而言,其包含的原子数十分有限,n值很小,于是δ就有一定的数值,即能级是分裂的,呈现为离散能级。因此,当能级间距大于热能、磁能、光子的能量等时,就要考虑量子尺寸效应,导致纳米粒子与宏观物体的特性显著不同。如在超细颗粒态下的金属导体可以成为绝缘体,谱线发生蓝移。

3.小尺寸效应

当纳米粒子的尺寸与光波波长、传导电子的德布罗意波长及超导态的相干长度或磁场穿透深度相当或更小时,晶体周期性边界条件将被破坏,非晶态纳米粒子表面层附近的原子密度减小,导致声、光、电、磁、热、力学等特性出现特殊变化,这就是纳米粒子的小尺寸效应[6]。如在纳米尺寸下,材料熔点降低、微波吸收增强等。

4.宏观量子隧道效应

纳米粒子的磁化强度、量子相干器件中的磁通量等可以穿越宏观系统的势垒而产生变化,也就是说微观粒子具有贯穿势垒的能力称为纳米粒子的宏观量子隧道效应[7]。量子尺寸效应、宏观量子隧道效应将会是未来微电子、光电子器件发展的基础。

二、纳米材料的应用领域

纳米材料的基本特性使其在力、光、电、磁、热等方面呈现出常规材料不具备的一系列新颖的物理和化学特性。因此纳米材料在催化、陶瓷、化工、环境、生物和医学、军事等各个领域具有非常重大的应用价值。

1.在催化领域中的应用

纳米粒子表面原子密度大,表面活性中心多,作为催化剂对催化反应如氧化、还原、裂解等反应都有很高的活性和选择性,能加快反应速率,使难以进行的反应顺利进行。例如,使用纳米ni粉催化火箭燃料,可以提高燃烧效率达100倍以上。

2.在环保领域中的应用

随着工业的发展和人口的快速增长,环境污染也越来越严重,而纳米光催化技术在环境保护中的应用研究日益受到重视,如醇与烃的氧化,无机离子氧化还原,固氮反应,水净化处理,等等。纳米光催化剂光催化作用机理一般是在一定波长的光波照射下,产生光生电子―空穴对,这些电子和空穴能使空气中的氧或水中的溶解氧活化,产生活性氧及自由基等高活性基团,反应关系式如下:

3.在生物医学领域中的应用

纳米材料在生物医学中检测诊断、靶向药物输送、生物分子检测、磁共振成像增强及健康预防等许多方面都有广阔的应用前景。如利用具有独特孔状结构特性的碳纳米管能够实现药物可控释放;以光感应器做开关的纳米机器人,可以疏通脑血管中的血栓,杀死癌细胞等。在医学领域中,纳米材料最成功的应用是作为药物载体(如纳米胶囊)、生物芯片、纳米生物探针和制作人体材料,如人工肾脏、人工关节等。

4.在军事领域中的应用

纳米技术和其他所有技术一样,将在未来战争中发挥着不可估量的作用。例如:纳米机器人、纳米飞机、蚊子导弹等许多无人化设备将在侦察预警、指挥控制和精确打击等方面发挥着越来越重要的作用;纳米卫星组成的卫星监视网,可以实时观察到地球上的每一个角落,使战争变得更加透明;纳米隐身技术可以最大限度地隐藏自己,同时千方百计地寻找和发现敌人,起到武器装备隐身的目的,如用做隐形飞机涂料的纳米Zno对雷达电磁波具有很强的吸收能力。

5.在精细化工领域中的应用

纳米材料在精细化工,如橡胶、塑料、涂料等领域也扮演着重要角色。例如,掺杂纳米Sio2可以提高橡胶的抗紫外辐射能力。而为了提高塑料的强度、韧性、致密性、防水性等,生产时通常在塑料中添加一定的纳米材料。

6.在陶瓷工业领域中的应用

陶瓷材料在日常生活及工业生产中起着举足轻重的作用。传统陶瓷材料质地较脆,韧性、强度较差,而纳米陶瓷可以克服传统陶瓷材料的缺陷,使陶瓷具有像金属一样的柔韧性和可加工性,并在超高温、强腐蚀等苛刻的条件下起到其他材料不可替代的作用,应用较为广泛。

7.在其他领域中的应用

除了在上述领域中的应用外,纳米材料在诸如电子计算机和电子工业、航空航天、机械工业、纺织工业、化妆品工业等其他领域也有着广泛应用。

三、展望

“谁输掉了纳米,谁就输掉了未来”,这已经成为世界各国的共识。正如钱学森院士所预言的那样:“纳米科技将是21世纪的又一次产业革命”,由此可见纳米科技的重要性。纳米材料是整个纳米科技的基础,在各个领域得到了广泛应用。但从纳米材料的基础研究和实际应用来看,目前其研究还面临很多问题和严峻挑战。如合成方法复杂、单分散的纳米粒子或纳米线的可控制备、生长机制还不完全清楚、缺乏系统的性能研究,等等。但我们有理由相信,随着科学技术的不断进步,制备和改性技术的不断完善,纳米材料在未来将会在更多领域中得到更加广泛的应用。

参考文献:

[1]张立德,李爱莉,端夫编著.奇妙的纳米世界(第1版)[m].北京:化学工业出版社,2004.

[2]王大志.纳米材料结构特征[J].功能材料,1993,24(4):303-306.

[3]张立德,牟季美编著.纳米材料学[m].沈阳:辽宁科学技术出版社,1994.

[4]KuboR.electronicpropertiesofmetallicfineparticles[J].phys.Soc.ofJap.,1962,17(6):975-986.

[5]LiJB,wangparisonbetweenquantumconfinementeffectsofquantumwiresanddots[J].Chem.matter.,2004,16(21):4012-4015.

[6]张立德,牟季美编著.纳米材料和纳米结构(第1版)[m].北京:科学出版社,2001.

高分子材料的基本特性篇4

polyhedraloligomericsilsesquioxanes(poSS),asanewkindoforganic-inorganichybridmaterials,hasattractedgreatattentioninthelastdecade.inthispaper,theapplicationsforthesepolymernanocompositeswereintroducedandforecasted.thethermalpropertiesofpoSS-basedpolymerandrelatedflameretardantwereilluminated.themechanismofincreasingtheflameretardantandthermalpropertieswasalsodiscussed.additionally,thedevelopingtrendsofpoSSpolymernanocompositesinthefuturewerediscussed.

火灾严重威胁着人民生命财产安全,引起火灾的原因主要是易燃物品导致的火灾蔓延。这些材料若不具有阻燃性,将会增加火势蔓延,并在燃烧过程中释放有毒烟雾和易燃气体。因此,为了降低火灾威胁及损失,阻燃性已经成为对材料性能的重要要求之一。笼型倍半硅氧烷是一种新型硅系阻燃剂,它在赋予基材优异的阻燃性能外,还能改善基材的其他性能(如加工性能、机械性能、耐热性能、生态友好性等)。

20世纪90年代,多面低聚倍半硅氧烷(poSS,又称笼型倍半硅氧烷)由美国空军研究实验室首先开发研制出来,它是倍半硅氧烷的一个重要分支。国外发达国家对poSS的研究呈上升趋势,根据美国ScifinderScholar数据库统计,相关文献和专利在2000年为53篇,2005年增加到200篇,2006年上半年为163篇,研究的重点主要在poSS改性聚合物复合材料方面,该材料是一类新型的有机/无机杂化材料,不但结合了聚合物和无机材料的优点,而且还具有一些新颖的性能,如阻燃性、低介电性等。作为光固化树脂,是一种优秀的齿科材料;利用氢倍半硅氧烷和含双键的倍半硅氧烷间的硅氢化加成反应来制备多孔材料,用于改性高分子材料,制作耐热阻燃材料等方面。

1poSS的结构特点

(1)分子内杂化结构。poSS分子具有纳米结构无机框架核心,由有机基团包围。因此poSS分子本身就是一个分子水平上的有机/无机分子内杂化体系。这种结构不仅综合了有机和无机组分各自优越性,还由于两者协同效应产生新性能。

(2)纳米尺寸效应。poSS本身是一种具有纳米尺寸的化合物,在其六面体结构中,可获得小尺寸效应、表面界面效应、量子尺寸效应和宏观量子隧道效应,并表现出特殊的热学、光学、磁学和声学性质。

(3)结构可设计性。位于顶角上的Si原子均可通过化学反应带上各种反应性或非反应性的基团,赋予反应性与功能性,从而形成所需要的不同性能的poSS单体。

(4)良好的溶解性。一般情况下,大多数poSS单体可溶于普通的有机溶剂,如四氢呋喃、甲苯与氯仿,却不溶于环已烷、四氯化碳及异丁醚。

(5)高的热稳定性及阻燃性。poSS具有很好的热稳定性。其无机硅氧骨架结构使其在高温下仍有稳定的结构。在分解温度下,poSS会迅速被氧化成为Sio2形成“痂”,隔绝进一步氧化反应的发生。

(6)高反应性。功能性poSS可在熔融状态下与有机化合物或高分子进行共混,也可通过自由基聚合、缩聚聚合以及开环聚合等方法引入到聚合物中,形成有机/无机杂化聚合物。

poSS改性聚合物的研究应用于热塑性材料较多。poSS单体的尺寸与最细小的硅粉颗粒相近,poSS的作用相当于纳米尺度的增强纤维,从而产生了极强的抗热变形能力,同时与其他的硅粉,有机硅化合物及填充剂相比,poSS外部的活性基团大大提高了与聚合物的化学相容性,可以通过化学键与聚合物链相连。当加入单体形式具有活性的共聚物形式的树脂后,poSS的分子会粘结在聚合物链的两端,形成一个连续的大分子链,并在整个材料中形成网状结构。因此poSS的接入将会给聚合物的性能带来革命性的变化。

