遗传学的分离定律十篇

发布时间:2024-04-25 19:18:22

遗传学的分离定律篇1

关键词:分离定律;自由组合定律;简化解法

孟德尔遗传定律是高中生物学的重点和难点,也是多年来高考考查的热点问题,它是在遗传的细胞学基础――减数分裂中实施的。学生学习时缺乏相应的实验验证和系统的规律性。加之学生的个体差异和认知水平浮浅,因此,利用孟德尔遗传规律中所学内容来帮助学生梳理和总结规律,形成知识体系就显得尤为重要。在实践教学中,笔者认为对于不善于进行加工整理教学内容的学生,传授利用分离定律对自由组合问题的简化解法就显得举足轻重。

就分离定律和自由组合定律关系来看,自由组合定律以分离定律为基础,因而可以用分离定律的知识解决自由组合的问题。况且,分离定律中规律性比例比较简单,因而用分离定律解决自由组合问题是简单易行的。

一、配子类型问题的简化解法

例1.基因型为aaBbCcdd的个体所产生配子的种类可能有多

少种?

先转化成一对一对性状的问题,再依据分离定律分别讨论:

基因型aa产生的配子a,a有2种

基因型Bb产生的配子B,b有2种

基因型Cc产生的配子C,c有2种

基因型dd产生的配子d,d有1种

以上每对基因所得配子自由组合后产生的配子种类数为:2×2×2×1=8种。

二、基因型、表现型类问题的简化解法

1.若已知亲本的基因型,求杂交后代所产生子代的基因型种类数和表现型种类数

例2.基因型为aaBbCc的个体与基因型为aaBbcc的个体杂交,各对基因独立遗传,其后代有多少种基因型?多少种表现型?

先转化成一对一对性状的遗传,再依据分离定律来求解。

aa×aa后代有3种基因型(1aa,2aa,1aa);2种表现型

Bb×Bb后代有3种基因型(1BB,2Bb,1bb);2种表现型

Cc×cc后代有2种基因型(1Cc,1cc);2种表现型

根据3对基因的遗传规律得:

子代中基因型有:3×3×2=18种

子代中表现型有:2×2×2=8种

2.若已知亲本的基因型,求某一具体基因型或表现型子代所占比例

例3.基因型为aaBbCC与aabbCC的个体杂交,求子代中出现基因型为aabbCc个体的概率?

先转化成一对一对性状的遗传,再依据分离定律来求解。

aa×aa后代中基因型为aa的概率为

Bb×bb后代中基因型为Bb的概率为

CC×Cc后代中基因型为Cc的概率为

考虑各对基因的遗传得:

子代中基因型为aabbCc的概率为:

综上所述,在遗传规律的学习中,不仅局限于学习孟德尔遗传定律的原有内容,引导学生掌握基本定律的基础上,适当对孟德尔定律进行扩展。这既丰富了学生对遗传学发展的认识,使学生不会误以为全部生物的遗传秘密都被孟德尔所发现,后人的研究空间还很大,同时加深了对减数分裂的理解和遗传规律的再认识,了解了基因的独立遗传和互作关系。通过简单的分离定律解决复杂的自由组合类问题,可以达到稳中求进、好中求快的高度,取得事半功倍的效果。

(作者单位甘肃省庆阳市镇原县第二中学)孟德尔遗传定律是高中生物学的重点和难点,也是多年来高考考查的热点问题,它是在遗传的细胞学基础――减数分裂中实施的。学生学习时缺乏相应的实验验证和系统的规律性。加之学生的个体差异和认知水平浮浅,因此,利用孟德尔遗传规律中所学内容来帮助学生梳理和总结规律,形成知识体系就显得尤为重要。在实践教学中,笔者认为对于不善于进行加工整理教学内容的学生,传授利用分离定律对自由组合问题的简化解法就显得举足轻重。

就分离定律和自由组合定律关系来看,自由组合定律以分离定律为基础,因而可以用分离定律的知识解决自由组合的问题。况且,分离定律中规律性比例比较简单,因而用分离定律解决自由组合问题是简单易行的。

一、配子类型问题的简化解法

例1.基因型为aaBbCcdd的个体所产生配子的种类可能有多

少种?

先转化成一对一对性状的问题,再依据分离定律分别讨论:

基因型aa产生的配子a,a有2种

基因型Bb产生的配子B,b有2种

基因型Cc产生的配子C,c有2种

基因型dd产生的配子d,d有1种

以上每对基因所得配子自由组合后产生的配子种类数为:2×2×2×1=8种。

二、基因型、表现型类问题的简化解法

1.若已知亲本的基因型,求杂交后代所产生子代的基因型种类数和表现型种类数

例2.基因型为aaBbCc的个体与基因型为aaBbcc的个体杂交,各对基因独立遗传,其后代有多少种基因型?多少种表现型?

先转化成一对一对性状的遗传,再依据分离定律来求解。

aa×aa后代有3种基因型(1aa,2aa,1aa);2种表现型

Bb×Bb后代有3种基因型(1BB,2Bb,1bb);2种表现型

Cc×cc后代有2种基因型(1Cc,1cc);2种表现型

根据3对基因的遗传规律得:

子代中基因型有:3×3×2=18种

子代中表现型有:2×2×2=8种

2.若已知亲本的基因型,求某一具体基因型或表现型子代所占比例

例3.基因型为aaBbCC与aabbCC的个体杂交,求子代中出现基因型为aabbCc个体的概率?

先转化成一对一对性状的遗传,再依据分离定律来求解。

aa×aa后代中基因型为aa的概率为

Bb×bb后代中基因型为Bb的概率为

CC×Cc后代中基因型为Cc的概率为

考虑各对基因的遗传得:

遗传学的分离定律篇2

新课程改革的目标是:

把课堂还给学生,让课堂充满生命活力。

把班级还给学生,让班级充满成长气息。

把创造还给教师,让教育充满智慧挑战。

把精神发展主动权还给师生,让学校充满勃勃生机。

结合同学科其他老师及自身在教学中的实践,我感觉必修2《遗传与进化》遗传部分的内容安排在教学实际中有诸多不便。必修2《遗传与进化》遗传部分的内容安排为第1章《遗传因子的发现》,通过依次学习孟德尔一对及两对相对性遗传实验过程、对遗传现象解释的假设、验证的学习,完成对分离定律和自由组合定律的学习,其间会讲到现在几乎不用的术语――遗传因子。第2章为《基因和染色体的关系》,学习减数分裂、受精作用,通过萨顿假说及摩尔根的果蝇实验证明基因在染色体上,理解分离定律和自由组合定律的现代解释;第3节是《伴性遗传》。第3章《基因的本质》,这一章内容为Dna是主要的遗传物质、Dna的分子结构、Dna的复制和基因是有遗传效应的Dn段。第4章是《基因的表达》。从内容上看,教材内容安排顺序几乎是按生物学史上这些知识的发现先后顺序来安排的。在教学中的困惑为:我们又不是学习生物学史,为什么还要按此顺序安排教学内容?某些几乎不用的概念还要重点介绍,比如遗传因子,还要做重复劳动,比如对分离定律和自由组合定律的理解,使本来就紧张的教学时间还要有一部分时间用于做无谓的劳动,还不利于学生对分离定律和自由组合定律完全、准确的理解。

反思这两年教学实践,我认为可以将遗传部分的内容顺序做以下的调整:首先学习《减数分裂和受精作用》,再学习遗传物质基础的相关内容,然后学习基因分离定律、基因自由组合定律和伴性遗传的知识。

遗传学的分离定律篇3

知识使人愚蠢,知识使人感觉迟钝。知识充满了他们,成为了他们的负担,增强了他们的自尊心,但却没有给他们指明方向。下面小编给大家分享一些高中生物基因遗传知识,希望能够帮助大家,欢迎阅读!

高中生物基因遗传知识1知识篇

基因的分离定律

相对性状:同种生物同一性状的不同表现类型,叫做相对性状。

显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。

隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。

性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。

显性基因:控制显性性状的基因,叫做显性基因。一般用大写字母表示,豌豆高茎基因用D表示。

隐性基因:控制隐性性状的基因,叫做隐性基因。一般用小写字母表示,豌豆矮茎基因用d表示。

等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。

等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。D∶d=1∶1;两种雌配子D∶d=1∶1。)

非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。

表现型:是指生物个体所表现出来的性状。

基因型:是指与表现型有关系的基因组成。

纯合体:由含有相同基因的配子结合成的合子发育而成的个体。可稳定遗传。

杂合体:由含有不同基因的配子结合成的合子发育而成的个体。不能稳定遗传,后代会发生性状分离。

基因的自由组合定律

基因的自由组合规律:

在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫基因的自由组合规律。

对自由组合现象解释的验证:

F1(YyRr)-隐性(yyrr)(1YR、1Yr、1yR、1yr)-yrF2:1YyRr:1Yyrr:1yyRr:1yyrr。

基因自由组合定律在实践中的应用:

基因重组使后代出现了新的基因型而产生变异,是生物变异的一个重要来源;通过基因间的重新组合,产生人们需要的具有两个或多个亲本优良性状的新品种

孟德尔获得成功的原因

①正确地选择了实验材料。

②在分析生物性状时,采用了先从一对相对性状入手再循序渐进的方法(由单一因素到多因素的研究方法)。

③在实验中注意对不同世代的不同性状进行记载和分析,并运用了统计学的方法处理实验结果。

④科学设计了试验程序。

基因的分离规律和基因的自由组合规律的比较

①相对性状数:基因的分离规律是1对,基因的自由组合规律是2对或多对;

②等位基因数:基因的分离规律是1对,基因的自由组合规律是2对或多对;

③等位基因与染色体的关系:基因的分离规律位于一对同源染色体上,基因的自由组合规律位于不同对的同源染色体上;

④细胞学基础:基因的分离规律是在减i分裂后期同源染色体分离,基因的自由组合规律是在减i分裂后期同源染色体分离的同时,非同源染色体自由组合;

⑤实质:基因的分离规律是等位基因随同源染色体的分开而分离,基因的自由组合规律是在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合。

