航空航天电源技术十篇

发布时间:2024-04-29 13:40:32

航空航天电源技术篇1

高技术是对一般传统技术而言的新兴尖端技术。以高技术产品开发和生产为主导的产业,叫高技术产业。大力发展高技术产业是增强企业自主创新能力、转变经济增长方式、促进我国高技术产业集聚、辐射带动区域经济发展、加快我国建立创新型国家步伐的需要。

据悉,国家发展和改革委员会于2008年2月29日举行国家高技术产业基地授牌仪式,西安跻身国家6大高技术产业基地,成为我国西部地区唯一一个综合性国家高技术产业基地。

这充分彰显了西安的综合科研实力和发展潜力,是推动西安又好又快发展社会经济、带动大西北、实现东西互动的良好契机。

四大开发区(基地)成高技术产业聚集地

西安市高技术产业主要集中在4个部级的开发区(基地),这4大高技术产业聚集区的高技术产业产值占全市高技术产业总产值的比重接近90%,是西安市经济持续快速发展的动力源泉。

其中,西安高新区的综合指标位居全国前列,并于2006年6月,被国家列为重点要建设成为世界一流科技园区的六个国家高新区之一。

西安高新区已完成35平方公里的基础设施配套建设,截至2007年底,累计注册企业达到10734家,初步形成了包括集成电路、软件及服务外包、通信设备等为骨架的电子信息产业,已成为西安市最大的经济增长极和我国转化科技成果、发展高新技术产业的重要基地。

2007年,高新区高新技术产业进一步壮大,园区外向度大幅提升,主要经济指标创二次创业五年来最高增速,连续五年实现了30%以上增幅。以电子信息、装备制造、生物医药、新材料为主的高新技术产业集群效益逐步显现,四大主导产业实现营业收入1435亿元,同比增长34%。

其次,西安经开区的生产总值也位居西部经开区第一位。西安经济技术开发区共有企业2500多家,引进工业项目450项。三菱、日立、西门子等世界500强企业的投资项目及陕重汽、贵航、西航莱特等一批国内知名企业入住,促进了区内高技术产业发展。

商用汽车产业成就了陕西省装备制造业第一个产销超百亿的龙头企业――陕汽集团。西门子、日立、aBB等世界500强投资企业以及西电集团、山西永济电机等企业,构成了经开区电力电子产业的骨干,启源机电、西玛电机等项目也相继建成投产。从2003年开始,西安经开区主要经济指标连续5年保持在40%的增长态势。商务部的2006年部级经济技术开发区综合评价结果显示,西安经开区生产总值、工业增加值、实际利用外资等3项指标在西部13个部级经济技术开发区中排名第一。

此外,西安阎良航空基地向着打造一流航空高技术聚集地的目标迈进。该基地是我国第一个以发展航空高技术产业为特色的部级产业基地。航空城西安阎良被称为“中国的西雅图”,阎良航空产业基地位居中国航空工业最为集中的地区,充分整合西安、陕西甚至是全国的航空资源,正在成为我国航空高技术产业的聚集地。

截至目前,西安阎良航空基地已注册航空企业115家,其中外资企业15家,内资企业100家。在发展航空高技术产业中,已经成立了3家整机制造企业、11家航空新材料企业、6家航空电子企业和60余家航空零部件企业。航空高技术产业集群发展态势良好,初步形成了以航空高技术研发、整机制造及航空装备生产等为特色的产业集群。一个以航空产业为特色、产业链完整、优势突出的航空专业园区正在形成。

还有,西安民用航天基地也站在了高技术产业的最前沿。西安国家民用航天产业基地由陕西省、西安市和中国航天科技集团合作成立,是西安市最年轻的部级产业基地。

依托西安现有的航天科技资源优势,西安航天基地科学规划,按照与既有园区错位发展的思路,航天基地重点发展以航天运载动力和航天特种技术应用移植推广为主导的民用航天产业。

据了解,“十一五”期间国家对航天器的需求、重大航天工程的启动,航天高技术的先导作用在基地产业发展中的作用正在显现。目前西安航天基地筛选储备了40个符合国家产业政策、技术含量高、市场前景好的航天科技产业项目,西安国家民用航天产业基地正在成为我国民用航天产业聚集化发展的重点区域。

五大高技术产业成为重点领域

航空产业:航空产业是西安市的特色支柱产业,西安航空产业以干线飞机为长线,以支线飞机为中线,以通用飞机为突破口,大力发展整机制造主导产业。以大型飞机为产业发展重点,承担大型运输机设计、总装、大部件制造、零部件加工、试飞鉴定等主导工作。以支线飞机为产业发展基础,重点推进aRJ21支线飞机和涡桨支线系列飞机的设计、研制和生产。通过自主创新,推进通用飞机的研制,加强国际合作,引进技术先进、市场前景广阔、适用性强的通用飞机项目。

航天产业:西安航天主导产业围绕国家航天战略,以航天运载动力发展为核心,实现航天关键技术研发突破和跨越式发展,研发生产满足国家航天战略需要的航天产品。

信息产业:西安高新区共有电子信息企业800多家,已形成以大唐电信、海天天线、彩虹资讯、爱尔、英飞凌等龙头企业为核心,一大批中小科技企业为支撑的产业集群。

航空航天电源技术篇2

一、江苏拥有发展航空航天制造业的较好基础

江苏发展航空航天制造业的基础与优势,主要包括以下几个方面:

紧邻“大飞机”落户地上海。上海是长三角地区经济发展的龙头城市,对全国各区域经济发展的影响力在不断增强,而“大飞机落户上海”所带来的要素集聚效应,将对包括江苏在内的诸多省域航空制造业发展产生深远影响。据估算,国家对整个大飞机的预期研发投入在300亿元到500亿元之间,整个研制过程能带来巨大的产业拉动、价值传导和经济增长效应。在制造过程中,一架大飞机需要由数千家配套厂商生产并提供共计300万到500万个零部件,由此,拉动配套产业,使其得到不断升级的机会,并最终形成庞大的产业链。另一方面,江苏与上海的关系愈加密切,时空距离在不断缩短,这有利于江苏抓住“大飞机落户上海”的发展契机,“抢先”对接,并依托由此而产生的产业集聚效应,形成航空工业的产业链。

雄厚的经济基础。江苏的强大经济实力为发展航空航天制造业提供了充足的资金支持。2012年全省实现生产总值54058.2亿元,位居全国第二,按可比价格计算,比上年增长10.1%,高新技术产业投资4059.0亿元,增长5.6%,占工业投资的比重达24.5%。同年,江苏省高新技术产业实现产值45041.48亿元,比上年增长17.36%,完成出货值11460.94亿元,比上年增长4.96%;其中,航空航天制造业实现工业总产值218.30亿元,占高新技术产业总产值的0.48%,该行业已成为江苏高新技术产业的主导产业之一。可见,在经济强有力的支撑下,江苏航空航天制造业的发展潜力巨大。

强大的科技实力。作为科技强省,江苏研发投入资金雄厚,境内的航空院校和科研院所数量众多,具有较大的人才技术优势。2012年,全社会研究与发展(R&D)活动经费1230亿元,占地区生产总值的2.3%,已建国家和省级重点实验室105个,科技服务平台296个,工程技术研究中心2141个,企业院士工作站326个。在航空航天器制造领域,江苏R&D人员全时当量、R&D经费内部支出、科技机构数自2000年起开始稳步上升,2011年分别达到839人年、1.45亿元、20个,其中,内部支出达到历史最高值。尤其在南京地区,南京航空航天大学、南京大学、东南大学、南京理工大学等航空航天相关院校和研究院所的数量众多,拥有以航空宇航科学与技术为核心的国家重点学科群,每年培养输送1000多名航空专业研究生,为航空工业发展提供可观的研发人才。

江苏在航空航天领域所投入的科技人力、物力、财力,对创新能力的提升已经开始发挥作用。中航工业集团公司的607所、614所、716所,中国电子科技集团公司的14所、28所、55所、58所,以及南航大无人机研究院都是国内专门从事关键技术研究的单位,研发水平达到或超过国家先进水平,有的甚至达到国际先进水平。可见,以经济繁荣为后盾,江苏强大的科技实力正逐步转化为航空航天产业创新发展的推动力。

初具规模的产业集聚载体建设。江苏省内各市根据自身地理特点及产业优势,已经打造出一批航空产业园或航空产业集群,成为行业集聚发展的重要载体。江苏先后成立了南京江宁的空港产业园、江苏省航空动力高技术特色产业基地、昆山航空产业园、镇江新区的航空材料科技产业园、滨海新区的航空装备制造产业园、江苏蓝天航空航天产业园等,成为自主创新和高新技术产业的重要集聚。

近些年,南京地区依托于金城集团、晨光集团、南京航空航天大学等一批龙头企业和科研院所,以江宁空港产业园和溧水开发区为载体,将轻型航空动力、机载机电和航空电子系统设备作为重点发展方向,形成基于产学研一体化的航空产业集聚链,并初步构建整机制造、动力系统制造、机体制造、机载设备制造、航空地面设施制造等比较完备的航空制造产业体系。

二、江苏发展航空航天制造业面临的矛盾与问题

由于特定的历史条件和长期实行计划经济体制,江苏航空航天制造业积累了许多深层次的矛盾和难题。

航空航天企业规模偏小。江苏省的航空航天企事业单位数列于全国第三,但仍存在“多、散、小”的局面。以2011年为例,江苏省有29个航空航天企业,总量位居华东第一,但就业人数、总产值与主营业务收入的企业平均值分别是607人、6.52亿元和6.98亿元;而全国的平均水平为1562人、8.54亿元和8.64亿元,华东的平均值为839人、6.66亿元和6.64亿元,安徽省的企业平均值为2322人、16.30亿元和16.75亿元,江西的企业平均值为2869人、20.70亿元和18.30亿元。显然,江苏省航空航天企业的平均生产规模远不及安徽省和江西省的水平,在华东地区乃至全国都居于后列。不可否认,多数航空制造企业的规模偏小,在很大程度上造成企业很少具备整机生产能力,大多属于机载系统企业,在技术、实力上难以与大型主机企业相抗衡,当与其他大型企业进行合作的时候较难拥有主动权,容易受制于人。

航空航天制造业产品结构偏低。江苏大多数企业生产的产品仍局限机制造所需全部零部件,缺乏综合制造能力,难以把众多的产品链条连接起来,形成一个完整的制造系统,航空制造业整体上还处在航空产业链的中低端,产品技术含量和附加值都处于劣势地位。例如,航空电子设备要占飞机总价的30%以上,但国产航空电子系统多限于军用,民用航空电子设备的进口量偏大;国产仪器仪表普遍存在以下问题:可靠性较差,平均无故障工作时间比国外低1~2个数量级,性能、功能较为落后,测量精度比国外差1个数量级。

航空航天企业“软实力”不足。江苏航空航天制造业竞争力不足,研发创新能力有待于更大幅度的提高。省内的很多厂家将目光过多停留在国内配套产品上,制约了自身发展。如今,民用航空装备的飞机几乎都是进口,民机市场基本被波音、空客、庞巴迪和巴西航空等国外航空业巨头所占据,仅仅是大量参与国际航空转包业务,国外大飞机制造商有60%左右的部件在中国、日本、韩国等地转包。由于航空零部件制造技术和整机制造技术之间存在巨大差异,多年的零部件转包没能学习到制造大型客机和运输机的核心技术,这导致了航空工业技术创新能力严重滞后,真正参与航空主体制造的航空企业相对较少,未能形成反映行业先进水平的独立技术和独立品牌。

三、加快江苏航空航天制造业发展的建议

牢牢抓住大型飞机项目带来的发展契机。江苏省与上海市在产业方面有互补优势,且历来联系较为紧密。目前江苏完全有资格和实力参与到大型商用飞机的研发生产。实际上,昆山航空产业园已形成了飞机维修改装、航材保税物流、飞机零部件加工制造、教育培训研发和航空工业旅游等产业,而南京、镇江、无锡、苏州等地也抢先与大飞机项目对接,但不可否认,继续抓住大型飞机项目带来的发展契机,积极支持和主动参与该项目,仍将是江苏航空工业发展所面临的重要任务之一。