2poSS应用于聚合物阻燃整理研究现状

不含卤素阻燃高分子是目前阻燃高分子的发展方向,各种倍半硅氧烷杂化高分子构成了这种类型的阻燃剂中的一大类。功能性倍半硅氧烷可以含有环氧基、氨基、烯基或其他反应性基团,分解温度都可达到225~300℃左右。t8(六面体倍半硅氧烷)在结构上类似于一个小小的“沸石”,因而一般都有非常好的耐热性,t8受热分解后的残余物为二氧化硅,并且二氧化硅的含量非常高,有些甚至达到87%(质量分数),因而阻燃性能非常好。一般的含有双键或环氧基的笼型倍半硅氧烷大分子的单体固化后,分解温度都可达到225~300℃左右。

最近有报道称,由Q8m8H和4乙烯基环己烯的部分加成产物在200~250℃固化,在空气中可稳定到400℃,更可贵的是这种材料透明、柔韧,有望作为耐高温的垫圈或窗玻璃。a.Fina和D.tabuanib等人研究了含有甲基、乙烯基和苯基的poSS与聚苯乙烯共混时,poSS在聚合物中的分布以及对机械性能的影响,并确定了poSS的加入可以显著提高聚苯乙烯的热稳定性,降低其燃烧性能。nagendiranS.和m.alagar等研究发现与poSS共聚的环氧树脂的玻璃化温度比不加入poSS的温度高,并且加入3%的poSS时,环氧树脂就具有明显的阻燃性能。ericDevaux等利用poSS与pU共混制备poSS/pU复合材料,从而大大提高了pU的热稳定。最近,KXie和SwKuo采用官能团为―CH2oH的反应性poSS对天然纤维进行处理,研究了对纤维的热降解性能的影响,结果表明处理后的织物的耐热性明显高于未处理的织物。YCwu等合成了含有多个苯并嗪的poSS单体,并将其应用于聚酰胺、pVp和pC材料上,分析了在焙烘过程中,poSS单体发生自交联的情况。结果显示,其可以在高聚物的表面形成一层膜,使得材料的表面能降低,玻璃化温度提高。

高钧驰等利用笼型八苯基硅倍半氧烷(opS)与三元乙丙橡胶(epDm)制成新型复合材料,结果表明,opS复合epDm与纯epDm相比,氧指数有所提高,释热速率降低,热稳定性提高,力学性能得到明显的改善。刘磊等以离子型八(四甲基铵)笼型倍半硅氧烷(octatma-poSS)作为聚苯乙烯(pS)的添加剂制备poSS/pS复合材料,一定量的poSS可以在pS中形成纳米纤维并呈网状分布,使复合材料的热释放速率峰值、Co和Co2释放速率峰值和浓度峰值降低。刘磊、王文平等发现纯的pmma在410℃时就分解完全,而poSS/聚合物和纯poSS仍然有残留,其中纯poSS残留最多。poSS/pmma和嵌段聚合物poSS/pmma/pS分解温度td比纯pmma分别高出60℃和151℃。宋晓艳、程博闻合成了一种同时含有金属和双键的磁性多面体齐聚倍半硅氧烷,并制备了聚苯乙烯/poSS纳米复合材料。热分析表明pS/poSS纳米材料较纯pS热稳定性增加,pS/poSS纳米材料的玻璃化转变温度较纯pS明显提高。

3poSS阻燃机理分析

所谓阻燃是指降低材料在火焰中的可燃性,减缓火焰蔓延速度,当火焰移去后能很快自熄,减少燃烧。从燃烧过程看,要达到阻燃目的,必须切断由可燃物、热和氧气等3要素构成的燃烧循环。阻燃作用的机理有物理的、化学的及二者结合作用等多种形式。现阶段,对poSS阻燃机理的一般有以下两个观点。

3.1特殊的成炭过程

一般认为,在高温下,poSS在加热温度450~650℃之间,聚合物放出大量的气体后,倍半硅氧烷“笼型”结构开始丢失。对剩余炭化物进行分析后表明其化学成分主要为Sio2、SioxCy、SiC,这意味着poSS单元可能在燃烧过程中有一个特殊的成炭过程,这对poSS结构提高聚合物阻燃性机理的研究有指导意义。

3.2纳米增强作用

poSS单体本身是一种具有纳米尺寸的化合物,由于纳米尺寸效应,使得poSS基体与聚合物结合得比较紧密,这样就限制了聚合物链的运动,从而提高聚合物的热稳定性,另一方面poSS单体本身具有较高的热稳定性。

poSS基聚合物对于阻燃的贡献,主要是poSS可以与其它聚合物或单体接枝、共聚,在分子水平上对聚合物进行增强,进而提高聚合物的热稳定性。poSS基聚合物燃烧时能够在聚合物的表面形成一层致密的陶瓷型炭层,该炭层能隔热、隔氧,有效保护聚合物基体。成炭率是判断材料阻燃性好坏的一个重要指标。

通过以上两种观点,可以总结得出影响聚合物/poSS纳米复合材料热性能的主要因素有:poSS的纳米尺寸效应、分子间作用力、稀释效应和交联效应。分子间作用力包括poSS与poSS间的作用力、poSS与材料中有机链段基团间的作用力、有机链段间的作用力。有机链段间的作用通常表现为均聚物性能的保持,同时均聚物的性能也是检验复合材料性能的重要标准;共聚复合材料中poSS与poSS间的作用力主要体现为物理聚集作用;poSS与有机链段间的作用力主要体现为偶极偶极作用或氢键作用等。交联作用表现为分子间作用力导致的物理交联(共混复合材料)和化学键连接产生的化学交联(共聚复合材料)作用。

自由体积增大和稀释效应导致热性能降低,纳米poSS的尺寸效应、交联作用、偶极偶极作用、氢键等对链段运动的限制,有效增强材料的热稳定性。

4poSS发展趋势

poSS具有的独特的笼型立体三维结构和分子可设计性为各种新型材料的开发提供了良好的载体。为了更加充分发挥poSS分子在改性聚合物方面的优势,结合笼型倍半硅氧烷的研究现状,poSS未来的发展方向主要集中在以下几个方面。

(1)改进生产工艺,降低生产成本,为大规模工业化应用打下坚实的基础,需要深入研究如何有效控制水解反应及开发新的合成路线,探寻水解反应的机理,以及制备更多不同种类的poSS,同时也可以降低制备poSS的成本。

(2)继续深入理论的研究和探索,如计算机模拟poSS合成,探究合成过程中的反应条件和化学环境对poSS结构形成的影响;建立更合理的模型,更深入地研究和探索poSS对聚合物的改性机理。

(3)研究poSS基材料的结构与性能的关系,这样可以制备新型的材料和拓宽poSS的使用领域,深入研究poSS的物理、化学、生物和其它特殊性能,合成在光、电、磁、催化等方面有特定效果的功能化poSS改性材料。

得到成本更低、性能更优、能满足特定使用需要的poSS改性材料将是今后一个大的发展方向,poSS的实用化、产业化必将给新材料和相关领域带来新的机遇。

参考文献

[1]SongL,HeQL,HuY,etal.Studyonthermaldegradationand

combustionbehaviorsofpC/poSShybrids[J].polymerDegradationandStability,2008,93(3):627639.

[2]iaconoSt,BudySm,mabryGm,etal.Synthesis,

characterization,andpropertiesofchainterminatedpolyhedraloligomericsilsesquioxane-functionalizedperfluorocyclobutylarylethercopolymers[J].polymer,2007,48(16):46374645.

[3]ZhangZp,LiangGZ,wangXL.theeffectofpoSSonthe

thermalpropertiesofepoxy[J].polymerBulletin,2007,58(56):10131020.

[4]KimKyung-min,adachiKaoru,ChujoYoshiki.polymerhybridsof

functionalizedsilsesquioxanesandorganicpolymersutilizingthesol-gelreactionoftetramethoxysilane[J].polymer,2002,43(4):11711175.

[5]马祥梅,秦基楼.多面体低聚倍半硅氧烷(poSS)的合成与应用研究

进展[J].安徽化工,2009,35(l):1416.

[6]何辉,袭揩,葛仁杰,等.笼型倍半硅氧烷(poSS)的合成及应用进展

[J].高分子材料科学与工程,2008,24(4):59.

[7]albertoFina,Danielatabuanib,GiovanniCaminoa.polypropylene-

polysilsesquioxaneblends[J].europeanpolymerJournal,2010,46(1):1423.

[8]nagendiranS,alagarm.octa-silsesquioxane-reinforcedDGeBa

andtGDDmepoxynanocomposites:Characterizationofthermal,dielectricandmorphologicalproperties[J].actamaterialia,2010,58(9):33453356.

[9]ericDevaux,marylineRochery,SergeBourbigot.polyule:thane/

clayandpolyurethane/poSSnanocompositesasflameretardedcoatingforpolyesterandcarbonfabrics[J].Firemater,2002,26(45):149154.

[10]XieKL,GaoXR,ZhaowG.thermaldegradationofnano-

cellulosehybridmaterialscontainingreactivepolyhedraloligomericsilsesquioxane[J].Carbohydratepolymers,2010,81(2):300304.

[11]wuYC,KuoSw.Synthesisandcharacterizationofpolyhedral

oligomericsilsesquioxane(poSS)withmultifunctionalbenzoxazinegroupsthroughclickchemistry[J].polymer,2010,51(17):39483955.