高中生物基因遗传知识2方法篇

1仔细审题

明确题中已知的和隐含的条件,不同的条件、现象适用不同规律。

(1)基因的分离规律

①只涉及一对相对性状;

②杂合体自交后代的性状分离比为3∶1;

③测交后代性状分离比为1∶1。

(2)基因的自由组合规律

①有两对(及以上)相对性状(两对等位基因在两对同源染色体上);

②两对相对性状的杂合体自交后代的性状分离比为9∶3∶3∶1;

③两对相对性状的测交后代性状分离比为1∶1∶1∶1。

(3)伴性遗传

①已知基因在性染色体上;

②性状表现有别、传递有别;③记住一些常见的伴性遗传实例:红绿色盲、血友病、果蝇眼色、钟摆型眼球震颤(--显)、佝偻病(--显)等

2掌握基本方法

(1)最基础的遗传图解必须掌握一对等位基因的两个个体杂交的遗传图解(包括亲代、产生配子、子代基因型、表现型、比例各项)

例:番茄的红果—R,黄果—r,其可能的杂交方式共有以下六种,写遗传图解:p①RR×RR②RR×Rr③RR×rr④Rr×Rr⑤Rr×rr⑥rr×rr

注意:生物体细胞中染色体和基因都成对存在,配子中染色体和基因成单存在;一个事实必须记住:控制生物每一性状的成对基因都来自亲本,即一个来自父方,一个来自母方。

(2)关于配子种类及计算

①一对纯合(或多对全部基因均纯合)的基因的个体只产生一种类型的配子

②一对杂合基因的个体产生两种配子(DdD、d)且产生二者的几率相等。

③n对杂合基因产生2n种配子,配合分枝法即可写出这2n种配子的基因。

例:aaBBCc产生2-2=4种配子:aBC、aBc、aBC、aBc

(3)计算子代基因型种类、数目后代基因类型数目等于亲代各对基因分别独立形成子代基因类型数目的乘积。

3基因的分离规律(具体题目解法类型)

(1)正推类型:已知亲代求子代

只要能正确写出遗传图解即可解决,熟练后可口答。

(2)逆推类型:已知子代求亲代

①判断出显隐关系;

②隐性表现型的个体其基因型必为隐性纯合型(如aa),而显性表现型的基因型中有一个基因是显性基因,另一个不确定(待定,写成填空式如a?);

③根据后代表现型的分离比推出亲本中的待定基因;

④把结果代入原题中进行正推验证。

4基因的自由组合规律

总原则是基因的自由组合规律是建立在基因的分离规律上的,所以应采取“化繁为简、集简为繁”的方法,即:分别计算每对性状(基因),再把结果相乘。

(1)正推类型

要注意写清配子类型(等位基因要分离、非等位基因自由组合),配子“组合”成子代时不能相连或相连。

(2)逆推类型

①先找亲本中表现的隐性性状的个体,即可写出其纯合的隐性基因型

②把亲本基因写成填空式,如a?B?×aaB?

③从隐性纯合体入手,先做此对基因,再根据分离比分析另一对基因

④验证:把结果代入原题中进行正推验证。若无以上两个已知条件,就据子代每对相对性状及其分离比分别推知亲代基因型

5伴性遗传

(1)常染色体遗传:

男女得病(或表现某性状)的几率相等。

(2)伴性遗传:

男女得病(或表现某性状)的几率不等(男女平等);女性不患病——可能是伴Y遗传(男子王国);非上述——可能是伴-遗传;

(3)-染色体显性遗传:

女患者较多(重女轻男);代代连续发病;父病则传给女儿。

(4)-染色体隐性遗传:

男患者较多(重男轻女);隔代遗传;母病则子必病。

学好生物的三大方法有哪些一、课前预习

预习可以帮助我们理解和掌握新知识,因为理解和掌握新知识不是靠一次听讲就能做到的,而要通过多次强化,通过预习可使我们上课听讲更认真,注意力更集中,因为我们在预习中发现的问题在课上通过老师的讲解,会对知识理解更深刻,提高听课效率。预习可以培养我们的自学能力,培养主动学习的好习惯。自学能力是一种综合能力,是中学生需要培养的诸多能力中的第一能力,养成了自学的习惯,就能使我们的学习更主动,更有创造性,更利于提高学习质量,掌握了自学能力,就掌握了打开知识宝库的一把金钥匙,就能源源不断地获取新知识,汲取新的营养。

1.首先要通读教材,搞清楚课本上讲了哪些内容,要解决什么问题。

通读之后要掩卷而思,看哪些内容已基本清楚,哪些内容不甚了解,哪些是重点等,要对这部分内容有一大概了解。

2.在通读基础上进行细读,要挖掘教材中更深一层的内容,在细读中做到“眼到、心到、手到”不仅要知道书上讲了什么,还要思考“为什么”,要对知识点进行分析和比较,对重要要领结论及关键字词做好标记,对存在问题也要随时记录,这样边读边记,边读边注,提高阅读效果,培养了自学能力。

3.在预习中还要注意分析、归纳,注意新旧知识的联系,找到预习中重点内容,对发现的问题带到课上,看老师如何分析。

这样有助于提高自己的分析能力和解决问题能力。

总之,在预习中要做到先通读,再细读,并注意总结归纳,注意知识点间的联系,搞清楚哪些知识需要记忆,哪些内容还不太理解,使预习达到一较高层次。提高了自学能力。

二、课上听讲

在预习的基础上听课,可使思维活跃,注意力更集中,听讲是学习中一个非常重要的环节。在听讲中要紧跟老师的思路,抓住重点,带着问题听课,对于预习中存在的问题,要看老师是如何分析的,自己为什么没弄清楚,这样不但可以理解这部分知识,还有助于提高自己分析问题的能力,这样带着问题听课,可以变被动为主动,听讲目的更明确,注意力更集中。在听讲时也要做到手脑并用,做好听课笔记。做笔记要抓住重点,条理清楚,特别要记的内容是知识点间的联系,例题分析,对于老师分析某问题的过程和解决问题的方法要特别重视,这正是我们上课时需要培养的能力,对于预习中了解的内容可通过老师讲解强化记忆。在听讲时速要重视实验,注意能力的培养。

遗传学的分离定律篇4

关键词:学科教学知识(pCK);孟德尔遗传定律;遗传因子的发现

中图分类号:G633.91文献标识码:a文章编号:1009-010X(2013)02-0069-04

一、问题提出

斯坦福大学教授舒尔曼(LeeS.Schulman)在1985年的美国教育研究委员会例会上提交的一份研究报告,首次提出了pCK(pedagogicalcontentknowledge)的概念。该报告于次年在美国教育研究协会会刊《教育研究者》上正式发表。此后,国外一些学者对该概念的内涵与意义进行了跟进和探讨,论述较多,但歧见犹存。

pCK在国内被翻译为“学科教学知识”或“学科内容教学化知识”。我国教育界近些年对这一概念给予了关注和重视,文献检索发现:pCK出现的频率正在逐年攀升,已经由早期的一般性评介转为学科化应用。但生物教育研究文献鲜有涉及,有关中学生物学科pCK的文献检索结果为零。

早在1972年,学者aspy和Silverman在一项研究中发现,教师的课堂教学行为与教师拥有的教育学、心理学知识之间没有明显的相关性。此后的1974年,另两位学者Dunkin和Biddle则对教师的学科知识与学生成绩之间的关系进行了研究,结果表明,教师的学科知识与学生成绩不存在统计学上的相关性[1]。也就是说,对生物教师而言,教师对生物科学专业知识掌握的多少也与学生学习成绩之间没有直接关系。

学科教学知识的基本内涵或核心价值就在于“基于学生立场,实现知识转化”。具体到生物学科,那就是教师要善于将生物科学的学科逻辑转化为学生学习的心理逻辑。生物教师的pCK不是单一的生物科学专业知识,也不是跨越学科的一般教学法知识,而是二者的有机融合。可以说,生物教师的pCK是生物教师独有的和使教学最有效的知识,也是区别生物教学专家与生物学科专家、专家教师与新手教师的知识。因此,从pCK的角度来研究生物教师和生物教学,对促进教师专业发展和提升教学的有效性具有重要的现实意义。

二、研究方法

采用文献分析法,并辅以访谈法。主要运用一定的分析框架对生物教师及其教学设计文本、ppt课件和视频课录像进行质的研究。同时,对其中一些资料不全者追加访谈。

(一)文献来源

采用专家教师案例。这些案例来自于一些专家型教师有关“孟德尔遗传定律”话题的文字或视频资料。这些专家教师都具有高中生物学科的中学高级教师职称,教龄超过15年,均为地市级以上学科带头人或骨干教师。

本研究所采信的案例具体包括:①北京柳老师的《高中生物“遗传的基本规律”教学研究》,载于“广东省2011年普通高中教师职务培训”培训平台;②广州市朱教师、佛山市李教师和江门市刘老师的《遗传因子的发现》的说课稿、教学设计或课堂教学现场。

(二)分析框架

舒尔曼理论的继承者格罗斯曼(p.L.Grossman)在1990年对pCK的内涵进行了操作性解释,认为教师的pCK由4部分组成:①关于一门学科的统领性观点(关于学科性质的知识和最有学习价值的知识);②关于学生对某一课题理解和误解的知识;③关于课程和教材的知识(特定学习内容在横向和纵向上的组织和结构的知识);④特定主题教学策略和表征的知识[2]。同时,williamR.Veal和JamesG.makinster将pCK划分为普通、学科和话题3种基本类型,并对话题pCK的内涵进行了进一步阐释。

综合前人的内涵分析,本研究将孟德尔遗传定律话题pCK内涵确定为五个维度:①本话题的教育价值;②本话题的核心内容及其联系;③本话题的任务和目标;④本话题的前概念和学习困难;⑤本话题的教学策略。

本研究就是借鉴上述分类框架,结合文献和案例研究,对人教版高中生物课程中的“孟德尔遗传定律”话题进行pCK内涵分析。

三、研究结果

本话题在人教版教科书中的课题名称为《遗传因子的发现》,属于必修二《遗传与进化》的第1章(开篇章节),为4~5课时。这里从上述五个维度,对孟德尔遗传定律话题呈示pCK分析结果。