大型民航飞机的研制,是一项周期长、投资大、技术密集、高度集成、协调复杂、风险性高的高新技术系统工程。因此,江苏要对大型民航飞机研制项目的协调发展的现状和未来,进行科学的评价、合理规划,积极借助上海打造航空产业的集群效应,成立航空航天研究机构与大规模的并行工程团队,并在已有产业园区基础上,完善政策及技术服务,积极支持和主动参与大型客机项目的协作配套,全力打造航空制造产业集群。

加快集聚产业发展的资源要素。按照国家航空工业的总体战略部署,紧密围绕江苏航空工业的发展规划,在适当的前提条件下,制定优惠政策,努力打造中外航空航天企业交流合作的重要平台,营造良好的投资和行业发展环境,加快集聚产业发展的资源要素。例如,对研发投入以及风险投资给予支持和鼓励;制订吸引国内外航空科技专家、企业家参与航空领域高新技术开发和创业的优惠政策,推进航空科技研发及航空科技成果转化、科技企业孵化以及高新技术产业化;通过引进国际先进航空技术和一批国外航空制造重大技术装备项目落户江苏,承接航空企业的跨国转移,与世界接轨,为企业提供良性的竞争环境,鼓励其间的公平竞争,互相促进提升自主创新能力,从而整体提高省内现有航空航天产品的质量水平和竞争实力。

积极搭建航空产业平台。产业政策与区域政策相结合,制定相关发展规划,确定一批有条件有基础的区域作为航空航天制造业的重要基地,通过政策倾斜、依托园区平台,在产业园区内进行合理的分工协作,有效提高航空航天制造业的区域化集聚水平。在园区建设时,要避免过去不相关企业简单堆积现象,根据地区比较优势与企业特有优势,引导航空工业相关企业进入园区,建立产业分工体系,设立相应的研发机构、人才服务机构、融资平台等,实现航空工业经济信息、基础设施等资源共享,降低生产要素成本,有效发挥区域化经济优势。总之,面临来自周边省份的有力竞争,江苏必须抢先一步,通过建立航空产业园等方式搭建平台,积极投入,力争在竞争中抢占先机。

大力促进航空航天制造业发展的民。目前,江苏拥有不少具有军工背景的航空航天制造企业,如凯联航空发动机(苏州)有限公司、中国航天科工集团南京晨光集团有限公司、常州兰翔机械有限公司、常州飞机制造有限公司等,都具有较好的物质基础和一定的比较优势。为了大力促进航空航天制造业发展的民过程,江苏应在市场化改革中建立军民统筹体制机制,不断创新联合思路,实现投资主体的多元化、组织形式股份化,继续进行区域化集团的建设,通过多种形式的联合,实施技术资源和生产能力的优化配置,把军民产业在航空工业体系内有机统一起来,形成良性互动,带动全系统的共同发展,共同托起航空工业的未来。

航空航天电源技术篇3

中航工业非航空民品已形成以专用汽车、汽车零部件、新能源、电子信息、新材料及矿业化工、锂电子动力电池、传统优势产业、大型成套设备和新兴产业为统领的非航空民品产业格局,产业规模取得了历史性突破。销售收入从2008年的456亿元上升到2012年的888亿元,年均增速超过18%,四年翻了近一番,成为拉动中航工业经济增长的重要力量。

从“散、小、弱”到“协同、规模、系统”

历史上,航空企业曾积极利用军品剩余生产能力,投入开发过无数民品,并在短缺经济时期创造过辉煌。但由于普遍存在的“散、小、弱”等问题,成功者少之又少。中航工业组建后,大力整合非航空民品,由自由式发展向集中优势资源、高强度投入重点产业转变,优先发展航空技术延伸产业,积极拓展航空产品上下游产业。

秉持“内生式增长,外延式扩张”理念,五年来,中航工业非航空民品重点产业集群初步形成,自身品牌影响力和市场竞争力也得到了增强。

在打造了以贵航、上航发、新航、中航精机等为代表的一批在国内市场上具有一定知名度和规模的企业同时,2011年3月,中航工业汽车公司完成了对世界第三大汽车传动零部件公司耐世特的收购。通过技术的平移、消化与吸收及业务的协同发展,为中航工业汽车零部件产业实现品牌突围和产业升级奠定了基础。耐世特公司已经在香港成功上市,协同发展的巨大红利仍将持续释放。

在以“内联外并”促发展的案例中,中航工业专用车产业也是个中翘楚。2009年,在“内聚外合,势成利至”的思路下,专用车产业从零起步,五年间累计投资86106万元,实际引入外部货币资金25117万元。在国内形成了东北、华东、西南、华中等多个生产基地,产品种类涵盖半挂车、自卸车、罐式车等领域,市场覆盖了东北、华东、华中、西南和华南的环卫垃圾、运输物流、冷藏保温、军警消防等领域。规模从5年前不到1亿元攀升至50余亿元。据统计,“十一五”初期,中航工业经济规模超过10亿元的产业和单项产品不足5个,现在,超过10亿元经济规模的单项产品已达到了16个,电子信息产业仅液晶显示器的规模已经超过50亿元;专用车产业销售收入超过50亿元,汽车零部件产业已超过200亿元规模。

搭建贡献平台,创立共赢模式。中航工业旗下的制造所搭建了“航空专用装备中心”平台,建立了所厂互补、工艺与装备互相支撑的合作共赢模式。一方面,中航工业制造所在需求阶段就积极跟进客户并全程跟踪,主动开展技术交流、市场摸底、品牌推广等活动,为客户提供“装备+工艺+服务”整体解决方案。另一方面,西飞、陕飞、成飞、沈飞、洪都等有关单位积极支持航空专用装备的发展,实现了研究所和主机厂“工艺+装备”的整体复制提供模式。

利用航空核心技术转移发展非航空民品。军民融合、良性互动,已成为快速发展的中国航空工业民品产业的重要特征与核心支撑。

利用技术同源、产品同根的特点,中航工业发动机公司集中力量自主开发了重、轻、小、微各系列燃气轮机,使我国成为世界上为数不多的具备重型燃机研发能力的国家之一。这些中国的“争气机”,顺利完成大学生冬季运动会、上海世博会、天宫一号发射、神九发射等国家重大活动的应急供电保障任务。而今,发动机公司的燃机产品开发再创硕果,R0110重型燃机在深圳中海深电完成连续72小时考核运行,6000Kw应急电源机组点火试车,QD128打入了10mw应急电源领域。

中航光电立足于连接器领域的技术优势,将军工技术延伸发展到民品市场。从GJB2889、GJB598|、GJB599标准中转化而来的XC系列、JY598系列、JY599系列,被广泛推广到铁路、电动汽车、工程机械、石油、通信等民用领域,形成了可观的产业规模。连续多年的快速增长已经使其成长为中航工业电子信息产业的骨干。

中航工业基础院以汽车轻量化技术为抓手,创新“实验室经济”,分别与一汽和北汽建立了联合实验室和研发中心,推动复合材料技术、第三代橡胶减震弹簧、聚碳酸酯玻璃等航空技术的科研成果向民用产业转化,国内首次开发了系列复材汽车零部件,试制出首台复材槽罐车,启动了全复材电动公交车整车项目的研制,开拓了中国民用复材产业,拉动了国产碳纤维的广泛应用。

中航工业江航立足以航空制氧技术为代表的航空生命保障技术,开发出分子筛制氧机、雾化器、血糖仪、血氧仪、血压计、电子体温计等一系列产品,并着力打造基于直销、、电商、高端定制四位一体的营销网络,市场反响巨大。

从“跟踪模仿”到“独树一帜”

中航工业不断提升科技创新能力,大力实施创新成果转化。中航工业导弹院借助自身的制造技术优势,旗下中航锂电年产1.2亿安时全自动化生产线顺利投产,工艺性能和自动化率达到世界先进水平;直接参与制定了国家锂离子蓄电池行业标准,成功申报了央企电动车联盟未来五年的四项关键技术研发以及国家“十二五”和“863计划”科研项目,成功跻身国内动力电池企业第一梯队。

中航工业旗下的中航光电去年科研投入占收入比重达到8.3%、获专利授权169项。深南电路科研投入占收入比重达到了7.1%、获专利授权45项,在国内率先研制出56层高端印制电路板。中航锂电科研投入占收入比重达到了19%、获专利授权34项,中航工业新航科研投入占收入比重达到5.5%、获专利授权38项。中航工业航电系统开发了如高速公路智能收费系统、智能交通系统、船用导航系统等31项新产品并持续投放市场,有望成为新的经济增长点。中航工业基础院2012年新产品收入占总收入比超过20%,铝合金、橡胶制品、高温合金等项目在竞争性产业中实现了40%的高速增长。

商业模式的创新为中航工业非航空民品发展带来机遇。五年来,中航工业着力于非航空民品业务系统的再梳理,在明确关键资源能力的基础上,放手、放胆、放量地设计合作共赢的模式;尝试轻资产的运作方式,将技术、品牌等转化为发展资本,把成本点变成赢利点,与利益相关者共同把产业做强做大。

深南电路实施“3-in-one”战略,持续推动企业从单一业务向多元业务、从提品向提供集成解决方案转型升级。2007~2012年销售收入年均增长超过30%,2012年两项成长型业务合计收入4.4亿元,占深南电路收入比接近20%。中航光电加速产品结构调整,积极开拓新市场和拓展新业务。2007~2012年销售收入年均增长超过20%,2012年初步完成了欧美和亚太国际市场布局,海外订货额为1.5亿元,同比增长达52%;全年完成新品订货突破10亿元,同比增长25%。

天马公司从一个低端电子制造企业一跃成为全球举足轻重的tFt-LCD生产商,天马的成功靠的是模式复制和资本“杠杆”。深圳天马在融资、建设、运营管理上所形成的成熟固定的标准模式,在上海、成都、武汉以及厦门项目中被快速复制和不断优化。天马在几年间以约10亿元资本投入撬动了地方政府和银行资金近90亿元的投资,实现了产业布局、升级和跨越式发展。2011年中航国际收购了日本neC公司液晶显示器业务,使天马在国内中小尺寸tFt-LCD领域的产能国内第一,世界位居前茅,技术水平、产品质量、产品档次及市场占有率均居国内同行业前列,在美国、韩国、欧洲等国家和地区其规模扩张之速撼动人心。

专用汽车产业“7S广场”商业模式,2011年在晋中、铁岭、阜阳三地陆续实现挂牌建设或运营,标志着中航工业专用车由“制造”为主,开始向“制造+营销”一站式服务平台转型升级。7S广场模式采用“商业房地产+现代服务业”的运作模式,在为融资提供了新题材的同时也为自身发展带来了资源储备。

从“着眼谋生”到“引领未来”

中航工业将新兴产业作为非航空民品未来发展的重要支柱,谋划未来。中航工业智能机器人在基础研究和产业化上取得长足进展。目前,航电系统、机电系统、航空装备、基础院、中航重机的7家成员单位开展了智能机器人相关项目研究、产品研发及销售,主要涉及家用机器人、特殊作业机器人、焊接机器人、航空柔性装配机器人等领域。其中,中航工业自控所研制了农药喷洒机器人并延伸至喷洒业务,中航工业洪都完成了智能轮椅与医护机器人的样机试制工作。2013年初,中航工业成立了智能机器人产业发展领导小组,组建了不同研究方向的机器人项目团队,为加快产业化发展提供了重要的组织保障。

航空航天电源技术篇4

人类的活动范围,经历了从陆地到海洋,从海洋到大气层,从大气层到外层空间的逐步拓展过程。二十世纪五十年代出现的航天技术,开辟了人类探索外层空间活动的新时代。

经过近半个世纪的迅速发展,人类航天活动取得了巨大的成就,极大地促进了生产力的发展和社会的进步,产生了重大而深远的影响。航天技术已成为当今世界高技术群中对现代社会最具影响的高技术之一,不断发展和应用航天技术已成为世界各国现代化建设的重要内容。