[12]高钧驰,杨荣杰.epDm/poSS复合材料的阻燃性能[J].高分子材料

科学与工程,2010,26(4):6366.

[13]刘磊,宋磊,张胜,等.poSS/pS复合材料的结构与燃烧性能[J].中国

科学技术大学学报,2006,36(1):2933.

[14]刘磊,王文平,费明,等.含有poSS的嵌段聚合物的制备及热性能[J].

高分子材料科学与工程,2010,26(6):159166.

[15]宋晓艳,程博闻.聚苯乙烯/多面体倍半硅氧烷(poSS)纳米复合材

料[J].高分子通报,2010(9):8188.

高分子材料的基本特性篇5

关键词:导电高分子复合材料;导电性;应用

中图分类号:tQ316文献标识码:a文章编号:1672-3791(2016)06(a)-0000-00

导电高分子材料就是在高分子材料的基础上,根据使用的要求,加入了相应的导电体,经过多重技术的处理之后,使其具有了较高的导电能力。而由于这种材料在制造的过程中,使用对材料的要求不高,使用的技术加工手段简单,使用的生产成本较低,导电性能较好等原因,受到了社会各界的广泛重视。因此,为了使导电高分子复合材料在当前阶段中更好的应用,在当前的科学研究中,加强对其进行研究成为了必然趋势。

1导电高分子复合材料的导电理论

1.1统计渗滤模型

在高分子复合材料的导电理论中,首先就是统计渗滤模型,这一模型通常是几何模型为基础上建立的,就是将复合材料中基本物质使用一定技术将其抽象化,使其存在一定形状的分散体系,然后根据一定的机理要求,将其进行重新的排列,使其重新组合成一个整体,使高分子材料中的基本物质成为了连续相,而加入的导电体材料根据其功能的不同,有些成为了连续相,有些成为了分散相,这些有效的分散相以及连续相,就在导电高分子复合材料中构造出了导电通道。在这一模型的基础上,对导电高分子复合材料的电阻率与导电体进行深层次的分析,在两者之间建立相应的联系。最具有代表性的就是在建立统计渗滤模型时,根据不同的需求,将基本物质抽象为形状、大小不同的球型、规则的多面体等,同时将导电体抽象成连续性的珠串等[1]。这种模型有效的将高分子材料的导电理论进行了阐述,但是其也具有一定的缺点,就是其只能使用在较为简单的复合材料中,复合材料中只能有一种基本物质以及导电体材料,对于具有多种基本物质或者导电体材料的复合材料时,虽然也能建立相应的模型,但得到的理论与实际之间会存在较大的差异。

1.2热力学模型

随着统计渗滤模型的使用,人们逐渐的发现其有一些缺点,例如在构建模型时,往往忽略了基本物质与导电体之间的作用关系,使得到的结果具有一定的偏差,不满足当前社会发展的需求,在这种情况下,就研究出了热力学模型来对导电高分子复合材料导电理论进行了阐述,使结果得到了很大的改进。这一理论是以热力学原理的基础上建立的,在这项理论中,认为构建导电通道的过程中,导电体处于临界状态的体积与模型中多余的自由能具有一定的联系,当模型中多余的自由能达到一定的程度后,就会在模型的内部自动的构建出导电通道。并且,高分子材料中基本物质的熔融粘度较大,更好的阻止了平衡相的分离;导电体粒子的直径较小,更好的帮助平衡相分离。使用这种模型来对导电高分子复合材料进行阐述与实际更加接近[2]。

2导电高分子复合材料的特殊效应理论

导电高分子材料的性能往往不是一成不变的,在特定的环境中,其性能也会逐渐的在变化着。例如一些导电高分子复合材料在拉力或压力的作用下,就会出现一些特别的效应,例如压敏效应、拉敏效应等,可以根据这些特殊的效应来对地导电高分子复合材料进行阐述。

在压敏、拉敏效应理论中,可以利用通道理论对其进行阐述。在不同的高分子材料,所中具有的临界范围不同,在压敏的情况下,材料中的导电体相对就不是很多,使得导电体的分布不是很好,无法直接构造出导电通道,如果在这时向复合材料施压,压力不是很高时,没有达到材料的最大临界值,复合材料仍然具有高阻态;当所施加的压力过高时,超过了最大临界值,就会使复合材料发生一定的形变,使其内部构建出了导电通道,从而使其具有了导电性。在拉敏的情况下,材料含有大量的导电体,其内部具有一定的导电通道,这时在对其使用拉力时,当垃圾过大,超过最大临界值时,复合材料就会发生形变,致使其全本具有的导电通道遭受了损坏,从而使复合材料不在具有导电性[3]。

3导电高分子复合材料的应用以及发展趋势

3.1导电高分子复合材料的应用

导电高分子的原材料一般为聚合物或者具有导电效果较强的填充物,随着科学技术的不断发展,目前已经成功研制出了具有良好导电性的高分子复合材料,且随着高分子复合材料的广泛应用,也增加了抗静电、电磁波屏蔽等功能,使得导电高分子材料获得了巨大的技术突破,目前,根据导电高分子材料的性能不同,可以将其分为半导体材料、高导电体材料、热敏导体材料等,其材料成分不仅有金属材料,如铜、铝等,同时也含有碳系聚合物,大大增加了导电高分子复合材料的稳定性,同时降低了制作成本。另外,由于导电高分子复合材料的优点,使得基于传统的工作方式有了极大程度的改善,如在开关元件生产过程,传统的导电材料的在开关中虽然能够保证电流的有效传输,但是金属材质会产生无用功率,同时导体过热还会引发安全事故,因此,在开关元件的生产中应用高分子复合材料,能够有效的保护用电安全,同时,利用高分子复合材料的热效应,能够制作出热敏传感器,提高能源的利用率,另外,导电高分子复合材料也在航电器的制作、煤电系统、建筑施工中有着广泛的应用[4]。

3.2导电高分子复合材料的研究进展

由于高分子复合材料具有非常良好的应用前景,因此,我国重视并鼓励高分子复合材料研究的创新和发展,但是高分子复合材料具有较强的不稳定性,其性能容易受到制作工艺、制作环境等外在因素的影响,近年来,先进的导电理论指出寻研制能与复合材料稳定结合的导点模型是未来高分子复合材料的研究发展方向。随着科学技术的不断发展,目前已经得出复合体系的构建是建立导线模型的前提要素,利用拓扑学方法能够有效的对复合材料的参数进行测量,同时能够有效的观测出不同添加剂对导电高分子复合材料的影响。由于高分子复合材料必须具有实用性,因此,导电高分子复合材料的研究上也偏向于增加其稳定性、轻便型、降低制作工艺与成本,同时使导电高分子复合材料能够适应不同的温度及湿度,扩大导电高分子复合材料的应用范围,尽管在理论研究上存在诸多的困难,但是在应用方面已经取得了巨大的突破[5]。

4总结

综上所述,在现阶段的发展中,导电高分子复合材料占据重要的作用,有效的对其进行使用,可以更好地促进社会的发展。并且随着不断对其进行研究,相关的理论知识已经得到了一定的发展,处在了一个瓶颈阶段,很难在使其继续发展。因此,在当前阶段对导电高分子复合材料进行研究时,就要向着应用方面进行研究,使其在实际中起到更大的作用,有效的促进我国社会的发展。

参考文献

[1]陆昶,胡小宁,赫玉欣等.特殊形态结构导电高分子复合材料的电学性能[J].材料研究学报,2012,07(01):37.

[2]屈莹莹,赵帅国,代坤等.各向异性导电高分子复合材料的研究进展[J].塑料工业,2012,06(05):22.

[3]徐晓英,王世安,王辉.复合导电高分子材料微观网络结构及导电行为仿真分析[J].高电压技术,2012,10(09):2221.

高分子材料的基本特性篇6

   高分子材料:以高分子化合物为基础的材料,高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的有机化合物。

高分子的分子量从几千到几十万甚至几百万,所含原子数目一般在几万以上,而且这些原子是通过共价键连接起来的。高分子化合物中的原子连接成很长的线状分子时,叫线型高分子(如聚乙烯的分子)。如果高分子化合物中的原子连接成网状时,这种高分子由于一般都不是平面结构而是立体结构,所以也叫体型高分子。

二、高分子材料的结构特征

高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。

三、高分子材料按来源分类

高分子材料按来源分,可分为天然高分子材料、半合成高分子材料(改性天然高分子材料)和合成高分子材料。

 天然高分子材料包括纤维素、蛋白质、蚕丝、橡胶、淀粉等。合成高分子材料以及以高聚物为基础的,如各种塑料,合成橡胶,合成纤维、涂料与粘接剂等。

四、生活中的高分子材料

   生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。下面就以塑料和纤维素举例说明。

(一)、塑料

塑料是一种合成高分子材料,又可称为高分子或巨分子,也是一般所俗称的塑料或树脂,可以自由改变形体样式。是利用单体原料以合成或缩合反应聚合而成的材料,由合成树脂及填料、增塑剂、稳定剂、润滑剂、色料等添加剂组成的,它的主要成分是合成树脂。