(一)孟德尔遗传定律话题的教育价值

首先,本话题包含较多专业名词术语,可以为后续学习奠定知识基础。

本话题涉及一些重要的遗传学基本概念,包括遗传因子、性状、相对性状、显性性状、隐性性状、性状分离、自由组合、杂交、自交、测交、正交、反交、纯合子、杂合子、基因型、表现型、完全显性、不完全显性等,还包括遗传图谱和遗传实验分析图解等。所以,本话题建立的概念体系能够为后面学习摩尔根实验和伴性遗传提供知识基础和认知支架。

其二,本话题包含重要的科学探究方法,有助于培养学生的科学思维。

孟德尔运用“假说-演绎法”,发现了生物遗传的基本规律。孟德尔所采取的是一种完全不同于达尔文博物学模式的“实验生物科学模式”,从科学假设出发,用科学实验来检验假设,用数学方法来显示、分析和预测实验结果。

孟德尔在观察和分析基础上提出问题,再通过推理和想像提出解释问题的假说,根据假说进行演绎推理,再通过实验检验演绎推理的结论。如果实验结果与预期结论相符,就证明假说是正确的,反之,则说明假说是错误的。这就是“假说-演绎法”。

此外,本话题还涉及到单因子实验(一对相对性状的杂交实验)和多因子实验(两对相对性状的杂交实验)等科学实验方法,特别是用自由组合定律的研究来渗透多因子实验的思想,在高中生物课程中具有重要价值。

其三,本话题包含重要的科学史料,有助于对学生进行科学品质的培养。

《遗传与进化》模块教科书是以人类对基因的本质、功能及其现代应用的研究历程为主线展开的。孟德尔的工作属于开创性的,了解孟德尔所处的年代以及当时的研究背景,能够更深刻地体会孟德尔遗传定律的重要价值。

教科书基本按照人类认识发展的历史进程来安排,从孟德尔到摩尔根再到沃森和克里克等。这样既展示科学的过程与方法,又体现个体水平、细胞水平、分子水平的遗传学知识的内在逻辑联系;既能引导学生不断提出问题,分析和解决问题,尝试像科学家那样进行解释和推理,又能从众多科学家表现出的科学精神、科学态度等优秀品质中获得感悟。

4位教师的内涵分析均涉及上述3个方面的内容,但清晰程度有所不同,其中1位教师的分析具体而全面。

(二)孟德尔遗传定律话题的内容及其联系

一是关于本话题的内容及其内部结构。

本话题以孟德尔发现遗传因子为主线。孟德尔遗传定律包括基因的分离定律和自由组合定律,前者研究的对象是一对相对性状的遗传规律,是后者的基础;后者是研究两对及多对相对性状的基因在不同对的同源染色体上的遗传规律,是前者的延伸和发展。其内容和结构图解如下:

图1本话题的内容及其联系(柳忠烈,2011)

二是关于本话题与前后话题的外部联系。

前面学习过的细胞结构和有丝分裂等内容是本话题的细胞学基础。同时,本话题有关遗传因子在亲子代之间传递规律,有助于学生按照人类认知发展过程,来进一步从细胞水平和分子水平学习遗传规律,即教科书的第2章《基因和染色体的关系》和第3章《基因的本质》。基因的分离规律是学习自由组合规律、摩尔根实验和伴性遗传的重要基础,自由组合规律则是学习生物变异和遗传育种的重要基础。

本话题的内容是学习后续话题的基础,后续话题的内容则是对本话题的拓展和深化。教科书对《遗传与进化》模块内容的定位,是力求让学生从基因水平来理解生物的遗传和进化。随着人们对遗传和进化的认识深入到基因水平,遗传从本质上说是基因的代代相传,可遗传的变异从本质上说是生物体基因组成的变化,进化过程中物种的形成从本质上说是种群基因频率在自然选择作用下的定向改变。

4位教师的内涵分析均涉及上述2个方面,其中2位教师对第二部分的分析略显不够全面和具体。

(三)孟德尔遗传定律话题的任务和目标

课标在本话题的具体内容标准包括“分析孟德尔遗传实验的科学方法”和“阐明基因的分离规律和自由组合规律”,活动建议为“模拟植物或动物性状分离的杂交实验”。结合教材内容和学生实际,我们可以将上述课程目标转化和细化为如下教学目标:

知识目标:简述豌豆作为遗传实验材料的特点;简述孟德尔一对和两对相对性状的豌豆杂交实验过程;简述孟德尔的科学假设及演绎推理,演绎结果的验证过程及结论的获得过程;阐明分离定律和自由组合定律的基本要点;运用分离定律和自由组合定律解释一些遗传现象。

能力目标:模仿母本去雄、套袋隔离和人工辅助授粉等杂交操作过程;学会用概率学知识分析实验结果及对未知结果进行预测;学会用假说-演绎法进行生物学问题的研究;能够运用测交原理设计实验验证显性个体的基因组成;学会用规范的遗传图解对遗传现象进行合理的解释;学会用孟德尔定律解决遗传育种和医学实践中的一些问题;学会利用孟德尔定律设计遗传学实验方案。

情感态度价值观目标:通过孟德尔等科学家的生平事迹,认同科学家严谨、创新、质疑等科学品质;感悟孟德尔成功的原因及杰出的贡献;体验实验材料选择、数据分析对生物学研究的重要意义。

在上述目标中,教学重点应放在以下几个方面:孟德尔实验现象的分析、假说的提出、假说的演绎、假说的验证及结论的获得;学会用孟德尔定律解决遗传育种和医学实践中的一些问题,设计遗传学实验方案。

4位教师对知识目标的设计和重点目标的确认基本相同,但对能力目标和情感态度价值观目标的设计则表现出明显的差异。同时,有3位教师对教学目标的表述存在明显缺陷,包括3个维度的区分、目标层次的把握和行为动词的使用都有不足。

(四)孟德尔遗传定律话题的前概念及学习困难

学生已具有的基础:日常积累的有关生物性状和性状分离现象等生活经验,初中生物所学有关分离规律等初步的遗传学知识,高中生物所学有关细胞结构和细胞分裂等细胞学知识。

学生学习难点主要包括:孟德尔实验现象的分析、假说的提出和演绎、假说的验证及结论的推导;用概率学知识分析实验结果及对未知结果进行预测;用假说-演绎法进行生物学问题的研究。

下面是关于学习中存在的常见问题及其教学建议:

一是概念繁杂导致难以准确把握,进而影响对遗传定律的理解和应用。

概念多,且是第一次接触,容易混淆。建议将这些概念的学习放在孟德尔实验过程的学习中进行,同时注意进行比较,通过对比帮助学生理清概念之间的区别与联系。

二是不善于用概率的思想指导实验分析和问题解决。

孟德尔定律是统计学的定律,是概率的定律。因而概率思想必须渗透到教学中,帮助学生用概率的思想去理解和应用孟德尔定律。抛硬币及其相关概率的计算是学习的必要基础,同时应注意反复渗透和讲练结合,要不断地在实验分析和问题解决的过程中强化概率思想。

三是遗传学知识的综合应用能力欠佳,常常影响对新情境问题的解决。

对于缺乏遗传学背景知识的学生来讲,遗传学始终是比较抽象的内容,遗传学知识的应用始终是教学中的难点。分析和解释某些遗传学现象是孟德尔定律学习的拓展和延伸,认识和解决问题的基础就在于孟德尔定律的教学。一方面,教师应注意带领学生沿着科学家思维的轨迹来分析和思考问题;另一方面,学生缺少遗传育种方面的感性经验,教学可以逐步由简单到复杂渗透遗传学实验设计和遗传育种方面的应用。

四是思维训练的缺失,导致对“假设-演绎法”的理解和应用难以深入。

学生不善于运用“假设-演绎”的思想来演绎孟德尔实验的研究过程和指导实验的设计。为解释植物杂交试验现象,孟德尔提出了一系列天才般的假说。而这些假说又很好地解释了3∶l和9∶3∶3∶1的实验结果。测交后代的表现型及其比例真实地反映出子一代产生的配子种类及其比例,根据子一代的配子型必然地可以推导其遗传组成,揭示这个奥秘对演绎推理的论证过程起到画龙点睛的作用。孟德尔的这一系列假说现在已被科学实验证明是完全正确的。

五是对孟德尔定律的理解深度不够,面对某些遗传特例时常常不知所措。

高考中越来越重视利用一些遗传特例来考察对基因分离定律和自由组合定律的理解。这些遗传特例往往会产生一些经典孟德尔比例的变形比例,如3∶1变形为2∶1,9∶3∶3∶1变形为9∶6∶1等。教师可以利用复习课对此进行说明和例析。

4位教师对学生学习困难的相同认识集中在前两项,后面三项则表现出明显的个性化差异,不同教师的看法不尽相同。

(五)孟德尔遗传定律话题的基本教学策略

上面针对学生的学习困难呈示了相应的教学策略,下面是一些关于本话题的整体教学策略:

一是采用问题导学,通过引导学生质疑和推理来组织本话题的教学。

二是遵循“学习实践创新”的基本思路,注意适当介绍孟德尔发现遗传规律的过程,让学生领悟到孟德尔的成功离不开坚实的知识基础、持之以恒的实验探索和勇于创新的科学精神。

三是要重视实验的演绎推理,用科学方法教育来统领教学的全过程,渗透“发现问题提出假设验证假设总结规律”的科学思维方法。

四是采用“原型模型原型”的思路组织模拟实验的教学,并将模拟实验与孟德尔的豌豆杂交实验结合起来以突破教学难点。

4位教师对上述整体教学策略有相同或相似的看法,但具体操作和实施细节上又明显地呈现出各自的教学特色和偏好(限于篇幅,不一一列举)。

四、小结

pCK内涵分析不失为一种有效的教研活动方式,既为传统的教学研究注入了新的元素,也为教师专业发展找到了新的增长点,更为打造高效课堂提供了重要的支撑力。

本研究认为,专家教师的话题pCK内涵十分丰富,且具有个性化特点。一方面,这些教师对孟德尔遗传定律话题教育价值的理解、对教材内容及其前后联系的把握、对教学任务的界定和教学目标的设计,具有诸多相似的看法,表现出较为明显的趋同性。另一方面,这些教师对学生学习困难的把握、对教学策略的运用,又具有个性化的特点,表现出一定的差异性。总体而言,研究显示,这些专家教师均具备良好的学科基础、经验积累和教学智慧,能够较好地将本话题的生物学知识与教学原理结合起来,在一定程度上实现了学科内容的教学化和心理化。