中华民族在人类发展史上曾创造过灿烂的古代文明。中国最早发明的古代火箭,便是现代火箭的雏形。1949年中华人民共和国成立后,中国依靠自己的力量,独立自主地开展航天活动,于1970年成功地研制并发射了第一颗人造地球卫星。迄今,中国在航天技术的一些重要领域已跻身世界先进行列,取得了举世瞩目的成就。二十一世纪,中国将从本国国情出发,继续推进航天事业的发展,为和平利用外层空间,为人类的文明和进步作出应有的贡献。

在迈进二十一世纪之际,有必要对中国发展航天事业的宗旨原则、发展现状、未来发展和国际合作等作简要的介绍。

一、宗旨原则

中国政府一直把航天事业作为国家整体发展战略的重要组成部分,坚持为了和平目的探索和利用外层空间,使外层空间造逼于全人类。中国作为发展中国家,其根本任务是发展经济,不断推进国家现代化建设事业。航天活动在维护国家利益、实施国家发展战略中的重要地位和作用,决定了中国发展航天事业的宗旨和原则。

中国航天事业的发展宗旨是:探索外层空间,扩展对宇宙和地球的认识;和平利用外层空间,促进人类文明和社会发展,造福全人类;满足经济建设、国家安全、科技发展和社会进步等方面日益增长的需要,维护国家利益,增强综合国力。

中国航天事业的发展原则是:

――坚持长期、稳定、持续的发展方针,使航天事业的发展服从和服务于国家整体发展战略。中国政府高度重视航天事业在实施科教兴国战略和可持续发展战略,以及在经济建设、国家安全、科技发展和社会进步中的重要作用,将航天事业的发展作为国家整体发展战略中的重要组成部分,予以鼓励和支持。

――坚持独立自主、自力更生、自主创新,积极推进国际交流与合作。中国立足于依靠自己的力量,进行航天技术攻关,实现技术突破;同时,重视航天领域的国际交流与合作,按照互利互惠的原则,把航天技术自主创新与必要的引进国外先进技术有机地结合起来。――根据国情国力,选择有限目标,重点突破。中国发展航天事业以满足国家现代化建设的基本需求为目的,选择对国民经济和社会发展有重大影响的项目,集中力量,重点攻关,在关键领域取得突破。

――提高航天活动的社会效益和经济效益,重视技术进步的推动作用。中国谋求更加经济、更加高效的航天发展道路,力求技术先进性和经济合理性相统一。

――坚持统筹规划、远近结合、天地结合、协调发展。中国政府统筹规划并合理安排空间技术、空间应用和空间科学,促进航天事业全面、协调的发展。

二、发展现状

中国航天事业自1956年创建以来,经历了艰苦创业、配套发展、改革振兴和走向世界等几个重要时期,迄今已达到了相当规模和水平:形成了完整配套的研究、设计、生产和试验体系;建立了能发射各类卫星和载人飞船的航天器发射中心和由国内各地面站、远程跟踪测量船组成的测控网;建立了多种卫星应用系统,取得了显著的社会效益和经济效益;建立了具有一定水平的空间科学研究系统,取得了多项创新成果;培育了一支素质好、技术水平高的航天科技队伍。

中国航天事业是在基础工业比较薄弱、科技水平相对落后和特殊的国情、特定的历史条件下发展起来的。中国独立自主地进行航天活动,以较少的投入,在较短的时间里,走出了一条适合本国国情和有自身特色的发展道路,取得了一系列重要成就。中国在卫星回收、一箭多星、低温燃料火箭技术、捆绑火箭技术以及静止轨道卫星发射与测控等许多重要技术领域,已跻身世界先进行列;在遥感卫星研制及其应用、通信卫星研制及其应用、载人飞船试验以及空间微重力实验等方面,均取得重大成果。

空间技术

1.人造地球卫星。中国于1970年4月24日成功地研制并发射了第一颗人造地球卫星“东方红一号”,成为世界上第五个独立自主研制和发射人造地球卫星的国家。截至2000年10月,中国共研制并发射了47颗不同类型的人造地球卫星,飞行成功率达90%以上。目前,中国已初步形成了四个卫星系列――返回式遥感卫星系列、“东方红”通信广播卫星系列、“风云”气象卫星系列和“实践”科学探测与技术试验卫星系列,“资源”地球资源卫星系列也即将形成。中国是世界上第三个掌握卫星回收技术的国家,卫星回收成功率达到国际先进水平;中国是世界上第五个独立研制和发射地球静止轨道通信卫星的国家。中国的气象卫星、地球资源卫星主要技术指标已达到二十世纪九十年代初期的国际水平。近几年来,中国研制并发射的6颗通信、地球资源和气象卫星投入使用后,工作稳定,性能良好,产生了很好的社会效益和经济效益。

2.运载火箭。中国独立自主地研制了12种不同型号的“长征”系列运载火箭,适用于发射近地轨道、地球静止轨道和太阳同步轨道卫星。“长征”系列运载火箭近地轨道最大运载能力达到9200公斤,地球同步转移轨道最大运载能力达到5100公斤,基本能够满足不同用户的需求。自1985年中国政府正式宣布将“长征”系列运载火箭投入国际商业发射市场以来,已将27颗外国制造的卫星成功地送入太空,在国际商业卫星发射服务市场中占有了一席之地。迄今,“长征”系列运载火箭共实施了63次发射;1996年10月至2000年10月,“长征”系列运载火箭已连续21次发射成功。

3.航天器发射场。中国已建成酒泉、西昌、太原三个航天器发射场,并圆满完成了各种运载火箭的飞行试验和各类人造卫星、试验飞船的发射任务。中国航天器发射场既可完成国内发射任务,又具有完成为国际商业发射服务和开展其他国际航天合作的能力。

4.航天测控。中国已建成完整的航天测控网,包括陆地测控站和海上测控船,圆满完成了从近地轨道卫星到地球静止轨道卫星、从卫星到试验飞船的航天测控任务。中国航天测控网已具备国际联网共享测控资源的能力,测控技术达到了世界先进水平。

5.载人航天。中国于1992年开始实施载人飞船航天工程,研制了载人飞船和高可靠运载火箭,开展了航天医学和空间生命科学的工程研究,选拔了预备航天员,研制了一批空间遥感和空间科学试验装置。1999年11月20日至21日,中国成功地发射并回收了第一艘“神舟”号无人试验飞船,标志着中国已突破了载人飞船的基本技术,在载人航天领域迈出了重要步伐。空间应用

中国重视研制各种应用卫星和开发卫星应用技术,在卫星遥感、卫星通信、卫星导航定位等方面取得了长足发展。中国研制和发射的卫星中,遥感卫星和通信卫星约占71%,这些卫星已广泛应用于经济、科技、文化和国防建设的各个领域,取得了显著的社会效益和经济效益。国家有关部门还积极利用国外各种应用卫星开展应用技术研究,取得了很好的应用效果。

1.卫星遥感。中国从二十世纪七十年代初期开始利用国内外遥感卫星,开展卫星遥感应用技术的研究、开发和推广工作,在气象、地矿、测绘、农林、水利、海洋、地震和城市建设等方面得到了广泛应用。目前,国家遥感中心、国家卫星气象中心、中国资源卫星应用中心、卫星海洋应用中心和中国遥感卫星地面接收站等机构,以及国务院有关部委、部分省市和中国科学院的卫星遥感应用研究机构已经建立起来。这些专业机构利用国内外遥感卫星开展了气象预报、国土普查、作物估产、森林调查、灾害监测、环境保护、海洋预报、城市规划和地图测绘等多方面、多领域的应用研究工作。特别是卫星气象地面应用系统的业务化运行,极大地提高了对灾害性天气预报的准确性,使国家和人民群众的经济损失有了明显的减少。

2.卫星通信。中国从二十世纪八十年代中期开始利用国内外通信卫星,发展卫星通信技术,以满足日益增长的通信、广播和教育事业的发展需求。在卫星固定通信业务方面,全国建有数十座大中型卫星通信地球站,联结世界180多个国家和地区的国际卫星通信话路达2.7万多条。中国已建成国内卫星公众通信网,国内卫星通信话路达7万多条,初步解决了边远地区的通信问题。甚小口径终端(VSat)通信业务近几年发展较快,已有国内甚小口径终端通信业务经营单位30个,服务小站用户15000个,其中双向小站用户超过6300个;同时建立了金融、气象、交通、石油、水利、民航、电力、卫生和新闻等几十个部门的80多个专用通信网,甚小口径终端上万个。在卫星电视广播业务方面,中国已建成覆盖全球的卫星电视广播系统和覆盖全国的卫星电视教育系统。中国从1985年开始利用卫星传送广播电视节目,目前已形成了占用33个通信卫星转发器的卫星传输覆盖网,负责传送中央、地方电视节目和教育电视节目共计47套,以及中央32路对内、对外广播节目和近40套地方广播节目。卫星教育电视广播开播十多年来,有3000多万人接受了大、中专教育与培训。近年来,中国建成了卫星直播试验平台,通过数字压缩方式将中央和地方的卫星电视节目传送到无线广播电视覆盖不到的广大农村地区,使中国广播电视的覆盖率有了很大提高。中国现有卫星电视广播接收站约18.9万座。在卫星直播试验平台上,还建立了中国教育卫星宽带多媒体传输网络,面向全国开展远程教育和信息技术的综合服务。

3.卫星导航定位。中国从二十世纪八十年代初期开始利用国外导航卫星,开展卫星导航定位应用技术开发工作,并在大地测量、船舶导航、飞机导航、地震监测、地质防灾监测、森林防火灭火和城市交通管理等许多行业得到了广泛应用。中国在1992年加入了国际低轨道搜索和营救卫星组织(CoSpaS-SaRSat),以后还建立了中国任务控制中心,大大提高了船舶、飞机和车辆遇险报警服务能力。

空间科学

中国在二十世纪六十年代初期开始利用探空火箭、探空气球开展了高层大气探测。在七十年代初期开始利用“实践”系列科学探测与技术试验卫星开展了一系列空间探测和研究,获得了很多宝贵的环境探测资料。近年来,开展了空间天气预报的研究工作及相应的国际合作。从八十年代末开始利用返回型遥感卫星进行了多种空间科学实验,在晶体和蛋白质生长、细胞培养、作物育种等方面取得了很好的成果。中国空间科学在基础理论研究方面取得了若干创新成果,在空间物理学、微重力科学和空间生命科学等领域建立了具有一定水平的对外开放的部级实验室,建立了空间有效载荷应用中心,具有支持进行空间科学实验的基本能力。近年来,利用“实践”系列科学探测与技术试验卫星对近地空间环境中的带电粒子及其效应进行了较为详细的探测,并首次完成了微重力流体物理两层流体空间实验,实现了空间实验的遥操作。

随着中国社会主义市场经济体制的初步建立和不断完善,国家通过宏观调控引导中国航天活动的发展方向,统筹规划空间技术、空间应用和空间科学的发展,推动航天领域中重大技术的研究开发和系统集成,促进航天科技在经济、科技、文化和国防建设等方面的应用,深化航天科技工业的改革,实现航天事业的持续发展。国家加强法制建设和政策管理,建立航天法规体系,制定航天产业技术政策,保证航天活动有序、规范发展。国家鼓励科研机构、工业企业、商业企业和高等院校在国家航天政策引导下,发挥各自优势,积极参与航天活动。国家支持航天科技,构建有中国特色的航天创新体系,提高自主创新能力,积极推进中国航天技术实现产业化。国家支持公益性航天活动以及具有商业前景的航天研究开发工作,并不断强化对航天行业的监督。中国国家航天局是中华人民共和国负责民用卫星管理及相关的政府间国际空间合作的政府机构。

三、未来发展

二十一世纪将是世界航天活动蓬勃发展的新世纪。中国根据国家发展的现实需求和长远目标,正在制定面向二十一世纪的航天发展战略和规划,加快发展航天事业。

发展目标

近期(今后十年或稍后的一个时期)发展目标:

――建立长期稳定运行的卫星对地观测体系。以气象卫星系列、资源卫星系列、海洋卫星系列和环境与灾害监测小卫星群组成长期稳定运行的卫星对地观测体系,实现对中国及周边地区甚至全球的陆地、大气、海洋的立体观测和动态监测。