塑料主要有以下特性:①大多数塑料质轻,化学性稳定,不会锈蚀;②耐冲击性好;③具有较好的透明性和耐磨耗性;④绝缘性好,导热性低;⑤一般成型性、着色性好,加工成本低;⑥大部分塑料耐热性差,热膨胀率大,易燃烧;⑦尺寸稳定性差,容易变形;⑧多数塑料耐低温性差,低温下变脆;⑨容易老化;⑩某些塑料易溶于溶剂。塑料的优点1、大部分塑料的抗腐蚀能力强,不与酸、碱反应。2、塑料制造成本低。3、耐用、防水、质轻。4、容易被塑制成不同形状。5、是良好的绝缘体。6、塑料可以用于制备燃料油和燃料气,这样可以降低原油消耗。塑料的缺点1、回收利用废弃塑料时,分类十分困难,而且经济上不合算。2、塑料容易燃烧,燃烧时产生有毒气体。3、塑料是由石油炼制的产品制成的,石油资源是有限的。

塑料的结构基本有两种类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物;第二种是体型结构,具有这种结构的高分子化合称为体型高分子化合物。线型结构(包括支链结构)高聚物由于有独立的分子存在,故有弹性、可塑性,在溶剂中能溶解,加热能熔融,硬度和脆性较小的特点。体型结构高聚物由于没有独立的大分子存在,故没有弹性和可塑性,不能溶解和熔融,只能溶胀,硬度和脆性较大。塑料则两种结构的高分子都有,由线型高分子制成的是热塑性塑料,由体型高分子制成的是热固性塑料。

塑料的应用:透明塑料制成整体薄板车顶。薄板车顶的新概念基于透明灵活的聚碳酸酯或硅树脂材料,可以被永久性地塑造成单个的聚碳酸酯薄板,也可作为可折叠铰链和封条。拜耳材料科技研发的原型总共配备了四个灵活的薄板部件,形成了四扇“顶窗”,每扇窗都可单独打开和关闭。导轨用于连接薄板部件,形成一个牢固、透明的聚碳酸酯车顶外壳。一个同样透明的管子沿车顶结构中央纵向放置,在“顶窗”打开后用来调节折叠薄板。这样可以形成三维立体结构,组件比平坦的薄板更加牢固。同时也大大降低了单个组件的数量。

(二)、纤维素

纤维素是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是世界上最丰富的天然有机物,占植物界碳含量的50%以上。纤维素是自然界中存在量最大的一类有机化合物。它是植物骨架和细胞的主要成分。在棉花、亚麻和一般的木材中,含量都很高。

纤维素的结构:纤维素是一种复杂的多糖,分子中含有约几千个单糖单元,即几千个(c6h10o5);相对分子质量从几十万至百万;属于天然有机高分子化合物;纤维素结构与淀粉不同,故性质有差异。

高分子材料的基本特性篇7

[关键词]材料发展金属材料无机非金属材料高分子材料

人类社会的发展历程,是以材料为主要标志的。历史上,材料被视为人类社会进化的里程碑。对材料的认识和利用的能力,决定着社会的形态和人类生活的质量。历史学家也把材料及其器具作为划分时代的标志:如石器时代、青铜器时代、铁器时代、高分子材料时代……

100万年以前,原始人以石头作为工具,称旧石器时代。1万年以前,人类对石器进行加工,使之成为器皿和精致的工具,从而进入新石器时代。现在考古发掘证明我国在八千多年前已经制成实用的陶器,在六千多年前已经冶炼出黄铜,在四千多年前已有简单的青铜工具,在三千多年前已用陨铁制造兵器。我们的祖先在二千五百多年前的春秋时期已会冶炼生铁,比欧洲要早一千八百多年以上。18世纪,钢铁工业的发展,成为产业革命的重要内容和物质基础。19世纪中叶,现代平炉和转炉炼钢技术的出现,使人类真正进入了钢铁时代。与此同时,铜、铅、锌也大量得到应用,铝、镁、钛等金属相继问世并得到应用。直到20世纪中叶,金属材料在材料工业中一直占有主导地位。20世纪中叶以后,科学技术迅猛发展,作为发明之母和产业粮食的新材料又出现了划时代的变化。首先是人工合成高分子材料问世,并得到广泛应用仅半个世纪时间,高分子材料已与有上千年历史的金属材料并驾齐驱,并在年产量的体积上已超过了钢,成为国民经济、国防尖端科学和高科技领域不可缺少的材料。其次是陶瓷材料的发展。陶瓷是人类最早利用自然界所提供的原料制造而成的材料。50年代,合成化工原料和特殊制备工艺的发展,使陶瓷材料产生了一个飞跃,出现了从传统陶瓷向先进陶瓷的转变,许多新型功能陶瓷形成了产业,满足了电力、电子技术和航天技术的发展和需要。

现在人们也按化学成分的不同将材料划分为金属材料,无机非金属材料和有机高分子材料三大类以及他们的复合材料。

金属材料科学主要是研究金属材料的成分组织、结构、缺陷与性能之间内在联系的一门学科。金属材料科学与工程的工作者还要研究各种金属冶炼和合金化的反应过程和相的关系,金属材料的制备方法和形成机理,结晶过程以及材料在制造及使用过程中的变化和损毁机理。对其按化学成份进行分类可以分为钢铁、有色金属以及复合金属材料。按用途分类包括结构材料和功能材料。

金属基复合材料(mmc)因其良好的性能而得到了人们广泛的关注。它是一类以金属或合金为基体,以金属或非金属线、丝、纤维、晶须或颗粒状组分为增强相的非均质混合物,其共同点是具有连续的金属基体。目前,特别是航空航天部门推进系统使用的材料,其性能已经达到了极限。因此,研制工作温度更高、比刚度和比强度大幅度增加的金属基复合材料,已经成为发展高性能结构材料的一个重要方向。1990年美国在航天推进系统中形成了3250万美元的高级复合材料(主要为mmc)市场,年平均增长率16%,远高于高性能合金的年增长率1.6%。

无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。无机非金属材料已从传统的水泥、玻璃、陶瓷发展到了新型的先进陶瓷、非晶态材料、人工晶体、无机涂层、无机纤维、半导体材料以及光学材料。由于新型无机非金属材料除具有传统无机非金属材料的优点外,还有某些特征如:强度高、具有电学、光学特性和生物功能等,因此它们已成为现代新技术、新产业、传统工业技术改造、现代国防和生物医学所不可缺少的物质基础。

高分子材料为有机合成材料,亦称聚合物。自20世纪20年代德国著名科学家斯托丁格开创这一学科以来,高分子科学和技术的发展极为迅猛,如今已形成非常庞大的高分子工业。它具有较高的强度,良好的塑性,较强的耐腐蚀性能,很好的绝缘性能,以及重量轻等优良性能,在是工程上的发展最快的一类新型结构材料。高分子材料按其分子链排列有序与否,可分为结晶聚合物和无定型聚合物两类。结晶聚合物的强度较高,结晶度决定于分子链排列的有序程度。工程上通常根据机械性能和使用状态将其分为三大类:塑料、橡胶以及合成纤维。其中,我国的合成纤维、合成树脂和合成橡胶已分别居世界产能的第一、二和三位。

参考文献:

高分子材料的基本特性篇8

关键词:梯度功能材料,复合材料,研究进展

abstract:thispaperintroducestheconcept,types,capability,preparationmethodsoffunctionallygradedmaterials.baseduponanalysisofthepresentapplicationsituationsandprospectofthiskindofmaterialssomeproblemsexistedarepresented.thecurrentstatusoftheresearchoffgmarediscussedandananticipationofitsfuturedevelopmentisalsopresent.

keywords:fgm;composite;theadvance

0引言

信息、能源、材料是现代科学技术和社会发展的三大支柱。现代高科技的竞争在很大程度上依赖于材料科学的发展。对材料,特别是对高性能材料的认识水平、掌握和应用能力,直接体现国家的科学技术水平和经济实力,也是一个国家综合国力和社会文明进步速度的标志。因此,新材料的开发与研究是材料科学发展的先导,是21世纪高科技领域的基石。

近年来,材料科学获得了突飞猛进的发展。究其原因,一方面是各个学科的交叉渗透引入了新理论、新方法及新的实验技术;另一方面是实际应用的迫切需要对材料提出了新的要求。而fgm即是为解决实际生产应用问题而产生的一种新型复合材料,这种材料对新一代航天飞行器突破“小型化”,“轻质化”,“高性能化”和“多功能化”具有举足轻重的作用,并且它也可广泛用于其它领域,所以它是近年来在材料科学中涌现出的研究热点之一。

1fgm概念的提出

当代航天飞机等高新技术的发展,对材料性能的要求越来越苛刻。例如:当航天飞机往返大气层,飞行速度超过25个马赫数,其表面温度高达2000℃。而其燃烧室内燃烧气体温度可超过2000℃,燃烧室的热流量大于5mw/m2,其空气入口的前端热通量达5mw/m2.对于如此大的热量必须采取冷却措施,一般将用作燃料的液氢作为强制冷却的冷却剂,此时燃烧室内外要承受高达1000k以上的温差,传统的单相均匀材料已无能为力。若采用多相复合材料,如金属基陶瓷涂层材料,由于各相的热胀系数和热应力的差别较大,很容易在相界处出现涂层剥落或龟裂现象,其关键在于基底和涂层间存在有一个物理性能突变的界面。为解决此类极端条件下常规耐热材料的不足,日本学者新野正之、平井敏雄和渡边龙三人于1987年首次提出了梯度功能材料的概念,即以连续变化的组分梯度来代替突变界面,消除物理性能的突变,使热应力降至最小。

随着研究的不断深入,梯度功能材料的概念也得到了发展。目前梯度功能材料(fgm)是指以计算机辅助材料设计为基础,采用先进复合技术,使构成材料的要素(组成、结构)沿厚度方向有一侧向另一侧成连续变化,从而使材料的性质和功能呈梯度变化的新型材料。