同时,这些专家教师的话题pCK也存在一些不足,主要是对有关三维教学目标设计的把握不够准确和到位,在将生物学知识转化为学生容易理解的知识方面还有进一步提升的空间。

需要说明的是,本研究是一个新的尝试,仍有待于进一步深化。建议继续对中学生物教师的pCK进行系统和持续的观察和研究,比如通过面对面访谈了解生物教师pCK的个体性差异,通过问卷调查对专家教师与新手教师的pCK特质进行对比分析,通过文献分析和课堂观察对优秀教师的pCK进行提炼和总结,或者通过教师校本行动研究对某些重要话题进行pCK内涵分析。

参考文献

遗传学的分离定律篇5

1.遗传学奠基人――孟德尔;

2.孟德尔的豌豆杂交试验;

3.一对相对性状的遗传试验;

4.对分离现象的解释。

二、教学目标

1.知识与技能目标

(1)了解遗传基本规律研究的一般方法――杂交法。

(2)理解一对相对性状的遗传实验及其解释。

2.过程与方法目标

(1)通过了解孟德尔的杂交试验过程,掌握研究问题的一般方法。

(2)通过学习分离定律培养学生分析问题解决问题的能力。

3.情感态度价值观目标

(1)运用辩证唯物主义的观点分析和认识生物体生命活动的基本规律,逐步树立科学的世界观。

(2)通过孟德尔八年试验研究事迹,进行热爱科学、献身科学的教育。

三、教学重点、难点

对分离现象的解释,引导学生逐步分析得出结论,并用模拟实验加深理解。

四、课时分配

第1课时:1.遗传学奠基人――孟德尔;

2.孟德尔的豌豆杂交试验;

3.一对相对性状的遗传试验;

4.对分离现象的解释;

第2课时:1.对分离现象解释的验证;

2.基因的分离定律的实质;

第3课时:1.基因型和表现型;

2.基因分离定律在实践中的应用及事例分析。

五、教学流程

1.引言

一对夫妇都有耳垂,却生了一个没有耳垂的小孩。难道这个小孩不是他们的吗?另一对夫妇,一个是a型血,一个是B型血,却生了一个o型血的小孩。难道这个小孩也不是他们的吗?或是有什么问题?但从遗传学角度来看,没有问题,一点都不奇怪,完全符合遗传规律。为什么呢?学习了今天的课程你就能找到答案。

今天我们就来一起学习第六章第二节《遗传的基本规律》的第一个内容《基因的分离定律》。

基因的分离定律是由孟德尔最先揭示的(同时出示投影标题板书:1.遗传学奠基人――孟德尔,随后出示投影片介绍孟德尔生平)。

2.过渡

孟德尔之所以能成功地揭示出遗传学两个基本定律,除了他对自然科学的热爱和坚持不懈的精神外,还在于他正确的实验方法。他实验成功的原因主要有哪些呢?下面我们来看下一个课题:孟德尔取得实验成功的原因。

3.重点讲解

(1)正确的选择实验材料

孟德尔采用豌豆作为实验材料,是因为豌豆是自花传粉植物。自花传粉是花粉落到同一朵花的柱头上。异花传粉是花粉落到另一朵花的柱头上。异花传粉时,可能发生在不同植株之间,甚至是不同品种的植株之间。为什么要选择自花传粉的植物为实验材料呢?

学生讨论后回答:自花传粉与异花传粉植物相比,它不会受到外来花粉的干扰。因此,用豌豆做人工杂交试验时,结果既可靠又容易分析。

教师:再加之不同豌豆品种之间同时具有多对相对性状。(对照投影讲解)如豌豆的高茎与矮茎、圆粒与皱粒、豆荚的黄色与绿色等都是相对性状。正因为豌豆不同品种间具有多对相对性状,使得杂交实验的结果很容易观察和分析。我们顺便了解一下,什么叫相对性状。

首先请同学们来观察几对相对性状,判断几组性状是否是相对性状,增加对相对性状的感性认识,然后归纳相对性状的概念和相对性状是同一生物同一性状的不同表现类型。

(2)从简单问题入手,解决复杂问题

由于生物个体的多种性状往往是同时存在,不便于观察和分析。所以孟德尔先从每一对性状的遗传开始研究,使问题简单化。

(3)使用了统计方法对实验结果进行分析

由于上述三个主要原因,使孟德尔成功取得了遗传研究的成功。孟德尔是通过什么途径来研究遗传规律的呢?是豌豆的杂交实验,杂交是遗传学研究最基本的方法。但豌豆的杂交是如何操作的呢?

学生:人工异花传粉。

教师:如果在人工异花传粉之前就自花授粉了呢?

学生:先去雄,待花未成熟时就对花进行去雄处理。

教师:去雄处理后要对花进行套袋,防止外来花粉干扰。待花成熟以后,取另一品种的花粉涂在雌蕊柱头上,完成杂交操作。提供花粉的植株叫父本,接受花粉的叫母本。

孟德尔首先用高茎豌豆与矮茎豌豆进行杂交。请同学推测一下它的后代是高茎还是矮茎呢?

学生:可能是高茎,也可能是矮茎。

教师:子一代,用F1表示是高茎。

有同学可能会说,杂交时是将高茎作为父本的吧。(讲解)无论是用高茎做母本进行正交,还是用高茎做父本进行反交,子一代总是表现为高茎。子一代为什么不表现为矮茎呢?

孟德尔又用子一代进行自交,结果子二代中同时表现出高茎和矮茎现象,而且孟德尔对子二代进行统计分析发现,高茎与矮茎的数量比接近于3:1。

为什么会出现上述现象呢?

为了描述的方便,我们首先来学习几个概念。

(出示投影片:图《杂交后代性状的表现》)

对照图提问:为什么将高茎叫作显性性状,短茎叫作隐性性状?

学生:高茎表现得多一些。

教师:正确。但除此现象外,有更准确的定义。

教师补充:(指示图同时讲述)纯种亲本杂交时,将子一代表现出的性状叫作显性性状。将子一代没有表现出的性状叫作隐性性状。将杂交后代同时表现出显性性状和隐性性状的现象叫作性状分离。

所以,实验现象我们也可以描述为:

①子一代:只表现出显性性状;

②子二代:性状分离;

③子二代:显性性状:隐性性状≈3:1。

上述现象是否有偶然性呢?能说明遗传的普遍规律吗?孟德尔又对另外6对相对性状做了类似的杂交实验都表现出同样的结果。这说明一定有内在的规律。

孟德尔经过反复思考对此做出了解释。孟德尔认为:性状是由基因控制的,控制显性性状(如高茎)的基因是显性基因,用大写英文字母(如D)表示,控制隐性性状(如矮茎)的是隐性基因,用小写英文字母(如d)表示。如纯种高茎豌豆的体细胞中含有成对的基因DD,纯种矮茎豌豆的体细胞中含有成对的基因dd。

教师:在体细胞中基因成对存在的原因是什么呢?

学生:成对基因分别存在于同源染色体上。

(出示投影片:杂交分析图解)

指示投影片并讲解:生物体在形成配子生殖细胞――配子时,成对的基因彼此分离,分别进入不同的配子。

教师:在形成配子时,成对基因分离的原因是什么?用我们已有的知识如何解释呢?

学生:减数分裂时同源染色体分离。

教师:(对照图讲解)因此,纯种高茎豌豆的配子只含有一个显性基因D;纯种矮茎豌豆的配子只含有一个隐性基因d。受精时,雌雄配子结合,合子中的基因又恢复成对。如基因D与基因d在F1体细胞中又结合成Dd。由于基因D对基因d的显性作用,F1(Dd)表现为高茎。在F1(Dd)自交产生配子时,同样,基因D和基因d又会分离,这样F1产生的雄配子和雌配子就各有两种:一种含有基因D,一种含有基因d,并且这两种配子的数目相等。受精时,雌雄配子随机结合,F2便出现4种组合,3种基因型:DD、Dd和dd,并且它们之间的数量比接近于1:2:1。由于基因D对基因d的显性作用,F2在性状表现上只有两类型:高茎和矮茎,并且这两种性状之间的数量比接近于3:1。

4.讲解实验方法

按照孟德尔的假设推论出的上述几种基因组合及其数量比是否正确呢?下面我们不妨来做一个模拟小实验。

同学们桌上的塑料袋中都放有黑白两种围棋子各20粒,我们用黑色的棋子表示含显性基因(D)的配子,用白色的棋子表示含隐性基因(d)的配子。

(边讲边示范)

六、小结

今天的新课就学习到这里,让我们来回顾一下今天学习的内容。我们今天了解了基因的分离定律是由孟德尔最先揭示的,孟德尔取得成功的原因,孟德尔的豌豆杂交实验操作及现象,孟德尔对实验现象的解释等内容。孟德尔有关分离现象的解释是否正确呢?根据实验方法,我们还需要加以验证,下节课我们将继续讨论有关对分离现象解释的验证。

七、教学反思

遗传学的分离定律篇6

关键词:生物科学;核心课程;逻辑关系

中图分类号:G633.91

文献标识码:a文章编号:1674-9944(2016)21-0130-03

1引言

生物化学、遗传学、细胞生物学、分子生物学、基因工程学是生物科学专业的核心课程,由于它们相互联系,交叉渗透,因此存在逻辑关系不清,课程内容重叠较多等问题,例如原核生物和真核生物基因表达调控在生物化学、细胞生物学、分子生物学都有介绍,基因工程原理在分子生物学、基因工程学中都有介绍,导致教师教学内容难以起舍,课程顺序难以安排。要理顺生物化学、遗传学、细胞生物学、分子生物学、基因工程学的逻辑关系,确定各课程教学内容和教学顺序,必须把其定义,研究内容,发展历史动态结合起来。