――建立自主经营的卫星广播通信系统。积极支持商用广播通信卫星的发展,开发长寿命、高可靠的大容量地球静止轨道通信卫星和电视直播卫星,初步建成中国卫星通信产业。

――建立自主的卫星导航定位系统。分步建立导航定位卫星系列,开发卫星导航定位应用系统,初步建成中国的卫星导航定位应用产业。

――全面提高中国运载火箭的整体水平和能力。提高现有“长征”系列运载火箭的性能和可靠性;开发新一代无毒、无污染、高性能和低成本的运载火箭,建成新一代运载火箭型谱化系列,增强参与国际商业发射服务的能力。

――实现载人航天飞行,建立初步配套的载人航天工程研制试验体系。

――建立协调配套的全国卫星遥感应用体系。统一规划和建设各种卫星遥感地面应用系统,建立覆盖全国的地面卫星遥感数据接收、处理和分发系统,实现资源共享;在对地卫星遥感主要应用领域,形成较完整的业务化应用体系。

――发展空间科学,开展深空探测。建立新型的科学探测与技术试验卫星系列,加强空间微重力、空间材料科学、空间生命科学、空间环境和空间天文研究;开展以月球探测为主的深空探测的预先研究。

远期(今后二十年或稍后的一个时期)发展目标:

――空间技术和空间应用实现产业化和市场化,空间资源的开发利用满足经济建设、国家安全、科技发展和社会进步的广泛需求,进一步增强综合国力。

――按照国家整体规划,建成多种功能和多种轨道的、由多种卫星系统组成的空间基础设施;建成天地协调配套的卫星地面应用系统,形成完整、连续、长期稳定运行的天地一体化网络系统。

――建立中国的载人航天体系,开展一定规模的载人空间科学研究和技术试验。

――空间科学取得众多成果,在世界空间科学领域占有较重要的地位,开展有特色的深空探测和研究。

发展思路

中国航天事业的发展思路是:

――促进空间技术及应用实现产业化。引导和鼓励航天科技企业制度创新和技术创新,建立面向国内外市场的运行机制,以通信卫星和卫星通信、运载火箭为重点,分步实施,推进空间技术及应用产业化进程。

――合理部署各种航天活动。统筹规划,协调发展空间技术、空间应用与空间科学。采用“优先安排”、“积极支持”、“适度发展”和“跟踪研究”四种不同方式部署航天活动三个领域的各项工作。

航空航天电源技术篇5

关键词:航空;设计光纤;以太网;智能数据;采集装置

中图分类号:tp212;tp274文献标识码:a文章编号:1006-8937(2016)03-0070-02

1背景概述

近年来,我国航空航天技术取得了快速的发展,智能数据采集装置也越来越多被应用于航空设计中,满足了我国航空航天发展的需要。智能数据采集装置是整个航空航天系统中的重要装置,它直接影响了我国航空航天设计的整体性能。将基于光纤以太网的智能数据采集装置应用于我国航空航天设计中,有利于我国航天设计整体性能的优化。

智能数据采集装置在航空航天设计中一般被应用于对相关直流电压及各种开关量进行采集,实现监控系统及告警节点的通信功能。监控系统对它们进行统一的监控和控制。但是,由于相关因素的制约,通信效率相对比较低,带宽也比较小,无论是监控策略还是相关装置的数字化都不够灵活。光纤的通信性能体积比较小,相对比较优越,带宽容量大,抗干扰能力很强。同时其改造成本相对比较低,有利于社会效益和经济效益的同步实现,能够从根本上提升通信质量。

2智能数据采集装置的硬件设计

2.1直流电压采集电路

直流电压采集电路需要直流电压采样通道对相关电路进行选择,然后对直流控制母线和合闸母线进行相应的电压采集。蓄电池组电压和霍尔线圈剩余电流所转换的电压采集电路都可以用这种方式进行电压采集。将其应用于航空航天设计过程中,能够保证其整体采集装置性能的优化,从根本上提高我国航空航天设计水平,实现航空设计过程中各项基础设备的优化[1]。

2.2交流量采集电路

交流量采集电路由交流电压和电流的采集电路组成,能够对进线电源的电压、电流、有功和无功信息进行监控。交流采集电路的原理是在主备二路进线三相交流电压采集通过互感器降压和隔离之后,用aC/DC的有效值将芯片转换成直流电压,然后将相关结果输入芯片中来采集电压值[2]。

光耦继电器选择电路通过相关的芯片来实现,通过对输出管脚进行配置来选择合适的采样通道。降压与隔离电路对采集电流或电压通道的选择是通过电压互感器将输入端和采集端进行隔离,然后通过多路通道复用芯片CD4051实现的。有效值芯片aD736将交流电压转换成直流电压输出,然后经过电阻进行分压和电容滤波,进行相关采样。依据相关的采样数据能够进行相应的数据信息处理和有功无功的相关计算[3]。

2.3开关量采集电路

开关量采集电路主要对各种开关的状态量、控制母线出线开关量、合闸母线出线开关量等状态量进行采集。在航空设计过程中,相关设计人员要认识到开关量采集电路系统的重要作用,结合开关量采集电路的实际发展情况和性能,对其进行优化设计。技术人员可以对开关量采集电路进行设计,依据不同的需求对路数进行不同的设置。

线路数量随着性能的需求变化而变化。设计人员在开关量采集电路的设计过程中要针对实际的航空需求来开展,避免线路设置的盲目性和不合理等。开关量输入的公共端都是相同的,其开入电源都是由内部电路依据相关情况提供的。

2.4开出量控制电路

开出量控制电路是航空设计过程中的重要组成部分。它直接影响了设备的总体性能。开出量控制电路是结合相应的控制策略,对继电器的动作进行自动控制,以满足其告警、控制和状态等相关需求。可以对tLp521芯片的输入端引脚的高低电平进行控制,来实现继电器的相关动作,低电平控制继电器开出。设计人员在对开出量控制电路进行设计的过程中要结合设备的具体运行情况进行合理的规划和安排。

2.5光纤以太网线路

本文通过对传统的串口通信模式进行改变,并将光纤通信应用于以太网线路中,提高整体通信质量。这些通信过程中,采用以太网数据报送文件对传输数据进行封装,以提高数据的传输质量和效率,并结合直流电源系统对数据吞吐量进行相应的要求。

光纤以太网线路主要由网络隔离变压器、光纤收发器、光电转换和收发一体化模块组成。通过相关的硬件电路实现以太网和光纤的桥接。网络隔离变压器采用的是tS6121C芯片,光纤收发器则是采用传输容量为的ip113a芯片[4]。

3智能数据采集装置的软件设计

3.1改进的控制策略

由于发展水平的制约,传统的智能数据采集装置不能满足相关的软件设计要求,通过监控装置实现的,智能数据采集装置对数据的反馈和相关控制命令的执行过程都相对比较复杂。不仅需要对下位装置进行逐个轮询,而且需要在下位装置的相关数据交换完成之后,才能进行下一个数据的交换,不仅浪费时间,而且不利于及时发现数据传输过程中的异常。

将光纤以太网应用于数据采集装置中,能够对控制策略进行相应的提升和优化。当智能数据采集装置在数据和信息的采集过程中发生问题,可以实现实时主动上传,并且对其他数据没有影响。

如果出现故障,能够及时将故障信息反馈给相关的监控装置。然后监控装置结合数据采集的具体情况对实时控制处理信息进行下放。

3.2流程设计

软件流程设计由数据处理、采样和监控装置通信交互三部分组成。技术人员可以通过定时中断对开关状态量进行采集。并根据相关的采集数据和通信信息对相关数据进行解码,严格按照相关要求和流程进行相应的规划,从根本上提升整体设计质量[5]。

4结语

以光纤以太网为前提的智能数据采集装置不仅能够避免复杂电磁环境中受到干扰,而且能够实现数据采集和显示以及故障处理的实效性,有利于监控装置和采集装置进行相关的数据交流,实现了数据交换方式的多样化。

技术人员要充分认识到以光纤以太网为前提的智能数据采集装置在航空航天设计过程中的重要作用,从根本上对智能数据采集装置进行优化,以提高我国航空航天设计水平。

参考文献:

[1]梁彩云,谢业平,李泳凡,等.飞/发性能一体化技术在航空发动机设计中的应用[J].航空发动机,2015,(3).

[2]陈起磊,王志新.基于DSp永磁智能断路器数据采集系统的分析与设计[J].低压电器,2012,(1).

[3]蒋莹莹,毛乃虎,张雷,等.基于光纤以太网的智能数据采集装置[J].低压电器,2013,(18).

航空航天电源技术篇6

1现代战争对航空计量测试发展的启示

包括科索沃战争、伊拉克战争、阿富汗战争、利比亚战争等当代的一系列战争,给人们的提示是:战争距离我们并不遥远,随时都有可能发生;欺软怕硬与恃强凌弱在国际社会中屡见不鲜;没有强大的国防实力,国家和领土完整便没有丝毫保障。它对我国航空计量的启示也是多方面的。

首先,人们看到现代战争所具有的一些主要特点是:①更为广泛地使用空间系统,空间系统和空间作战是空中力量的制空权、远程精确打击、全球机动、灵活的战斗支援和制信息权的重要保障。②更加看中包括空中侦察、目标选定及分配、战场监督与控制和精确打击四个方面的精确打击体系。③飞机与导弹协同作战,飞机是主力,而导弹是尖刀,二者缺一不可。④电子摧毁与火力摧毁密切结合,火力摧毁是目的,电子摧毁是不可缺少的技术保障。

可以看出,配备高新技术的航空武器装备,是西方世界控制、发动、并主导现代战争的关键。而高新技术从诞生到成功运用到航空装备中是有其客观规律的,一般经过:①发现高新技术;②高新技术用于航空问题的现实性和可行性研究;③实现产品方案设计;④型号设计等四个阶段。

航空计量也应遵循和适应这一发展规律,先行一步。在“发现高新技术”的同时,即开展其特性、性能指标的计量测试研究;在其“用于航空问题的现实性和可行性研究”中,提供技术基础依据;在其“用于航空工程的产品方案设计”时提供定量技术数据;而在“航空产品设计”时,提供可测性、可维护性、可计量性计量保障方案,并在形成产品的同时,将其纳入航空计量测试体系,有效溯源。不能在产品需要确定性能指标时,才想到计量测试问题,一方面使得计量测试失去了改进和控制产品质量的意义,另一方面也由于没有按照可测性、易维护性和可计量性设计原则设计,许多性能指标的计量保障无法实现。无法真正全面将其纳入航空计量体系,也限制、制约了高新技术在航空装备中的发展及应用效果,更不利于产品更新换代和性能指标的提高。没有计量测试,无法确定指标,更何言提高?