2fgm的特性和分类

2.1fgm的特殊性能

由于fgm的材料组分是在一定的空间方向上连续变化的特点如图2,因此它能有效地克服传统复合材料的不足。正如erdogan在其论文中指出的与传统复合材料相比fgm有如下优势:

1)将fgm用作界面层来连接不相容的两种材料,可以大大地提高粘结强度;

2)将fgm用作涂层和界面层可以减小残余应力和热应力;

3)将fgm用作涂层和界面层可以消除连接材料中界面交叉点以及应力自由端点的应力奇异性;

4)用fgm代替传统的均匀材料涂层,既可以增强连接强度也可以减小裂纹驱动力。

2.2fgm的分类

根据不同的分类标准fgm有多种分类方式。根据材料的组合方式,fgm分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料;根据其组成变化fgm分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化);根据不同的梯度性质变化分为密度fgm,成分fgm,光学fgm,精细fgm等;根据不同的应用领域有可分为耐热fgm,生物、化学工程fgm,电子工程fgm等。

3fgm的应用

fgm最初是从航天领域发展起来的。随着fgm研究的不断深入,人们发现利用组分、结构、性能梯度的变化,可制备出具有声、光、电、磁等特性的fgm,并可望应用于许多领域。

功 能

应 用 领 域 材 料 组 合

缓和热应

力功能及

结合功能

航天飞机的超耐热材料

陶瓷引擎

耐磨耗损性机械部件

耐热性机械部件

耐蚀性机械部件

加工工具

运动用具:建材 陶瓷 金属

陶瓷 金属

塑料 金属

异种金属

异种陶瓷

金刚石 金属

碳纤维 金属 塑料

核功能

原子炉构造材料

核融合炉内壁材料

放射性遮避材料轻元素 高强度材料

耐热材料 遮避材料

耐热材料 遮避材料

生物相溶性

及医学功能

人工牙齿牙根

人工骨

人工关节

人工内脏器官:人工血管

补助感觉器官

生命科学磷灰石 氧化铝

磷灰石 金属

磷灰石 塑料

异种塑料

硅芯片 塑料

电磁功能

电磁功能陶瓷过滤器

超声波振动子

ic

磁盘

磁头

电磁铁

长寿命加热器

超导材料

电磁屏避材料

高密度封装基板压

电陶瓷 塑料

压电陶瓷 塑料

硅 化合物半导体

多层磁性薄膜

金属 铁磁体

金属 铁磁体

金属 陶瓷

金属 超导陶瓷

塑料 导电性材料

陶瓷 陶瓷

光学功能防反射膜

光纤;透镜;波选择器

多色发光元件

玻璃激光透明材料 玻璃

折射率不同的材料

不同的化合物半导体

稀土类元素 玻璃

能源转化功能

mhd发电

电极;池内壁

热电变换发电

燃料电池

地热发电

太阳电池陶瓷 高熔点金属

金属 陶瓷

金属 硅化物

陶瓷 固体电解质

金属 陶瓷

电池硅、锗及其化合物

4fgm的研究

fgm研究内容包括材料设计、材料制备和材料性能评价。

4.1 fgm设计

fgm设计是一个逆向设计过程。

首先确定材料的最终结构和应用条件,然后从fgm设计数据库中选择满足使用条件的材料组合、过渡组份的性能及微观结构,以及制备和评价方法,最后基于上述结构和材料组合选择,根据假定的组成成份分布函数,计算出体系的温度分布和热应力分布。如果调整假定的组成成份分布函数,就有可能计算出fgm体系中最佳的温度分布和热应力分布,此时的组成分布函数即最佳设计参数。

fgm设计主要构成要素有三:

1)确定结构形状,热—力学边界条件和成分分布函数;

2)确定各种物性数据和复合材料热物性参数模型;

3)采用适当的数学—力学计算方法,包括有限元方法计算fgm的应力分布,采用通用的和自行开发的软件进行计算机辅助设计。

fgm设计的特点是与材料的制备工艺紧密结合,借助于计算机辅助设计系统,得出最优的设计方案。

4.2 fgm的制备

fgm制备研究的主要目标是通过合适的手段,实现fgm组成成份、微观结构能够按设计分布,从而实现fgm的设计性能。可分为粉末致密法:如粉末冶金法(pm),自蔓延高温合成法(shs);涂层法:如等离子喷涂法,激光熔覆法,电沉积法,气相沉积包含物理气相沉积(pvd)和化学相沉积(cvd);形变与马氏体相变[10、14]。

4.2.1 粉末冶金法(pm)

pm法是先将原料粉末按设计的梯度成分成形,然后烧结。通过控制和调节原料粉末的粒度分布和烧结收缩的均匀性,可获得热应力缓和的fgm。粉末冶金法可靠性高,适用于制造形状比较简单的fgm部件,但工艺比较复杂,制备的fgm有一定的孔隙率,尺寸受模具限制。常用的烧结法有常压烧结、热压烧结、热等静压烧结及反应烧结等。这种工艺比较适合制备大体积的材料。pm法具有设备简单、易于操作和成本低等优点,但要对保温温度、保温时间和冷却速度进行严格控制。国内外利用粉末冶金方法已制备出的fgm有:mgc/ni、zro2/w、al2o3/zro2、al2o3-w-ni-cr、wc-co、wc-ni等。

4.2.2自蔓延燃烧高温合成法(self-propagatinghigh-temperaturesynthesis简称shs或combustionsynthesis)

shs法是前苏联科学家merzhanov等在1967年研究ti和b的燃烧反应时,发现的一种合成材料的新技术。其原理是利用外部能量加热局部粉体引燃化学反应,此后化学反应在自身放热的支持下,自动持续地蔓延下去,利用反应热将粉末烧结成材,最后合成新的化合物。其反应示意图如图6所示[16]:

shs法具有产物纯度高、效率高、成本低、工艺相对简单的特点。并且适合制造大尺寸和形状复杂的fgm。但shs法仅适合存在高放热反应的材料体系,金属与陶瓷的发热量差异大,烧结程度不同,较难控制,因而影响材料的致密度,孔隙率较大,机械强度较低。目前利用shs法己制备出al/tib2,cu/tib2、ni/tic、nb-n、ti-al等系功能梯度材料[7、11]。

4.2.3喷涂法

喷涂法主要是指等离子体喷涂工艺,适用于形状复杂的材料和部件的制备。通常,将金属和陶瓷的原料粉末分别通过不同的管道输送到等离子喷枪内,并在熔化的状态下将它喷镀在基体的表面上形成梯度功能材料涂层。可以通过计算机程序控制粉料的输送速度和流量来得到设计所要求的梯度分布函数。这种工艺已经被广泛地用来制备耐热合金发动机叶片的热障涂层上,其成分是部分稳定氧化锆(psz)陶瓷和nicraly合金[9]。

4.2.3.1等离子喷涂法(ps)

ps法的原理是等离子气体被电子加热离解成电子和离子的平衡混合物,形成等离子体,其温度高达1500k,同时处于高度压缩状态,所具有的能量极大。等离子体通过喷嘴时急剧膨胀形成亚音速或超音速的等离子流,速度可高达1.5km/s。原料粉末送至等离子射流中,粉末颗粒被加热熔化,有时还会与等离子体发生复杂的冶金化学反应,随后被雾化成细小的熔滴,喷射在基底上,快速冷却固结,形成沉积层。喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分与组织,获得梯度涂层[8、11]。该法的优点是可以方便的控制粉末成分的组成,沉积效率高,无需烧结,不受基体面积大小的限制,比较容易得到大面积的块材[10],但梯度涂层与基

      

体间的结合强度不高,并存在涂层组织不均匀,空洞疏松,表面粗糙等缺陷。采用此法己制备出tib2-ni、tic-ni、tib2-cu、ti-al、nicral/mgo-zro2、nicral/al2o3/zro2、nicraly/zro2[10]系功能梯度材料

4.2.3.2 激光熔覆法

激光熔覆法是将预先设计好组分配比的混合粉末a放置在基底b上,然后以高功率的激光入射至a并使之熔化,便会产生用b合金化的a薄涂层,并焊接到b基底表面上

,形成第一包覆层。改变注入粉末的组成配比,在上述覆层熔覆的同时注入,在垂直覆层方向上形成组分的变化。重复以上过程,就可以获得任意多层的fgm。用ti-a1合金熔覆ti用颗粒陶瓷增强剂熔覆金属获得了梯度多层结构。梯度的变化可以通过控制初始涂层a的数量和厚度,以及熔区的深度来获得,熔区的深度本身由激光的功率和移动速度来控制。该工艺可以显著改善基体材料表面的耐磨、耐蚀、耐热及电气特性和生物活性等性能,但由于激光温度过高,涂层表面有时会出现裂纹或孔洞,并且陶瓷颗粒与金属往往发生化学反应[10]。采用此法可制备ti-al、wc-ni、al-sic系梯度功能材料[7]。

4.2.3.3热喷射沉积[10]

与等离子喷涂有些相关的一种工艺是热喷涂。用这种工艺把先前熔化的金属射流雾化,并喷涂到基底上凝固,因此,建立起一层快速凝固的材料。通过将增强粒子注射到金属流束中,这种工艺已被推广到制造复合材料中。陶瓷增强颗粒,典型的如sic或al2o3,一般保持固态,混入金属液滴而被涂覆在基底,形成近致密的复合材料。在喷涂沉积过程中,通过连续地改变增强颗粒的馈送速率,热喷涂沉积已被推广产生梯度6061铝合金/sic复合材料。可以使用热等静压工序以消除梯度复合材料中的孔隙。