2生物科学专业核心课程概述

2.1生物化学

生物化学是运用化学的理论和方法研究生物分子结构与功能、物质代谢及遗传信息传递与调控规律的科学。

生物化学是生命科学中最古老的学科之一。随着生命科学的发展,各学科相互渗透。18世纪,一些从事化学研究的科学家转向生物领域,为生物化学的诞生播下了种子。19世纪末,生物化学从生理化学中独立。20世纪中后期又从生物化学分离出部分内容与遗传学部分内容结合为分子生物学,然后,分子生物学基因操作部分独立出来,形成基因工程学。

1920年以前,生物化学研究内容以分析生物体的化学组成、性质和含量为主,称为静态生物化学时期。

1920年-1950年,随着同位素示踪技术、色谱技术等物理学手段的广泛应用,生物化学从单纯的组成分析深入到物质代谢、能量转化,如:光合作用、生物氧化、糖、脂肪、蛋白质代谢等领域。这是生物化学飞速发展的时期,称为动态生物化学时期。

1950年以后,蛋白质化学和和核酸化学进展迅速,生物化学进入了分子生物学时期。分子生物学的发展揭示了生命本质的高度有序性和一致性,是人类在认识的巨大飞跃。根据生物化学的定义和历史,生物化学研究的内容包括以下几个方面。

2.1.1生物的物质组成

生物是由一定的物质按特定的方式组成的,直到今天,新物质仍不断被发现。如陆续发现的干扰素、环核苷一磷酸、钙调蛋白、粘连蛋白、外源凝集素等都具有重要的生物学功能。另一方面,早已熟知的化合物也发现了新的功能,如20世纪50年代才知道肉碱是一种生长因子,而到60年代又发现其是生物氧化的载体。

2.1.2物质代谢

生物体内绝大部分物质代谢是在酶催化下进行的,具有高度自动调节能力。一个小小的细胞内,有近2000种酶,在同一时间内,催化各种不同的化学反应。这些化学反应互不干扰,有条不紊地进行。表明生物体内的物质代谢有精确的调节控制系统。

2.1.3结构与功能

生物大分子的功能与其特定的结构有密切关系。如酶的活性中心的结构决定其催化活性及其特异性;变构酶的活性还与其催化的代谢终末产物的结构有关。

核酸中核苷酸排列顺序的不同,其结构就不同,所含遗传信息不同。这些不同的构象对基因的表达具有调控作用。

生物体的糖包括多糖、寡糖和单糖。由于多糖链结构复杂,具有很大的信息容量,对于细胞专一地识别、相互作用具有重要作用。糖类将与蛋白质、核酸并列成为生物化学的主要研究对象。

在生物化学中,有关结构与功能关系的研究才仅仅开始,尚待大力研究的问题很多,其中重大的有:亚细胞结构中生物大分子间的结合,细胞的相互识别、细胞的接触抑制、细胞间的粘合、抗原与抗体的作用、激素、神经介质与其受体的相互作用等。

2.1.4繁殖与遗传

生物典型特点是具有繁殖与遗传特性。基因是Dna分子中的一段核苷酸序列,现在Dna分子的核苷酸序列已不难测得,不但能在分子水平上研究遗传,而且还可能改变遗传,从而派生出基因工程学。

2.2细胞生物学

细胞生物学是从显微水平、亚显微水平和分子水平研究细胞的结构及其生命活动规律的科学。

过去,细胞生物学主要是在光学显微镜下对细胞的形态结构和生活史进行研究,称为细胞学。20世纪50年代以来,由于电子显微镜、放射性同位素、细胞结构组分分离技术、细胞培养等技术的广泛应用,特别是分子生物学的兴起,使细胞生物学研究的广度和深度都有迅猛发展,从宏观到微观、从平面到立体、从定性到定量、从分析到综合;从细胞、亚细胞、分子三个水平研究细胞的结构与功能、分裂与分化、衰老与死亡等生命活动规律及其调控机制,细胞与细胞、细胞与环境之间的相互关系。使原来以形态结构研究为主的细胞学转变成以生理功能研究为主、将结构与功能紧密结合起来的细胞生物学。由于细胞生物学在分子水平上的研究工作取得了深入的进展,因此细胞生物学又称为细胞分子生物学。细胞生物学研究内容如下。

2.2.1细胞社会学

细胞社会学是细胞生物学中的一个新的领域。它是以系统论的观点研究细胞群体中细胞间的相互关系、细胞群体的社会行为;细胞识别、通讯、相互作用;整体和细胞群对细胞的生长、分化、形态发生和器官形成等活动的调控;细胞外环境对细胞的影响。

2.2.2细胞的增殖、生长、分化与调控

研究细胞增殖、生长、分化及其调控机制,不仅是控制生物生长和发育的基础,而且是研究细胞癌变和逆转的重要途径。

2.2.3细胞遗传学

细胞遗传学从细胞学角度来研究染色体的结构和行为以及染色体与细胞器的关系,从而探讨遗传与变异的机制等。

2.2.4细胞化学

细胞化学:用切片或分离细胞成分,对单个细胞或细胞各个部分进行定性和定量的化学分析,研究细胞结构、化学成分的定位、分布及其生理功能。

2.2.5分子细胞学

分子细胞学:从分子水平研究细胞与细胞器中蛋白质、核酸等大分子的组成、结构与功能及其遗传性状的表现和调控等,探讨细胞生命活动的分子机理。

2.3遗传学

遗传学是研究生物遗传和变异规律的科学。孟德尔认为生物性状的遗传是受遗传因子控制的,并提出了遗传因子分离和自由组合的基本遗传规律。1900年,孟德尔的成果得到广泛重视,成为遗传学的基石。

20世纪初,利用光学显微镜发现了细胞有丝分裂和减数分裂过程中染色体及其行为,奠定了遗传的染色体理论基础。1910年左右,美国遗传学家摩尔根及其同事根据对普通果蝇的研究,提出了基因的连锁交换规律,并结合当时的细胞学成就,创立了以染色体遗传为核心的细胞遗传学。

遗传信息在分子水平上研究始于20世纪40年代。随着电子显微镜的发明,人们已能够直接观察遗传物质的结构及其在基因表达过程中的特征,使细胞遗传学的研究进入分子水平。

1953年,沃森和克里克提出了Dna的双螺旋结构模型,为进一步阐明Dna的结构、复制和遗传物质如何保持世代连续的问题奠定了基础,开创了分子遗传学这一新的学科领域。

遗传学研究的领域非常广泛,可划分成经典遗传学、细胞遗传学、分子遗传学和生统遗传学4个分支,各个分支领域相互联系、相互重叠、相互印证,组成了一个不可分割的整体。

经典遗传学研究从亲代到子代的遗传特性,包括遗传的分离规律;独立分配规律;连锁和交换遗传规律及机理;基因互作及其与环境的相互关系;性别决定与伴性遗传;基因及染色体变异;数量性状的特征及其多基因假说,近亲繁殖和杂种优势;细胞质遗传等。

细胞遗传学是通过细胞学手段对遗传物质进行研究。其内容包括细胞的结构和功能;染色体的形态结构;细胞的有丝分裂,减数分裂;配子的形成和受精。

分子遗传学是从分子的水平上研究遗传物质的结构及遗传信息的传递。内容包括Dna复制、转录和翻译,基因突变及修复,原核生物和真核基因表达与调控;基因、基因组及作图,遗传重组。

生统遗传学是用数理统计学方法来研究生物遗传变异规律的学科。根据研究的对象不同,又可分为数量遗传学和群体遗传学。前者研究生物体数量性状即由多基因控制的性状遗传规律,后者是研究基因频率在群体中的变化、群体的遗传结构和物种进化。

2.4分子生物学

分子生物学是从分子水平研究核酸与蛋白质的结构与功能、遗传信息传递和调控,阐明生命本质的科学。

从19世纪后期到20世纪50年代初,确定了蛋白质是生命的主要物质基础,Dna是生物遗传的物质的载体,是现代分子生物学诞生的准备和酝酿阶段。

从20世纪50年代初到70年代初,是现代分子生物学的建立和发展阶段,1953年watson和Crick提出的Dna双螺旋结构模型为现代分子生物学诞生的里程碑,确立了核酸作为遗传信息分子的结构基础,提出了硷基配对是核酸复制、遗传信息传递的基本方式,为核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。

70年代后,基因工程技术出现,人类进入认识生命本质并开始改造生命的发展阶段。

分子生物学原来是生物化学的一部分,因其太重要了,20世纪中后期从生物化学中分离出来并与遗传学结合,独立出来成为单独的学科,是生物化学的发展和延续。涉及的部分内容比生物化学更细致深入,并从整体上考虑。

分子生物学从蛋白质、核酸、基因及基因组结构开始,以中心法则为主线,阐述生物大分子在信息传导、基因表达调控中的相互作用和机理。主要内容包括蛋白质、核酸、基因和基因组的结构、Dna的复制、转录、转录后加工、基因突变与修复、蛋白质生物合成和翻译后加工、原核生物基因表达的调控、真核生物基因表达的调控。基因工程技术的原理和应用等。

2.5基因工程学

20世纪70年代,随着Dna的内部结构和遗传机制逐渐呈现在人们眼前,生物学家不再仅仅满足于探索、揭示生物遗传的秘密,而是开始设想在分子的水平上去干预生物的遗传特性。这就像工程设计,按照人类的需要(设计)把这种生物的某个“基因”与那种生物的某个“基因”进行“施工”,“组装”成新的基因组合,创造出新的生物的工程技术被称为“基因工程”。

基因工程包括如下几个主要的内容:①目的基因的合成或提起分离。②载体的构建。③将载体转移到受体细胞并增殖。④重组Dna分子的受体细胞克隆筛选。⑤将目的基因克隆到表达载体上,导入寄主细胞,使之在新的遗传背景下实现功能表达,产生出人类所需要的物质。