另外,计量测试是人们认识世界和改造世界的技术基础性科学,是认识世界的基础性研究和改造世界的应用性研究相结合的产物。在基础研究方面,可以将专业、参数划分较细;而在应用研究方面,尤其在最前沿的高新技术应用系统的计量测试领域,往往需要跨专业、跨学科的综合技术与复合技术,同时也会产生一些新兴学科和边缘学科。不应将计量测试专业分得过细、过死和过于分散。航空计量应有认识世界的基础性研究,但更多是偏重于改造世界的应用性研究方面,亦应打破传统的专业和学科限制,如隐身性能测试,可能涉及的专业和行业要依所选用的隐身技术(电磁隐身、红外隐身、声隐身、光隐身、等离子体隐身等)的不同而不同,不宜简单纳入电子学计量或光学计量等测试领域或专业。凡是航空计量所需要的技术和业务,均需发展,不宜简单地按常规学科(如几何量、电学量、力学量等)划定,同时应兼顾本项技术及相关技术的互补性、互相促进性以及可持续发展性,不宜就事论是,头疼医头、脚疼医脚,不对长远、总体的发展进行规划和研究。

2军事革命对航空计量发展的影响

从现代战争可以看出,这种与以往战争特点不尽相同的战争模式,预示着具备现代战争特点的军事革命时代业已来临,其特点主要是:敌对双方的对抗,是没有明确的前后方的,包括空间、地面、水下、信息、指挥、控制、通信、情报、技术、人力、财力、物力、心理等所有资源的全方位对抗。这种军事革命概念下的现代化战争,完全是以“己方占有各种资源及优势地位,剥夺、破坏或摧毁敌方的资源和占有资源的一切基础”为目的的一种争夺。在这里,高新技术以及高新技术武器具有决定性的作用。尤其突出的是具有高新技术的航空武器装备,由于兼有隐身性、远程性、突防性、快速机动性而举足轻重,在实施电子干扰、电子侦察和电子防御的电子战中,在C3i(指挥、控制、通信、情报)对抗和战场侦察的应用中尤其突出。在现代战争中直接使用的航空高新技术有:①隐身轰炸机;②联合直接攻击武器;③GpS辅助制导炸弹;④GpS辅助瞄准装置;⑤三军通用隐身战斗机;⑥红外截获和指示系统。高技术武器有:①卫星系统和侦察机(照相侦察卫星;雷达成像卫星;光学成像侦察卫星。气象卫星;全球定位系统(GpS)卫星;通信卫星;U-2侦察机;无人机)。②具有隐身性、远程性、突防性、机动性特点的先进作战飞机,电子干扰机,预警机,攻击直升机。③联合直接攻击弹药,集束炸弹,巡航导弹等制导弹药。所有这些高新技术及航空高新技术武器装备均应纳入航空计量保障体系,其设计、研制、改进和发展均需要跨行业与跨专业的计量测试保障,包含电子学、电磁学、光学、红外、几何量、力学量、声学量、热学量、材料性能、隐身性能、制导性能、电子战性能等的总体特性计量评价、综合特性计量评价、精确计量评价、以及动态特性计量评价技术方面的需求已经突出显现,并日趋迫切。为航空计量测试展现了众多全新的领域与空间,将大大影响和左右以往业已形成的、以专业及参数细化为特征的计量发展体系与发展模式,形成新的体系、机制和具有众多新特点的研究方向与课题。

3知识经济时代对航空计量发展的推动

我们所处的时代被称为知识经济时代和正向知识经济方向发展的时代,其主要特征体现在推动和左右经济飞速发展的是众多科学技术知识含量极高的高新技术及其产品和服务。它们在几乎各个方面改变着人类生存、生产、生活质量和环境空间,极大地提高了各种效率,拓展了人们的视野,为人类自身认识自然和改造自然在提供着不断强化、高效的技术支持和技术手段。新技术、新产品、新发明、新观念不断涌现,不断有曾被认为不可能的或极为复杂的事情被变得轻而易举。这其中,科技创新是知识经济时代不死的灵魂,具有不断创新能力与创新精神的人才是本时代的主宰和精华。知识经济时代的这种现状与发展趋势,无疑每时每刻推动着航空计量的发展与进步,并且不断给航空计量与发展提出了更高和更新的要求,其中,最首要的就是航空计量技术的发展和创新,吸引、培养与造就具有创新能力和创新精神的计量测试人才队伍,将是航空计量测试技术水平适应知识经济时代需求与发展,立足于21世纪世界计量测试技术领域之林的根本保证与必要条件。

4航空计量测试

航空计量测试技术是保障航空产品性能、质量、可靠性、安全性及经济性的基本手段和最后手段,贯穿于型号设计、研制、生产、使用及维护的全过程,是保障先进战斗飞机实现空中优势的必要条件,是牵动全局发展的共用技术,不是可有可无的。这一观点和理念已经逐渐被人所认知,并趋于达成共识,但在我国的实际执行中尚不尽如人意,离满足实际需求差距尚远。

5航空产品研制和生产对计量测试的需求分析

新世纪以来,世界上出现了较多的高新技术及武器系统,诸如“无远不达、威及全球”的航空武器系统,“完备防御、精确攻击”的空间武器系统,反卫星武器系统,导弹防御系统,激光武器系统,电磁武器系统。纳米技术,星际导航、GpS卫星空间四维定位系统,精确制导的灵巧导弹与灵巧炸弹,激光制导、红外制导、电视制导、雷达制导、GpS制导、惯性制导、组合制导的智能精确打击武器,电磁隐身、红外隐身、声隐身、光隐身、等离子体隐身等隐身及反隐身技术,防区外精确攻击技术、发射后不管导弹技术,远程精确打击技术、硬目标侵彻技术、空对地多目标攻击技术,新型材料技术等,都对计量测试提出了更高的要求。电子对抗技术、超视距技术、合成孔径雷达技术、远程雷达技术、预警技术,数字式卫星通讯技术、蜂窝电话技术等导致了无线电工程、国防电子设备等新领域和新技术的计量需求。在通用技术领域,总线技术、仿真技术、虚拟环境技术、战争模拟技术等为计量测试技术开拓了与以往截然不同的全新领域。精确计量评价技术、动态校准技术的发展及溯源对计量测试技术提出了新的需求。

在21世纪,敏感元件及传感器技术将进一步对温度、压力、流量、负荷、加速度、角速度、线速度、位移、转速、振动、冲击、红外、激光、光敏、超声波、化学、生物、气体、味觉、视觉、触觉、光电、电磁、辐射、湿度等各类传感器提出新的要求,它们将继续向微型化、精确化、智能化等诸方面发展。伴随着光纤传感为特征的武器装备健康监测与管理技术、飞秒激光技术等的兴起,以及随之而来的其动态特性计量校准、量程拓展、环境延伸等一系列的计量需求将继续加剧,并且它们一直是各个国家各类型号武器装备系统中不可缺少的重要组成部分。

21世纪的航空设备测试系统将继续向着集成化、复合化、模块化、智能化、自动化方向发展,由此牵动着计量测试技术向服务现场方向发展,进而继续推动在线校准技术、自动化校准技术、最优化测量校准技术、综合校准技术、多参数校准技术、动态校准技术以及模型化测量校准技术的发展。

当前世界范围内,各个国家的各种新型飞机、发动机、直升机、无人机、地效飞行器等等航空器将陆续投入生产和研制,由此将强力牵动和计量校准技术密切相关的型号测试技术发展需求。测试技术包含的范围很广,包括各种计量法规中有明确规定的检定、校准技术和未明确规定,但可溯源的测量技术,以及目前尚无法进行量值溯源和传递的特殊测量技术。计量和校准技术实际上只是具备溯源能力,且具有法定依据的部分测试技术,各种型号武器装备和现役装备所需的大量计量保障尚无法定计量规定,因此,以测试能力的提高为目标、以完备计量保障服务为目的的测试技术研究是航空计量测试的一个重要发展方向。

近年以来,以隐身、电子战、远程、突发性、多目标远距离精确打击和夺取制空权等为重要特征的第4代飞机和第4代航空武器系统在世界上陆续出现。与此同时,具备远程有效运载工具的核武器、生物武器、化学武器、病毒武器、信息武器等大规模摧毁性武器仍将是国家间主要的战略威慑力量。这期间,航空武器装备将加强精确制导技术研究和空对地多目标攻击武器技术研究,着重发展以雷达、红外、电视等制导的三军通用精确制导弹药,中近程高性能、全天候精确打击武器和低成本精确打击武器,加强电子对抗系统技术的研制,加强计算机对抗手段的研究,研制高分辨力、全天候合成孔径雷达系统,低截获率雷达及相关技术,建立攻守兼备的航空装备体系,发展电子战飞机、预警机,建立远程精确打击能力,发展远程巡航导弹,形成威慑力量。这里,机载航空武器是空中力量攻与防的关键所在。所有这些,均应纳入航空计量体系中来,变成航空计量的研究课题与方向。

21世纪,应积极开展尚未投入实用的一些新概念武器技术的计量测试研究,如主要包含定向能武器和动能武器两大类的高能武器。

动能武器主要包括使用超高速射弹的动能杀伤目标的电磁轨道炮、电磁感应炮、电热炮、电化学炮等;定向能武器主要指激光武器、高功率微波武器、粒子束武器等,属于光速武器。激光武器可使人眼致盲和光电设备致盲;电磁脉冲武器可摧毁导弹、雷达、通信系统、电子设备;次声波武器可影响人员大脑神经系统;高功率微波武器是一种多功能、射频、光速武器,是一种较好的反隐身武器,可进行远程干扰、近程杀伤。

作为非致命技术的非杀伤武器系统技术还有:次声波武器技术、粘胶、光滑剂、超级腐蚀剂、计算机病毒等,绝大多数都属于航空武器技术装备,都应该纳入航空计量测试体系。应积极开展这些新概念武器技术的计量测试研究,寻求将其纳入计量测试体系的途径,储备有潜力的成熟技术,为航空军工服务和提供支持。

另外,各国将陆续开始研究可突破弹道导弹防御系统的远程武器系统,包括多弹头技术、生物弹头技术、地效巡航导弹技术、电子对抗弹头技术、隐身弹头技术、弹头防御技术。同时将加强战斗机防撞地系统和技术的研究与开发。

一个新型航空产品的出现,往往需要众多厂商参加研制,并为新型号研制直接提供配套产品、零部件加工。而这些产品的性能参数,技术数据大部分是由专用测试设备提供的。这些专用测试设备主要包括:各种专用测试仪、试验台、各种专用试验器、专用校验仪器、专用测试车等等。这些专用测试设备成为保证航空产品质量的重要手段,是直接取得航空产品技、战术指标参数,判断性能是否合格的关键测试设备。然而,由于缺少相应的测量标准,这些设备大部分未进行校准,也就无法进行量值溯源。另外,这些专用测试设备种类繁多,具有多参数,多功能的综合测量能力,同时具有特殊的使用方法和对环境条件的特殊要求,因此,必须研制专用测量标准,编制相应的校准规范,使航空专用测试设备纳入校准、溯源的轨道。

电磁学量,主要是电学量,在航空产品及型号中的应用非常广泛,在航空产品的研制、生产、维护和使用中,电学量一直居于任何其它物理量所无法替代的地位。作为能源的电量,为各种电气、电子、电学系统提供动力。而作为信号载体的电量,在航空电子系统、航空通用地面检测系统、航空专用地面检测系统、机载飞行控制系统、电操纵系统及火控系统、实验室用基础测量系统、现场测试系统、以及各种非电量电测系统、各种物理过程的仿真模拟系统中,均获得了广泛应用。电磁学计量在这些方面的应用,对于保障航空产品和型号的性能、质量、安全性、可靠性以及经济效益等,具有举足轻重的作用。

在飞机的研制厂家广泛使用的飞机地面试验系统,就是例证。飞机地面试验系统范围很广,主要有十大试验台:①飞行品质模拟试验台;②飞行控制系统试验台;③电网模拟试验台;④燃油系统模拟试验台;⑤液压系统模拟试验台;⑥环控系统模拟试验台;⑦座舱盖模拟试验台;⑧航空电子综合模拟试验台;⑨进气道调节系统模拟试验台;⑩座舱照明模拟试验台。除了上述十大试验系统外,还有很多,如发动机试车台、试验台,飞机全静力及疲劳试验系统、各类风洞等均属此类,无法一一例举。贯穿于大多数试验台的核心手段就是以模拟电压为输入,以模数转换为特征的通用电学量线性测量系统、各种电学量信号源系统及传输系统。因此,这些电学量线性测量系统、各种电学量信号源系统及传输系统的计量校准在飞机、发动机等产品的各项性能、指标的保障方面是至关重要的。例如:它所确定的飞机强度对于安全性要求是必不可少的,而飞机和发动机的寿命通过这些试验系统确定,所获得的不仅是安全性上的保障,还包含经济效益上的考虑。

广泛用机使用中机载设备现场维护的地面检测车是另一个比较典型的例证。地面检测车多用于机载无线电设备、军械、航空设备、飞机、发动机等的使用中现场(机场)维护检测。通过它们:①对飞机动力装置及相关系统的技术状态进行检测;②对原位故障检测;③修理维护后检测。可分为通用和专用,包括自动检测车和非自动检测车。非自动检测车多是将一些机载设备的校验器装于车上组成,与实验室校验区别不大。而自动检测车则不同,它们需要:①提供操作程序和指令;②形成激励信号;③接收检测信号;④处理、分析、判定信号并显示输出检测结果。

地面检测车在结构上大量采用总线型结构、具有通用接口的功能化模块或设备集成,诸如ieee488总线设备、Vme总线模块、VXi总线模块、pXi总线模块、LXi总线模块,有分布式、集中式、主从式等类型和种类。