4.2.3.4电沉积法

电沉积法是一种低温下制备fgm的化学方法。该法利用电镀的原理,将所选材料的悬浮液置于两电极间的外场中,通过注入另一相的悬浮液使之混合,并通过控制镀液流速、电流密度或粒子浓度,在电场作用下电荷的悬浮颗粒在电极上沉积下来,最后得到fgm膜或材料。所用的基体材料可以是金属、塑料、陶瓷或玻璃,涂层的主要材料为tio2-ni,cu-ni,sic-cu,cu-al2o3等。此法可以在固体基体材料的表面获得金属、合金或陶瓷的沉积层,以改变固体材料的表面特性,提高材料表面的耐磨损性、耐腐蚀性或使材料表面具有特殊的电磁功能、光学功能、热物理性能,该工艺由于对镀层材料的物理力学性能破坏小、设备简单、操作方便、成型压力和温度低,精度易控制,生产成本低廉等显著优点而备受材料研究者的关注。但该法只适合于制造薄箔型功能梯度材料。[8、10]

4.2.3.5气相沉积法

气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型fgm。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出si-c、ti-c、cr-crn、si-c-tic、ti-tin、ti-tic、cr-crn系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(pvd)和化学气相沉积(cvd)两类。

化学气相沉积法(cvd)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化,可得到按设计要求的fgm。另外,该法无须烧结即可制备出致密而性能优异的fgm,因而受到人们的重视。主要使用的材料是c-c、c-sic、ti-c等系[8、10]。cvd的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。

物理气相沉积法(pvd)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。pvd法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出ti/tin、ti/tic、cr/crn系的fgm[7~8、10~11]

4.2.4形变与马氏体相变

通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力)梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18-8不锈钢(fe-18%,cr-8%ni)试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。

4.3fgm的特性评价

功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上。目前,对热压力缓和型的fgm主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。

5fgm的研究发展方向

5.1存在的问题

作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:

1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性

能评价等)还需要补充、收集、归纳、整理和完善;

2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;

3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;

4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。

5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;

6)成本高。

5.2fgm制备技术总的研究趋势[13、15、19-

      

20]

1)开发的低成本、自动化程度高、操作简便的制备技术;

2)开发大尺寸和复杂形状的fgm制备技术;

3)开发更精确控制梯度组成的制备技术(高性能材料复合技术);

4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。

5.3对fgm的性能评价进行研究[2、13]

有必要从以下5个方面进行研究:

1)热稳定性,即在温度梯度下成分分布随时间变化关系问题;

2)热绝缘性能;

3)热疲劳、热冲击和抗震性;

4)抗极端环境变化能力;

5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等

6结束语

fgm的出现标志着现代材料的设计思想进入了高性能新型材料的开发阶段。fgm的研究和开发应用已成为当前材料科学的前沿课题。目前正在向多学科交叉,多产业结合,国际化合作的方向发展。

参考文献:

杨瑞成,丁旭,陈奎等.材料科学与材料世界[m].北京:化学工业出版社,2006.

李永,宋健,张志民等.梯度功能力学[m].北京:清华大学出版社.2003.

王豫,姚凯伦.功能梯度材料研究的现状与将来发展[j].物理,2000,29(4):206-211.

曾黎明.功能复合材料及其应用[m].北京:化学工业出版社,2007.

高晓霞,姜晓红,田东艳等。功能梯度材料研究的进展综述[j].山西建筑,2006,32(5):143-144.

erdogan,f.fracturemechanicsoffunctionallygradedmaterials[j].compos.engng,1995(5):753-770.

李智慧,何小凤,李运刚等.功能梯度材料的研究现状[j].河北理工学院学报,2007,29(1):45-50.

李杨,雷发茂,姚敏,李庆文等.梯度功能材料的研究进展[j].菏泽学院学报,2007,29(5):51-55.

[9]林峰.梯度功能材料的研究与应用[j].广东技术师范学院学报,2006,6:1-4.

[10]庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[j].金属制品,2005,31(4):4-9.

[11]戈晓岚,赵茂程.工程材料[m].南京:东南大学出版社,2004.

[12]唐小真.材料化学导论[m].北京:高等教育出版社,2007.

[13]李进,田兴华.功能梯度材料的研究现状及应用[j].宁夏工程技术,2007,6(1):80-83.

[14]戴起勋,赵玉涛.材料科学研究方法[m].北京:国防工业出版社,2005.

[15]邵立勤.新材料领域未来发展方向[j].新材料产业,2004,1:25-30.

[16]自蔓延高温合成法.材料工艺及应用http://etsc.hnu.cn/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm

[17]远立贤.金属/陶瓷功能梯度涂层工艺的应用现状./articleview/2006-6-6/article_view_405.htm.

[18]工程材料.http://col.njtu.edu.cn/zskj/3021/gccl/ch2/2.6.4.htm.

[19]刘清,张军.先进复合材料领域近期发展趋势[j].特别关注,2005,12:9-11.

高分子材料的基本特性篇9

在《材料化学》绪论课的教学过程中,采用启发引导教学方式,以“材料、材料与化学、材料化学”为主线进行教学设计,通过讲解材料发展中的化学,引入材料科学与化学的区别与联系,重点从材料结构、制备、性能和应用四个方面讲授了材料研究中的化学问题,使学生对本课程的内容有了清晰的认识,激发了学生学习本课程的信心和兴趣,并取得了满意的教学效果。

关键词:

材料化学;绪论课;教学设计

材料化学是材料科学与化学的交叉学科,伴随着材料科学的发展而诞生和成长,即是材料科学的重要部分,又是化学学科的一个分支[1]。目前,很多高等学校的化学和材料类专业开设了《材料化学》这门课程。《材料化学》是南阳师范学院材料化学专业的核心基础课程,对于培养学生的材料科学基础知识,分析和解决材料制备和应用中的化学问题的能力起到了关键作用。但是该课程涉及的知识面广泛,内容庞杂、概念甚多、加上课程改革,理论课时数减小,学生在学习《材料化学》课程过程中,普遍存在概念混淆、重点难以掌握等问题。绪论是一门课程的开场白和宣言书,是师生之间学习和交流的起始点,能为学生建立起一门课程的知识轮廓。通过对绪论进行学习,学生可以了解课程在所学专业中所处的地位和作用,以及该课程的教学内容、学习方法和考核方式等问题[2]。如何激发学生学习该课程的兴趣,提高课程的教学质量,绪论课在整个课程教学中有着举足轻重的地位。结合近年来的教学实践,就如何讲好《材料化学》绪论课谈一些心得。

1首先明确课程性质、特点及地位

教学之初,首先明确该课程作为专业核心课程的重要地位,是学习后面材料专业课程的基础课程,同时明确考核方式,加强学生对本课程的重视程度。材料化学是材料科学和化学学科的交叉学科,课程内容既涉及工程材料应用中的实际问题,又包括材料结构及制备中的化学问题。作为一门交叉学科,很多知识点与材料学和化学课程中的相关内容重复,很多学生以为学过相关知识,就会从思想上松懈。然而,相关知识点虽然出现重复,但在不同学科中讲授的重点是不同的。在讲授材料化学课程的过程中,要着重培养学生利用化学的思维解决材料科学中的问题,使学生深刻领会化学与材料科学交叉的重要意义。通过一些实例,讲解本课程与化学和材料相关课程的区别和联系,使学生更加深入了本课程的性质和地位。材料科学是偏实际应用的工科课程,化学是偏理论的理科课程,材料化学则是利用化学的理论解决材料应用中的实际问题。

2材料

以材料的实际应用为引子,如材料在航天航空、交通运输、电子信息、生物医药等领域的应用,带领学生进入学习状态,引导学生回想什么是材料?材料的种类?提出材料是对人类有用的物质,是人类赖以生存和发展,征服自然和改造自然的物质基础;是人类进步的里程碑。然后介绍材料的发展历史,说明人们对材料的使用,是从最早的天然材料,依次经历了陶瓷、青铜、铁、钢、有色金属、高分子材料以及新型功能材料。根据材料的发展史,启发学生思考材料研究和发展过程中的规律和特点。人们对材料的使用经历了从天然材料到合成材料,从传统材料到新兴材料。传统的材料主要以经验,技艺为基础,材料靠配方筛选和性能测试,通过宏观现象建立的唯象理论对材料宏观性能定性解释,不能预示性能和指明新材料开发方向,而新型材料则以基础理论为指导。材料科学的历史表明,当一种全新的材料在原子或分子水平上合成后真正巨大的进展就常常随之而来。化学的发展往往导致材料技术的实质性进步。在新材料的研发和材料工艺的发展中,化学一直担当着关键的角色[3]。任何新材料的获得都离不开化学,以石墨烯为例,物理学家主要关注其电子结构及输运理论,材料学家主要测试材料的电磁、光电、传感和催化等性能,而化学家的任务则是利用化学气相沉积和插层剥离等方法制备该材料。只有通过化学气相沉积法制备出高质量大尺寸的石墨烯,才能推动石墨烯在电子信息领域走向实用化。