3课程间的逻辑关系,教学内容选择及课程顺序安排

从生物化学、遗传学、细胞生物学、分子生物学、基因工程学的定义,研究内容,发展历史动态可知,各学科的逻辑关系是:理解细胞结构及功能需要一定的生物化学基础,理解遗传物质的结构和功能需要一定的细胞生物学基础,而分子生物学是生物化学、遗传学交叉融合的产物,研究核酸和蛋白质分子结构和功能以及相互关系,而各个分子不能孤立发挥作用,必须依赖于一定的细胞结构,因此,生物化学是细胞生物学的基础;细胞生物学是遗传学和分子生物学的基础。基因工程是利用分子生物学的理论和实验技术进行转基因操作的部分独立出来的,因此分子生物学是基因工程学的基础。所以,高校应按生物化学、细胞生物学、遗传学、分子生物学、基因工程的顺序安排课程教学最为合适。

由以上可知,由于历史的原因,生物化学、细胞生物学、遗传学、分子生物学、基因工程学相互联系,交叉渗透,研究内容重复较多。因此,本研究根据其定义、逻辑关系及发展历史,同时为编写教材和教学的方便,建议生物化学、遗传学、细胞生物学、分子生物学、基因工程学教学内容如下。

(1)生物化学主要教学内容主要有:蛋白质化学、核酸化学;酶学基础;糖代谢与生物氧化;脂类代谢;蛋白质的分解代谢等内容。而将Dna复制、转录、翻译、突变、修复及原核生物和真核生物基因表达调控留在分子生物学讲授。

(2)细胞生物学的教学内容主要有:细胞的基本结构;细胞生物学研究方法;细胞膜的结构与功能及物质跨膜运输;细胞质基质与细胞内膜系统;细胞通讯与信号传递;线粒体和叶绿体;细胞核与染色体;细胞骨架;细胞增殖及其调控;细胞分化、衰老与凋亡。

(3)遗传学的教学内容主要有:遗传的分离规律;独立分配规律;连锁和交换遗传规律;基因互作及其与环境的关系;基因定位与连锁遗传图;性别决定与伴性遗传;基因及染色体变异;染色体畸变;数量性状的特征及其多基因假说;近亲繁殖和杂种优势;细胞质遗传;遗传重组。

(4)分子生物学的教学内容主要有:Dna的复制、转录、转录后加工、基因突变与修复、蛋白质生物合成和翻译后加工、原核生物基因表达的调控、真核生物基因表达的调控。

(5)基因工程学的主要教学内容有:基因工程技术的原理和应用等。

以上各门课的教学内容相对前述和我国现行教材的教学内容作了较大调整,例如;核酸和蛋白质的组成及结构只在生物化学中讲授,细胞信号传递只在细胞生物学中讲授,基因工程原理只在基因工程学中讲授,避免了课程内容的重复。

参考文献:

[1]沈振国.细胞生物学(第2版)[m].北京:中国农业出版社,2011.

[2]欧阳五庆.细胞生物学[m].北京:高等教育出版社,2010.

[3]翟中和,王喜忠,丁明孝.细胞生物学[m].北京:高等教育出版社,2007(8).

[4]Georgem.malacinski,DavidFreifelder.essentialsofmolecularbiology(thirdedition)[m].北京:科学出版社,2003.

[5]Jeremym.Berg,JohnL.tymoczko,LubertStryer[J].Biochemistry,2002.

[6]徐晋麟.现代遗传学原理[m].北京:科学出版社,2000.

[7]王亚馥,戴灼华.遗传学[m].北京:高等教育出版社,1999.

[8]孙乃恩.分子遗传学[m].南京:南京大学出版社,1990.

[9]RobertH.tamarin:principlesofGenetics[J].5thed.,1996.

[10]朱玉贤,李毅.现代分子生物学[m].北京:高等教育出版社,2002.

[11]杨业华.普通遗传学[m].北京:高等教育出版社,2000.

[12]HartwellL,HoodL,GoldbergmL,etal.Genetics:FromgenestoGenomes(firstedition)[J].mcGraw-HillCompanies,Boston,2000.

[13]马建岗.基因工程学原理[m].西安:西安交通大学出版社,2001.

遗传学的分离定律篇7

一、依照题意,画出可能的图解

例如:某男孩患红绿色盲,其祖父母、外祖父母、父母均色觉正常,则这个男孩的色盲基因的传递依次来自()

a.母亲、外祖母B.母亲、外祖父

C.父亲、祖母D.父亲、祖父

解析:根据红绿色盲是伴X染色体隐性遗传,确定Ⅲ-5的色盲基因(如b)不会来自其父亲Ⅱ-3(没有色盲,基因型为XBY),只能来自其母亲Ⅱ-4(基因型为XBXb);Ⅱ-4的色盲基因同样只能来自Ⅰ-2。

(答案:a)

二、判断遗传方式:

1、首先是判断是否伴Y染色体遗传

伴Y染色体遗传病:如男人的外耳道多毛毛耳症等,是限雄遗传:即患者的父亲和儿子一定患该病。见下页的图1-2。

2、其次是判断显隐性

(1)采用性状分离法来判断显隐性:具有相同表现型的双亲相交,子代有相对性状出现,则新出现的,不同于亲本的性状为隐性性状,双亲所具有的性状为显性性状。如右图:

(2)采用显隐性定义判断:具有相对性状的亲本相交,若后代仅表现一方亲本的性状且正反交结果相同,则后代所表现出的那个亲本性状为显性性状,未表现出的那个亲本性状为隐性性状,如右图:

3.显隐性遗传病的分类

(1)显性遗传病,在人群中,发病率通常比隐性遗传病要高,且世代相传,即子女中有患者,则双亲中必有一个该病的患者。

①常染色体显性遗传病:如软骨发育不全,多指,并指等,在人群中发病概率男女基本无差别。

②伴X染色体显性遗传病:如抗维生素D佝偻病等,其遗传特点是在人群中女性患者多于男性患者,男性患者的母亲和女儿一定患该病。

(2)隐性遗传病,在人群中,发病率通常比显性遗传病要低。

①常染色体隐性遗传病:白化病、先天性聋哑、苯丙酮尿症等,在人群中发病概率男女基本无差别。

②伴X染色体隐性遗传病:进行性肌营养不良、红绿色盲、血友病等,其遗传特点是在人群中男性患者多于女性患者,女性患者的父亲和儿子一定患该病,即隔代交叉遗传。常用口诀:无中生有是隐性,隐性遗传找女病,父子有正不伴性;有中生无是显性,显性遗传找男病,母女有正不伴性。

三、根据表现型初步确定基因型,再推测和计算

1.利用基因分离定律来解自由组合的题

基因的自由组合定律是建立在基因的分离定律基础之上的,研究更多对相对性状的遗传规律,两者并不矛盾。如纯合黄圆豌豆(YYRR)和绿皱豌豆(yyrr)杂交,F2代中表现型及其比例的推导,可依据两对相对性状单独遗传时出现的基因型、表现型种类及概率,按乘法原理(两个或两个以上独立事件同时出现的概率等于各自概率的乘积)进行综合分析。

由此可知:运用基因分离定律解决自由组合定律问题,可起到化繁为简的作用,这种方法在3对或更多对等位基因遗传时,更有必要。

2.利用自由组合定律预测遗传病的概率:

例:甲图为人的性染色体简图。X和Y染色体有一部分是同源的(甲图中i片段),该部分基因互为等位:另一部分是非同源的(甲图中的Ⅱ―1,Ⅱ―2片段),该部分基因不互为等位。请回答:

(1)人类的血友病基因位于甲图中的__________片段。

(2)在减数分裂形成配子过程中,x和Y染色体能通过互换发生基因重组的是甲图中的__________片段。

(3)某种病的遗传系谱如乙图,则控制该病的基因很可能位于甲图中的__________片段。

(4)假设控制某个相对性状的基因a(a)位于甲图所示X和Y染色体的i片段,那么这对性状在后代男女个体中表现型的比例一定相同吗?试举一例________________________________________________

____________________________________________。

(考答案:(1)Ⅱ-2;(2)Ⅰ;(3)Ⅱ-1;(4)不一定。例如母本为XaXa,父本为XaYa,则后代男性个体为XaYa,全部表现为显性性状;后代女性个体为XaXa,全部表现为隐性性状。)

四、面对难易不同的题目,要注意心理调节

容易试题要小心,力争不失分,即慢做会,求全对;

中档试题要细心,力争得高分,即稳做中档题,一分不浪费;

生繁难题有信心,力争得点分,或者舍弃全不会。

始终保持平常心:不求多得,只求少失;不求草草答完全卷,只求做了都对。

答题中要做到六个字:准确、迅速、整洁:

审题:认真读题审题,找出关键字词;(题眼――审题的最关键之处)

遗传学的分离定律篇8

   一、性状为可遗传变异或不可遗传变异的判断

   1.依据原理

   由遗传物质改变引起的变异或由环境改变引起遗传物质改变的变异是可遗传的,单纯由环境改变而遗传物质未改变引起的(性状)变异是不可遗传的。

   2.判定方法

   在正常的环境中用正常个体、变异个体间分别杂交,获得的子代在相同条件下培养并比较性状。对于植物还可用营养生殖的方法。

   例1.果蝇是做遗传实验极好的材料,在正常的培养温度25℃时,经过12天就可以完成一个世代,每只雌果蝇能产生几百个后代。某一生物兴趣小组,在暑假饲养了一批纯合长翅红眼果蝇幼虫,准备做遗传学实验,因当时天气炎热,气温高达35℃~37℃,他们将果蝇幼虫放在有空调的实验室中,调节室温到25℃培养,不料培养到第7天开始停电,空调停用1天,他们也未采取其他的降温措施。结果培养出的成虫中出现了一定数目的残翅果蝇(有雌有雄)。兴趣小组成员推测残翅形成的可能原因是温度改变使遗传物质改变导致性状变异,也可能是温度使性状改变而遗传物质未改变。请设计一个实验验证你关于残翅形成原因的推测:________。