通用自动检测车一般需要提供和测量直流电信号、脉冲信号、低频正弦信号、一次性指令信号、时间间隔信号等,包含a/D变换器、D/a变换器、逻辑开关阵,以存储、匹配、a/D、D/a为基本单元而存在的虚拟仪器系统。

将通用自动检测车纳入计量体系,是保障和提高航空武器型号技术和作战性能的必须,这方面需要开展的计量工作很多,a/D变换器、数字存储示波器、D/a变换器、任意波发生器、虚拟仪器系统、各类总线模块及集成系统的校准,现场校准、原位校准、自动化校准和系统校准需求必不可少。

专用自动检测车主要有:①无线电设备自动检测车;②飞机、发动机及航空设备自动检测车;③军械设备自动检测车。

飞机、发动机及航空设备自动检测车主要检测内容有:发动机综合调节器;矢量推力系统;交直流电源系统;进气道自动调节系统;空气调节系统;防火信号系统;燃油系统等。

这些专用自动检测车的数值参数均需纳入计量体系,否则,谁都无法保证其量值的准确可靠。

包含陀螺、惯导、组合导航、自动驾驶仪、飞行控制系统、火控系统、综合信息显示系统、仪表着陆系统、大气数据系统、电源系统、电气系统、电子对抗系统等系统及其校验器在内的航空自动化综合系统,多数属于航空电学和航空仪表计量测试领域,事关飞机总体性能和安全性等,急需纳入航空计量测试体系。

由机上面空间狭小,用电设备众多,线性负载、非线性负载共存,功率强弱不一,频段范围参差不齐、无法真正接“地”,使得机上电磁环境比较恶劣,电源品质也随着用电设备的增多而变得恶劣了,失真、噪声增大,尖峰、浪涌等传导干扰和辐射干扰问题比较严重,往往造成航空电子设备的工作不正常或性能降低,尤其对于可能的无线电罗盘、信标接收机、VoR、惯性自主导航、自动驾驶仪等设备的偏航影响不容忽视,对于方向接收机、下滑接收机等仪表着陆系统、微波着陆系统一类盲目着陆系统的影响更容易造成安全隐患。因此,其计量测试保障必不可少。

各类总线集成测量系统的综合校准研究———VXi,pXi,LXi等各种总线集成系统是航空和国防专用测试系统的发展方向之一。目前,在航空、航天、电子、兵器等行业,获得了越来越多的应用,以航空为例,如雷达测试系统、自动驾驶仪测试系统、组合导航测试系统、着陆设备测试系统、飞控测试系统、飞机地面测试车等所需测量参数多且杂的专用测量系统,越来越倾向于用总线集成系统来组建,其中原因,主要是由于该类系统极为复杂,品类多、参数多,开发研制周期很长,成本高昂,量值溯源问题很难解决,且技术更新服务无法保证。而采用总线集成结构以后,每个模块组件实际上是一些通用信号源或测量装置,很容易分别进行量值溯源和计量保障,可以采用许多现有成品部件组合,很容易完成较复杂的任务,同时开发研制周期极短、成本低廉。因此,关于总线集成系统的计量校准问题便提到议事日程上来,由于集成系统的参数多且杂,使其计量校准变成了一个急需解决但又极为复杂的难题。总体说来,总线集成技术属于现有成熟技术的标准化、模块化、集成化、组合化与网络化,外加上严格的环境和兼容性要求,体现的是总体大于部分之和、以及量变到质变的总体优化效果,从模块的通用性、互换性中寻求低成本和高效益,最后获得系统的可靠性和专用性。就每个模块本身来说,与非总线集成设备相比,并无本质不同,从计量技术来说,也是如此。因此,开展总线集成系统综合校准本身的内容,有很大一部分属于各模块(如数字电压表、信号源、数据采集系统、数字示波器等等)自身性能的计量评价,航空计量系统本身就具有这些设备的性能计量能力,对于这部分需求来说,仅需要掌握总线集成应用技术即可以满足需求,如VXi总线数据采集系统校准、pXi总线数字电压表校准、VXi总线数字存储示波器校准、pXi总线动态信号分析仪校准、LXi总线计数器、频率计校准、VXi总线射频信号源校准、VXi总线频谱分析仪校准等。另一部分内容是总线兼容性测试装置研制,包括①各类总线主机箱冷却规范测试系统;②各类总线模块冷却规范测试系统;③各类总线电源规范测试系统;④各类总线模块电磁兼容规范测试系统。其关键技术是总线兼容性校准技术和环境技术。

时至今日,航空电子设备业已成为现代化飞机中不可缺少的装备系统,包括用于通讯的短波电台、超短波电台、应急救生电台、机内通话器和应答机等,用于组合导航的无线电罗盘、VoR、GpS、航向接收机、下划接收机、信标接收机、微波着陆系统、无线电高度表等,用于作战的机载雷达系统、遥控遥测系统,具有电子干扰、电子侦察、电子防御能力的电子对抗系统(雷达干扰机、电子告警机等)、敌我识别系统、多目标跟踪、处理系统等。航空无线电电子学计量测试在上述领域中的实施,对于上述各种航空电子设备的技、战术指标的评价与保障,无疑是不可缺少的。其技术参数涉及微波、电子、红外、激光、电磁、材料、隐身、预警等诸方面。没有航空无线电电子学计量手段,人们将无法保证上述航空电子设备的性能指标是否符合要求。

尤其需要特别指出的是,机载设备的电磁兼容性评价测试,是航空无线电电子学计量的必要手段和前提。许多飞机都对机载设备的电磁兼容性评价甚至飞机全机电磁兼容性评价提出了明确的要求。军用飞机由于配备电子战装备,具备电子战能力,因而这一要求尤为迫切和突出。这主要是飞机舱内空间狭小,用电设备众多,且功率强弱不等,相差悬殊,频段覆盖范围广,而飞机在空中飞行,是一个无法“接地”的独立飞行体,全金属外壳,易导致不同用电设备的辐射电磁波在舱内多次反射形成驻波等较强干扰,电磁环境尤为恶劣。很容易降低机载设备的技、战术指标,或使其无法正常工作。解决这一问题的手段之一就是开展和完善机载设备的电磁兼容性评价测试,规范和统一机载设备的电磁兼容要求,保障飞机作战性能。机载雷达系统对于军用飞机来说,是一个非常重要的航空电子装备,可以说是飞机的眼睛,其发射功率,搜索范围、距离,以及多目标跟踪能力,在某种程度上,决定了飞机的战斗力和生存能力。只有对机载雷达的这些主要作战性能和指标进行全面计量测试,才能获得有保障的性能指标,也才能将那些不符合要求的设备淘汰掉,而不是只听生产厂家怎样说。军用飞机对机载雷达系统的计量评价要求较民用飞机来说,更为强烈,其主要原因不仅是其所用雷达性能的明显提高,而是由于具有电子战能力的作战飞机必然面临敌方雷达干扰机的电子对抗手段,在这种情况下是否还能保证技、战术性能是需要计量测试手段评价的。电子对抗设备,是一种近年来新兴的机载作战装备,也还没有纳入航空计量测试体系。电子对抗主要包括:射频对抗(涉及通信、导航、雷达和制导);光电对抗(涉及红外、激光、电视);声学对抗(主要指水下声纳);空间对抗(涉及太空对抗、卫星对抗、信息对抗)。可分为积极对抗和消极对抗、压制性对抗和欺骗性对抗;可使用连续波干扰、脉冲干扰、噪声干扰;引导式干扰和应答式干扰;产生轻度、中度、严重干扰。一般具有两类设备:雷达干扰机和电子告警机。

雷达干扰机技术要求:宽频带;大功率;快速信号处理能力;圆极化和多种极化模式;全频段、全空域;同时准确获取敌方雷达多种参数;综合使用多种对抗技术对抗多种雷达;对新体制雷达有快速反应能力。电子告警机技术要求:探测敌方雷达辐射情况并报警;实时探测对我辐射的雷达并定向;确定辐射雷达型号及工作状态;通过辐射功率判定雷达距离;多目标辐射中选取最危险者,报警。它有:工作频率范围、信号接收方式(脉冲、连续、准连续)、接收机灵敏度、警戒范围等指标。

电子对抗设备的应用特点是,若想较好地完成电子对抗任务,必须要有足够精确的性能指标,这些性能指标多是无线电参数指标,这就为航空无线电电子学计量提出了新兴的课题。这一领域的计量测试技术的发展和完善,将直接影响和左右电子对抗设备的效果和性能。实际上,航空电子设备的计量需求是要求能够对其进行完全独立自主的全面计量评价,以判定其性能指标及其试验器的性能指标是否符合要求,并有效溯源。其根本原因和最终目的,当然是保障飞机总体性能,而不是计量本身。在航空领域里,GpS系统用于实时给出飞行器的三维空间和一维时间的四维定位,以便实现其全球导航定位和武器的精确制导。新型飞机以及廉价远程精确打击武器均要用到GpS制导。这里面,极为迫切的计量需求是包括GpS导航卫星系统及GpS导航接收机的时间频率量在内的性能指标的计量评价。

6航空计量测试需求与计量保障现状差距分析

航空计量的现状与实际需求的差距是相当明显的体系性的差距,在我国,应当加强全行业对计量测试的理解和重视;在全行业范围内对其进行总体规划,加大投入和支持,强化计量观念。实践证明,计量测试技术是保障先进战斗机实现空中优势的必要条件,是牵动全局发展的共用技术,计量测试技术贯穿于航空装备型号设计、研制、生产、使用以及维护的全过程,是保障型号性能、质量、安全性、可靠性及经济效益的基本手段和最后手段,不是可有可无的。其中,通用计量测试技术一直是对各种航空武器平台的最终测试手段,这在国外已是一个公开的秘密。而目前我国航空电子设备计量的现状,仅是使用原生产厂家提供的“试验器”在产品装机前对其进行部分性能和指标的“校验”,未能抛弃原生产厂家的试验器,对航空电子设备进行完全独立自主的全面计量测试,也未能对各生产厂家的试验器进行计量评价,只能“承认”各生产厂家产品指标及测试方法的“正确性”与“合理性”。若问为什么,则通常的答案是“外国某公司就是这样干的!我们也这样,肯定没错”!

另外,部分单位对计量测试认识不足,造成了现状与需求的根本差距。以飞机地面试验系统中的各类试验台的校准为例,他们通常认为:“本系统已足够完善,不必做任何改动和校准了,再计量纯属多余,无什么大用,从来没有一个飞机故障是由于计量造成的”。“本试验台中的测量是次要的,居从属地位的;而控制则是主要的,居主导地位的”。“这是一个应用研究室,不是计量室,基本上无须多少计量”。

在我国,并不是每一个人都对飞机系统地面测试系统存在的价值和意义有一个清醒的认识。人们是为了评价飞机及其机载设备的性能和质量才建立起了这许多大大小小的试验台,在这里,永远居于第一位的是试验台所出具的数据,它的全面、可靠和高效是人们最初也是最终目标。是试验台为了数据服务而存在,不是倒过来,为了评价试验台才去计量和校准它。一些部门和单位缺乏这方面的思想和意识,他们往往对于试验台本身奉若神明,而对其数据的校准则不屑一顾,认为没必要、不需要、纯系多余、自找麻烦。因而,这一系列试验台用于仿制飞机可以说是基本满足要求,具备了一些手段,用来研制飞机,进行开创性试验项目,设计研制世界第一流飞机,并将其性能全面准确地测试评价出来,差距尚非常大。当然,不断改善和完善这些试验台,阻力也是很大的。

另外,航空产品设计部门及管理部门,应该将计量测试提高到事关产品质量、经济效益与性能指标的保障层次上来认识与规划,应加强管理与投入。实际上,任何定量的性能指标,不进行测量是不会获得的,现代飞机等航空产品的质量与性能控制,是一个庞大的系统工程,不进行反复的测量和实验,难以进行改进和更新,以便获得最优质量和性能。

不重视航空计量测试,体现在飞机地面测试系统的设计和制造中,就是没有遵循可测性设计原则,无法进行现场原位计量测试。体现在规划上,就是将行业计量混同于常规计量,没有在专业上进行规划,在资金上进行支持,以为依赖国内某些部门的常规计量测试体系或其他行业的计量体系就可以完全满足要求了。