3材料与化学

材料化学是材料科学与化学学科的交叉,很多学生容易混淆材料科学和化学的研究范畴。在本课程的第一节课,一项重要的任务是使学生明确材料科学和化学的研究内容和范畴,这对于后续相关概念的讲解至关重要。材料科学的研究对象是材料,材料是对人类有用的物质,指的是人类用于制造物品、器件、构件、机器或其他产品的那些物质。而化学的研究对象是物质,物质是构成人类物质世界的基础。材料是物质,但不是所有物质都可以称为材料;材料科学是一门研究材料的成分、组织结构、制备工艺与材料性能及应用之间相互关系的科学;而化学则是从原子和分子角度研究物质的组成,结构、性质及相互转变规律的科学。因此,化学研究的尺度范围是原子、分子、分子纳米聚集体。材料科学最早研究的尺度范围在微米以上,如钢和陶瓷的组织结构。随着一些新兴材料的出现和发展,人们对材料的研究甚至小到电子结构。如近些年发现的拓扑绝缘体,其表面导电,体内不导电的性质由其拓扑的能带结构决定,而该拓扑结构则与电子的自旋运动有关,研究拓扑绝缘体必须从电子自旋角度认识其结构。因此,材料科学的研究范畴不断拓展,并于其它学科交叉。

4材料化学

通过学习材料的发展历程、材料科学与化学之间的区别和联系,学生已经对材料化学有了一定的认识,引导学生给材料化学下一个定义。材料化学是关于材料结构、制备、性能和应用的化学。本校材料化学专业选用曾兆华、杨建文编著第二版《材料化学》作为教材,教材的章节也是按照材料结构、制备、性能和应用进行安排的[4]。在这部分内容讲授过程中,可以让学生以教材目录为参照,讲到相关内容可以与教材相关章节进行对应。

4.1材料的结构

从三个层次讲解材料的结构,分别是电子原子结构、晶体学结构和组织结构。电子原子结构在很大程度上影响材料的电、磁、热和光的行为,并可能影响到原子键合的方式,因而决定材料的类型。在这个层次上研究的化学问题主要涉及原子序数、相对原子量、电离势、电子亲核势、电负性、原子及离子半径等。原子序数决定了材料的化学组成,电负性决定材料内部原子之间的键合方式,从而影响材料的导电性、强度和热膨胀系数等。晶体学结构主要指原子或分子在空间排列的方式,根据原子排列的有序性,将材料分为晶体和非晶体。晶体中出现局部无序,或对理想晶体的产生偏离,则出现缺陷。缺陷的存在影响材料的力学性能和电学性能等。如在本征硅内部掺杂磷元素,磷原子替代硅原子的位置,形成杂质原子缺陷,增加本征硅的导电性,形成n型半导体。组织结构主要指材料的物相组成及结构、晶粒的大小和取向等。在大多数金属、某些陶瓷以及个别聚合物材料内部,晶粒之间原子排列的变化,可以改变它们之间的取向,从而影响材料的性能。一般来说,减小金属的晶粒可以降低其熔点。在这一结构层次上,颗粒的大小和形状起着关键作用。大多数材料是多相组成的,控制材料内部物相的类型、大小、分布和数量可以调控材料的性能。

4.2材料制备

材料合成与制备就是将原子、分子聚集在一起,并转变为有用产品的一系列过程。材料制备的方法和工艺影响材料的结构,从而影响材料的性能。根据制备原理的不同,材料制备方法可以分为物理法和化学法。物理法指在材料制备过程中,仅改变材料内部原子或分子的聚集状态,不涉及化学反应的方法。如真空镀膜、溅射镀膜、脉冲激光沉积法等。化学法则在材料制备过程中,涉及化学反应,并且有新物质的生成。如固相反应法、有机合成法、水热法、沉淀法、化学气相沉积法等。以石墨烯材料为例讲解材料的制备方法。石墨烯作为二维单原子层材料,既可以采用物理法制备,也可以采用化学法制备。2004年发现石墨烯的报道,便是采用简单的胶带对撕方法制备,该方法依靠外力使石墨片层克服层间范德华力,使层与层之间分离,从而获得单层石墨,该方法也称为物理机械剥离法。利用甲烷、乙烯等烃类气体作为碳源,镍、铜、金等金属作为基片,采用化学气相沉积法则可以制备高质量大尺寸的石墨烯。另外,以石墨为原料,利用化学插层剥离的方法也可以用来制备石墨烯[5]。但不同方法制备获得石墨烯的尺寸及性能差别较大,在不同的应用领域采用的石墨烯制备方法是不同的。

4.3材料性能

材料的性能由其结构决定,与材料制备的工艺和方法有关。性能是指材料固有的物理、化学特性,材料性能决定了其应用。广义地说,性能是材料在一定的条件下对外部作用的反应的定量表述,例如力学性能是材料对外力的响应、电学性能是对电场的响应、光学性能是对光的响应等。因此,材料的性能可分为力学性能和特殊的物理性能。常见的力学性能包括材料的强度、硬度、塑性、韧性等。力学性能决定着材料工作的好坏,同时也决定着是否易于将材料加工成使用的形状。锻造成型的部件必须能够经受快速加载而不破坏,并且还要有足够的延性才能加工变形成适用的形状。微小的结构变化往往对材料的力学性能产生很大的影响。材料特殊的物理性能包括电、磁、光、热等行为。物理性能由材料的结构和制造工艺决定。对于许多半导体金属和陶瓷材料来说,即使成分稍有变化,也会引起导电性很大变化。过高的加热温度有可能显著地降低耐火砖的绝热特性。少量的杂质会改变玻璃或聚合物的颜色。

4.4材料应用

材料化学已经渗透到现代科学技术的众多领域,如电子信息、环境能源、生物医药和航天航空等领域。例如,在电子信息领域,现代芯片制造离不开化学。光刻过程使用的光刻胶和显影液,镀膜过程中的化学气相沉积和原子层沉积,刻蚀过程中的反应离子刻蚀,这些工艺过程都离不开化学的作用。在环境能源领域,新型光催化材料和太阳能电池材料的研究和开发,离不开化学法制备材料和对材料进行化学掺杂改性。在生物医药领域,对传感材料进行化学改性提高其传感特性,对仿生材料进行表面改性可以提高其生物相容性。在航天航空领域,各种轻质、耐高温、耐摩擦等结构材料和功能化智能材料的研发都离不开化学。

5结语

通过对“材料化学”绪论课的精心设计,使学生明确了该课程的性质和重要地位,大量的实例激发了学生学习的兴趣和求知欲,树立了学生学好该课程的信心,为课程的深入学习起到了奠基石的作用。以“材料、材料与化学、材料化学”为主线进行讲授,使学生对本课程的内容有了更加清晰和深入的认识,取得了良好的教学效果。

参考文献

[1]禹筱元,罗颖,董先明.材料化学专业人才培养模式的改革与实践[J].高教论坛,2010,1(1):23-25.

[2]杨卓娟,杨晓东.关于高校课程绪论教学的思考[J].中国大学教学,2011(12):39-41.

[3]唐小真,杨宏秀,丁马太.材料化学导论[m].北京:高等教育出版社,1997.

[4]曾兆华,杨建文.材料化学.2版[m].北京:化学工业出版社,2013.

高分子材料的基本特性篇10

关键词:矮败小麦;Bx7oe;揉混特性;分子标记

Studyon7oeSubunitintroductionandFlourmixingpropertiesofwheat

wanGJian-he,LianGDan,SHiXiao-wei,FenGGang,wanGCong-lei,SHiSi-fa,wanGJi-zhong

(CollegeofGardensandHorticulture,QingdaoagricultureUniversity,Qingdao,Shandong266109,China)

abstract:withaimtoinvestigatethepresenceofthesubunit7oeanditsrelationshipofthequalityparameters,atotalof195advancedlinesfromthedwarfmale-sterilewheatandJinqiang5weretestedbyaStSmarkersandmixographfactors.theresultssuggestedthatthemarkerstaBaC1215C06-F517/R964couldamplifya447-bpin6lines,whichindicatedthepresenceofBx7oeintheselines,withafrequencyof3.07%.thesubunit7oethathadasignificantlybettereffectonmixographfactorsshowedmorepositiveeffectsthanitsalternativeallelesonpeaktimeandeightminutewidth,andsignificantlybettereffectsoneightminutewidththannon-7oe.therefore,thestudysuggestedthateightminutewidthmightbeapotentialfactorforimprovementofquality;theStSmarkercouldbeusedtodetectthepresenceofBx7oegeneinwheatqualityimprovedinChina.