   解析:正常的长翅果蝇幼虫在培养过程中由于温度的改变出现了残翅,这种变异产生的原因可能是温度改变使遗传物质改变导致性状变异,也可能是温度使性状改变而遗传物质未改变。为证明这种变异产生的原因,根据上述原理,可在25℃的环境中用残翅雌、雄果蝇杂交并培养幼虫,看子代是否出现残翅,若出现,则说明遗传物质改变引起的;若不出现则是由温度改变引起,遗传物质未改变。

   答案:用这些残翅果蝇杂交繁殖的幼虫在25℃下培养。如果子代全为长翅,说明变异由温度改变引起,遗传物质未改变;如果子代全为残翅或部分为残翅,则说明变异由遗传物质改变引起。

   二、遗传方式的判断(基因位于细胞核还是位于细胞质)

   1.依据原理

   受精卵中的细胞质几乎都来自卵细胞,故细胞质遗传具有母系遗传的特点,子代性状始终与母方保持一致,与父方性状无关。因此当基因位于细胞质中时,具有相对性状的纯合亲本正、反交结果不相同,子代性状始终与母方相同。而细胞核遗传中,具有相对性状的纯合亲本正、反交结果相同,都表现为显性性状。

   2.判定方法

   设计正反交杂交实验。①若正反交结果不同,且子代始终与母方相同,则为细胞质遗传;②若正反交结果相同,则为细胞核遗传。(提示:伴性遗传和细胞质遗传的正反交结果都会出现不同,但细胞质遗传产生的子代总是与母方性状相同,而伴性遗传则不一定都与母方相同。)

   例2.果蝇的繁殖能力强,相对性状明显,是常用的遗传实验材料。果蝇对的耐受性有两个品系:敏感型(甲)和耐受型(乙)。有人做了以下两个实验。

   实验一:让甲品系雌蝇与乙品系雄蝇杂交,后代全为敏感型。

   实验二:将甲品系的卵细胞去核后,移入来自乙品系雌蝇的体细胞核,由此培育成的雌蝇再与乙品系雄蝇杂交,后代仍全为敏感型。

   (1)此人设计实验二是为了验证________。

   (2)若另设计一个杂交实验替代实验二,该杂交实验的亲本组合为________。

   解析:本题主要考查核移植、细胞质遗传、基因位置的判断,细胞质遗传不符合孟德尔遗传定律。

   ①实验二是通过核移植直接证明耐受型个体受细胞质基因的控制;②验证细胞质遗传常采用正反交法,即可通过耐受型()×敏感型()替代实验二。

   答案:(1)控制的耐受性的基因位于细胞质中;(2)耐受型(雌)×敏感型(雄)

   三、相对性状中显、隐性性状的判断

   1.依据原理

   2.判定方法

   按图1所示的方法:

   例3.玉米的常态叶与皱叶是一对相对性状。某研究性学习小组计划以自然种植多年后收获的一批常态叶与皱叶玉米的种子为材料,通过实验判断该相对性状的显隐性。①甲同学的思路是随机选取等量常态叶与皱叶玉米种子各若干粒,分别单独隔离种植,观察子一代性状:若子一生性状分离,则亲本为________性状;若子一代未发生性状分离,则需要________。②乙同学的思路是随机选取等量常态叶与皱叶玉米种子各若干粒,种植,杂交,观察子代性状,请帮助预测实验结果及得出相应结论。

   解析:①甲同学是利用自交方法判断显隐性,即设置相同性状的亲本杂交,若子生性状分离,则亲本性状为显性;若子代不出现性状分离,则亲本为显性纯合子或隐性纯合子,可再设置杂交实验判断,杂交后代表现出的性状为显性性状;②乙同学利用杂交实验判断显隐性,若杂交后代只表现出一种性状,则该性状为显性;若杂交后代同时表现两种性状,则不能判断显隐性性状(此时可通过让两种表现型的植株所接种子分别单独种植在相同环境中,然后以株为单位收集并统计观察,确定显隐性)。

   答案:①显性分别从子代中各取出等量若干玉米种子,种植,杂交,观察其后代叶片性状,表现出的叶形为显性性状,未表现出的叶形为隐性性状;②若后代只表现一种叶形,该叶形为显性性状,另一种为隐性性状;若后代既有常态叶又有皱叶,则不能作出显隐性判断。

   四、控制一对相对性状基因位置的判定

   1.依据原理

   常染色体上的基因控制的性状遗传,雌雄个体表现型是一致的,与性别无关;性染色体上的基因控制的性状遗传,雌雄个体表现型会出现不一致现象,性状与性别相联系(如果统计子代群体中,同种表现型小群体的性别比例,推断遗传类型。一般情况下,若同种表现型群体的性别比例均为1∶1,则说明子代性状和性别无关,属于常染色体遗传;如果性别比例不是或不全是1∶1,则为伴性遗传)。Y染色体上的基因控制的性状遗传,则仅限雄性遗传。

   2.判断方法

   按如下两种方法:(1)控制一对相对性状的基因位于常染色体上还是X染色体上。①在已知显隐性性状的条件下,可设置雌性隐性性状个体与雄性显性性状个体杂交。其推断过程如图2。②在未知显性性状(或已知)条件下,可设置正反交杂交实验。若正反交结果相同,则基因位于常染色体上;若正反交结果不同,则基因位于X染色体上。(见下页图2)

   a.野生型(雌)×突变型(雄)

   B.野生型(雄)×突变型(雌)

   C.野生型(雌)×野生型(雄)

   D.突变型(雌)×突变型(雄)

   解析:由条件可知,突变型是显性性状;野生型是隐性性状;选择隐性性状的雌鼠与显性性状的雄鼠杂交时,若后代雌鼠全为显性性状,雄鼠全为隐性性状,则该基因位于X染色体上;若后代雌雄鼠中都有显性性状,则该基因位于常染色体上。

   答案:a。

   (2)基因位于X、Y的同源区段,还是只位于X染色体上,选取纯合隐性雌与显性雄杂交,其推断过程如图3。

   例5.大麻是一种雌雄异株的植物,下图为大麻的性染色体示意图,X、Y染色体的同源部分(图中Ⅱ片断)上的基因互为等位,非同源部分(图中i、Ⅲ片断)上的基因不互为等位。若大麻的抗病性状受性染色体上的显性基因D控制,大麻的雌、雄个体均有抗病和不抗病类型。现有雌性不抗病和雄性抗病两个品种的大麻杂交,请根据以下子代可能出现的情况,分别推断出这对基因所在的片段:如果子代全为抗病,则这对基因位于________片段;如果子代雌性全为不抗病,雄性全为抗病,则这对基因位于________片段;如果子代雌性全为抗病,雄性全为不抗病,则这对基因位于________片段。

   答案:Ⅱ;Ⅱ;Ⅱ或i。

   五、基因的遗传是否遵循孟德尔遗传规律

   1.依据原理

   2.判定方法

   可应用自交法、测交法和花粉鉴定法:

   (1)自交法。若自交后代出现两种表现型,且分离比为3∶1,则符合基因的分离定律,由位于一对同源染色体上的一对等位基因控制。若自交后代出现四种表现型,且分离比为9∶3∶3∶1,则符合基因的自由组合定律,由位于两对同源染色体上的两对等位基因控制。

   (2)测交法。若测交后代出现两种表现型,且性状比例为1∶1,则符合基因的分离定律,由位于一对同源染色体上的一对等位基因控制;若测交后代出现四种表现型,且性状比例为1∶1∶1∶1,则符合基因的自由组合定律,由位于两对同源染色体上的两对等位基因控制。

   (3)花粉鉴定法(或花药离体培养法)。根据花粉表现的性状(如花粉的形状、染色后的颜色等)判断。若花粉有两种表现型,比例为1∶1,则符合分离定律,由位于一对同源染色体上的一对等位基因控制;若花粉有四种表现型,比例为1∶1∶1∶1,则符合自由组合定律,由位于两对同源染色体上的两对等位基因控制。

遗传学的分离定律篇9

关键词遗传系谱专题复习解题思路

中图分类号G633.91文献标识码B

与遗传系谱有关的题目涉及了孟德尔遗传规律、伴性遗传、人类的遗传病和数学中概率计算等多个知识点,具有一定的综合性。分析2008~2013年江苏生物高考题发现,遗传系谱题是必考题型之一,分值及考查方向见表1。

由表1分析可以看出,近年来江苏高考中有关遗传系谱的考查主要方向为判定遗传病的遗传方式、分析指定个体的基因型及其概率、计算子代的患病概率,但几乎每年的考题中都会出现特定的创新考点,提高了遗传系谱题的考查难度。通过调查发现,针对遗传系谱题,教师每年在教学中都会安排较多课时,让学生进行大量的训练,但效果欠佳。笔者结合自身教学实践,就高三进行遗传系谱专题复习提出以下几点思考。

1思考一:注重对遗传系谱本质解读和剖析,谓之“道”

学习生物学知识是为了理解生命世界的本质,理解生物科学的过程和方法,理解生物科学与技术和社会的关系。只有通过对生物学核心概念的辨析、生物学思想的建构和领悟,才能切实提高学生的生物科学素养,使学生终身受益。遗传系谱图是学生在学习孟德尔遗传定律和伴性遗传基础上的一种用相关符号表示遗传病传递的方式,是将文字描述转换为图形符号。但很多学生在解遗传系谱题时却是以图论图,忘记了遗传系谱的本质。在进行遗传系谱专题复习时,教师首要是回归遗传系谱的本质,对其进行深入的解读和剖析。

首先要明确,中学阶段涉及的遗传系谱主要是核基因控制的单基因遗传病系谱,是对某遗传病患者家族各成员的发病情况进行详细调查,再以特定的符号和格式绘制成反映家族各成员相互关系和发病情况的图解。遗传系谱图中包括个体性别、性状表现、亲子关系、世代数以及个体在世代中的位置等信息。复习课上可以“湖南省宁乡县东塘湖镇高峰村武姓家庭怪病系谱”这个经典案例引入,提高学生的学习兴趣,加深学生对遗传系谱作用的认识和理解,有效训练学生的图文转化能力。