所以,若想在飞机等航空产品的性能、质量、安全性、可靠性及经济效益上获得突破,赶超世界先进水平,必须建立和完善航空计量测试体系。除此以外,航空计量应在两个主要方向上进行专业技术研究:航空通用测试技术研究;航空专用测试技术研究。

在技术特点上可分为两个方面进行研究:

航空航天电源技术篇7

海陆空系――各领域大显神通

在交通运输类专业里,有一些专业因开设院校的不同,培养的人才将适用于不同的交通领域,有的是民航运输,有的是铁道公路,还有的是海洋船舶……虽然这些招生专业名称相同,但培养目标、主要课程和就业领域却有着极大的差异。

【交通运输】

交通运输是一个培养具有统筹、管理等方面知识,能在各级交通运输管理部门、交通运输单位等从事交通运输组织、指挥、决策,交通运输企业生产与经营管理的高级技术人才。换句话说,交通运输的专业人才,就是要有合理组织运输生产以获得最佳社会与经济效益的基本能力。

交通运输专业具有极强的交叉性,首先体现在学科性质上――既有一般工科特性,又有管理学科特性,还有系统工程学科特性。比如开设的专业课程既有电路与电子技术基础、城市轨道交通设备、交通工程学基础,又有运输市场营销学、管理学原理等。其次体现在人才培养上――该专业培养的人才是一种复合型人才,不仅掌握工程技术方面的基本知识、具体的专业知识和操作技能,能胜任交通运输部门的技术工作,而且具有系统工程师的素质,能在大型的规划设计中担当“总体”的角色。

由于交通的涵盖面极广,在不同的院校,交通运输专业的内涵有所差异。比如西南交通大学的交通运输专业由早期的铁道管理系发展而来,是交通运输工程一级学科下设的一个重要专业。该专业以铁路运输管理为主,同时覆盖了道路(含城市交通)、航空、水运等现代运输方式,具有大交通特色。从西南交通大学该专业毕业后,主要面向铁路运输和城市轨道交通就业。铁路运输方向的毕业生主要面向铁路局或公司、设计研究院、大型工矿企业、教育院校等交通运输企事业单位就业;城市轨道交通方向的毕业生主要面向交通管理部门、科研院所、城市轨道交通设计单位、地铁公司、教育院校等企事业单位就业。

但南京航空航天大学的交通运输专业却因为学校的学科特色,更倾向于天空,如学校在“交通运输”专业下,分别设有空中交通管理与签派、民航运输管理、民航机务工程、民航电子电气工程、适航技术与管理、机场运行控制与管理六个本科专业方向,每个专业方向都与航空有关。那不用多说,从南京航空航天大学交通运输专业毕业的学子,就业领域与西南交通大学则大相径庭。

由于不同院校专业方向的不同,也导致了在不同院校学习的课程也有所不同。除了运筹学、管理学、交通运输组织学等主干课程相似外,西南交通大学该专业的课程主要围绕行车组织、货物运输组织、旅客运输组织、铁路车站及枢纽等展开,而南京航空航天大学该专业的课程则根据不同的专业方向有所不同。因此建议对该专业感兴趣的考生,在了解该专业的基础上,还要到开设该专业的院校去查询该专业具体的培养目标和就业方向。

陆地系――飞奔在阳光大道

陆地交通是人类最早发现的运输方式,也是目前最常用的交通运输方式,那么与陆地交通运输相关的专业都有着什么特点呢?

【物流工程】

现在电子商务已经融入人们的生活,成为不可或缺的一部分。当你的鼠标在淘宝、京东等电子商务网站轻轻一点,你所购买的物品不久后将由快递人员送到家门口。与对物品的流通进行设计与规划相关的专业就是物流工程专业。

物流工程是交通运输工程、机械工程、土木工程、信息科学与技术、管理科学与工程、经济学、法学等的交叉学科。学习内容偏工程,主要有物流系统仿真、预测原理、电子通讯技术等技术性课程,以及物流设施设备、货物运输组织、物流中心规划与设计等的需要较高专业技术的规划设计课程,涉及物流规划的编程设计与运算。该专业需要学习者拥有良好的计算机能力以及制图等工程类基础知识,侧重于技术人员的培养,突出的是技术设计能力。

这个专业基础课主要包括现代物流学、系统工程、运筹学、数据库等常见的物流作业需要使用的技术和方法,以及采购与供应管理、供应链管理、物流成本控制、生产运作管理、项目管理等侧重于企业内部物流流程方面的知识介绍以及方法,其中涉及专用的物流模型和软件(如FLexsim),还有一些是如国际物流和物流系统规划等的从大环境出发为企业进行设计和规划的课程。

物流人才在全国来说非常缺稀,因此物流专业的就业面很广,生产、运输、仓储都有涉及。本科毕业生的就业单位主要有铁路局和大型重工企业,以及各汽车企业,后者往往是大多数毕业生偏爱的。还有许多近些年发展快速的专业物流企业、第三万物流企业等对于专业的物流人员的需求量也非常大,而这种企业的待遇相对更好,对毕业生的综合素质要求也会更高。

【交通设备信息工程】

交通设备信息工程专业开设和我国高速铁路的蓬勃发展息息相关,而铁路正是陆路交通运载量最大的一种运输方式。本专业要求较系统地掌握专业领域宽广的技术理论和基础知识,主要包括机械学、电子学、光学、信号分析、测量与控制、计算机网络技术等基础知识,在此基础上掌握光、机、电、计算机相结合的当代信息技术和实验研究能力,具有本专业所涉及到的信息系统与技术应用、设计和开发能力,同时要求较强的外语应用能力。本专业最主要的特色是交通设备的测试、控制、信息系统的设计、制造和应用并重;软件技术和硬件技术并重,掌握与本专业紧密相关的电、算、机、光等技术。

其专业设置的主要目的是为高速铁路建设提供多学科交叉的高级技术人才,专业方向包括车辆工程、载运工具运用工程和精密仪器及机械等。主干学科由交通工程、控制科学与工程和仪器科学与技术组成,模拟电子技术、数字电子技术、机械设计基础、车辆构造及原理、计算机软件技术、信号分析与处理、控制工程、交通设备控制技术、电子测量技术与仪器、振动与噪声测控技术和交通设备动力分析等是必学的课程。

由于专业中设计多个方向的课程,载运的学生在本科毕业后有很多的选择,比如选择继续读研同学既可以选择学习本专业的三个方向,也可以选择机械设计及其自动化方向、电气系统及其自动化方向、电力电子与电力传动方向、计算机技术方向等。在就业中能适应多个岗位的要求,在许多行业都有本专业的学生,而并不是局限在铁路行业,比如交通运输领域(包括汽车、铁路、航空)的中外各生产和管理部门、电子电器研究和开发部门、测控和仪器仪表研制单位、计算机和网络通讯公司等,也可进入高校从事管理、科研和教学工作,因此本科毕业生就业率一直比较稳定。而对于希望出国继续深造的学生来说,专业的选择将有更大的空间,可以选择ee(electronic

engineering)、me(mechanicalengineering)、CS(ComputerScience),甚至有学生申请成功mFe(masterofFinancialengineering)。

海洋系――欲乘风破浪

水是地球最重要的资源之一,地球表面积的70%左右都是被水域覆盖的,所以,要实现异地物与物的空间转移,不征服海洋可不行。

【航海技术】

说起航海技术专业,可能很多考生的第一印象就是“开轮船的”,这一习惯思维是由于该专业在我国就是从海洋船舶驾驶转设而来的,比如大连海事大学的航海技术专业的前身就是海洋船舶驾驶专业。但随着该专业的日趋发展成熟,该专业的要求也不仅仅限于海洋船舶的驾驶,还包括对船舶运输的管理、对航海等法规的了解等。

当然,该专业的基础还是技术,这些技术包括能操作海洋船舶驾驶,能设计航线,能识别和运用各种航图、导航仪器仪表和GmDSS通信设备。在此基础上,还要懂得船舶运输管理,组织船舶航行。同时,由于该专业毕业后,所工作的环境是公海和内海,因此还要了解航海和海商法等法规,以免错误操作而引起争端。

由于技术是基础,所以航海技术的专业课程首先就由船舶操纵、电工技术、航海力学、航海仪器、GmDSS设备及通信业务、船舶无线电技术基础等构成。为了对船舶的熟悉,还要学习船舶原理、船舶结构与设备等课程。另外,航海英语会话和阅读是奠定海外沟通的基础,航海气象学与海洋学是安全顺利航海的前提,船舶安全与管理船舶货运、远洋运输业务与海商法、航运经济与航运市场管理等是合法航行和经济价值最,大化航行的参考依据,这些课程也是必学的。

目前国内开设航海技术的院校并不多,一般可将其归为两类,第一类是依靠学校相关优势学科而开设的,如重庆交通大学、武汉理工大学等;另一类是结合学科及地域优势而开设的,如大连海事大学、上海海事大学、集美大学、烟台大学等所在地都是我国著名的港口。

考虑到航海技术就业领域的特殊性,目前招生批次大多位于提前批次,由于工作环境的特殊性,在体检方面有比较严格的要求。大连海事大学要求报考航海技术专业的考生身高1.65米以上、五官端正、无平足、无口吃、无色盲(弱)、双眼裸眼视力均在4.7及以上,且矫正视力均能达到4.9及以上的身体健康、学习英语的男生。其他院校的标准也并不多,以学校《招生章程》公布的信息为准。

【轮机工程】

如果说航海技术专业还能从名称上大概判断出专业是学什么的,那么轮机工程就往往会让初次接触的学生不知所以然,听起来仿佛很熟悉,但要说明白轮机工程是学什么的却只能摇摇头。

从学校的专业介绍中,轮机工程是培养具备机械原理和轮机系统等方面的知识,符合国际海员培训、发证和值班标准公约(stCw78/95)和我国海船船员适任标准的要求,基本具备a类船舶二管轮任职资格,并能在海洋运输各事业单位从事轮机操纵、维修和船舶监修、监造工作的高级技术人才。更简单地讲,轮机工程培养的学生就是管理船舶所有机电设备和动力装置的技术人员。

该专业在大多开设院校中都设有不同的专业方向,如大连海事大学轮机工程分为轮机管理和船机修造两个方向,前者主要专业基础课和专业课有:工程流体力学、电路与电子技术、工程热力学及传热学、轮机工程材料、机械设计基础、轮机监控技术及应用、船舶电气设备及系统、船舶柴油机、船舶辅机、轮机自动化、轮机维护与修理、船舶动力装置技术管理等。后者课程的课程包括理论力学、材料力学、机械原理、机械设计、轮机工程材料、工程热力学与传热学、电路与电子技术、微机原理与应用、船舶柴油机、船舶辅机、轮机自动化、船机制造工艺、船机检修工艺、船舶检验、船舶动力装置设计、摩擦学、故障诊断技术等。重庆交通大学则设有轮机管理与船舶动力装置设计与制造两个方向,但两者的培养目标、主要课程和就业领域没有较大的差别。

轮机工程与航海技术是两个紧密联系的专业,因此一般开设了航海技术专业的院校,也开设有轮机工程专业。由于轮机工程专业毕业后所就业的领域与航海技术一样,因此在体检要求方面也与航海技术相似。

从该专业毕业后,找工作基本上是不用愁的,但工作强度比较大,一般靠离码头需要加班(及时对轮船的情况进行检查、维护和修整),环球航行需要倒时差,如果遇到旧船,工作强度会更大。再者,机舱高温、高噪音。虽然有集控室,但平时保养仍需亲临一线。另外,航海还有其特殊性,譬如说,长期远洋不能经常和家人团聚。所以在选择时,考生要综合考虑自己的兴趣、特长和未来的就业领域再谨慎填报。

天空系――借我一双翱翔的翅膀

曾几何时,飞上蓝天是人们遥不可及的梦想,但随着科技的发展和航空运输的发展,坐飞机已经不再是一件奢侈的事。而载领人们翱翔蓝天的飞机操作员,就是飞行技术专业所培养的人才。

【飞行技术】

飞机技术简单地说就是培养飞行员的专业,也就是说培养会开飞机的人的专业。也许有许多人认为该专业只注意培养飞行技术,但事实上还会培养对飞机性能的了解。

飞行技术专业的学习由三大模块组成,其一是理论学习,主要包括陆空对话、民用机飞行原理、航空气象学、空中领航学、机组资源管理、航图、航行情报学、空中交通管制学等对飞机的了解,对飞行气象的了解和一些基础知识。在完成一到两年的理论学习后,就要上飞机进行飞行训练。飞行训练结束后,还要进行毕业设计才算整个学业的完成。一般来说,理论学习和毕业设计是在招生院校进行,飞行训练是由与招生院校联合培养的航空公司指定训练地点。

目前,想报考飞行技术专业,首先要在招生院校报名,再经过院校的体检、面试和背景调查,通过后才能填报志愿。同样,飞行技术专业毕业后的工作环境比较特殊,因此对考生的体检要求特别严格,如北京航空航天大学就要求身高170~187厘米,任何一眼裸眼远视力(C字表)不低于o.5,且没有做过视力矫正手术的才具有报考资格。

航空航天电源技术篇8

有啥用?