Keywords:dwarfmale-sterilewheat;Bx7oe;mixographfactors;molecularmarker

小麦贮藏蛋白决定小麦的品质特性,决定面团的弹性和延伸性。高分子量麦谷蛋白亚基(Hmw-GS)仅占小麦贮藏蛋白的10%,但对加工品质起着决定性作用。Hmw-GS由染色体1a、1B、1D长臂上的位点控制,这些位点总称为GLu-1位点。不同Hmw-GS亚基对面团特性和烘烤品质有着不同的影响。Glu-a1编码的1和2*亚基,Glu-B1编码的7+8、17+18、13+16和14+15亚基以及Glu-D1编码的5+10亚基均对面包加工品质有正向作用[1-2]。近年研究发现,1Bx基因的复制导致7亚基的超量表达,这可以显著提高面团强度[6-7]。国内对7oe亚基也进行了初步研究。张平平等[4]选用13份含7oe亚基姊妹系材料,利用反相高效液相色谱分析法(Rp-HpLC)和凝胶色谱(Se-HpLC)方法研究了含Glu-B1al(7oe+8)材料的Hmw-GS总量和面团强度。任妍等[5]利用两对StS引物验证了检测7oe引物的特异性,为其快速检测提供了方法。

矮败小麦是用“矮变1号”给太谷核不育小麦授粉,F1不育株再用高秆品种测交所得,中国自主创新的重大科技成果。矮败小麦的后代群体中一半是异交结实的矮秆雄性不育株和一半自交结实的非矮秆可育株,是理想的轮回选择工具[3]。津强5号品质达国家一级强筋小麦标准,且各项品质指标与加麦和硬红春相仿,经张平平等[4]检测含7oe亚基。

Ragupathy等[8]根据LtR逆转座子边界与重复片段的结合区域设计了两个StS标记并检测了400多份小麦品种,经任妍研究能有效鉴定7oe基因,这为快速准确检测7oe基因在本群体中的分布提供了可能。本研究对195份矮败小麦与津强5号杂交得到的高代品系7oe亚基进行分子检测,明确此位点等位基因的分布规律,并检测这批材料的揉混特性,为我国小麦育种提供有用的材料以及分子标记辅助选择方法。

1材料和方法

1.1供试材料

195份以津强5号作为轮回亲本与矮败小麦回交2次的高世代品系,2009年种植于天津市武清区周庄村,每区2行,行长2m,行距30cm,5cm点播。对其中9份农艺性状优良的非7oe亚基和6份含7oe亚基材料于2010年进行进一步扩繁,分析其揉混特性。

1.2基因组提取

采用SDS法提取小麦基因组Dna[9]。每份材料分别提取二粒种子的Dna,利用紫外分光光度计检测Dna浓度,终浓度调整至20ng·μL-1。

1.3StS标记检测

利用Ragupathy等[8]开发的显性StS标记检测Bx7oe基因。引物由天津润泰科技发展有限公司合成。

标记(重复片段与逆转座子左边结合引物):taBaC1215C06-F517:5'-aCGtGtCCaaGCtttGGttC-3',

taBaC1215C06-R964:5'-GattGGtGGGtGGataCaGG-3';

pCR反应体系为20μL,含10×pCRBuffer2μL,dntp(a、t、C、G)各200μmol·L-1,每条引物1μL(10mmol·L-1),taqDna聚合酶(takara)1U,模板Dna50ng。标记1的pCR反应程序为:94℃变性5min;94℃变性30s,63℃退火30s,72℃延伸1min,35个循环;72℃延伸5min。

pCR扩增产物以1.5%的琼脂糖凝胶电泳分离检测,缓冲液体系为1×tae溶液,180V电压电泳30min,溴化乙锭染色后,用GelDocXRSystem扫描成像并存入计算机。

1.4制粉方法

采用德国Brabendersenior试验磨按aaCC26-21a方法制粉。

1.5揉混特性检测

由美国national公司生产的揉混仪采用10g揉面钵按aaCC54-40a方法测试,重复2次,取平均值。

1.6统计方法

采用DpS统计分析软件进行显著性比较。

2结果与分析

2.1Bx7oe的StS标记检测

标记taBaC1215C06-F517/R964在含Bx7oe基因的材料中可扩增出一条447bp的片段,在不含Bx7oe基因的材料中无pCR扩增产物。6份材料扩增出447bp条带,占所检测品系的3.07%。

2.2揉混特性检测

对9份田间农艺性状表现好的未带有Bx7oe品系和6份带有Bx7oe品系进行揉混图测定,图2为15份材料中2个材料的揉混特性检测,其中图2(a)为带有Bx7oe基因的材料的揉混图,图2(b)为未带有Bx7oe基因的材料的揉混图。

将9份非Bx7oe品系和6份带有Bx7oe品系的主要品质性状平均值、变幅和变异系数列于表1。由表可以看出,有与无7oe品系的峰值时间分别为4.25和3.89,变幅分别为2.79~5.47和3.3~4.81,变异系数为22.7%和14.1%,说明基因间变异系数差异较小;有与无7oe品系峰值高度的分别为63.618和70.900,变幅分别为55.898~71.947和66.929~74.111,变异系数分别为9.5%和3.9%,说明基因间变异系数差异较大;有与无7oe品系的峰值宽度分别为32.761和27.388,变幅分别为26.279~37.322和19.402~34.490,变异系数分别为13.7%和19.9%,说明基因间变异系数差异较小;有与无7oe品系的8分钟带宽分别为15.469和8.425,变幅分别为8.243~19.472和7.601~10.135,变异系数分别为26.6%和8.7%,其中有7oe品系间变异较大,无7oe品系间变异较小,说明基因间变异系数差异较大,有与无7oe品系的峰值能量分别为201.271和182.510,变幅分别为175.962~240.125和160.267~213.949,变异系数分别为为16.3%和11.9%,说明基因间变异系数差异较小。

从表2中可以看出,有7oe品系和无7oe品系间8分钟带宽呈极显著水平,含7oe品系除津09359之外,其余各材料8分钟带宽均高于13.8min,最高达到19.472min;不含7oe品系材料最高值为10.135min,最低仅为7.6min,与含7oe品系差异达到极显著差异。8分钟带宽可作为小麦揉混特性中品质评价的重要指标。

3讨论

分子标记辅助选择因其简便准确在育种中越来越受到重视,筛选并明晰基因型和表型之间的联系有重要意义。任妍等利用Rp-HpLC的结果对Ragupathy等[8]开发的特异性StS标记进行了验证,证明此标记对Bx7oe基因的特异性,且扩增出的带型清晰、简单、准确。本研究选用此引物对195份材料进行分析,同时利用揉混仪参数对检验结果进行对应性试验。结果表明,此引物与品质相关性较高,在育种中有较大利用价值。

在本试验的检测中,含7oe亚基材料基本上均表现较强的品质特性,尤其是津09366和津09369,在后续试验中,部分重要指标远超过国家一级强筋小麦标准;但同时我们也发现,津09359材料虽然经检测含有7oe亚基,但品质数据等同甚至低于非7oe亚基材料,具体原因将在今后进行研究。

矮败小麦在冬小麦育种中发挥着巨大作用。本试验采用强筋春小麦品种津强5号,将矮败小麦田间选择着眼于春麦,获得将近200份春麦材料,构建了一个强筋矮败小麦集群,同时获得部分强筋类型春麦材料。在大田普遍表现繁育性较强、秆高大幅降低和秆强加强等偏向矮败小麦的系列农艺特征,具有较大育种价值。利用矮败小麦选育春麦材料,为春麦品种选育提供了一条新的思路。

本试验成功检测6个新品系含有7oe亚基。在先前研究中,Butow等于2003和2004年发现,在一系列澳大利亚和北美的品种中含有Bx7oe亚基[10-11]。Gianibelli等[12]在阿根廷107个优质小麦品种中检测出,有35.9%的品种含有Bx7oe亚基。此类报道也见于加拿大小麦品种Glenlea、Roblin、Bluesky及以色列小麦品系taa36中[13]。任妍等[5]对163份来自CimmYt和中国的材料进行了Bx7oe亚基检测,发现仅为6.7%材料含有此基因,中国材料仅亲本含有Glenlea的3份材料和1份云南材料。我们利用此标记对我们课题已通过审定的6个津强系列品种进行检测,除津强4号外,其余均含有父本加拿大材料野猫的7oe亚基,而这些材料均具有优良的面包烘烤特性。这一方面说明提高中国小麦品质要加强外国亲本的引入,同时又说明该亚基对提升中国小麦品种育种有很大余地。

该标记可以快速准确检测小麦品种是否携带Bx7oe基因。本研究结果可以为中国小麦育种提供有用的材料及分子标记辅助选择方法。

参考文献

[1]徐兆飞,张惠叶,张定一.小麦品质及其改良[m].北京:气象出版社,2000.

[2]宋健民,吴祥云,刘建军,等.小麦品质的麦谷蛋白亚基评价标准研究[J].作物学报,2003(6):829-834.

[3]刘秉华,杨丽.小麦育种革命——矮败小麦育种技术发展前景[J].北京农业,2007(14):11-12.

[4]张平平,张岐军,刘丽,等.Glu-B1位点亚基色谱鉴定及7oe对面团强度的影响[J].作物学报,2007,33(10):1575-1581.

[5]任妍,梁月,张平平,等.中国和CimmYt小麦品种Bx7亚基过量表达基因(Bx7oe)的分子检测[J].作物学报,2009,35(3):403-411.

[6]D’ovidio,masciS,porceddue.DuplicationoftheBx7high-molecular-weightgluteninsubunitgeneinbreadwheat(triticumaestivumL.)cultivarRedRiver68[J].plantBreed,1997,116:525-531.

[7]VawsermJCornishGB.over-expressionofHmwgluteninsubunitGlu-B17xinhexaploidwheatvarieties(triticumaestivum)[J].australianJournalofagricalturalResearch,2004,55:577-588.

[8]RagupathyR,naeemHa,Reimere,etal.evolutionaryoriginofthesegmentalduplicationencompassingthewheatGlu-B1encodingtheoverexpressedBx7(Bx7oe)highmolecularweightgluteninsubunit[J].theorapplGenet,2007,116:283-296.

[9]DevosKm,GalemD.theuseofrandomamplifiedpolymorphicDnamarkersinwheat[J].theorapplGenet,1992,84:567-572.

[10]Butow,BJ,maw,GaleKR,etal.moleculardiscriminationofBx7allelesdemonstratesthatahighlyexpressedhigh-molecular-weightgluteninallelehasamajorimpactonwheatflourdoughstrength[J].theorappliGenet,2003,107,1524-1532.

[11]ButowBJ,GaleKR,ikeaJ,etal.DisseminationofthehighlyexpressedBx7gluteninsubunit(Glu-B1alallele)inwheatasrevealedbynovelpCRmarkersandRp-HpLC[J].theorapplGenet,2004,109:1525-1535.