其次,密切联系人类的染色体组成,结合基因与染色体的关系,将遗传系谱图与减数分裂、孟德尔的遗传定律进行有机的融合,加深学生对遗传系谱本质的认识。特别要重点剖析伴性遗传。通过展示人类的XY染色体图,辨析XY染色体上的同源区段和非同源区段,将相关基因标注到染色体的相应位置,结合减数分裂中染色体的行为规律和遗传系谱图,让学生直观地认识到伴性遗传的本质。

2思考二:加强对遗传系谱题解题步骤的总结,谓之“术”

遗传系谱题作为高考中失分较高的题型之一,学生常怀畏惧之心。遗传系谱题形式简洁、条件隐蔽、灵活多变,综合性强,但究其解题过程却有一定的规律。教师在进行专题复习时应引导学生在总结、思考中寻找规律和方法,使他们融会贯通、举一反三,形成一套完成的解题步骤,提高解题的规范性和正确率。遗传系谱题一般的解题步骤可总结为“拆—判—推—算”。

“拆”即为遗传系谱中若涉及两种或两种以上的遗传病,根据基因的自由组合定律:位于非同源染色体上的非等位基因的分离或组合是互不干扰的,解题时将不同的遗传病拆开后单独分析(现行《高中生物课程标准》中对基因的连锁和交换定律不作要求)。

“判”即为判断遗传病的遗传方式。判断遗传方式的基本程序如下:(1)判断是否为伴Y染色体遗传。依据系谱中有女性患者或男性患者的父亲或儿子不患病,排除伴Y染色体遗传;(2)判断显隐性。先找典型特征:隐性——父母不患病而孩子患病,即“无中生有为隐性”;显性——父母患病孩子不患病,即“有中生无为显性”;如果系谱中没有上述典型的片段组合,那么通过综合观察图中遗传病的发病情况,结合显性(或隐性)遗传病的遗传特点,作最可能的判断;(3)判断遗传病是常染色体遗传病还是伴X染色体遗传病。先找典型特征,判断能否排除伴X染色体遗传;如果系谱中没有上述能排除伴X染色体遗传的片段,则往往需要根据题干附加条件来分析;如果系谱中没有上述能排除伴X染色体遗传的片段,题干也无附加条件,那么只有通过综合观察图中遗传病的发病情况,结合遗传病的遗传特点,做最可能的判断。

“推”即为推测相关个体的基因型。基本方法为先根据遗传病的遗传方式和个体的表现型,写出已知的基因,未知的留空格,即先搭架子;再根据亲子代关系和遗传定律填出未知的基因,即后填空。

“算”即为推算概率。

相当部分学生在解题训练过程中会根据题目的难易程度决定解题步骤,难度小的题目往往跳过某些步骤,这对解题规律的掌握和理解是不利的。教师在进行专题训练时要提醒学生严格按照解题步骤进行,通过强化,形成解题习惯,有利于解答高考中难度较大的遗传系谱题。

3思考三:重视对遗传概率计算的变式训练,谓之“算”

遗传系谱中概率的计算是以数学概率计算方法为基础的。数学概率计算中涉及加法原理(即互斥事件)和乘法原理(即独立事件),学生在进行遗传概率计算时,经常将两类计算方法混淆,不能清楚地辨析互斥事件和独立事件。教师在进行概率计算复习时可以生物学独特的分析方法,换角度帮助学生理解概率计算的两个原理。

遗传病概率计算的一般流程可总结为:明确所计算的后代范围——明确所问概率的含义——先分后组方法计算。如计算所生男孩同时患甲、乙两种遗传病的概率,首先明确所计算的后代仅限于男孩,再明确所问概率为同时患两种遗传病。高中遗传系谱中涉及到的多种遗传病致病基因的遗传一般都遵循基因自由组合定律,遗传病与遗传病之间是相互独立的,按基因分离定律分别计算出两种遗传病的发病概率,注意在求一种遗传病发病率时就不要考虑另一种遗传病,将复杂问题简单化。如计算出男孩中患甲病的概率为a,患乙病的概率为b,则题目中所问的男孩中同时患两种遗传病的概率为ab。

遗传学的分离定律篇10

关键词:探究性状遗传基因

分析高考题中生物学试题,可以发现有关遗传推理的题目分值多,难度较大,平均得分率低。怎样解答遗传学中的这类推理题目,以下是对这种类型题目的归类和解题策略。

一、探究控制某性状的表达是受环境因素的影响还是由基因决定的

解题思路:在不同的环境中培养生物,观察生物的性状变化来推测

例1.(北京理综)一种以地下茎繁殖为主的多年生野菊分别生长在海拔10m、500m和1000m的同一山坡上。在相应生长发育阶段,同一海拔的野菊株高无显著差异,但不同海拔的野菊株高随海拔的增高而显著变矮。为检验环境和遗传因素对野菊株高的影响,请完成以下实验设计。

(1)实验处理:春天,将海拔500m和1000m处的野菊幼芽同时移栽于l0m处。

(2)实验对照:生长于____m处的野菊。

(3)收集数据:第二年秋天。

(4)预测支持下列假设的实验结果:

假设一野菊株高的变化只受环境因素的影响,实验结果是:移栽至l0m处的野菊株高。

假设二野菊株高的变化只受遗传因素的影响,实验结果是:移栽至l0m处的野菊株高。

假设三野菊株高的变化受遗传和环境因素的共同影响,实验结果是:移栽至l0m处的野菊株高。

解析:将海拔为500m和1000m处的野菊移栽于l0m处后,应分别与10m、500m和1000m处的野菊进行对照,才能充分说明问题。若野菊株高的变化只受环境因素的影响,则移栽至l0m处的野菊株高与l0m处的野菊株高无显著差异;若野菊株高的变化只受遗传因素的影响,则移栽至l0m处的野菊株高与原海拔处500m和1000m处的野菊株高无显著差异;若野菊株高的变化受遗传和环境因素的共同影响,根据题意:不同海拔的野菊株高随海拔的增高而显著变矮,则移栽至l0m处的野菊株高比l0m处矮,比原海拔处高。

答案:(2)10、500、1000

(3)测量株高,记录数据

(4)与10m处野菊的株高无显著差异

与原海拔处(500m和1000m)野菊的株高无显著差异比10m处矮,比原海拔处高规律:(1)生物性状既受基因的控制,又受环境的影响。

(2)当发生性状改变时,有可能是由基因决定的,也有可能是由环境影响的。

(3)探究生物性状的改变是由基因引起的还是由环境引起的,需要改变其生存环境进行实验探究。

二、探究某性状的遗传是细胞质遗传还是细胞核遗传

解题思路:做正交、反交实验,观察后代的性状变化来推测

例2.下表为果蝇三个不同的突变品系与野生型正交与反交的结果,试分析回答下列问题:

组数正交反交

①野生型×突变型a野生型突变型a×野生型突变型a

②野生型×突变型b野生型突变型b×野生型野生型

③野生型×突变型c野生型突变型c×野生型野生型、突变型c

(1)解释①组正交与反交结果不同的原因。

(2)②组的正交与反交结果相同,控制果蝇突变型b的基因位于染色体上,为性突变。

(3)③组的正交与反交结果不相同,用遗传图解说明这一结果(基因用B、b)表示。

解析:①若突变基因在细胞质内,则无论是正交还是反交均表现母本的性状。

②若突变的基因在常染色体上,无论是正交还是反交其后代的表现型是一致的;因为后代始终是野生型的性状,说明突变成的基因是隐性基因。

③若突变基因在X染色体上,则正交和反交其后代的表现型不一致,且与性别相关联;通过图解可知突变成的基因是隐性基因。

答案:(1)由题意可知,杂交所得的子代总表现出母本的性状,表现出母系遗传的特点,因而突变的基因最可能位于细胞质中,属于细胞质遗传。

(2)常隐

(3)该突变基因位于X染色体上,为隐性突变,因此正交与反交的遗传图解如下:

正交:pXBXB×XbY反交:pXbXb×XBY

(野生型)(突变型)(突变型)(野生型)

F1XBXbXBYXBXbXbY

(野生型)(野生型)(突变型)

(亦可先画遗传图解,后对突变基因的位置、显隐性进行说明)

规律:(1)观察正交和反交结果可分析判断生物的遗传类型。

(2)细胞质遗传有两大特点:母系遗传;后代分离比不符合孟德尔遗传规律。

(3)要注意细胞质遗传与伴性遗传的区别,虽然正、反交结果不同,但伴性遗传符合孟德尔的遗传规律,后代有一定的分离比。

三、探究某性状是显性性状还是隐性性状

解题思路:做两个相对性状的亲本杂交实验或两个相同性状的亲本杂交实验,根据后代出现的不同表现型来推测某性状是显性性状还是隐性性状。

例3.(湖南理综)已知牛的有角与无角为一对相对性状,由常染色体上的等位基因a与a控制。在自由放养多年的一群牛中(无角的基因频率与有角的基因频率相等),随机选出1头无角公牛和6头有角母牛,分别,每头母牛只产了1头小牛。在6头小牛中,3头有角,3头无角。

(1)根据上述结果能否确定这对相对性状中的显性性状?请简要说明推断过程。

(2)为了确定有角与无角这对相对性状的显隐性关系,用上述自由放养的牛群(假设无突变发生)为实验材料,再进行新的杂交实验,应该怎样进行?(简要写出杂交组合、预期结果并得出结论)

解析:对F1性状分离比的分析是解题的突破口,根据题干条件,亲本具有相对性状,子代也具有相对性状,显然无法确定这对相对性状中的显性性状。要解答此题,必须掌握分离定律的实质及相对性状的概念。

答案:(1)不能确定。①假设无角为显性,则公牛的基因型为aa,6头母牛的基因型都为aa,每个组合的后代或为有角或为无角,概率各占1/2。6个组合后代合计会出现3头无角小牛,3头有角小牛。②假设有角为显性,则公牛的基因型为aa,6头母牛可能有两种基因型,即aa和aa。aa的后代均为有角。aa的后代或为无角或为有角,概率各占1/2,由于配子的随机结合及后代数量少,实际分离比例可能偏离1/2。所以,只要母牛中具有aa基因型的头数大于或等于3头,那么6个组合后代合计也会出现3头无角小牛,3头有角小牛。

综合上述分析,不能确定有角为显性,还是无角为显性。