在载人航天发展之初,军用是首要目的,美国和苏联都曾实际应用过载人飞船进行对地成像、电子侦察。但随着技术的进步,照相和电子侦察及其他军用航天任务都可以用无人卫星去完成,载人航天逐渐演变成为大国之间展示国力的竞争。在苏联解体后,曾与美国合作建设国际空间站,载人航天的主要目的已转变为基础科学性质的空间科学研究。

空间站的建成,短时间内可能不会产生什么经济效益,但它在科学研究上却有巨大价值。与其他航天器相比,空间站因为有人参与观测,再加上空间站在太空的活动位置和多方向性,可以充分发挥仪器设备的作用。比如对地观测方面,空间站比遥感卫星条件更优越。当地球上发生地震、海啸或火山喷发时,空间站里的航天员,可以及时调整遥感器的各种参数,以获得最佳观测效果。用空间站对地球大气质量进行监测,可长期预报气候变化。而且,陆地资源开发、海洋资源利用等方面也会从中受益。

在天文学方面,由于受地球大气层的影响,目前,在地球上能够接收到来自宇宙的信息,只有可见光和部分无线电波,而大量的电磁波已经被大气层过滤掉了。这使研究和探索宇宙受到很大的限制,而如果在空间站上建立专门的天文观测设施,进行相关的天文研究,就可以排除这些限制。

苏联和平号空间站

和平号空间站是前苏联载人航天的巅峰之作,拥有量子1号和量子2号、晶体、光学和自然舱共5个功能舱。要加上核心舱,它的总质量就会有约130吨。但由于和平号空间站使用的是较陈旧的多舱空间站设计,布设太阳能电池翼上存在诸多不便,致使电力供应从来不能满足实验舱的需求。

为此,苏联在解体前设计了和平2号空间站,为弥补以前的种种不足。

国际空间站

美俄联合建造的国际空间站,一改之前的大国太空争霸、展示国力的局面,而是转为合作。两国使用同一概念设计空间站,使得国际空间站规模庞大、技术先进,不过这个系统也极为复杂,并且建设极为依赖美国航天飞机。国际空间站拥有15个加压舱段,4个大型太阳能电池翼以及其他设备,总重量达到了空前的400吨以上。国际空间站具有分属美国、俄罗斯、欧洲、日本的4个大型实验舱,可以满足各类空间科学、天文与对地观测、空间生命科学和航天医学等领域研究的需求。

中国空间站未来猜想

在先后掌握了载人飞船和货运飞船、空间对接与航天器长时间自主运行、航天员中期驻留等技术后,我国将在2017年以后开展大型、长期有人照料的空间站的建设工作,预计2020年左右建成。

我国空间站主要舱段将使用新一代的长征五号运载火箭发射,因此质量限制大为放宽,空间站将由1个21吨核心舱和2个20吨级实验舱组成,总发射重量超过60吨。空间站核心舱长18.1米、最大直径4.2米,分为节点舱、生活控制舱和资源舱,是航天员的主要活动场所。核心舱的节点舱段拥有5个对接口,用于对接实验舱和载人飞船,是空间站的联系枢纽,另外在资源舱尾部还有一个对接口,用于对接货运飞船。两个实验舱长度均为14.4米,最大直径4.2米,是开展空间实验的主要舱所,也可供航天员临时生活。

航空航天电源技术篇9

关键词:独立学院;机务维修;实践;培训

Doi:10.16640/ki.37-1222/t.2016.24.204

0引言

由南京航空航天大学金城学院选派,作者于2016年7月11日至8月5日赴台湾参加了由台湾中华科技大学承办,德国汉莎培训中心教师执教的大陆航空院校暑期飞机维修师资研习。经过四周的培训,受益匪浅。

1培训项目基本情况介绍

中华科技大学其前身是1967年成立的私立中华工业专科学校,2009年更名为中华科技大学;现共有新竹校区、台北校区、云岭校区等3个校区。本次培训所在地新竹校区是2003年成立,位于新竹县横山乡的航天学习园区。该校区设立有飞机系统工程研究所、航空运输研究所、航空机械系、航空电子系、航空服务管理系,以及与航空服务管理相关的观光餐旅系,并已与德国汉莎航空公司合作成立“航空维修教育中心”,为亚洲第一所获欧盟认证的航空维修学校;且为全国唯一民航局认证及考照学校。

本次培训有西安航空职业技术学院、上海工程技术大学航空运输学院、天津中德应用技术大学、南京航空航天大学金城学院、安阳工学院、桂林航天工业学院共6所国内本科、高职院校的29位专业教师参加。培训设置“结构组”、“航电组”与“系统与发动机组”三个培训组。作者参加“航电组”进行学习。培训时间每天8小时,总计160学时。

“航电组”主要培训了标准线路施工中的导线分类、剥线工具、压线工具、束线带的使用;航空电源系统、火警探测和灭火系统、灯光系统;飞行仪表系统;通信系统;导航系统等内容。由德国汉莎培训中心专业教师执教。培训教师共两位,各负责两周的培训,他们分别具有十年以上中华航空或长荣航空的一线机务维修经历,经验丰富,知识面广,授课认真。一般上午半天是理论学时的学习,下午半天是实训。包括用飞机上用的电线、接头去压接导线;去B727飞机、军用飞机上看各个系统的实物,比如蓄电池、灯光、仪表板、垂直陀螺、方位陀螺等,让大家有更直观的认识;去发动机实验室看发动机的结构;去飞行模拟器上设置航路模拟从桃园机场到高雄机场起飞、巡航、进近、着陆的一系列过程,从而帮助对pFD、nD、无线电导航等知识的学习。

2培训收获与心得

借助中华科技大完善的理论教学体系以及实践课程环节,这四周收获很大,既提升了自己的专业知识与技能水平,同时也收获了和台湾科技大学以及国内相关院校老师深深的友谊,最大的感触主要是下述几点:

(1)机务维修是一个技术要求高且非常严谨的工作,说它技术要求高是因为不管是电线的施工,还是铆接打保险都要求基本功很扎实,工艺完全合乎要求。工艺上稍微有点瑕疵,如果没有及时修正都可能会带来安全隐患。比如课堂上学的束线带一定要按照标准方法捆紧,要不然飞机的颠簸或者受到外力都会导致部分松开。说它严谨,是说维修过程中,机务人员根据工作单或飞机损坏情况,严格按照制造厂家的维修手册amm或故障排除手册tSm执行,不允许操作人员创新性工作。第二,从老师的过往经历来看,机务维修还是一份很辛苦的工作,风吹日晒,环境恶劣,材料有腐蚀性。并且工作时间不固定,遇到难以排除的故障时吃饭和下班都不能按时按点。

(2)中华科技大学实验室的设备还是很实用的。特别值得学习的是中华科大拥有大量的自制研发设备,多数自制设备是专任教师根据教学需要,将垂直陀螺等不易观察的设备从真机上剥离出来,而开发制作的易于操作、便于教学的实验设备,既保留了设备的真实性,又方便教学使用。这种通过自制设备开发实践教学条件的方法值得我们学习。通过设备的自制,可以建设我校的实践教学体系,也能促进专业教师深入开展教学改革,锻炼教师的实践动手能力及知识的综合应用能力。

(3)上课时使用的德国汉萨机务维修网络教学资源,图文并茂、声色俱全,生动形象,文字、图片、动画、视频融为一体,中华科技大学给我们提供了部分教学资源的链接,我们也可以结合我们自己的课程内容和德国汉萨机务维修网络教学资源创建精品课程,同时开发网络教学资源,将教学任务、教学课件内容呈现网络化,借助qq群,微信等工具,让学生随时随地的进行碎片化学习,甚至师生之间可以借此进行互动。

3结束语

航空航天电源技术篇10

1.创设良好的航空科技教育条件

建立航空教育基地的关键是为了给学生提供良好接受航空知识的渠道及活动场地。为此,我校特聘了一大批航空专家作为客座教授,坚持每月开设一次航空知识专题讲座,同时,申请专项经费80万对原有高初中部航空教育资源进行重组,购进航空航天类图书进万册,订阅科技类杂志10多种供学生借阅。在初中部装备了四个活动室,购进20多架不同类型的大型飞机模型建成了航空模型陈列室,购进模拟飞行器等设备建立模拟飞行操作室(经费不包括电脑),购进各种航天航空航模型500多架,建立航空航天器材拼装制作室、器材修复和教学活动室(经费不包括教学设施、电教设备)。高中部由于学校是新建的,将活动室与学校5间通用技术实验室整合,使航空教育有了优良的教学条件和活动场地。

2.建设学校航空科技特长生的“生源”链

(1)在全区寻找特长生苗子

我校有全区最好的航空科技教育活动设备和最强的航空科技教育教师队伍,利用周末及寒暑假、全国科技活动周、全国科普活动日等时间,开展面向全区中小学生的航空科普知识及航空航天模型培训活动,一方面可以承担起“区科普教育活动基地”优质科技资源服务社区义务,另一方面可以吸引全区具有航空航天爱好的小学生到我校初长班学习,初中生到我校为高长班就读。形成从小学、初中、高中到的培养链条。

(2)在我校初中部发现特长苗子

苏霍姆林斯基说“人的内心里有一种深根蒂固的需要——总想感到自己是发现者、研究者、探寻者。在青少年的精神世界里,这种需求特别强烈。”正是基于这一教育理论,从关注学生“学习、实践、创新”能力培养出发,我校在七年级每班每周编排了一节航空知识普及教育课,开设了“航空模型及航空模型运动的历史和发展、模型活动的基本理论、基础知识和原理、航空模型中自由飞模型的放飞及调试技巧、航空模型中遥控模型的操纵及调试技巧、火箭模型的制作与发射等基本课程”,学生通过开展航空航天模型活动,获取更多的科学知识,得到更多的动手机会,在全面提高学生综合素质,为社会培养复合型人才的同时,能激发部分学生的好奇心和探究精神,发展成航空爱好者。学校再通过航模活动兴趣小组的进一步培养,特别是组织参加行航模比赛,提高学生的创新意识、创新能力和团队合作精神。并发现好的苗子重点培养,为高长生提供生源。

3.采取多渠道的培养模式,加大特长生培养力度

(1)加强特长生课程建设,提高特长生综合素质

自建国以来,航空模型一直被作为一项培养国家航空事业后备人才、作为国防体育运动的竞技项目来开展。2005年教育部在中小学中实施“2+1”工程项目,要求学生掌握2项体育技能和1项艺术技能。第一批开展的15个项目中,航空模型就被列入其中,可见国家教育部门对航空模型的重视。

如何将特长生培养与国家航空事业后备人才培养接轨,课程建设驻足轻重。通过许光明教授等咨询航空专家,结合学校航空教师特点,我们在高一将特长班航空教育课与利用通用技术课整合,开设了“航空模型图纸制作与阅读、航空模型制作工具的使用、航空模型飞机拼装及简易航空模型飞机的设计制作、遥控固定翼及直升机模型放飞原理、航空模型中自由飞模型的放飞及调试技巧、航空模型中遥控模型的操纵及调试技巧等”,提高了特长生的综合素质,为他们将来的职业发展打下了良好的基础。